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Chapter 1 

Introduction 

This thesis describes a visualization system for helping users understand the 

analysis of a program extracted by a parallelizing compiler. This introductory 

chapter explains the backgrounds of this research and gives the outline of this 

thesis. 

1.1 Background 

In this section, we explain the brief history of parallel computing and the 

importance of parallelizing compilers in it. Then, we make clear the problems 

on current parallelizing compilers, because this research have been done with 

parallelizing compilers in the phase of compilation. 
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1.1.1 Parallel Computing 

The history of parallel computing is long. Although processor power has 

improved, there have always been demands that require more computational 

power, for example analysis of large amounts of data such as simulations of 

atmosphere or molecules. Therefore, many researchers have studied paral­

lel computing, which aims to execute a program on multiple processors to 

shorten the time needed for results. 

The first practical outcomes of parallel computing research were vector 

processing and vectorizing compilers. Vector processing deals with array 

data (vectors) in parallel by pipelining the processors. It looks like a con­

veyer belt for data. Currently, many vector processors are in practical use, 

but the users may not be aware that they are using them, because a vectoriz­

ing compiler generates a parallel program from the user's original sequential 

program automatically and the parallel program is executed on the vector 

processor. 

After the success of vector processing came studies of parallel process­

ing. In this thesis, parallel processing means the execution of a program on 

multiple processors. The processors are either scalar processors or vector 

processors. 

The difference between scalar processors and vector processors mainly 

appears in the phase of code generation. Some researchers are claiming the 

difference should be considered at the phase of coding or compilation, but 

they do not have any remarkable result yet. Therefore, in this thesis, we 

think there is no problem to assume all processors are scalar, because our 
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research has been done in the phase of compilation. 

The memory model of parallel processing is classified 1n shared mem­

ory, which can be accessed by all processors with the same cost; distributed 

memory, which is localized memory accessed by only the owner processor; or 

mixture of shared and distributed memory. We have to deal with different 

problems depending on the memory model we choose. 

The problems on shared memory model is simpler than other memory 

models. Since all processors can access to data on a shared memory by the 

same cost, there is only one problem in executing a program on a shared 

memory system: how to divide a sequential program into plural parts and 

distribute them on each processor. On distributed memory model, in addi­

tion to distirbution of computation, we also consider how divide data and 

distribute them on each distributed memories. 

In this thesis, we call multi-scalar processors with shared memory a shared 

memory multi-processor system. Many researches have been accomplished on 

a shared memory multi-processor system, because executing a program on it 

is simpler than on other types of multi-processor models. This thesis mainly 

discusses about a shared memory multi-processor system, since our work 

provides ways of using outcomes of previous research. 

The programming methods for a shared memory multi-processor system 

are classified in two ways. One is the method for developing a parallel pro­

gram with a parallel language. The other is to develop a sequential pro­

gram with a traditional language and parallelize it with a compiler. We call 

such compilers parallelizing compilers. A parallelizing compiler transforms 

a sequential program to a parallel program without changing its semantics. 
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Basically, a parallelizing compiler reconstructs a program without changing 

algorithms used in the sequential program. 

The advantage of developing a program using a parallel language is that 

the program is well-tuned to its purpose and may have higher parallelism. 

The disadvantages of developing a program using parallel languages are as 

follows: 

• We must learn a parallel language. 

• We must develop a new parallel algorithm to obtain efficient paral­

lelism. 

• We cannot apply the knowledge and skills of programming acquired by 

developing sequential programs. 

On the other hand, the advantages of using parallelizing compilers are the 

following: 

• We can use familiar programming languages for development. We don't 

have to learn new languages. 

• We can use familiar algorithms to solve problems. We don't have to 

develop new algorithms. 

• We can apply the knowledge and skills of programming acquired by de­

veloping sequential programs. Sometimes we can parallelize a program 

that is old but sophisticated and bug-free. A parallelizing compiler is 

useful especially when the original developer of a program is no longer 

engaged in the maintenance of the program. 
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The disadvantage of using parallelizing compilers is that a program gener­

ated by a parallelizing compiler may have less parallelism than a program 

developed in a parallel language. 

Usually, users who need parallel computing are experts in physics, chem­

istry, atmosphere, not in computer science. Since it takes great effort for 

them to learn new languages and develop parallel programs from scratch, 

parallelizing compilers can help them. Parallelizing compilers can also paral­

lelize old programs without modifications. Therefore, parallelizing compilers 

are an essential tool for parallel computing. 

1.1.2 Problems on parallelizing compilers 

As we mentioned in the previous section, parallelizing compilers are an essen­

tial tool for novice users. Although parallelizing compilers try to transform 

any sequential program into a parallel program automatically, they often fail 

to extract some kinds of parallelism from sequential programs. Of course, a 

parallelizing compilers may extract all kinds of parallelism if it does precise 

analysis of a program with high cost. However, sometimes the cost is too 

high for users, therefore, users prefer giving up the preciseness. Then, com­

pilers may miss some kinds of parallelism. In other words, there is a trade-off 

between preciseness and cost of analysis. 

Usually, a parallelizing compiler parallelizes only loops in a program, be­

cause loops are considered to have higher potential parallelism than other 

parts. To generate a parallel program from a sequential program, a paral­

lelizing compiler takes three steps: 
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1. It analyzes control flows in a given program. 

2. It analyzes data dependences in loops. 

3. It reconstructs loops that can be parallelized. 

We can use an established method for the analysis of control flow [1], but we 

still have problems in the analysis of data dependence. 

The analysis of data dependence on the source level checks when each 

variable and array is accessed. The cost of analysis, which is determined by 

how much time it takes, depends on the preciseness of the analysis. Two 

examples are listed below: 

• The preciseness of the analysis about indixes of arrays. It is expensive 

to analyze complex expressions such as more than linear expressions 

or indirect accesses that occur when there is an array in the index. 

• The preciseness of the analysis of data dependence of inter procedures. 

That is more expensive than the analysis of inner procedure. 

If we choose the low cost method and omit precise analysis, we can miss some 

loops that have potential parallelism. But, it is useless to take longer time 

to analyze a program than to execute the program in sequential processing. 

So, sometimes users choose the low cost but non-precise analysis. 

We also have problems with the reconstruction of loops by a paralleliz­

ing compiler. Many reconstruction methods have been developed for many 

paterns of loops, so that, as the first problem we have to choose a way to 

reconstruct loops. Since several reconstruction methods may be available, 
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we must choose only some of them and decide on the proper order to apply 

them. Sometimes, the efficiency of the methods depends on the execution en­

vironment of the program, for example, the number of processors we can use. 

Therefore, there is no specific answer to which methods we should choose. 

The second problem is that we don't know whether a loop can be paral­

lelized and, if it can be, which method brings more parallelism than others 

unless we have precise analysis of data dependences. Because precise analysis 

is expensive, we cannot expect precise analysis by a parallelizing compiler. If 

the compiler finds no data dependence, we can believe that there is in fact no 

data dependence. But, if the compiler does not find evidence that there is no 

data dependence, we should assume that there are in fact data dependences 

to avoid fatal misunderstanding. Consequently, some loops that have no data 

dependence but are not found by the compiler may not be parallelized. 

Currently, users parallelize their sequential programs in the following way. 

First, they compile the program by a parallelizing compiler and get a parallel 

program. Then, they execute the parallel program. If they are not satisfied 

with the efficiency of the parallel program, they rewrite their original se­

quential program or find a better way to parallelize the program and then 

repeat the process. However, it is very difficult for users to rewrite programs 

which have more potential for parallelization because the only information 

they have is that performance is not very good. There are two problems with 

this process: 

1. Users cannot know which statement in the source code influences which 

part of the executed code. 
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2. Users can know the performance of a program only after the execution 

of the program. 

Source-to-source parallelizing compilers may be useful for the second 

problem. They output parallelized programs in a readable and editable for­

mat. Therefore, users can check and rewrite their programs after compilation 

but before execution. However, source-to-source compilers cannot solve the 

first problem. By using source-to-source compilers, we can investigate the 

correspondence between the original program and the parallelized program. 

But it is still hard for users to check statements in the source code in text 

format in order to rewrite the program or find a better method of paralleliza­

tion. This is true for three reasons: 

1. Programs are usually large. 

2. Users must check the output of the parallelizing compiler, which is 

often totally reconstructed. 

3. Users often need information extracted from source code to rewrite the 

program or find a better method of parallelization. Two examples of 

such information are control dependence and data dependence. But 

this information is also difficult to understand in text format, mainly 

because there is typically a large amount of data. 

To solve these problems, users can show the following information, which 

is used in a parallelizing compiler: 

• The correspondence between source code and execution code. 
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• Data dependence, which is found by the compiler or trace data in exe­

cution. 

This information allows users to do the following: 

• Give "no data dependence" information to the compilers, if users know 

there is no data dependence in a loop but the compilers cannot find 

that. 

• Select appropriate methods to reconstruct loops with the information 

about data dependence given by the compilers and knowledge about the 

program or algorithms users originally have. They can then indicate 

them to the compilers. 

1.2 Overview of Our Research 

In this section, we propose an interactive compilation environment, and 

present the importance of it. Then we show the structure of this thesis 

briefly. 

1.2.1 Visualization for parallelization 

We propose an interactive compilation environment, which means that users 

and compilers collaborate in compilation. Figure 1.1 shows a concept of this 

environment. 

An interactive compilation environment supports a cycle of compilation 

and modification of a program. The cycle is almost the same as the current 

parallelization cycle mentioned above, but it is supported systematically. 
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Compiler 

Analyses 

Visualization 
System 

User's Knowledge 

Figure 1.1: An interactive compilation environment 

The support provided by a system is divided into two phases. The first is 

the presentation phase, which informs users about the analysis of a program 

extracted by a compiler. The second is the feedback phase, which informs a 

compiler about a user's knowledge and choices. 

Several interactive compilation environments have been proposed. We 

overview these systems in section 2 .1. 2. 

The usefulness of interactive compilation environments is discussed in 

reference [8]. The authors of this report compared the costs to develop a 

parallel program and the effectiveness of that program when it is developed 

with a parallel language, generating a parallel program from a sequential 

program automatically by a parallelizing compiler, and developing a parallel 

program from a sequential program by parallel compilers and users. In the 
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environment of SGI Origin 2000, the authors found CAPTools [12] (a delegate 

of interactive compilation environments) developed most effective parallel 

program by the shortest time. 

Although existing interactive compilation environments are useful, they 

are not powerful enough to support novice users who need to cooperate with 

a parallelizing compiler. The most important point of an interactive com­

pilation environment is the cooperation of a compiler and users. Therefore, 

the most important problem in implementing an interactive compilation en­

vironment is the communication between users and a compiler. There are 

two specific problems: 

1. How a compiler provides analyses of a program to users. 

2. How users inform the compiler about their knowledge and decisions. 

In the research presented here, we focus on the communication from a 

compiler to users. Existing systems represent analyses by a compiler only in 

text form or simple two-dimensional graph representation. For example, one 

of the most famous interactive compilation systems, ParaScope Editor[10], 

[14], has no graphical function to show users the analysis by a parallelizing 

compiler. CAPTools only shows draw control and data dependence graphs 

as two-dimensional graphs. SUIF[18], [30] uses three-dimensional graphics 

to visualize call graphs, but that's all. 

We visualize the analysis by a parallelizing compilers from a new point 

of view. We reconstruct traditional representations of the analysis by a par­

allelizing compiler and make new "views" in three-dimensional. We think 
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visualization is one of the methods that helps users understand complex in­

formation easily. 

Here, we propose a visualization system called Nara View, which visual­

izes the information from parallelizing compilers to help users understand 

the reconstructed programs and the control and data dependence of the pro­

grams. The main idea behind N ara View is to present detailed information 

obtained by parallelizing compilers to users visually and, hence, intuitively. 

