Tolerance of the Cirrhotic Liver to Cold Ischemia: Ex vivo Analysis in Rats

岸川, 圭嗣

https://doi.org/10.11501/3128602
Tolerance of the Cirrhotic Liver to Cold Ischemia: Ex vivo Analysis in Rats

Abstract

We investigated the viability of rat cirrhotic livers preserved cold using an isolated rat liver perfusion model. Cirrhosis was induced by intravenous thioacetamide injection. Normal and cirrhotic livers were reperfused immediately or following 6 h of preservation through the portal vein with Krebs-Henseleit buffer and hyaluronic acid added. Cirrhotic livers with short cold ischemia showed higher portal venous resistance than their normal counterparts (p < 0.05), while cirrhotic livers preserved for 6 h exhibited marked elevation of the portal venous resistance as compared with their fresh counterparts or normal liver preserved cold for 6 h (p < 0.05). Similarly, the oxygen consumption of cirrhotic livers with short cold preservation was lower than that of normal livers (p < 0.05), which was further reduced by 6 h of cold preservation (p < 0.05). The bile output was not different between normal and cirrhotic livers. The sinusoidal endothelial cell function of cirrhotic livers as assessed by the clearance of hyaluronic acid was impaired even after a short period of cold ischemia. Histologically, cirrhotic livers showed severe sinusoidal endothelial cell damage, hepatocellular swelling, and marked septal edema which became more prominent by cold preservation. We conclude that the viability of the cirrhotic liver is impaired even by a short cold exposure, and that the prolongation of cold ischemia of the cirrhotic liver leads to further deterioration of the viability.

Introduction

Pichlmayr et al. [1] advocated new surgical techniques for previously unresectable hepatocellular tumors, extracorporeal hepatic resection or in situ perfusion, which are extensions of liver transplantation with the use of veno-venous bypass. The only well-established contraindication for extracorporeal hepatic resection is cholestasis due to obstructive jaundice [1] for which we tentatively added liver cirrhosis and obvious fatty liver [2] that are known factors for postoperative liver failure after hepatic resection [3, 4]. To date, little is known about the tolerance of cirrhotic liver to cold ischemia, and, therefore, it is unclear if patients...
transplantation in rats that 6 h of static preservation in lactated Ringer solution is not consistent with survival, while such a period lasting 4 h is [7].

Materials and Methods

Animals

Inbred male Lewis rats aged 6 weeks (Seiwa, Fukuoka, Japan) were used for the experiments. The animals were housed in a temperature-controlled room with 12-hour light-dark cycles and maintained on normal rat diet and water ad libitum.

Induction of Liver Cirrhosis

The rats were injected with thioacetamide 200 mg/kg i.v. every other day for 3 months to induce liver cirrhosis [5] which was confirmed grossly and histologically in each animal.

Experimental Groups

The rats were divided into four groups as follows: group LC-Fr (n = 8): cirrhotic livers perfused immediately after hepatectomy; group N-Fr (n = 8): normal livers perfused after 6 h of cold preservation in lactated Ringer solution (4 °C), group LC-Pr (n = 8): cirrhotic livers perfused after 6 h of cold preservation in lactated Ringer solution (4 °C); and group N-Pr (n = 8): normal livers perfused immediately after hepatectomy and 6 h of cold preservation in lactated Ringer solution (4 °C).

Hepatectomy

Under general anesthesia by intraperitoneal injection of pentobarbital sodium 70 mg/kg, the abdomen was entered via a midline incision, and the common bile duct was cannulated with a fine Silastic tube (Dow Corning, Midland, Mich., USA; Cat. No. 602-103, 0.3 mm inner, 0.64 mm outer diameter) [6]. With in situ perfusion of the liver via the terminal aorta with 40 ml of cold lactated Ringer solution (4 °C), the right side was then resected and placed in cold lactated Ringer solution (4 °C). We used lactated Ringer solution, since we have documented using orthotopic liver transplantation in rats that 6 h of static preservation in lactated Ringer solution is not consistent with survival, while such a period lasting 4 h is [7].

Perfusion System

The liver was reperfused via the portal vein for 2 h with a pressure of 12 cm H₂O. The perfusate was recirculated through a filter with 7-μm pores and oxygenated through the artificial lung (8) by 55% O₂ and 5% CO₂. The perfusate consisted of 300 ml of Krebs-Henseleit buffer with additional 2.5 mM CaCl₂, to which 300 mg hyaluronic acid (HA; Wako Chemical, Osaka, Japan) was added just before reperfusion. The portal flow was measured continuously by an electromagnetic flowmeter (model MF-27; Nihon Kohden, Tokyo, Japan) with a flow transducer (model FF-050T, inner diameter 5 mm; Nihon Kohden). pH and oxygen concentrations of inflow and outflow perfusates were measured every 30 min using an AB1-30 acid-base analyzer (Radiometer, Copenhagen, Denmark) for pH correction and calculation of the oxygen consumption.

