All-trans retinoic acid suppresses liver injury induced by Propionibacterium acnes and lipopolysaccharide in rats

本村, 健太
九州大学医学系研究科内科系専攻

https://doi.org/10.11501/3150740
All-trans retinoic acid suppresses liver injury induced by Propionibacterium acnes and lipopolysaccharide in rats

KENTA MOTOMURA, HIRONORI SAKAI, HIDEHIKO ISOBE AND HAJIME NAWATA
Third Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan

Abstract
All-trans retinoic acid (ATRA) has been reported to exert major effects on the immune system, including monocytes/macrophages. The present study was designed to determine whether ATRA would modulate macrophage-associated liver injury induced by Propionibacterium acnes and lipopolysaccharide (LPS) in rats. All-trans retinoic acid administration alleviated the liver injury and reduced the incidence of death following hepatic failure. Serum alanine aminotransferase (ALT) levels 5 h after, and survival rates within 12 h after the administration of LPS were significantly lower in the ATRA-treated group (134±119 IU/L and 72.7%) compared with the control group (713±411 IU/L and 18.2%; P<0.05). Histological findings supported these results. These effects may be due to suppression of tumour necrosis factor-α (TNF-α) and superoxide anions produced by activated macrophages. Serum levels of TNF-α 1 h after LPS administration were significantly lower in the ATRA-treated group (60.5±7.0 ng/mL) as compared with the control group (105.2±39.3 ng/mL; P<0.05). Formazan deposition that was generated by the perfusion of the liver with nitroblue tetrazolium, also suggested suppression of the release of superoxide anions from hepatic macrophages. These results suggest that ATRA acts as an immunomodulator in liver injury by suppressing the activation of liver macrophages.

Key words: all-trans retinoic acid, immunomodulator, Kupffer cell, liver injury, LPS, Propionibacterium acnes, superoxide, TNF-α.

INTRODUCTION
Retinoids, natural and synthetic derivatives of vitamin A, exert marked effects on cellular proliferation and differentiation, and also on the immune system. The anti-inflammatory effects of retinoids have been demonstrated in dermatological diseases in humans1 and in animal models of inflammatory diseases, such as adjuvant arthritis2 and ultraviolet-induced erythema.3 Most of the effects of vitamin A (retinol) are linked to the oxidized form, all-trans retinoic acid (ATRA), via the ligand-dependent activation of two families of nuclear hormone receptors, retinoic acid receptors (RAR)4-6 and retinoid X receptors (RXR).7 We previously studied the effects of ATRA, retinal and retinol on the function of isolated rat Kupffer cells, which are resident macrophages in the liver. Of the three retinoids, ATRA is most potent in suppressing the production of tumour necrosis factor-α (TNF-α) and nitric oxide (NO) by lipopolysaccharide (LPS)-stimulated Kupffer cells.8 This suggests that ATRA may inhibit inflammation in some types of liver injury by suppressing the production of inflammatory cytokines and free radicals from Kupffer cells or hepatic macrophages. The present study was designed to determine whether ATRA would exert any effect on experimental liver injury in the rat. Propionibacterium acnes (P. acnes; Corynebacterium parvum) and LPS were used to induce liver injury in this model. Severe liver injury and circulatory shock can be induced by the injection of a low dose of LPS to mice or rats pretreated with heat-killed P. acnes.9-11 Hepatic macrophages are considered to be mainly involved in the development of the liver injury in this model.9-11

METHODS
Animals
Male Wistar rats (170-200 g, Laboratory of Animal Experiments, Kyushu University, Japan) were maintained on a basal pelleted diet and water ad libitum in a room under normal laboratory lighting conditions. Protocols...
for these studies were reviewed by the Committee of the Ethics on Animal Experiment in Faculty of Medicine, Kyushu University and carried out under the control of the Guidelines for Animal Experiments in the Faculty of Medicine, Kyushu University and the law (No.105) and notification (No.5) of the Japanese Government.