Although Nara View has four views, each of which visualizes a program 

from a different point of view, in this thesis, we focus on only two of them: 

the Program Structure View and the Data Dependence View. The Program 

Structure View visualizes the program structure of a given program with 

three-dimensional axes representing the program flow, the loop and function 

call hierarchy, and parallelism. We define program structure in section 4.2.  

The Data Dependence View is a relational map of a given loop, its variables, 

or the array elements accessed, which may have data dependences in that 

loop. 

1.2.2 Outline of this thesis 

This thesis consists of seven chapters. 

Chapter 2 presents the background needed to understand our work. In the 

first section of the chapter, we explain popular loop reconstruction methods 

to use them later. And also we discuss related works on interactive compila­

tion environments in detail. The second section shows program visualization 

systems for other fields. We intend to make clear "what is visualization" in 
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the sectoin. 

Chapter 3 gives an overview of Nara View. We make clear its requirements 

and show basic architecture of N ara View. 

In chapter 4, we present the Program Structure View which visualizes a 

structure of a program. We introduce the inner representation of the Program 

Structure View, HTGv, and show how we map an HTGv to three-dimensional 

graphics. 

Chapter 5 shows the Data Dependence View which visualizes data de­

pendences in a loop. We propose variable-oriented data dependence model 

which is the inner representation of the Data Dependence View and explain 

how we project it in three-dimensional graphics. 

Chapter 6 presents examples that show the usefulness of Nara View. We 

show how we find a loop to be checked in the Program Structure View and 

how we "read" data dependences from the Data Dependence View. 

In chapter 7, we summarize this thesis and discuss further problems. 
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Chapter 2 

Related Researches 

This chapter provides an overview of the background of our research on 

parallelization and visualization. Popular loop reconstruction methods are 

introduced briefly and the names of the methods are then used without ex­

planation after this chapter. We use the loop reconstruction methods in 

examples (chapter 6). Then, we summarize the current status of existing 

interactive compilation environments. Nara View is one of interactive com­

pilation environments, so we make clear differences of it from the previous 

works. In the last section, we mention our opinion on "what is visualization." 

And we survey the current research about visualizing programs for various 

purposes. Since N ara View is also one of program visualization systems, the 

research mentiond in the section has an influence on Nara View. 
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2.1 Parallelization 

This section surveys two topics about parallelization. Section 2.1.1 presents 

basic loop transformation methods to give a basic image of loop paralleliza­

tion. The methods are used in examples in chapter 6. Section 2.1.2 describes 

existing interactive compilation environments to explain the position of N ar­

aView among them. 

2.1.1 Loop reconstruction methods 

This section outlines the basic ways in which a compiler parallelizes programs. 

Programs are parallelized in various ways with various granularity. For 

example, fine-grain parallelization for superscalar or very large instruction 

word (VLIW ) systems which have hardware that can execute some machine 

operations at the same time, is an arrangement of instruction codes for sup­

plying these codes in parallel. Coarse-grain parallelization for PVM or MPI 

which are libraries for a message-passing model, is usually the partitioning 

of a program into several parts based on functions and assigning the codes to 

each processor. On the other hand, parallelization at the source level for a 

shared memory multi-processor system, which is our target, is usually done 

by parallelizing loops in a program. Because loops take much of the time 

needed to execute power programs, parallelizing the loops can drastically 

reduce execution time. 

Generally, parallelizing compilers can parallelize the following loops au­

tomatically: 
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• Loops without data dependence 

• Loops without conditional branches and 

• Loops without function calls 

Currently, some compilers can perform interprocedure analysis, so they can 

parallelize loops with function calls. 

Compilers also try to parallelize loops with data dependence by dividing 

each loop into two parts. One part has data dependence and the other has 

no data dependence. The compiler parallelizes the part that has no data 

dependence. The methods based on this idea are called loop reconstruction 

methods or loop transformation methods, since loops after parallelization 

are not the same as the original loops even in source code. The loops are 

rewritten by a compiler. 

Below, we introduce some typical loop transformation methods in brief. 

Most of them are used in examples in chapter 6. 

(a) Loop interchange 

Loop interchange [32] exchanges the positions of two nested loops but 

it cannot interchange all loops. To interchange loops, the data dependence 

after the loop interchange must be the same as the data dependence of the 

original program. 

There must be at least two loops in a perfect loop nest. For example, the 

loops in Figure 2.l (a) can be interchanged as in (b). But the loops in Figure 

2.2 (a) cannot be interchanged because the data dependences in the loops of 

Figure 2.2 (a ) and (b) are different. 
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do 10 i = 2, n do 20 j = 2, n 

do 20 j = 2, n do 10 i = 2, n 

a(i, j) = a(i-1, j-1) a(i, j) = a(i-1, j-1) 

20 continue 10 continue 

10 continue 20 continue 

(a) (b) 

Figure 2.1: Loops that can be interchanged: (a) original loops (b) inter­

changed loops. 

do 10 i = 2, n do 20 j = 2, n 

do 20 j = 2, n do 10 i = 2, n 

a(i, j) = a(i-1, j+1) a(i, j) = a(i-1, j+1) 

20 continue 10 continue 

10 continue 20 continue 

(a) (b) 

Figure 2.2: Loops that cannot be interchanged. (a) original loops (b) inter­

changed loops. The data dependence of (a) and (b) are different, for example, 

in the access order to a(2, 3). 

17 



We apply loop interchange to parallelize loops when only one loop can 

be parallelized. If the target machine is a vector processor, it is better to 

bring a loop that can be parallelized into a loop that cannot be. If the loop 

with the largest range can be parallelized into the innermost position of the 

loops, vectorization is improved. On the other hand, if the target machine 

is a multi-processor, it is better to bring a loop that cannot be parallelized 

into a loop that can be. If the loop with the largest range can be parallelized 

outward in the loop nest, parallel performance is improved. 

(b) Scalar expansion 

If variables in a loop are an obstacle to parallelizing, the loop can be 

parallelized by scalar expansion [32). Scalar expansion expands a variable into 

an array. For example, the inner loop in Figure 2.3 (a) can be parallelized, 

but the outer loop cannot be parallelized because of the data dependence on 

variable m. However, both loops in Figure 2.3 (b) can be parallelized since 

scalar expansion on m makes the data dependence disappear. 

Scalar expansion can be applied to a variable when the variable is written 

after read. This is called anti-dependence and is described in section 5.1.1. 

(c) Loop distribution 

Loop distribution [32) divides a single loop into many. It is used for two 

tasks: 

• To make a perfect loop for applying other loop reconstruction methods 

• To divide a loop into two parts. One part has data dependence, the 

other does not. 

Before applying loop distribution to a loop, we should verify whether the 
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do 10 i = 2, n do 20 j = 2, n 

m = b(i) I c(i) m(j) = b(i) I c(i) 

do 20 j = 2, n do 10 i = 2, n 

a(i, j) = m * a(i, j) a ( i, j ) = m (j ) * a ( i, j ) 

20 continue 10 continue 

10 continue 20 continue 

(a) (b) 

Figure 2.3: Scalar expansion. (a) original loops (b) expanded loops. 

data dependence allows it. For example, the loop in Figure 2.4 (a) can be 

distributed as in (b), but the loop in Figure 2.5 cannot be distributed because 

of the data dependence on array c. 

(d) Loop skewing 

Loop skewing [31] can make wavefront computations in parallel. Wave­

front computations are called this because the computations are performed 

like a wave across the iteration space. Loop skewing reconstructs the iteration 

space of the wavefront computations. 

We can explain loop skewing intuitively by an example. Figure 2.6 (a) 

is a wavefront computation. This loop has data dependence. Loop skewing 

reconstructs the loop to look like the loop in Figure 2.6 (b). This loop still 

has data dependence. But if we apply loop interchange to the loop, the inner 

loop has no data dependence. 
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do 20 j = 2, n 

do 10 i = 2, n 

do 10 i = 2, n a(i, j) = c(i+1, j+1) 

do 20 j = 2, n 10 continue 

a(i, j) = c(i+1, j+1) 20 continue 

c(i, j) = b(i, j) do 40 j = 2, n 

20 continue do 30 i = 2, n 

10 continue c(i, j) = b(i, j) 

30 continue 

(a) 40 continue 

(b) 

Figure 2.4: Loop distribution (a) original loops. (b) distributed loops. 

do 10 i = 2, n 

do 20 j = 2, n 

a(i, j) = c(i-1, j-1) 

c(i, j) = b(i, j) 

20 continue 

10 continue 

Figure 2.5: Loops cannot be distributed. 
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do 10 i = 2, n-1 

do 20 j = 2, m-1 

a(i, j) = a(i-1, j) + a(i+1, j) + a(i, j-1) + a(i, j+1) 

20 continue 

10 continue 

(a) 

do 20 i = 2, n-1 

do 10 j = i+2, i+m-1 

a(i, j) = a(i-1, j) + a(i+1, j) + a(i, j-1) + a(i, j+1) 

10 continue 

20 continue 

(b) 

do 20 j = 4, m+n-1 

do 10 i = max(2, j-m+1), min(n-1, j-2) 

a(i, j) = a(i-1, j) + a(i+1, j) + a(i, j-1) + a(i, j+1) 

10 continue 

20 continue 

(c) 

Figure 2.6: Loop skewing: (a) original loops (b) skewed loops (c) skewed and 

interchanged loops. 
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do 20 i = 3, n, 2 

do 10 i = 3, n do 30 ii = i, i+ 1 

do 20 j = 5, m do 10 j = 5 m 

a(i, j) = b(i-3,j-5) a(i, j) = b(i-3, j-5) 

b(i, j) = a(i-2,j-4) b(i, j) = a(i-2, j-4) 

20 continue 10 continue 

10 continue 30 continue 

20 continue 

(a) 

(b) 

Figure 2. 7: Cycle shrinking: (a) original loops (b) shrinked loops. 

(e) Cycle shrinking 

Cycle shrinking [22] reconstructs a loop that has data dependence to 

double loops, in which the inner loop can be parallelized. For example, the 

loop in Figure 2.7 (a) has data dependence, so, the outer loop cannot be 

parallelized. Cycle shrinking turns the outter loop into a double loop as in 

Figure 2. 7 (b). The inner two loops of (b) can be parallelized. 

The main idea of cycle shrinking is to make a new loop which has the 

smaller number of times of execution than dependence distance [3]. Intu­

itively, dependence distance is the number of times of loop from an access to 

the next access to the same variable. As the result of cycle shrinking, we get 

a new loop that can be parallelized, and may be expected more parallelism. 
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There are other versions of cycle shrinking, such as selective shrinking 

and TD-shrinking. These versions stem from the same idea, but the concrete 

ways of applying them differ [22] . 

Cycle shrinking can be applied to any loop. Sometimes, it improves 

performance, but sometimes it reduces performance. The change in the per­

formance depends on the interval of data dependence of the loop and the 

environment in which the loop is executed. 

The loop reconstruction methods we introduce here are typical but not 

all compilers provide all of the methods. Many provide other methods. For 

more details about loop reconstruction methods, see reference [2] . 

At the end of this section is an example of how we direct a compiler to 

apply loop reconstruction methods. The directions differ according to which 

compiler we use, but the basic idea is the same. So, we explain the case of 

Parafrase-2. Parafrase-2 is one of the most popular parallelizing compilers 

in the academic arena. It was developed by Center for Supercomputing 

Research and Development of Illinois University [23]. 

Using Parafrase-2, we apply loop reconstruction methods by a pass file 

(Figure 2.8 ) . In a pass file for Parafrase-2, we direct not only the loop 

transformation methods but also the analysis methods we want to perform. 

The loop reconstruction methods written in a pass file are applied to all loops 

of a program in the order they are written in the pass file. Although it seems 

wasteful to apply all directed loop reconstruction methods to all loops, an 

automatic parallelizing compiler has no way to choose which loops to apply 

to which loop transformation methods. 
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fixup /dev /null # fixup routines 

callgraph /dev /null # build call graph 

flow /dev /null # flow analysis 

donest /dev /null # determine nesting levels 

depend /dev /null # calculate IN and OUT sets 

loop _interchange # loop interchange 

builddep / dev /null # build dependence graph 

dotodoall /dev /null # find DOALL loops 

codegen # code generation 

Figure 2.8: Sample pass file for Parafrase-2. The # in each line indicates a 

comment. 