Biochemical Analyses

The glutamic-pyruvic transaminase (GPT) levels of the perfusate were measured by an ultraviolet or enzymatic method 15 min after starting reperfusion and every 30 min thereafter. For the measurement of adenine nucleotides, tissue samples were taken after 15 and 30 min and then every hour. Tissue samples were immediately soaked and stored in liquid nitrogen for later analysis. In this study freeze-sampling was not employed to avoid the influence of frozen tissue on perfusate GPT. Adenine nucleotides were measured by reverse-phase liquid chromatography [9] (LC6A system; Shimazu, Kyoto, Japan) using a CLC-ODS 4.0-mm column with 24 mM dimethylaminoethanol and 16 mM citrate as a mobile phase. For analytical standards of adenine triphosphate (ATP), adenine diphosphate (ADP), and adenine monophosphate (AMP), commercially available kits (Sigma, St. Louis, Mo., USA) were used. For the protein assay, a DC Protein Assay Kit II (Bio-Rad Laboratories, Richmond, Calif., USA) was used [10]. The HA level was measured 15, 30, 60, and 120 min after reperfusion using a specific radioactivity-binding assay [11].

GPT release, bile production, portal venous resistance, oxygen consumption, and energy charge were calculated according to the following formulas:

=GPT release (IU/liver) = GPT (IU/l) × 0.3 (l/liver weight (g))

Bile production (g liver/15 min) = \(B_k\) (g/liver weight (g))

Table 1. Liver weight and preservation time (mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>Liver weight, g</th>
<th>Preservation time, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-Fr (n = 8)</td>
<td>14.9 ± 2.30</td>
<td>26.6 ± 12.63</td>
</tr>
<tr>
<td>LC-Pr (n = 8)</td>
<td>16.2 ± 4.81</td>
<td>366.0 ± 11.54</td>
</tr>
<tr>
<td>N-Fr (n = 8)</td>
<td>12.4 ± 1.33</td>
<td>15.7 ± 4.5</td>
</tr>
<tr>
<td>N-Pr (n = 8)</td>
<td>12.3 ± 0.67</td>
<td>366.0 ± 5.45</td>
</tr>
</tbody>
</table>

Portal venous resistance (cm H₂O min/mlg liver) = (P_out - P_in) / Q (cm H₂O/portal flow ml/min/liver weight (g))

Energy charge =

\((ext{ATP} + \frac{1}{2} \times \text{ADP})(\text{AMP} + \text{ADP} + \text{ATP})\)**

BO₂ =

Bile output during each 15-min period (l/15 min) = portal vein pressure (cm H₂O) x inferior vena cava pressure (cm H₂O) x oxygen pressure of the effluent (mm Hg) x F₃ (ml/min)/liver weight (g)

Liver Weight

The liver weight was measured immediately after donor hepatectomy and at the end of reperfusion.

Histological Examination

Tissue samples were taken before preservation and at the end of the reperfusion, fixed in 10% formalin, and stained with hematoxylin and eosin.

Statistical Analyses

The data are expressed as mean values ± SD. Two-tailed Student t or Wilcoxon tests were used. p < 0.05 was considered significant.

Results

Table 1 lists liver weight and preservation time for the four groups. For the liver weight, no statistically significant difference was present among the four groups.

Tolerance of Cirrhotic Liver

Figure 1 demonstrates the portal venous resistance. Group LC-Pr exhibited a markedly higher portal vein resistance than groups N-Pr and LC-Fr at any time point (p < 0.05), and group LC-Fr showed a higher portal venous resistance than group N-Pr at 30 and 60 min after reperfusion (p < 0.05). The portal vein resistance of the cirrhotic liver showed a rather steady increase during perfusion. There was no difference between groups N-Fr and N-Pr.

Figure 2 exhibits the bile production during each 15-min period of reperfusion. During the first 15 min, groups N-Pr and LC-Pr pro-
Fig. 2. Changes in bile production. During the first 15 min, group LC-Pr produced less bile than group LC-Fr \((* p < 0.05) \). A similar difference was observed between groups N-Pr and N-Fr \((p < 0.05) \). The bile in groups LC-Fr and LC-Pr was thin, yellowish, and with a lower viscosity as compared with their normal counterparts.