Experiment 1

Eleven rats received ATRA (Sigma Chemical Co., St. Louis, MO, USA) at a daily dose of 20 mg/kg body weight. Preliminary experiments employing control rats confirmed that ATRA had no significant side effect at this dose. The drug was given orally as a 4 mg/mL mixture with olive oil (Wako Pure Chemical Industries Ltd, Osaka, Japan), daily for 8 days (ATRA-treated group). Another 11 control rats similarly received 5 mL/kg bodyweight of olive oil per day. All rats received an intravenous injection of 400 mg/kg bodyweight of heat-killed P. aeruginosa (C. parvum, ATCC13827, provided by Osaka University, Tokyo, Japan) as a 20 mg/mL suspension in saline via the tail vein on day 1. Seven days later, they received an intravenous injection of 400 mg/kg bodyweight of LPS (from Escherichia coli 055: B5; Difco Laboratories, Detroit, MI, USA) as a 200 mg/mL solution in saline after the final administration of ATRA or olive oil. Rats were observed for 12 h after the injection of LPS to determine the survival rate.

Experiment 2

Twelve rats were divided into two groups and treated as described in Experiment 1. To determine the severity of liver injury, blood was collected from the inferior caval vein and stained with 1% formalin. The paraffin-embedded sections were stained with haematoxylin and eosin (HE) for histological evaluation.

Experiment 3

Twenty-four rats were divided into two groups and treated as described in Experiment 1. Before the administration of LPS, four rats in each group were killed for the evaluation of granuloma formation in the liver by light microscopy. The specimens of liver were excised, fixed, and stained with HE or paraffin and stained with HE. One hour after the injection of LPS, another six rats from each group were subjected to liver perfusion with nitroblue tetrazolium (NBT). Blood was collected for the determination of serum concentrations of TNF-α. In order to examine liver perfusion with NBT and paraformaldehyde (PF) stained liver specimens, all slides were stained by routine HE and HE-stained sections.

Measurement of tumour necrosis factor-α

The serum concentration of TNF-α was assayed by ELISA as previously described. Briefly, 96-well microtiter plates were coated with hamster anti-murine TNF-α monoclonal antibody (Genzyme, Boston, MA, USA) and a blocker. Samples and standard recombinant murine TNF-α (no. TNF-M, Genzyme) were applied and incubated for 2 h, followed by the addition of rabbit anti-TNF-α polyclonal antibody (no. IP-400, Genzyme). Peroxidase-conjugated goat anti-rabbit IgG was used as a signalling antibody, and 3,3'-diaminobenzidine dichloride was used as a substrate. Spectrophotometric measurements were obtained with an ImmunoReader MJ2000 (InterMed, Tokyo, Japan) at an optical density of 490 nm. All steps in this assay were performed at room temperature. The ELISA system measured murine TNF-α in the range of 153–2500 pg/mL. Cross-reactivity between the murine and rat TNF-α was demonstrated by the manufacturer.

Aminotransferase assay

A-Amino-transferase (ALT) activity in the serum was assayed by standard spectrophotometric methods using commercial test reagents (OCTOA test, Wako). The extent of liver injury caused by lipopolysaccharide in rats pre-treated with P. aeruginosa.

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Serum ALT (IU/L)</th>
<th>Extent of liver injury (Grade)</th>
<th>Granuloma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>211 (18.2%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ATRA treated</td>
<td>81 (72.2%)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Histological evaluation

The histological extent of liver injury and granuloma formation were evaluated by using formalin-fixed and paraffin-embedded liver specimens. All slides were examined at random by one of the authors on light microscopy or micrographs. The extent of liver necrosis was classified using a four-degree score as previously described. Granuloma formation was also evaluated as number and size in the randomly selected fields of liver specimens. These were performed as shown in the footnote of Table 1 with the HE-stained sections.

Procedure for liver perfusion with nitroblue tetrazolium

The procedure for liver perfusion was carried out as previously described with some modifications. Under anaesthesia with diethyl ether, the liver was perfused successively with Ca^2+ -free Hank’s balanced salt solution (HBSS) for 5 min, Dulbecco’s minimal essential medium (Nippon, Tokyo, Japan) with 0.05% NBT (Wako) for 10 min or with NBT and 60 U/mL of SOD (from bovine cytochrome, Sigma) as previously described. Perfusion was performed at a flow rate of 20 mL/min at 37°C with a continuous supply of O2. The perfusate contained 20 mM 1-glucose, HEPES, pH 7.4. The excised liver was then fixed in formalin and embedded in paraffin, and stained with haematoxylin and eosin (HE) for histological evaluation.