2.1.2 Interactive compilation environments 

This section presents an overview of interactive compilation environments. 

Though some of them are not called so, they have been developed to paral­

lelize a program with the user's input. Therefore, we call them interactive 

compilation environments. 

ParaScope Editor, one of the most well-known interactive compilation 

systems, was developed at Rice University [10], [14]. ParaScope Editor is 

a parallelizing compiler with interactive user interfaces. ParaScope Editor 

provides almost all known loop reconstruction methods at those days. Inter­

active compilation with ParaScope Editor has three features: 

• Users can see data dependence in a program analyzed by ParaScope in 
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text form. 

• Users can inform ParaScope that data dependence does not exist. 

• U ers can select a loop from the program and choose a reconstruction 

method from a menu provided by ParaScope. 

The experience of scientific programmers and tool designers who used ParaS­

cope Editor is reported in [10]. Overall, the users appreciated the interactive 

compilation environment, but they requested improvements in the user in­

terface and analysis. 

SUIF is a parallelizing compiler developed at Stanford University [18], 

[30]. Currently, SUIF allows interprocedural parallelization analysis , dy­

namic execution analysis, and interprocedural program slicing. SUIF also 

has a visualization system for call graphs and source code and provides an 

interactive way to modify a program. A call graph represents a relationship 

between procedures, namely, which procedure (function or subroutine) calls 

which procedure. SUIF visualizes it on a sphere. This technique is based 

on the information in reference [20]. Source code is visualized in SUIF as 

shrunken text. The text is shrunk to the point that we cannot read its char­

acters but we can still see the outline of it. SUIF colors the shrunken text 

according to a measure indicated by users, so users can find the important 

part of the source code, scale up the part, and edit it. 

CAPTools, another parallelizing compiler, was developed at Greenwich 

University [12] and is one of the compilers designed for practical use. Frumkin 

and colleagues [8] report that CAPTools is useful for interactive paralleliza­

tion, but its visualization tool is not so powerful. It draws only traditional two 
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dimensional graphs consisting of circles and edges for control flow graphs and 

data dependence graphs. But it displays data dependence, which obstructs 

parallelization of part of a program, in text form. Users can inform the com­

piler that the data dependence should be ignored, so that the compiler can 

parallelize the part. This methods may be useful for export users. 

Parassist [13] is a parallelization assistance system rather than a paral­

lelizing compiler, although it includes a parallelizing compiler. In addition 

to static analyses by a compiler, it aims to perform dynamic analyses of a 

program with the assistance of users. Therefore, it provides window-based 

interactive user interfaces, but no visualization. 

The systems mentioned here collaborate with compilers and present infor­

mation from the compilers to users in text form or simple two-dimensional 

figures. Nara View also collaborates with a compiler, Parafrase-2, so basic 

architecture is same with the systems. However, the main difference of Nar­

a View from the systems is how to present information to users. Since it 

is difficult for users to understand the meaning of information extracted by 

compilers, we believe information should be visualized effectively. Therefore, 

we provide several visualization methods in N ara View. 

2.2 Program Visualization 

Visualization can be regarded as making pictures of something. To be more 

precise, we consider visualization to be a process of deleting unnecessary 

information and choosing only the essential information for a specific purpose. 

Pictures are the result of visualization. If the visualization is good, the 
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pictures we get may also be good. 

Visualization by the use of computers generates a large amount of data 

through simulations or the observations of sciences such as fluid mechanics, 

meteorology, physics, chemistry, and medical science. But scientists have 

suffered in trying to understand large amounts of data. Therefore, they have 

been eager to accept visualization. Research about visualization in science is 

called "scientific visualization". But visualization can deal with other types 

of data. 

Roughly speaking, we can divide visualization into two fields according 

to what we visualize. In the first, we visualize things which have models. 

Scientific visualization belongs to this field. The aim of the field is to visualize 

complex or large amounts of data for easy understanding. In the second field, 

we visualize things that have no models. The visualized data is not always 

large or complex. In this field, what we visualize is as important as how 

we visualize it. In the first field, researchers of visualization can use models 

proposed by scientists. In the second field, however, researchers must find a 

suitable model to visualize a target. 

Program visualization belongs to the second field of visualization, and 

N ara View is one of the program visualization systems. In this section, we 

survey program visualization systems in brief and clearly the position of 

N ara View among other program visualization systems. 

The aim of program visualization is to help users understand a program, 

which is represented by source code. Users may be able to understand the 

program by reading the source code, but many programs, especially those in 

practical use, consist of a large amounts of source code. So, it is not always 
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easy for users to understand a program, even when they write it themselves. 

Therefore, many researchers have tried to visualize programs. 

Users should be able to understand a program for a variety of reasons: 

• Debugging 

• Performance tuning 

• Maintenance 

• Program development 

• Education 

Visualization for debugging helps users find bugs in a program. Visualization 

for performance tuning assists users in modifying a program for efficient 

execution. Visualization used for parallelization belongs in this category. 

Visualization for maintenance helps users understand structure, algorithms, 

and other aspects about a program to maintain it. Visualization for program 

development means to provide a visual language to users to help them write 

a program. Visualization for education aims to help users learn algorithms 

that are already developed. 

Previous research has also focused on what is visualized: 

• Source code (source statements) 

• Information extracted from source code 

- call graphs 

28 



control flow graphs 

data dependence 

• Information extracted during execution 

- trace data 

- algorithms 

Below is an overview of program visualization research. 

For debugging, much research visualizes trace data, which is a record 

of an execution. Since debugging parallel programs is difficult, much work 

has been done on visual de buggers for parallel programs (17], [27]. These 

debuggers visualize when a variable is accessed or when a message is passed 

by an execution. A debugger should show the relationship between the data 

and source code, but other work visualizes only source code. Koike and 

Aida have tried visualize source code of the Schema program [15], but this 

visualization has not yet been used in debugging. 

With regard to visualization for performance tuning, many works espe­

cially target parallel programs. The visualization of the call graphs in SUIF 

(see section 2.1.2) can be included here. ParaGraph [11] is another well­

known visualization tool that visualizes trace data of programs using PVM. 

In general, systems that visualize trace data for performance tuning do not 

focus on the relationship between the data and source code. For example, 

they visualize how many seconds a processor works or how much memory is 

used. 

Visualization for maintenance is mainly discussed in the field of software 
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engineering. Koike and Chu [16] proposed to use visualization for version 

maintenance. Chuah and Eick [ 6] proposed to use visualization for managing 

software development. 

Visualization for program development, in other words visual languages, 

has been studied for a long time, and many visual languages have been pro­

posed [7], [19], [26]. Browne and colleagues [5] proposed a visual and parallel 

language. Unfortunately, the languages have not been popular, because some 

of them have limited ability or special purposes, some of them are too com­

plicated to use, and some of them make too heavy load for current machines 

to make a practical programs. 

For education, the works called algorithm animation are well-known. 

They visualize a process in execution from trace data. Reference [28] in­

cludes the primary work on algorithm animation. 

It is very important for program visualization systems to clarify a goal 

or target of visualization. N ara View has a clear goal which is to let users 

understand information from compilers by visualization. Currently, SUIF is 

only system that has the same goal, but it visualizes only call graphs. About 

visualization methods, Nara View builds original models for its visualization 

and has originality on using three-dimensional graphics and giving meaning 

to each axis. 
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Chapter 3 

NaraView 

This chapter provides an outline of Nara View. First we clarify the require­

ments of N ara View, and make a list of functions that N ara View should pro­

vide. Then we show the architecture of N ara View. N ara View consists of four 

views. Each view visualizes different information by different method. 

3.1 Requirements 

Nara View is used to present an interface to users of a compiler in an inter­

active compilation environment. Nara View visualizes the information users 

need to parallelize a program. This information is extracted by a compiler. 

To put it simply, Nara View shows information that allows users to find 

loops that were not parallelized by a compiler but should be. The loops that 

should be parallelized are as follows: 

• Loops in which the running time can be reduced dynamically by par-
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allelization 

• Loops that compilers cannot parallelize automatically but users may 

be able to parallelize 

Since compilers and users cannot guess the efficiency of a parallelized loop 

without executing it, Nara View is designed to identify loops that compilers 

cannot parallelize but users may. 

If users try to parallelize a loop that cannot be parallelized automatically, 

they must know the following: 

1. Which loops are not parallelized automatically. 

2. Why they are not parallelized. 

Two factors may explain why a loop is not parallelized automatically: 

1. There are conditional branches in the loop. 

2. There is data dependence in the loop. 

A compiler reports data dependence under these conditions: 

1. The compiler finds concrete data dependence. 

2. The compiler finds that there is no data dependence. 

3. The compiler does not find evidence that there is no data. dependence 

In the third case, the compiler may not find there is no data dependence for 

two reasons: 
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1. There are variables whose values are not known in compilation time, 

for example, indirect accesses to an array or variables whose values are 

input by users in running time. 

2. There are function calls. 

N ara View is required to show the information in these two cases to allow 

users to select loops that may be parallelized with the user's knowledge. For 

example, if values of variables in a loop are not known in compile time, a 

compiler reports that there is data dependence, and the loop is not paral­

lelized. But if users know the values assigned to the variables in execution 

time, they can easily input the values to the compiler. Then, the compiler 

can analyze the loop again. 

The goal of N ara View is to allow users to specify how reconstruct source 

code in order to be parallelized based on the information extracted by a com­

piler. Therefore, users must know which part of the source code corresponds 

to the information. In other words, we want to inform users which part of 

the source code should be modified if they want to change the result. So, we 

believe it is essential to clarify the correspondence between the source code 

and the information and to present correspondent source code to users, if 

needed. 

With regard to organizing visualization, there are two general phases 

of investigation. The first phase is to grasp an overview of a target. The 

second is to investigate the details of the target. There are also two phases 

to interactive parallelization. The first is to grasp an overview of a program; 

the second is to investigate the details of each loop. Therefore, we must 
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provide ways to visualize that satisfy the both phases. 

Thus, N ara View must have the following features: 

• A function to give an overview of a program 

• A function to find loops that are not parallelized automatically but can 

be parallelized easily with input from users 

• A function to show users how source code corresponds to the identified 

loops 

• A function to provide users detailed information, such as control flow 

and data dependence, about the identified loops 

3.2 Architecture 

Figure 3.1 shows the architecture of N ara View. N ara View collaborates with 

Parafrase-2 [23] , one of the most popular parallelizing compilers in the aca­

demic arena, to furnish an interactive system for more conspicuous paral­

lelization. N ara View provides four views to visualize information extracted 

by Parafrase-2. A view is a layout of the extracted information, such as which 

parts are chosen to be displayed and how they are placed. Users can under­

stand the characteristics of the information through the appropriate views, 

and investigate the best strategy for parallelizing the original programs. 

The four views are described below: 

Program Structure View (PSV) gathers information about control flow 

and data dependence and visualizes this information as a kind of map 
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Figure 3.1: The architecture of Nara View 

35 



of a given program. This view gives users an intuitive feeling of the 

program. Therefore, PSV does not show the details of control flow 

and data dependence but identifies important points and visualizes 

them. PSV also provides ways to invoke other views that are useful for 

investigating the program in detail. The details of PSV are discussed 

in chapter 4. 

Hierarchical CFG View (HCFV) gathers information about control flow 

and visualizes it as a three-dimensional graph. This view uses a mech­

anism similar to that of PSV, but HCFV shows branches caused by 

if-statements, which are omitted in PSV. This view gives users de­

tailed information about the control flow of the program. Since HCFV 

is nothing more than a standard graph viewer tool, we will not discuss 

this view further. 

Data Dependence View (DDV) gathers information about the data de­

pendence of an indicated part of the program and visualizes it in three­

dimensional. This view gives users detailed information about the data 

dependence of the program extracted by Parafrase-2. This view is in­

voked from the PSV. The details of DDV are discussed in chapter 5. 

