
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

General-Purpose Reasoning Assistant System

南, 俊朗
Graduate School of Information Science and Electrical Engineering, Kyushu University

https://doi.org/10.11501/3150887

出版情報：九州大学, 1998, 博士（理学）, 課程博士
バージョン：
権利関係：

7.1 Martin-Lof's Intuitionistic Type Theory

This example is a tiny subset of the intuitionistic type theory described in [2] and

[55]. Based on the formulas-as-types notation, a type is represented as a formula

that gives a formal specification and its element represents a program that satisfies

the specification. This principal expression is represented in an intuitionistic type

theory as a judgment of the form "xEA", reads "x is a proof of a proposition A" in

formulas-as-types interpretation, where "x" is an expression in .A.-calculus and "A"

is a first-order formula interpreted as a type. The judgment is naturally and well

described in the EUODHILOS framework [78; 98; 100].
We present two description examples; one on EUODHILOS-I in the DCGo nota­

tion and the other on EUODHILOS-II in the BNF -based notation.

Description and Proof Example in DCGo-based framework

The language definition consists of four parts: an object language, a metalanguage,

interface between the meta and object languages and the constructor declaration as

follows. This is a typical classification of the descriptions in the DCGo notation.

Language:

'1. Meta_language

meta_term --> meta_term1;

meta_type --> "A" I "B";
meta_term1 --> "F" meta_const I meta_variable;

meta_const --> "a" I ''b";

meta_variable --> "X";

I. Object_language

judgement --> term, "E", type;

term --> bind_op, variable,

term, ".", term I
II (II > term, ")"

II II term I

type --> type, ":J", type

type, "v", type

"-", type I
II (II > type ' II) II

basic_type;

variable --> "
x

" "f";

constant --> "c" "d";

basic_type --> "P" I "l_";
bind_op --> "..\";

I. Interface between meta and object languages

type --> meta_type;

variable --> meta_variable.

'1. Constructor declaration

with_priority

"-"; "v":left; ":J":left; ".":left; "..\"; "E";

without_priority

"inl", "inr", meta_term1.

It is notable that the syntax definition for the metalanguage is provided for defin­

ing inference rules schematically, and the operators have precedence in the indicated

order as well as their associativity, and the functors or predicates, e.g., "inl" in the

term "inl(x)", are listed simply by themselves or the non terminals by which they are

denoted, under the heading "predicate". As has been described in Chapter 4, the

constructor declaration tells the parser and the unparser that the terminal name de­

clared to be an operator or the terminal name denoted by the nonterminal character

string is entitled to become the principal operator of the internal structure for an

expression generated by the grammar rules.

11-11 term I Inference Rule:
"inl", " (", term, ")" I "inr", " (", term, ")" I

variable I constant I
meta_term1, " (", term, ")" I meta_term;

98

The intuitionistic type theory is defined by a number of natural deduction style in­

ference rules. For the purpose of illustration we consider just four rules and one

99

INFORMATION ** new ** ** new **
SOFT_KEYBOARD ** exit

SYNTAX 1\Ei

INFERENCE_RULE
AE2

REWRITING_RULE
AI
VE

AXIOM vii

PROVER _thea VI2
DERIVED_RULE ::JE

THEOREM ::JI

PROOF ljE

** EXIT **
ljl

3E

31

fEA::JB aEA

app(f,a)EB

** Side conditon
** Define **

bEB

** ** exit **
---def
+def
*def
D1
D2
E

R1
R2
alpha

2
[xEA] [yE�(AV"-A)]
-(VI 1 {1}) -(.... def {2})
inl (x)EAV"'A yEAV A::J�
------C::JE{1,2})

app(y, in! (x))Ei
-------(::JI {2})
AX.app(y, in! <x>>EA��
-----(.... def (R) {2}) 2
AX.app(y,inl(x))E A [ye....(AV A)]

--------(VI2{2}) -(.... def {2})
inr(�x.app(y,inl (X)))EAV"'A yEAV A::Jj_
-------------(::JE {2})

app(y, inr(Ax.app(y,inl (x))))E�
---------------(::Jl{})

'•sf'�.• • AY. app (y, i nr (AX. app (!:J, in I (X)))) e.... (AV A) ::Jj_
l t--i�n� r�(�b�) E�A�V�B�������:t::===�==�� -------------(.... def (R) {})

** Side conditon A
Ay.app(y,inr(Ax.app(!:J1inl(x))))E (AV A)

** Define **

sheet_t

Figure 7.1: Intuitionistic Type Theory and Constructive Proof on EUODHILOS-I

rewriting rule. These are the rules for function introduction and elimination, the two

rules for V-introduction, and the rewriting rule for the definition rv A = A � _l. As

can be recognized in these example inference rule definitions, if we see only the right

sides of the judgme1�ts the rule is exactly that of the natural deduction rules for the

classical propositional logic.