Results

Survival rate

Survival rates are expressed as alive/total ratio and were statistically analysed by the Chi-squared method. Scored histological extent of liver injury was statistically analysed by the Mann-Whitney test. Other data are expressed as mean ± SD and were statistically analysed by the Student’s t-test. A level of *P* < 0.05 was considered to be statistically significant.

Effects of all-trans retinoic acid on lethality and liver injury caused by lipopolysaccharide in rats pre-treated with P. aeruginosa

The 12 hour survival rate was significantly higher in the group treated with ATRA than in the control group (72.7% [8/11] vs. 18.2% [2/11]; *P* < 0.05). This indicates that P. acnes plus LPS-induced lethality was significantly reduced by the administration of ATRA. As shown in Table 1, ATRA also significantly reduced P. acnes plus LPS-induced increase in serum ALT activity.

On histological examination, rats in the control group showed diffuse intrahepatic hemorrhage, massive hepatocellular degeneration and scattered areas of coagulative necrosis mainly in the midzonal areas (Fig. 1A). Five of six rats showed the necrosis of grade 3 (Table 1). In the group treated with ATRA, these findings were mild or rare (Fig. 1B), only two of six rats showed grade 2 necrosis and others showed grade 1 (Table 1).

Effect of all-trans retinoic acid on release of superoxide anion from activated liver macrophages

Seven days after the administration of P. acnes, the number and size of hepatic granulomas, which were significantly reduced in the group treated with ATRA, were not statistically different from control (Table 1).
The administration of LPS increased the serum concentration of TNF-α in the control group. This increase was significantly attenuated by treatment with ATRA (P < 0.05; Table 1).

DISCUSSION

Endotoxins are potent immunomodulators that are toxic to a number of tissues. Because the liver is the major organ responsible for the clearance of soluble and particulate materials (including bacterial products such as LPS) from the circulation, this organ is highly susceptible to the deleterious effects of endotoxins. As a consequence of the liver's functions, a wide array of bioactive substances are released. Among them are reactive oxygen intermediates which are involved in the pathogenesis of liver injury caused by endotoxemia, ischemia-reperfusion, and alcohol toxins. Protection against these radicals has been accomplished by the use of free radical scavengers.

Cytopathic effects in TNF-α and interleukin-1 (IL-1) are also produced in large quantities during systemic inflammation, and are implicated in many of the pathological responses that accompany endotoxemia. Tumor necrosis factor-α is believed to be the principal mediator of the deleterious effect of LPS. Neutralization of TNF-α activity with TNF-α antibodies ameliorates many of the adverse effects of LPS and prevents death from severe bacteremia. Macrophage cytopathic activities play important roles in the development of liver injury by producing proinflammatory cytokines and free radicals. Inhibition of these inflammatory mediators is an important target in the treatment of liver diseases. However, the primary nonfunctioning graft in liver transplantation.

In the present study, the administration of ATRA reduced the severity of liver injury and the incidence of mortality caused by the administration of LPS and LPS.

This effect may be explained by the fact that serum TNF-α levels and the formazan deposition in the liver (which are the indicators of the activation of liver macrophages), were apparently lessened in the ATRA-treated group. The formazan depositions were confirmed to be generated by extracellular superoxide anions released from the activated macrophages, because they nearly disappeared in the rats perfused with SOD, a result similar to one previously described.

We previously confirmed that ATRA suppressed the production of TNF-α by LPS-stimulated rat isolated Kupffer cells in vivo. Some researchers also reported that ATRA inhibited the synthesis of collagenase by monocytes; the production of TNF and of NO by murine peritoneal macrophages, and inhibited the IL-1-induced cytokine synthesis in human monocytes. These results seem to be consistent with the role of TNF-α in mediating macrophage activation.

In the present study, it remains unclear how much TNF-α in serum was derived from hepatic macrophages since macrophages/momocytes throughout the body can also secrete TNF-α. It is well known that Kupffer cells occupy the largest population of resident macrophages in the whole body and that injected LPS is mainly absorbed by Kupffer cells. Therefore, it seems reasonable to expect that activated hepatic macrophages are the major source of TNF-α in our model.

In summary, these results indicate that ATRA is capable of acting as an anti-inflammatory agent in liver injuries that are caused primarily by the activation of the macrophage. Further investigation is needed to clarify the effects of retinoids and the relationship between liver disease and vitamin A.

REFERENCES