Source Code View (SCV) shows the source code of an indicated part of 

the original program. This view is invoked from the PSV. Since this 

view is a simple editor, we will not discussed it further. 

To fulfill the requirements listed earlier in this chapter, PSV takes part in 

giving an overview to users, and HCFV, DDV and SCV take part in inves-
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Figure 3.2: The relationship among the views of Nara View 

tigating the details of a program. The correspondence between information 

and the source code are shown by PSV, which connects to SCV to show 

source code and the other views (Figure 3.2). 

Parallelization with Nara View takes place as follows. First, Nara View 

invokes PSV to give users an abstract and overall impression of the given 

sequential or partially parallelized program, as well as clues for further in­

vestigation. Next, the user specifies a loop to focus on. According to the 

user's specification, Nara View invokes HCFV /DDV /SCV to show the detail 

of the control flow graphs and the data dependence in both the loop and 

in the original source program of the loop. With this information, the user 

can find unnecessary data dependent parts intuitively and can improve the 

source program with other parallelization techniques. 

Although Parafrase-2 supports both Fortran and C, currently Nara View 
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supports only Fortran-77, because most users of parallelization still use Fortran-

77. But expansion of NaraView to other operative languages is not so diffi­

cult. 
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Chapter 4 

Visualization on Program 

Structures 

T his chapter describes the Program Structure View of Nara View. First, we 

introduce Hierarchical Task Graph (HTG) , a program representation pro­

posed by Girkar and Polychronopoulus [9]. Then, we propose a new program 

representation for visualization, HTGv, that is a variation of HTG. In the 

last section, we explain how we visualize HTGv. 

4.1 HTG 

Hierarchical Task Graph (HTG) is an intermediate program representation 

proposed by Girkar and Polychronopoulus [9]. It was developed for Parafrase-

2. 

Since Parafrase-2 is a multilingual compiler (target languages are For-
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tran and C), HTG must be powerful enough to represent both languages for 

optimization, code generation, and parallelization at all levels of granularity. 

HTG is created from a control flow graph (CFG). The importance of a 

hierarchical structure included in CFG for optimization has been noted [1]. 

A hierarchical structure is also important to detect and manage parallelism, 

because parallelization is also performed hierarchically. For example, we must 

first detect and manage parallelism in each basic block in a given program, 

then between basic blocks, and between groups of basic blocks, and so on. 

Here, a basic block means a sequence of sentences that are executed iff 

the top sentence of the sequence is executed. In other words, a basic block 

does not have branches or access points to jump in and out of the block. 

HTG is a layered graph that is built based on a strongly connected region 

of a CFG. A CFG is contained in each layer of an HTG, but it is an acyclic 

graph unlike the original CFG because a new layer of HTG is created from 

a cyclic part of the original CFG. Thus it is "built based on a strongly 

connected region." 

A CFG is a directed graph with unique nodes ENTRY and EXIT. ENTRY 

has no incoming arcs, and EXIT has no outgoing arcs. A sample CFG 

appears in Figure 4.1 (This example originally appears in [9]). Loops in a 

CFG can be detected by a depth first search traversal. The result is an HTG. 

The HTG in Figure 4. 2 comes from the CFG in Figure 4.1. 

We can then add arcs to correspond to the data dependence 1n each 

node in the HTG. The arcs have properties connecting the types of data 

dependence (flow, anti or output dependence which are discussed in chapter 

5) and a variable that causes the data dependence. 
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Figure 4.1: A CFG 
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Although HTG can represent a task graph at all levels of granularity, we 

discuss HTG at a source code level because our purpose is to visualize at this 

level. At the source code level, a task in HTG corresponds to a statement of 

a given program. Nodes in the HTG are categorized into six types: 

1. Start nodes, which are ENTRY s in each layer of the graph. 

2. Stop nodes, which are EXITs in each layer of the graph. 

3. Basic nodes, which correspond to simple statements in the program. 

4. Call nodes, which correspond to statements having a subroutine call. 

5. Loop nodes, which correspond to the loops in the program. 

6. Compound nodes, which correspond to the basic blocks in the flow 

graph. The top level of the HTG is also a compound node. 

General HTGs are generated by making layered graphs from loops in the 

original CFG. At the source code level, loop nodes are the loops in the 

program created by DO statements or GOTO statements in Fortran. 

The important feature of HTG at the source code level is that each node 

has a clear correspondence to a sentence of the program. Basic nodes and call 

nodes have one-to-one correspondence, and loop nodes and compound nodes 

have one-to-many correspondence. Start and stop nodes do not correspond 

to statements. 

Figure 4.3 shows an HTG format generated by Parafrase-2. The figure 

shows only two nodes of a program. 
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Node ID: 18 

Hierarchy Level: 3 

Type: Compound (ID 4 Line 3 to 5 ) 

Parent: 1 

START node: 19 

STOP node: 20 

HTG arcs from: 24 (FARC) -1 

HTG arcs to: 3 (FARC) -1 

# of children: 5 

Children: 23 22 21 20 19 -1 

PDT"PARENT node: 3 

PDT"SONS: -1 

CFLongest: 0 

CDDDLongest: 0 

CDG"IN: arc from 24 to 18 

INSET: -1 

OUTSET: -1 

COUNT: 5 

ode ID: 22 

Hierarchy Level: 4 

Type: Basic (Line 4 ) 

Code: b(i][i] = a(i - 2][i - 4]; 

Parent: 18 

START node: no start node 

STOP node: no stop node 

HTG arcs from: 21 (SEQ) -1 

HTG arcs to: 23 (SEQ) -1 

# of children: 0 

Children: -1 

PDT"PARENT node: 23 

PDT.SONS: 21 -1 

CFLongest: 0 

CDDDLongest: 0 

INSET: -1 

OUTSET: -1 

COUNT: 0 

Figure 4.3: A sample of an HTG format generated by Parafrase-2 
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4.2 HTG for Visualization 

This section describes a variation of HTG for our PSV. The purpose of PSV is 

to give users a program structure at a glance from the viewpoint of parallelism 

and to let them select a part of the program to focus on for parallelization. 

As program structure is an ambiguous word, we define it from the view­

point of parallelism. Since almost all parallelization methods at the source 

level transform loops, we define our program structure through these criteria: 

• The number and location of the loops 

• The number and location of conditional branches 

• The number and location of function calls 

• The loops that have already been parallelized 

We categorize this information into the following four features: 

• A type of nodes, to find a conditional branch or function call 

• Program flow, to define the execution order of the nodes 

• Hierarchical levels of loop structure, to determine the placement of 

loops and loop nests 

• The measure of parallelism, to show whether a loop has been paral­

lelized 

Because HTG is an intermediate representation for a parallelizing com­

piler, it has information for optimization, code generation, and paralleliza­

tion. However, some of this information is unnecessary for our purpose, 
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which is to visualize information to help with parallelization. Therefore, we 

generate a new graph called HTGv, which consists of only the information 

we need, and we visualize it. 

The purpose of visualizing HTGv is to show the program structure to 

users. The correspondence between HTG and HTGv is as follows: 

• Nodes and arcs in HTG are also in HTGv. 

• HTG has an acyclic CFG in each layer, but HTGv has an acyclic graph 

with no branch. If a CFG in each layer of HTG has a branch, we select 

one path from the CFG and make it a graph of each layer of HTGv 

that corresponds to the HTG. We cut branches, but we show there 

are branches by node types mentioned below. Because parallelizing 

parts of a program that include branches is difficult using the current 

technique, thus the detail information about branches is not necessary 

but the information that there is a branch is important for us. In the 

current version of N ara View, we select the longest path to each branch. 

• HTGv has plural nodes that correspond to a node in a parallelized 

loop in HTG. The plural codes clarify that the loop is parallelized. 

The number of plural nodes is defined by the number of executions of 

the loop. 

A node in HTGv consists of the following properties: 

Node ID. The same number as the corresponding node in HTG. 

Node ID for parallelization. The number that distinguishes one node from 

others that have the same Node ID. In the case of a parallelized loop, 

46 



we make plural nodes of HTGv from a node of HTG, so several nodes 

which have the same Node ID. This number is unique in the nodes that 

have the same Node ID. 

Line number of the source. The line number of the source code that cor­

responds to this node. It is inherited from the corresponding node in 

HTG. 

Type. Inherited from the corresponding node in HTG. HTG has start, stop, 

basic, call, loop, and compound nodes, but there are three differences 

between HTG and HTGv . First, we remove almost all compound nodes 

by unfolding them because too many hierarchical structures can confuse 

users. We keep a compound node, which represents the top of the 

hierarchy of a graph. We call this the root node. Second, we divide the 

basic nodes into basic, parallel, and if nodes. The information needed 

for this division is included in HTG. We make the node a parallel node, 

if it has no data dependence in the basic block. We make the node an if 

node, if it has more than one outgoing arc in the original HTG. Third, 

we omit all start and stop nodes because they do not correspond to 

source code, and we can easily determine where a graph starts and 

stops without start and stop nodes in visualizaton. 

Hierarchical level. Inherited from the corresponding node in HTG. 

Hierarchical children. A list of pairs of Node IDs and Node IDs for par­

allelism. It is a list of children in the HTGv. 
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Sequence number of execution. HTGv has no branch so we can number 

nodes in the order of execution. Root node and loop nodes are unique 

because they represent a set of nodes. Therefore, we define the sequence 

number of the execution of a root node or a loop node as the mean of 

sequence numbers of the execution of its children. 

4.3 Program Structure View 

This section describes the Program Structure View (PSV), which is a visu­

alization of HTGv. In PSV, we visualize a node as a colored cube. When we 

visualize HTGv, we show a set of nodes called a visible object. 

4.3.1 Types of nodes 

A sort of a node in HTGv is represented in color. 

A root node represents the root of a hierarchical tree of HTGv and is dis­

played in red. There is only one root node in a visible object. 

A basic node corresponds to a statement in the source code that is exe­

cuted sequentially in the same iteration because of a data dependence. 

It is displayed in light blue. 

A parallel node represents a loop body that can be executed in parallel 

with other parallel nodes in the same iteration because there are no 

data dependences. It is displayed in green. 

A loop node represents a loop and is also displayed in red. 
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A call node represents a function call and is displayed in dark blue. 

An if node represents an if statement and is displayed in yellow. 

Although both root nodes and loop nodes are shown in red, there is only 

one root node in an HTGv. Therefore we are not confused at a distinction 

between a root node and loop nodes. The root node and loop nodes have the 

same properties that both have children in the HTGv. 

4.3.2 Program flows 

The x-axis represents a program flow, which indicates the order of execution 

of each node with a number. A node with a big number is executed after the 

termination of a node with a smaller number. 

We use the sequence number of the execution of a node in HTGv as the 

x coordinates of the node. 

4.3.3 Hierarchical levels of loop structure 

The z-axis represents the level in the hierarchical structure based on loops. 

Since we are interested in parallelizing methods related to loops, we focus on 

the hierarchical structure obtained from HTGv. In this hierarchical struc­

ture, each level represents a loop and we can easily discern whether the loop 

has been parallelized. 

When loop node a is included in the body of loop node (3, we say a is 

a deeper node or in a deeper hierarchy than (3. Similarly, we say (3 is a 

shallower node or in a shallower hierarchy than a. 
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Values of the z-axis for shallower hierarchies are smaller than those for 

deeper ones. The top level of the hierarchy, where the value of the z-axis is 0, 

consists of just a root node. Any nodes in the second level, where the value 

of the z-axis is 1, do not belong to any loop. We use the hierarchical level of 

a node in HTGv as the z coordinates of the node. 

4.3.4 Measures of parallelism 

On the y-axis, nodes are placed with respect to the number that corresponds 

to a measure of parallelism so that users can intuitively find which parts of 

the program have been parallelized. 

Usually, such a measure of parallelism is given as the number of instruc­

tions that can be executed in parallel. Since our target is source-level infor­

mation, we define our measure of parallelism there. 