Fig. 3. Oxygen consumption. Group LC-Fr consumed less oxygen than group N-Fr at any time point \((e, f, p < 0.05) \). Group LC-Pr consumed less oxygen than either group N-Pr \((p < 0.01) \) or group LC-Fr \((p < 0.05) \).

Fig. 4. Changes in GPT release. In each group, the GPT levels releasing into the perfusate increased along with the reperfusion time. In group N-Pr, the GPT release was significantly higher than in groups N-Fr and LC-Pr \((p < 0.05) \) at early time points.

Fig. 5. Changes in energy charge. The energy charge of the groups N-Fr and N-Pr increased significantly after reperfusion \((e-h, p < 0.05) \), while that of the groups LC-Fr and LC-Pr failed to show an increase.

Fig. 6. HA clearance. Only group N-Fr exhibited a linear reduction of HA, while the other groups failed to show any significant reduction. At 120 min after reperfusion, the HA levels of group N-Pr were significantly lower than those in groups LC-Fr and N-Pr \((a, b, p < 0.05) \).

Histologically, thioacetamide-treated livers revealed liver cirrhosis (fig. 7). A biopsy specimen obtained before reperfusion from groups LC-Fr and LC-Pr showed occasional spotty acidophilic necrosis and edema of the interstitium, while the sinusoidal endothelial cells were well maintained (fig. 8). After reperfusion, the livers of group LC-Fr demonstrated hepatocyte swelling and sinusoidal stenosis (fig. 9a), while those of group LC-Pr...
Fig. 7. Photomicrograph of a thioacetamide-treated liver. HE. x 77. Regenerative nodules surrounded by fibrosis are observed.

Fig. 8. Photomicrographs of the liver before reperfusion. HE. x 302. a Section of group LC-Fr. Sinusoidal endothelial cells (E) are well maintained. b Section of group LC-Pr. Hepatic sinusoidal endothelial cells (E) are well maintained. Some areas of spotty acidophilic necrosis (N) are occasionally seen.

Fig. 9. Photomicrographs of the liver after reperfusion. HE. x 75. a Section of group LC-Fr. Interstitial edema is present, and various degrees of hepatocyte swelling with sinusoidal stenosis (black arrows) and dilation (open arrows) in regenerative nodules are noted. b Section of the group LC-Pr. Interstitial edema (arrows) is prominent.

Fig. 10. Photomicrographs of the liver in group LC-Pr after reperfusion. HE. x 302. a Section of group LC-Fr. Hepatic sinusoidal endothelial cells (E) are maintained, and spotty acidophilic necroses (N) are present. b Section of group LC-Pr. The majority of hepatic sinusoidal endothelial cells (E) are denuded.

Discussion

As to the absence of literature on the effect of cold ischemia on the cirrhotic liver, this is because there had been no necessity to investigate the tolerance of cirrhotic livers to cold ischemia. However, recently introduced extracorporeal or in situ perfusion techniques for extensive liver resection allow excision of a liver tumor which was deemed inoperable by conventional means [1, 2]. The application of these techniques to cirrhotic livers could increase the resectability of liver tumors with underlying liver disease.

In this study, cirrhotic livers exposed to cold ischemia demonstrated a high portal venous resistance and a low oxygen consumption which were amplified when the livers were preserved cold for 6 h. The absence of energy recovery and the production of thin bile of the cirrhotic liver were also obvious even after a short period of cold exposure.

We used HA clearance as a parameter of hepatic sinusoidal endothelial cell function [7, 12]. HA is a glycosaminoglycan synthesized in the plasma membrane and is rapidly and selectively absorbed into the hepatic sinusoidal endothelial cells were degradation follows [13]. Elevation of serum HA has been reported in rheumatic disease and primary bil-
ary cirrhosis [14]. The elevation has been attributed to an increased production or a decreased absorbance due to hepatic endothelial cell injury. Since hepatic endothelial cells are easily damaged by cold preservation [15], we have reported specific elevation of the serum HA level after transplantation of a liver with cold ischemic damage [7]. In this perfusion study, we loaded the livers with 1,000 µg/l of HA before reperfusion and measured the clearance of HA. The failure of the liver graft to clear HA in the perfusate indicates disturbance of sinusoidal endothelial cell function or reduced perfusate flow through the liver. Histological findings and the elevation of portal venous resistance are consistent with the results of HA clearance in our study.

It is reasonable for the cirrhotic liver to have high vascular resistance, but the elevation of vascular resistance was much more prominent when the liver was stored cold. However, the marked difference in the degree of endothelial cell damage between the normal and cirrhotic liver is unclear. The characteristics of the cirrhotic liver exposed to cold ischemia may be explained by septal edema.

References