Most current parallelizing compilers try to parallelize a loop at the iter­

ation level. They try to divide each iteration between different processors 

and execute them in parallel. A loop whose iterations can be distributed be­

tween other processors is usually expressed as a DOALL loop. Therefore, we 

assume the loops that can be executed in parallel are expressed by DOALLs 

in the source code. 

We define our measure of parallelism as follows: 

1. The measure of parallelism at the root node is 1. 

2. The measure of parallelism outside of any loops is 1. 

3. When the measure of parallelism in a loop that belongs to the hierar-
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chical level n(l � n) is w(l � w), the measure of parallelism of the 

nodes that belong to the body of the loop is as follows: 

• w x p, when the loop is DOALL and the total number of the loop 

iterations is p. 

• Otherwise, w. 

Program Structure View displays nodes in the y-direction according to 

the number corresponding to the measure of parallelism. According to this 

measure, a sequence of nodes that spreads along the y-axis has high paral­

lelism while another sequence of nodes that does not spread along the y-axis 

is not executed in parallel. Thus, users may pay attention to the part that 

has no spread along the y-axis. In practice, it is hard to compare the mea­

sure of parallelism when loop bounds are given as variables. In this case, the 

Program Structure View asks users for concrete values for the variables. 

To put it concretely, the process of calculating the measure of paralleliza­

tion is done at the same time as plural nodes of HTGv are made from a node 

of HTG. 

Figure 4.4 shows a simple example of PSV. PSV visualizes a node of 

HTGv as a colored cube the coordinates of which are decided by the rules 

explained in this chapter. In addition, PSV displays dotted lines to clarify 

the relationships between nodes. Users can select visible or invisible for the 

lines. In this figure, the x axis starts from the upper left and ends at the 

lower right, the y axis starts at the right and ends at the left, and the z axis 

goes from up to down. Examples of practical programs are shown in chapter 

6. 
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Node ID: 14 

VISIBLE ID: 1 

Type: Parallel 

x: 0 

y: -4 

DO 20 I = 1, 10 z: 2 

A(I) = B(I) 

20 CONTINUE 

END 

(a) 

(c) 

Children: -1 

VCHILDREN: - 1 

Node ID: 14 

VISIBLE ID: 2 

Type: Parallel 

x: 0 

y: -3 

z: 2 

Children: -1 

VCHILDREN: -1 

(b) 

Figure 4.4: A simple example of PSV: (a) is the source program, (b) is a part 

of HTGv, and (c) is PSV 
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Chapter 5 

Visualization of Data 

Dependence 

In this chapter, we describe the Data Dependence View of Nara View. First, 

we introduce a data dependence model for the Data Dependence View. It 

defines data dependence from the point of view of variables. Then, we show 

how we visualize data dependence based on the model. In the last section 

we give an example for clarifying the difference between Banerjee's data 

dependence model and our data dependence model. 

5.1 Variable-Oriented Data Dependence Model 

Since data dependence is one of the most important features in a program, 

there are several models of data dependence for compilation. This section 

introduces a typical data dependence model defined by Banarjee [3] for par-

53 



allelizing compilers. Then, we define a new data dependence model for visu­

alization and discuss the correspondence between the models. 

5.1.1 Banerjee's data dependence model 

There are several models of data dependence for compilation [1], [4], [32], 

and all of them are defined for optimization in compilers. Therefore, they 

are based on a sentence to express data dependence. A sentence is a basic 

unit for compilers. 

The definition of a sentence may differ for each compiler. In some cases, 

a sentence is a sentence of a programming language, such as Fortran, C. In 

other cases a sentence is a sentence of an intermediate language of a compiler. 

In this section, we introduce Banerjee's model [3] as a typical model of 

data dependence. Banerjee's model is generally used in parallelizing compil­

ers. The model aims to express data dependence in loops for parallelization, 

which is very close to our aim. 

In Banerjee's model, a sentence is an assignment statement in Fortran, 

and an instance is the execution of a statement. In a loop, one sentence 

usually has several instances. The definition of Banerjee's data dependence 

is below: 

Definition 5.1 (Banerjee's data dependence) When there exists an in­

stance S' of statement S and an instance T' of statement T, and S' and T' 

satisfy the following conditions, we say "statement T depends on statement 

S". 
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1. S' and T' access the same data D, and at least one of those acce ses is 

a write. 

2. S' is executed before T'. 

3. In the same execution, D is not accessed as a write between S' and T'. 

Banerjee also defined three kinds of data dependence: 

• If S' accesses D in a write and T' accesses D 1n a read, the data 

dependence from S' to T' is a flow dependence. 

• If S' accesses D in a read and T' accesses D 1n a write, the data 

dependence from S' to T' is an anti dependence. 

• If S' accesses D in a write and T' accesses D in a write, the data 

dependence from S' toT' is an output dependence. 

5.1.2 Variable-oriented data dependence model 

This section proposes a new data dependence model based on variables. First, 

we define an access to a variable, then we define data dependence as a re­

lationship between accesses. The aim of our data dependence is to express 

a period in which we must keep the value of a variable (called "lifetime of 

an attribute" by Aho at el. [1]), that is, we express a period in which we 

may not keep the value of a variable clearly. Unlike Banerjee's model, we 

don't restrict our model in a loop. Therefore, our meaning of sentence is 

different from that of Banerjee. Banerjee defines an assignment statement 

as a sentence. We use the word "sentence" in our model as a sentence of 
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Fortran source code. However, we use the word "instance" in the same way 

as Banerjee. 

Below, we define a reference to a variable and a conceptual time for prepar­

ing of the definition of an access. Here, a variable means a variable or an 

element of an array in a source program. 

Definition 5.2 (reference) A reference to a variable v is expressed as R( v, t, k), 

in which v is a variable, t is a time, and k is a type of a reference, either 

read {R) or write (W). We suppose there is at most one reference to v at t ,  

since t is small enough. 

Definition 5.3 (conceptual time) A conceptual time provides an order of 

execution of instances in a program. If ti < tj, instances in ti are executed 

before instances in tj. 

Conceptual time and the time used in the definition of reference are dif­

ferent. A conceptual time may not be as small as the time in the definition 

of a reference. 

We define an access as a set of references by a conceptual time. 

Definition 5.4 (access) An access A( v, t, k) is a set of all references to 

variable v in conceptual time t ,  in which k is a type of access: read (R), 

write (W), or read and write (RBW). 

Read (R) All references to variable v zn conceptual time t are read refer­

ences. 
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Write (W) The first reference to variable v in conceptual time t is a write 

reference. 

Read and write (R& W) The first reference to variable v in conceptual 

time t is a read reference and there is at least one write reference. 

Various conceptual times exist in various granularity: 

• At conceptual time ti, there is at most one reference. That is the time 

used in the definition in the reference. We call it reference time. This 

has the smallest granularity of conceptual times. 

• At conceptual time ti, there is at most one write reference, and if there 

is a write reference at ti, the write reference is the latest reference in 

time ti. For example, references produced by an assignment statement 

in Fortran are expressed in the same time ti of this granularity of con­

ceptual time. Therefore, we call this statement access time. 

• At conceptual time ti, there are several references, all of which occur 

in the same iteration in a loop. We call this iteration access time. 

We can suppose that there is a perfect double loop in which the number 

of times of the outer loop is n, the number of times of the inner loop is m, 

and there are k statements in the loop. If we express accesses in this loop 

by statement access time, we need n x m x k number of times. If we use an 

iteration access time, we need n x m number of times. If we use an iteration 

access time for the outer loop, that is, we use iteration as iteration of the 

outer loop, we need n number of times. 
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If we use the reference time as conceptual time, each access includes only 

one reference. Therefore, the type of access is read or write. A type of an 

access can never be read and write. 

If we use the statement access time as conceptual time, the type of an 

access A( v, t, k) is one of the three types, but it has special meaning. In the 

case of write access, there is no read reference to v in t. In the case of read 

and write access, there is more than one read reference to v in t, and the last 

reference to v in t is a write reference. 

If we use the iteration access time as conceptual time, k of an access 

A( v, t, k) may be one of the three types. In the case of read, there are only 

read references to v in the iteration at t. In the case of write, the first 

reference to v in the iteration at t is a write reference: after that, we do not 

know whether or not there is a reference. In the case of read and write, the 

first reference to v in the iteration at t is a read reference; after that, there is 

at least one write reference to v in the iteration at t. This is the most general 

interpretation of accesses. 

We can define variable-oriented data dependence based on accesses. 

Definition 5.5 (variable-oriented data dependence) There are two ac­

cesses to variable d: Ai(d,ti,ki) and Aj(d,tj,kj) (ti < tj)· 

1. There is W-R dependence from ti to tj on d (in symbols, WR(d, ti, tj)), 

if the following conditions apply: 

(a) (ki = (W v R&W)) 

(b) (kj = (R v R&W)) 
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{c) There is no Ak(d, tk? kk) such that ti < tk < tj, kk = (W V R&W). 

2. There is R- W dependence from ti to tj on d {in symbols, RW(d, ti, tj)), 

if the following conditions apply: 

{a) kj=W 

{b) There is no Ak(d,tk,kk) such that ti < tk < tj. 

Variable-oriented data dependence is defined as a relationship between 

accesses. Therefore, our variable-oriented data dependence can be used not 

only in a loop but in all of a program. Since we use conceptual time to define 

the variable-oriented data dependence, we can use this data dependence in 

various granularity. We can also define data dependence between accesses 

that are expressed by different conceptual times, if the conceptual times 

satisfy Definition 5.3. 

If accesses are expressed by a conceptual time in larger granularity than 

the statement access time, for example iteration access time, a read and 

write access means that data dependence exists in the access. To investigate 

the data dependence, we may re-express the access in conceptual time with 

smaller granularity, such as statement access time. 

The most important property of variable-oriented data dependence is the 

correspondence of the lifetime of an attribute [1] and W-R dependence. 

Definition 5.6 (The longest W-R dependence) The longest W-R de­

pendence is defined to a write access A( d, t, k) {k = W) as the following: 

1. If there is no W-R dependence caused by A ( d, t, k), there is no longest 

W-R dependence. 
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2. If there are W-R dependences W R(d, t, ti)(l :::; i :::; n, n 2: 1) caused 

by A(d, t, k), the longest W-R dependence is WR(d, t, tn), in which if 

j:::;k,tj:::;tk. 

The longest W-R dependence is identical to the lifetime of an attribute. 

If we use the statement access time as the conceptual time, we can define 

other kinds of dependence as the following: 

Definition 5. 7 (W-W dependence) When there are two accesses to vari­

able d, Ai(d, ti, ki) and Aj(d, tj, kj), on statement access time, there is W- W 

dependence from ti to tj on d {in symbols, WW(d, ti, tj)) if ki = (Wv R&W) 

and kj = W and there is no Ak(d, tk, kk) in ti < tk < tj. 

A W-W dependence WW(d, ti, tj) indicates the existence of a wasted 

write access, since the value written by the write reference in the access 

Ai(d, ti, ki) is never read by any references before the write reference in the 

access Aj ( d, tj, kj) rewrites it. 

5.1.3 A comparison between Banerjee's data depen­

dence model and the variable-oriented data de­

pendence model 

The goal of the variable-oriented data dependence model is to show data de­

pendence to a user for parallelization. Thus, we must show that the variable­

oriented data dependence model is powerful enough to be used in paralleliza­

tion. As we mentioned in section 5.1.1, Banerjee's data dependence model 

(flow dependence, anti dependence and output dependence) is used in many 
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parallelizing compilers to check whether a loop can be executed in parallel. 

Therefore we show the correspondence of Banerjee's data dependence to 

our data dependence (W-R dependence, R-W dependence and W-W depen­

dence). 

Banerjee's data dependence is defined on Fortran assignment statements 

in a loop. Our data dependence can be defined in various granularity, but we 

can easily convert data dependence expressed in one granularity into another, 

since both are based on the same references. Data dependence on the state­

ment access time has the same granularity as Banerjee's data dependence. 

Therefore, to show a correspondence of Banerjee's data dependence to our 

data dependence, we can show the correspondence on statement access time. 

In this section, all of our data dependences are on statement access time. 

Banerjee's data dependence is defined as a relationship between state­

ments. Data dependence between statements is represented by our data 

dependence model as follows: 

'Vd 

{WR(d,S',T')jWR(d,S',T') E DEP}u 

{RW(d,S',T')jRW(d,S',T') E DEP} 

in which, S' and T' are instances of S and T, respectively, and DE P is the 

set of data dependence. 

Below we show the correspondence of Banerjee's flow dependence, anti 

dependence and output dependence with our W-R dependence and R-W 

dependence. 
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Theorem 5.1 A set of flow dependence on sentence S and T is identical to 

a set of W-R dependence on sentence S and T. 

Proof 5.1 The proof is found in definition 5. 5. 

Theorem 5.2 An R- W dependence is an anti dependence, an output depen­

dence, or both. 

Proof 5.2 According to the definition, there is R- W dependence iff there 

are consecutive accesses Ai, Aj, and (ki, kj) of Ai, Aj are (R, W), (W, W), 

or (R&W, W), respectively. If (ki, kj) is (R, W), the dependence is an anti 

dependence. If (ki, kj) is (W, W), the dependence is an output dependence. 

If ( ki, kj) is ( R& W, W), the dependence is both an anti dependence and an 

output dependence. But even if a dependence is an output dependence, in 

which ki, kj is W, R&W, the dependence is not an R- W dependence. If a 

dependence is an anti dependence, in which ki, kj is R, R& W, the dependence 

is not an R- W dependence. 

Theorem 5.3 A set of W- W dependence is a subset of output dependence. 

Proof 5.3 According to the definition, if a dependence is a W- W depen­

dence, it is an output dependence. But the reverse is not true. For example, 

there are three consecutive accesses: write-read-write. There is an output 

dependence from the first access to the third access, but there is no W- W 

dependence. 

Figure 5.1 shows the correspondence and difference between Banerjee's 

data dependence and our variable-oriented data dependence. The advantage 
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type of access Our variable oriented Bane�ee's 
data dependence data ependence 

w 

r r 
A 0 0: 

A 0 o: 
'

' 

w •• 
- W-A dependence - flow dependence 
- · · .... A-W dependence • · • .... anti dependence 

- · _.,. output dependence 

Figure 5.1: Our variable-oriented data dependence model and Banerjee's 

data dependence model 

of Banerjee's data dependence is that we can judge whether we change an 

execution order of two statements just by checking data dependence between 

the two statements. For optimization and parallelization, it is common to 

change an execution order of statements unless their data dependence is un­

changed. As for our variable-oriented data dependence, R-W dependence and 

W-W dependence represent only a dependence between consecutive accesses. 

Therefore, we cannot decide to change the execution order of two statements 

based only on the data dependence of the statements. If we visualize all data 

dependence, however, we can judge it at a glance. 

The advantage of our data dependence model is that we can know the pe­

riod in which we must keep the value of a variable as a W-R dependence. R-W 

dependences and W-W dependences let us know the period in which we can­

not keep the value of a variable. In Banerjee's data dependence model, how-
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ever, anti dependence and output dependence do not show the period. For 

example, if there are three accesses Ai(d, ti, ki), Ak(d, tk, kk), and Aj(d, tj, kj) 

( ti < tk < tj ) , in which (ki, kk, kj) = (R, R, W), there is an anti dependence 

from the statement Ai to the statement Aj. But the value of d must remain 

the same from ti to tk. Therefore, we cannot know the period in which we 

cannot keep the value of a variable from anti dependence. The same problem 

exists in output dependence. 

5.2 Data Dependence View 

In this section, we explain how we visualize data dependence expressed by 

our variable-oriented data dependence model in the Data Dependence View 

(DDV) . The DDV visualizes accesses and dependences in a loop in three­

dimensional graphics. 

5. 2.1 Accesses 

An access is displayed as a colored cube. The coordinates of each cube are 

expressed by a triplet (x,y,z) . Each axis and color has the following meaning: 

x,y location of the data 

z time 

color the type of the access 

The layout of data on the x-y plane is defined by the user. The A VD 

map, which is described in section 5.2.3, shows the current data layout. 
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Table 5.1: Colors of poles 

type color 

W-R pole green 

R-W pole yellow 

W-W pole pink 

Time is a value of the conceptual time. In the current version of N ar­

a View, the user can select the statement access time or iteration access time 

on each loop nest. 

The type of access is represented in a color: 

A blue cube represents a read access. 

A red cube represents a write access. 

A purple cube represents a read and write access. 

5.2.2 Dependence 

Data dependence is represented as a colored pole that connects two cubes 

and indicates accesses to the same data. There are three kinds of poles that 

correspond to W-R dependence, R-W dependence, and W-W dependence. 

We call these the W-R pole, R-W pole, and W-W pole, respectively. They 

are distinguished from each other by the colors listed in Table 5.1. 

According to the definition of data dependence, poles of different types do 

not share the same coordinates. In three-dimensional graphics, however, ac-
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cording to the viewpoint, some poles overlap other poles in other coordinates, 

so the user can select visible or invisible for the following five items: 

• W-R dependence 

• The shortest W-R dependence 

• R-W dependence 

• The shortest R-W dependence 

• W-W dependence 

Looking for the shortest dependence is useful for the user to investigate a 

way to parallelize a given program (see chapter 6). Therefore, we provide the 

items needed to show only the shortest W-R dependence or R-W dependence. 

5.2.3 Other indicated objects 

AVD map 

A plane, the array-variable disposition (AVD) map, is placed perpendicular 

to the z-axis. It shows the layout of arrays and variables and allows the user 

to easily comprehend the view of data dependence. Characters on the AVD 

map stand for the names of variables or arrays that are mapped there. 

A user can define the layout of variables on the AVD map. Usually, we 

assign one variable or one element of an array to one place, but we can also 

assign some variables or some elements of arrays (for example, all elements 

of one column of an array) to one place, and the user can select visible or 

invisible for the AVD map. 
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Loop grids 

Loop grids are semi-transparent planes that are placed perpendicular to the 

z-axis. Users can display loop grids to indicate the beginning of each iteration 

of a loop or specified iterations. 

Loop grids are important for showing the relationships between data de­

pendence and the given source code. For example, suppose there is a double 

nested loop. If users specify to show loop grids at each beginning of the inner 

loop, they can find the pattern caused by the outer loop at a glance. 

As we will mention the next section, loop grids play an impotrant role in 

investigating that a loop has more parallelism or not. Concreate examples 

are shown in chapter 6. 

5.2.4 An interpretation 

From a figure generated by DDV, we can obtain useful information for opti­

mization and parallelization: 

• We can find unexpected accesses by poles and cubes. 

• If there is a W-W pole on the statement access time, we know the 

access of the start of the W-W pole is useless as a write access. 

• If there is no pole across the loop grid of z = i, the before part of the 

loop grid (the part of z < i) and the after part of the loop grid (the 

part of z � i) have no data dependence on each other, so the order of 

execution does not matter. 
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do 20 i = 3, 10 

do 18 j = 5, 10 

m = a(i, j) - b(i, j) : 51 

a(i, j) = b(i-3, j-5) 52 

b(i, j) = a(i-2, j-4) 53 

c(i, j) = m - b(i, j) : 54 

18 continue 

20 continue 

Figure 5.2: Sample program for a comparison 

• If no pole starts and ends during i < z < j, the accesses in the period 

can be executed in parallel. 

• If we regard an A VD map as a mapping of variables in the memory in 

an execution, we can examine ways of distributing data using DDV. 

5.3 An example for a comparison 

In this section, we show an example to compare Banarjee's model and our 

model. Examples for practical use are explained in detail in chapter 6. 

Figure 5.2 is a sample program shown in [22], but we added the variable 

m. The data dependences of the program in Banerjee's model are listed in 

Table 5.2. The dependences of 1, 4 and 8 are on variable m, 2 and 5 are on 

array a, and 3, 6 and 7 are on array b. 
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Table 5. 2: The data dependences of the sample program (Banerjee) 

1. An output dependence from S1 to S1 

2. An anti dependence from S1 to S2 

3. An anti dependence from S1 to S3 

4. A flow dependence from S1 to S4 

5. A flow dependence from S2 to S3 

6. A flow dependence from S3 to S2 

7. A flow dependence from S3 to S4 

8. An anti dependence from S4 to S1 
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Table 5.3: The variable-oriented data dependences of our sample program 

W R(m, 51 (3, 5), 54(3, 5) ), ... , W R(m, 51 (10, 10), 54(10, 10)) 

RW(m, 54(3, 5), 51(3, 6)), ... , RW(m, 54(10, 9), 51(10, 10)) 

RW(a(3, 5), 51(3, 5), 52(3, 5)), W R(a(3, 5), 52(3, 5), 53(5, 9)) 

RW ( a(3, 6), 51 (3, 6), 52(3, 6) ), W R(a(3, 6), 52(3, 6), 53(5, 10)) 

RW(b(3, 5), 51 (3, 5), 53(3, 5) ), W R(b(3, 5), 53(3, 5), 54 (3, 5) ), 

WR(b(3, 5), 53(3, 5), 52(6, 10)) 

RW (b(3, 6), 51 (3, 6), 53 (3, 6)), W R(b(3, 6), 53 (3, 6), 54 (3, 6)) 

RW(b(10, 10), 51(10, 10), 53(10, 10)), W R(b(10, 10), 53(10, 10), 54(10, 10)) 

Data dependences in our model are shown in Table 5.3. Figure 5.3 shows 

its DDV. The x axis starts from the upper left and ends at the lower right, 

the y axis starts at the lower left and ends at the upper right, and the z axis 

goes from down to up. We show loop grids that correspond to the outer loop. 

W-R poles are displayed. Variables and arrays are mapped from the left in 

the order of array a, b, variable m, and array c. 

This example shows Banerjee's model is not intuitive for users. Our model 

is also not intuitive in text form, because there are too much information. 

But when we visualize our model, the information is arranged clear and users 

can easily understand the pattern of data dependence. 
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Figure 5.3: A Data Dependence View of the sample program 
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Chapter 6 

Examples 

This chapter contributes various examples of Nara View. In the first section, 

we explain an implementation of Nara View. In the second section, we show 

typical way to use Nara View: to compile a program, see PSV, investigate a 

part of the program with DDV and SCV, recompile the program, and see 

PSV again to check the effect of reconstructing the program. In the third and 

forth sections, we show characteristic figures generated by PSV and DDV, 

and we explain how we can get information about reconstructing a program 

from these figures. 

6.1 Implementation 

Nara View is implemented in C language on X Windows using OpenGL and 

Motif. It is divided into modules. Figure 6.1 shows the relationship between 

these modules. 
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computation 

PSV 

HTG 

HTG analysis 

coordinates 

computation 

HCFV 

simulation 

DDV 

Figure 6.1: Modules of Nara View 
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There are six modules for analysis and computing coordination and four 

modules for graphics, which are represented as PSV, HCFV, DDV, and SCV 

in the figure. First, NaraView analyzes HTG. For SCV, it needs no further 

process. For PSV, we need the coordinates of the computation module that 

creates HTGv and decides the concrete coordinates for each node. A coor­

dinate computation module for HCFV decides the concrete coordinates for 

each node of HTG directly. For DDV, the source analysis module analyzes 

indexes for all references in a loop. Then, the simulation module computes 

a concrete value for each index and reports accesses. If the module does not 

compute the value because of a lack of information, the module asks users for 

the information it needs. The coordinates computation module decides the 

concrete coordinates for access from the reports of the simulation module. 

All examples in this chapter are executed on SGI 02. 

6.2 A typical way to use NaraView 

In this section, we show a typical way to use N ara View by parallelizing a 

Gaussian elimination program. The process appears in Figure 6.2. 

We then parallelize the program in Figure 6.3 by using Nara View. The 

number at the end of each line in Figure 6.3 indicates the line number gener­

ated by Parafrase-2. Parafrase-2 and Nara View refer to the code by the line 

number. 

First, we compile the program with Parafrase-2 with default passes. By 

default passes, only the loops that have no data dependence are parallelized. 

Figure 6.4 represents the PSV of an automatically parallelized program ere-
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Figure 6.2: A typical use of Nara View 
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SUBROUTINE gaus(xary,n) 
IMPLICIT NONE 
INTEGER n3, n2, i1, n1, intvll, kO, intvlO 
INTEGER iO, nO 
INTEGER maxn 
PARAMETER(maxn = 100) 
INTEGER np 
PARAMETER(np = 16) 
INTEGER n 
INTEGER pivot, i, j, k, kk, begtim, endtim 
INTEGER delta, intvl 
INTEGER idx(100) 
INTEGER p(100) 
REAL maxary(100) 
REAL maxelm, sum, m 
REAL xary(100) 
REAL aary(100,100) 
REAL tary(100,100) 
REAL err 
DO 200 i = l,n 

DO lOO j = l,n 
tary(i,j) = aary(i,j) 
CONTINUE 

idx(i) = i 
tary(i,n + 1) = aary(i,n + 1) 
CONTINUE 

n2 = n 
DO 2000 i = 1 ,n2 - 1 

intvl = int((n - i) I 16) + 1 
IF (intvl .GE. 100) GOTO 987 
pivot= i 
maxelm = abs(aary(idx(i),i)) 
iO = i 
nO= n 
DO 1200 k = iO + l,nO 

IF (maxelm .GE. abs(aary(idx(k),i))) GOTO 1200 
pivot= k 

maxelm = abs(aary(idx(k),i)) 
CONTINUE 

GOTO 789 
CONTINUE 
il = i 
nl = n 
intvll = intvl 
DO 1400 k = 0,( -il + n1) I intvll 

p(k) = k 
maxary(k) = abs(aary(idx(k),i)) 
kO = k 
intvlO = intvl 
DO 1300 kk = kO,intvlO + kO - 1 

IF (maxary(k) .GE. abs(aary(idx(kk),i))) GOTO 1300 
p(k) = kk 
maxary(k) = abs(aary(idx(kk),i)) 
CONTINUE 

CONTINUE 
pivot= p(i) 
maxelm = maxary(i) 
DO 1500 k = 0,( -i - intvl + n) I intvl 

IF (maxary(i + intvl + intvl * k) .LE. maxelm) GOTO 1500 
pivot = p(i + intvl + intvl * k) 
maxelm = maxary(i + intvl + intvl * k) 
CONTINUE 

CONTINUE 
IF (pivot .EQ. i) GOTO 345 
k = idx(pivot) 
idx(pivot) = idx(i) 
idx(i) = k 
CONTINUE 
DO 1600 k = i + 1,n 

m = aary(idx(k),i) I aary(idx(i),i) 
DO 1550 j = i + l,n + 1 

aary(idx(k),j) = aary(idx(k),j)- m * aary(idx(i),j) 
CONTINUE 

CONTINUE 
CONTINUE 
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Figure 6.3: A Gaussian elimination program. 
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DO 4000 i = n,1, -1 62 
xary(i) = aary(idx(i),n + 1) / aary(idx(i),i) 63 
D03400 j=i-1,1,-1 64 

aary(idx(j),n + 1) = aary(idx(j),n + 1)- xary(i) * aary(idx( 65 
j),i) 65 

3400 CONTINUE 66 
4000 CONTINUE 67 

delta = endtim - begtim 68 
err = 0 69 
n3 = n 70 
DO 6000 i = 1,n3 71 

sum= 0 72 
DO 5400 j = 1,n 73 

sum = sum + tary(i,j) * xary(j) 74 
5400 CONTINUE 75 

IF (abs(sum- tary(i,n + 1)) .GT. 0.001) err= 1 76 
6000 CONTINUE 78 

R�U� N 

END M 

Figure 6.3: A Gaussian elimination program (cont. ) . 

ated by Parafrase-2. Labels and arrows have been added for explanation. 

In the figure, the flow of the program (the x-axis) starts from the upper 

left and ends at the lower right, and the measure of parallelism (the y-axis) is 

expressed as the horizontal width, and the level of hierarchical structure (the 

z-axis) is indicated as approximately up to down. The dotted lines indicate 

the axes. 

In Figure 6.4, we can easily find two loops that can be executed in par­

allel. Since those parallelized loops have no data dependence, Parafrase-2 

could parallelize them without the user's assistance. The code of one of the 

parallelized loops, which is indicated as "A Parallelized Loop", is taken from 

lines 1 to 7 in Figure 6.3. The code of another, which is indicated as "Loop 

3", comes from lines 55 to 60, but only the inner loop could be parallelized. 

Other loops could not parallelized because they had data dependence. 

By viewing the PSV, we can guess which loops may be difficult to paral­

lelize and which loops may have a possibility of parallelization. For example, 

an if-statement is one of the obstacles to parallelization. Therefore, we may 

77 



Figure 6.4: A Program Structure View of a program representing Gaussian 

elimination. The flow of the program (the x-axis) starts from the upper left 

and ends at the lower right, and the measure of parallelism (the y-axis ) is 

expressed as the horizontal width, and the level of hierarchical structure (the 

z-axis) is indicated as approximately up to down. The dotted lines indicate 

the axes. 
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investigate the possibility of parallelizing the loops that have no if-statements. 

A function call is also an obstacle. If we want to parallelize a loop that in­

cludes a function call, we must have interprocedure analysis of which type of 

analysis costs more. 

The loops that have a possibility of parallelization are indicated in the 

figure by arrows. Next, we investigate the loops with DDV and SCV. 

When we try to see DDV on loop 1 in Figure 6.4, Nara View informs 

us that there are indirect accesses by array idx in the loop. We know that 

the indirect accesses in the algorithm of Gaussian elimination do not cause 

data dependence. Therefore, we instruct Parafrase-2 that there is no data 

dependence caused by indirect accesses by array idx and compile the pro­

gram again. Figure 6.5 shows a PSV after second compilation. Loop 3 is 

parallelized automatically, but loop 1, 2 and 4 are still not parallelized. 

Then, we investigate the data dependence in loop 1 by DDV. The source 

code of this loop is represented in Figure 6.6. The indirect accesses in the 

loop are ignored as we regard idx( i) as i. This figure displays data accesses 

when n = 5 and i = 1. Loop grids that correspond to the outer loop are 

displayed. The AVD map is placed at the bottom of the figure. The z-axis 

goes from down to up, which is shown by a dotted line. The inner loop is 

already parallelized automatically. 

Figure 6. 7 and 6.8 shows that the data dependence caused by variable 

m disturbs automatic parallelization of the loop. The W-R poles shown in 

Figure 6. 7 disturb parallelization of the inner loop and the R-W poles shown 

in Figure 6.8 disturb the parallelization of the outer loop. We can remove 

the data dependence by scalar expansion on m. The details of this procedure 
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Figure 6.5: A Program Structure View of the Gaussian elimination program 

after second compilation. 
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do 1600 k = i + 1, n 

m = aary(idx(k), i) / aary (idx(i), i) 

do 1550 j = i + 1, n + 1 

aary (idx(k) , j) = aary (idx (k), j) - m * aary(idx (i), j) 

1550 continue 

1600 continue 

end 

Figure 6.6: The source code of loop 1 in the Gaussian elimination program 

are explained in section 6.4.3. 

Loop 2 has data dependence that we don't know how to remove (Figure 

6.9 ). W-R dependences of array aary disturb the parallelization of the outer 

loop (because the W-R poles of array aary go across the loop grids) , and 

W-R dependences of array xary disturb the parallelization of the inner loop 

(because the W-R poles of array xary do not go across the loop grids ) . So, 

we cannot parallelize the loop. Loop 4 cannot be parallelized because of 

the data dependence of variable s (Figure 6.10). The source code of loop 4 

computes the summation of tAray x xAray (Figure 6.11) . 

We compile the program again, but loop 1 is still not parallelized. Parafrase-

2 reports that there is data dependence on aary, but we cannot find the data 

dependence in DDV (Figure 6.12 ). So we can confirm removal of the data 

dependence on m. Each element of the array m (which is produced by scalar 

expansion) has only one write access, and read accesses to the element occur 
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Figure 6. 7: A Data Dependence View of loop 1 in the Gaussian elimination 

program (with W-R poles) 
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Figure 6.8: A Data Dependence View of loop 1 in the Gaussian elimination 

program (with R-W poles) 
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Figure 6.9: A Data Dependence View of loop 2 in the Gaussian elimination 

program. 
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Figure 6.10: A Data Dependence View of loop 4 in the Gaussian elimination 

program. 
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do 5400 j = 1, n 

sum= sum+ tAry(i, j) * xAry(j) 

5400 continue 

Figure 6.11: The source code of loop 4 in the Gaussian elimination program 

in the same region partitioned by the loop grids. And we cannot find data 

dependence in aary in the figure. As we investigate the source code of the 

loop (Figure 6.6), we find there is no data dependence on aary because of 

the bounds of k and j . Thus, we instruct the compiler that the outer loop 

can be executed in parallel. 

The result of an investigation like this one is a parallelized program. A 

PSV of the program is shown in Figure 6.13. 

6.3 Examples of PSV 

This section shows two examples of PSV. The first includes function calls; 

the second is a "big" program. 

If a program includes a function call, the call is represented as a dark blue 

cube as in Figure 6.14. In this figure, we find 17 function calls. In this version 

of N ara View, a function call means a CALL statement in Fortran. Statements 

that invoke functions in other ways, for example, the max function invoked 

by m = max(a, b), are represented as a basic node. If we find a function 

call in a program, we may choose giving up parallelization of the loop or 

performing interprocedure analysis if possible. 
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Figure 6.12: A Data Dependence View of loop 1 of the Gaussian elimination 

program with scalar expansion. 
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Figure 6.13: A Program Structure View of a parallelized Gaussian elimina­

tion program. 
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Figure 6.14: A Program Structure View of a program that includes function 

calls. 
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The second example is a "big" program . Figure 6.15 is a PSV of the liver­

more kernel, a well-known benchmark program for automatic parallelization. 

It consists of 25 independent loops (24 for the benchmark and 1 to report 

the results) and about 350 lines. We can see the whole visible object in a 

window and see which loops can be parallelized at a glance. If we want to see 

each loop, we can scale the object up and rotate it easily. Some researchers 

comment that program visualization is not suitable for dealing with large 

programs. But, as we will mention in section 6.5, we think PSV has enough 

potential to visualize large programs. Because essentially PSV visualizes a 

function (or subroutine) of a program and the data of PSV have hierarchical 

structure. 

6.4 Examples of DDV 

This section contains three examples of the Data Dependence View. The 

first is an example of cycle shrinking and loop interchange. The second is 

an example of loop skewing, and the third is a scalar expansion [22]. These 

examples show how the Data Dependence View helps users select or compare 

transformation methods. 

6.4.1 An example of cycle shrinking and loop inter­

change 

We can show whether or not we decide to apply cycle shrinking by looking 

at DDV. Cycle shrinking can be applied to any loops (see section 2.1.1). 

Therefore, we have to judge whether it is useful to apply cycle shrinking. 
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Figure 6.15: A Program Structure View of the livermore kernel. 
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do 20 i = 3, 10 

do 18 j = 5, 10 

a (i, j) = b (i-3, j-5) 

b (i, j) = a (i-2, j-4) 

18 continue 

20 continue 

Figure 6.16: A sample program of cycle shrinking 

Figure 6.16 shows a sample program. A DDV of the program is shown in 

Figure 6.17. The elements of array bare shown in the left in the figure and 

the elements of array a are in the right. 

Figure 6.17 shows there are data dependences in this program. Therefore 

we cannot parallelize the whole of the program. But, in figure 6.17, the length 

of W-R poles on array a or b is longer than the intervals of loop grids. This 

is a sign that we should consider applying cycle shrinking to either of the 

loops. We are trying to parallelize loops by reconstructing the loops in the 

source level. Intervals of loop grids represent the number of executions that 

can be performed in parallel. W-R poles which are longer than the intervals 

indicate that a loop has the potential for parallelism. 

In general, since the overhead of loop dividing in an execution is high we 

prefer to reduce the number of dividing. Therefore we would like to parallelize 

outer loop than inner loop. Then we try to apply cycle shrinking to the outer 

loop. The result source is shown in Figure 6.18. Figure 6.19 shows a DDV 
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Figure 6.17: A Data Dependence View of the original example program for 

cycle shrinking. 
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do 20 i = 3, 10, 2 

do 201 i = i1, i1+1 

do 18 j = 5, 10 

a(i, j) = b(i-3, j-5) 

b(i, j) = a(i-2, j-4) 

18 continue 

201 continue 

20 continue 

Figure 6.18: A shrinkrd program 

of the program We see that the intervals of loop grids are wider than those 

in Figure 6.17, but the W-R poles are still longer than the intervals, which 

means that the loop has more potential for parallelism. 

We have no general answer about when we should apply cycle shrinking 

and when we should not. Thus decision be based only on the difference 

between the length of W-R poles and the intervals of loop grids. To decide 

this, we need more information about such as how many times the loop will 

be performed and how many processors we can use in execution. It is clear, 

however, we cannot get parallelism more than the length of the W-R poles. 

Next, we consider loop interchange in the same sample program. Loop 

interchange can be used when there is no difference in data dependence before 

and after (see section 2.1.1). DDV clearly shows whether data dependence 

is changed by loop interchange. 
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The interval 
of loop grids. 

Figure 6.19: A Data Dependence View of a program after cycle shrinking. 
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do 18 j 1 = 5, 10, 4 

do 201 i = j1, j1+3 

do 20 i = 3, 10 

a (i, j) = b(i-3, j-5) 

b (i, j) = a (i-2, j-4) 

18 continue 

201 continue 

20 continue 

Figure 6.20: A loop interchanged and shrinked program 

Figure 6.20 and 6.21 show the result of applying loop interchange to the 

data in Figure 6.16. The source code is shown in Figure 6.20 and DDV 

is shown in Figure 6.21. The data dependence of the program after loop 

interchange is the same as in the original because the relationship between 

the loop grids and poles in Figure 6.21 is the same as in Figure 6.17. But 

the length of W-R poles in Figure 6.21 are longer than those in Figure 6.17. 

Moreover, we get more parallelism from the program after loop interchange 

since the intervals of the loop grids in Figure 6.21 are wider than the intervals 

in Figure 6.17. If we apply cycle shrinking after loop interchange, we can get 

a program that has more parallelism than the program shown in Figure 6.19. 
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Figure 6.21: A Data Dependence View of a program with loop interchange. 
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do 10 i = 2, n-1 

do 20 j = 2, m-1 

a(i, j) = (a(i-1, j) + a(i, j-1) 

20 continue 

10 continue 

end 

+ a(i+1, j) + a(i, j+1))/4 

Figure 6.22: An example program of wavefront computation. 

6.4.2 An example of loop skewing 

Described below is an example that can be parallelized by loop skewing [2]. 

Figure 6.22 shows a program with a typical wavefront computation. Fig­

ure 6.23 shows the data dependences of the program, in which n = 10 and 

m = 10. Loop grids that correspond to the outer loop are displayed. Figure 

6.23(a) shows all W-R poles and Figure 6.23(b) shows only the shortest W-R 

pole to each write access. 

Wavefront computations have two read accesses after a write access. The 

first write occurs during the execution of the inner loop; the second occurs 

during the execution of the outer loop. After a write access to an element of 

array a, there are two read accesses, before and after the loop grid. In Figure 

6.23(b), we find that the shortest W-R poles do not go across the loop grid. 

In Figure 6.23(a), however, we can see that the W-R poles go across the loop 

grid. Therefore, we can easily know that the loop is a wavefront computation 
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(a) (b) 

Figure 6.23: A Data Dependence View of the program of wavefront compu­

tation: (a) with W-R poles (b) with the shortest W-R poles to each write 

access. 
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do 20 j = 4, m+n-1 

do 10 i = max(2, j-m+1), min(n-1, j-2) 

a(i, j) = (a(i-1, j) + a(i+1, j) + a(i, j-1) + a(i, j+1))/4 

10 continue 

20 continue 

Figure 6.24: A n  example program of skewed wavefront computation. 

and it cannot be parallelized automatically. 

Figure 6.24 shows a source program that was obtained by applying loop 

skewing. Figure 6.25 shows the data dependences of the program. Figure 6.25 

(a) shows the essence of loop skewing. Loop skewing changes the intervals 

of the outer loop. The intervals are no longer equal. In Figure 6.25 (b), the 

shortest W-R pole goes across the loop grid. It means on the outer loop all 

read accesses are done in different iteration from the iteration in which the 

write access is done. Thus, we can determine that the inner loop can be 

executed in parallel. 

6.4.3 An example of scalar expansion 

This section describes how we know to apply scalar expansion. Figure 6. 7 

and 6.8 show DDVs of loop 1 of Figure 6.4. The source code of this loop 

is represented in Figure 6.6. These figures display the data accesses when 

n = 5 and i = 1. Loop grids that correspond to the outer loop are displayed. 

The AVD map is placed at the bottom of each figure. The z-axis goes from 
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(a) (b) 

Figure 6.25: A Data Dependence View of the program of wavefront compu­

tation with loop skewing: (a) with W-R poles (b) with the shortest W-R 

poles to each write access. 
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do 1600 k = i + 1, n 

m (k) = aary (k, i) / aary (i, i) 

do 1550 j = i + 1, n + 1 

aary (k, j) = aary (k, j) - m(k) * aary (i, j) 

1550 continue 

1600 continue 

end 

Figure 6.26: Scalar expansion of the program. 

almost down to up, and is shown by a dotted line. 

The figures tell us that the obstruction preventing this loop from being 

parallelized is the data dependence on variable m. This variable has been 

rewritten and read several times in the outer loop. These actions are obvious 

because of the W-R poles in Figure 6.7 and R-W poles in Figure 6.8 on m. 

In this case, we can obtain a more parallelized program by changing m 

to an array. This is scalar expansion. Figure 6.26 shows the program after 

scalar expansion. 

The Data Dependence View is shown in Figure 6.12. In the figure, each 

element of the array m (which is produced by scalar expansion) has only 

one write access, and read accesses to the element occur in the same region 

partitioned by the loop grids. It means R-W dependences are disappeared. 

Thus, we know that the outer loop can be executed in parallel. 
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6.5 Discussion 

PSV is a three-dimensional graph-drawing tool that can be used to create 

special graphs which nodes are ordered according to some relationship: for 

example, program flow. We must keep the order of the relationship when 

we visualize the graphs. General graph-drawing tools, however, do not keep 

this order [29]. Instead, they follow other criteria such as reducing crosses of 

arcs. Therefore, CFG and HTG can be visualized with general graph-drawing 

tools, but the figures produced cannot be understood intuitively. 

One of the general problems of visualization is how we treat large amounts 

of data (Figure 6.15). Although 350 lines of code may not seem large, a 

program that has more than 1000 lines usually consists of several modules 

(subroutines) . An HTG is made for a module, so PSV is not usually required 

to visualize large amounts of date. But we think a more serious problem is 

that we have no way to know the relationship between modules. For example, 

Figure 6.14 shows a module that includes many function calls , but we cannot 

indicate the program structures of the invoked functions. We should consider 

a PSV-PSV connection for function calls. It is simple expansion and not so 

difficult. 

DDV can suggest whether to apply loop reconstruction methods (see 

chapter 6). DDV is especially useful for loops that have complicated index 

expressions. But of course DDV is not all powerful, and does not always 

specify that loop reconstruction methods should apply. For instance, find­

ing a part to which loop distribution should be applied is difficult because 

loop distribution is a loop reconstruction method that parallelizes a sentence 

103 



rather than a loop. DDV is designed to let users show a loop or loop iterations 

rather than a sentence, so DDV is not so useful in loop distribution. 

We can also have difficulty finding the best loop reconstruction methods 

when there are many variables and various data dependences in a loop. We 

believe a compiler can suggest which parts of dependence disturb paralleliza­

tion. We can then visualize the suggestion. 

Users should know that DDV visualizes the data dependence of an exe­

cution through the simulation module of Nara View. The simulation module 

executes only a part of program and the parts of iterations that are needed 

to visualize the data dependence of a specified loop. Therefore, there is no 

guarantee that there is no data dependence when we cannot find dependence 

poles in a figure. 

Although we do not discuss them in this thesis, we think DDV has various 

other uses. For example, we can investigate how data should be partitioned 

and distributed by mapping data to the appropriate layout on the x-y plane. 

DDV is not almighty on visualizing data dependence, but it is helpful in 

understanding the program and debugging. 
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Chapter 7 

Conclusion 

This thesis described N ara View, a program visualization system for paral­

lelizing compilers, which plays an important part of an interactive compila­

tion environment for parallelization in the phase of compilation. Program 

visualization reorganizes a program according to some models and visualizes 

it. 

In chapter 3, we showed the requirements for N ara View and the archi­

tecture of N ara View. The requirements for N ara View are to let users easily 

understand information for parallelization from a compiler. N ara View visu­

alizes the analysis of a program extracted by a parallelizing compiler by four 

views. We described in detail two views of Nara View: the Program Structure 

View and the Data Dependence View in chapter 4 and 5. 

In chapter 4 we described the Program Structure View (PSV). It shows 

the user three-dimensional visible objects that visualize the structure of given 

programs for intuitive understanding. PSV visualizes each sentence of a pro­

gram as a colored cube and puts it in three-dimensional space. The three axes 

of the space means program flows, hierarchical levels of loop structure and 
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measure of parallelism. PSV allows users to investigate each loop that does 

not seem to have parallelism at a glance with the original source program. 

In chapter 5, we represented the Data Dependence View (DDV) that 

shows the data dependence in the loop focused on by using the Program 

Structure View. We proposed variable-oriented data dependence model as a 

basic model of DDV. DDV displays each access as a colored cube and each 

data dependence as a colored pole. DDV also shows loop grids to indicate 

the beginning of each iteration of a loop or specified iterations. Therefore 

users can read patterns of data dependence from the relationship between 

loop grids and poles. This view is useful for comparing and selecting trans­

formation methods to parallelize given programs. 

Chapter 6 includes several examples of PSV and DDV. The examples 

show PSV, DDV and a collaboration of the views, which are useful for non­

expert users for parallelization. In section 6.2, we explained the typical way 

to use Nara View. And in section 6.3 and 6.4, we showed how we can interpret 

PSVs and DDVs respectively. 

Many researchers have claimed the usefulness of interactive compilation 

environments. We especially have claimed and shown the usefulness of pro­

gram visualization in an interactive compilation environment. 

In future work, we will be able to extend N ara View to allow users to 

modify a given source program using a visual interface. For example, when 

some redundant dependences are detected in a view, users can remove the 

dependences by cutting the dependence poles without modifying the source 

program. If this operation succeeds in finding parallelism, the source program 

is updated by Nara View automatically. 
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In this thesis, we assume we have infinite processors and infinite memo­

ries. However, in practical, we run a parallel program on finite number of 

processors and finite memories. Therefore, we should extend our system for 

finite number of processors and memories for practical use. 

To give users more assistance on parallelizing a program, as we discussed 

in section 6.5, we may specify the obstacle of parallelization and consider 

giving users suggestions about which parallelization methods can be applied. 

We have implemented a causal explanation system with an abduction pro­

cedure for failure in applying loop transformation [25). The system informs 

the user the obstacle of parallelization and explains whether a specified loop 

transformation method can be applied on a specified loop by the abduction 

procedure. 
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