�-I:

[yEA)

f(yjx) E B

Ax.f(x) E A� B

100

Side Condition: y is not free in B

�-E:

inl-I:

inr-I:

Rewriting Rule:

def:

Proof Example:

fEA�B aEA
app(f, a) E B

a E A
inl(a) E A VB

bE B
inr(b)EA VB

A�l_
rvA

Figure 7.1 displays the proof of the theorem''·""·"' (AV rv A). The theorem means that

the law of the double negation of the excluded middle cannot be refuted. This is an

instance of Glivenko's theorem that if A is any tautology of the classical propositional

calculus then the proposition rvrv A is always constructively valid. For further de­

tails about how the proof has been constructed using our various proof facilities and

methods, refer to [102].

Description and Proof Example in EUODHILOS-11

Also in the description framework of EUODHILOS-II, the intuitionistic type theory

can be formulated in a similar way. We present the actual description example for

the same example logical system in order to provide a comparison example between

the two EUODHILOS frameworks.

101

Language:

The syntax definition is as follows:

%ROOT Judgement

%META_ VARIABLES

Meta_ Var = "[u-z] [0-9] * 11

Meta_ Term = 11 [a-kr-t] [0-9] *"

Meta_ Type = "[A-GO-T] [0-9] *'1

Meta_Judgement = "[IJ] [0-9]*" ;

/.PRODUCTIONS
Judgement
Judgement
Judgement
Judgement
Judgement

Meta_Judgement
Meta_Judgement "(" Type ")11

Meta_Judgement "(" Term ")11

Term "E11 Type

Type 11 =11 Type

Judgement Term
Op1 "inl";

Op1
Op1 -

Op1
Op2

Dp2
Op2

Op3

"inr";
"car";
"cdr";
"ap" ;
"cons"
"Ell

"D"

"="

Variable
Term

Term

: : = Meta_ Var
Variable ;

Meta_Term ;

Term 11 E11 Type

Term Meta_Term "(11 List Of Term ")11

Term

Term

Term
Term

Term

Arg2

Op1 "(11

Op2 "(11

Op3 "("

Term "/11

Term

Arg2

Arg3
Term

II).11 @Term 11. II
II II , Term

")"
")II

")"

[Term]

Arg3

Term

Term II II , Term 11," Term ;
. ·= Term L1st Of Term

List_Of_Term
Type 11 j_"

Term 11 " List_Of_Term

Type

Type

Type

Meta_ Type
Meta_Type "(11 List Of Term ")11

"(" Type ")11 ;

102

Type

Type

Type

Type

Type

Type
"("

Type
"("

Axiom:

-

-

-

"'I/ II
-

"3"

"•" Type
Type "/"

Type "/\"

Type IIV"

Type II :J II

@Variable

@Variable

Type

Type

Type
Type

liE II Type II) II [Type J

liE" Type II) II [Type J

There are two axioms, a = a E A and A = A, which give the identity properties for

the elements and the types, respectively.

Inference Rule:

:JI:
[x E A]

fEB
AX.j E A :J B

Side Condition: (NOT-FREE ("x" . Variable) ("B" . Type))

Note that the rule body looks the same to the previous example, whereas the side

condition is specified in a different style of description. The other rules are omitted

here.

Rewriting Rule:

cons:

A:Jl_
-.A

cons(car(t), cdr(t))
t

103

� EUODHJLOS-11: Proof Sheet 1- CTT ��� �
Name : ONEM

.Ab.a b inr .Aa.a b inl a 'E-,-, AV-,A -,def
.Ab.ap(b, inr(.Aa.ap(b, inl(a))))E-,(AV-,A):::Jl.. (=>I [1])
I ap(b, i nr(A a. ap(b, in I (a)))) E 1.. (=>E)
I I bEAV -,A:=>l.. ("�def)
I I I [bE-, (AV -,A)] (Discharged 1)
I I inr(.Aa.ap(b, inl (a))) EAV-,A (VI2)
I I I .Aa.ap(b,inl(a))E-,A ("�def)
I I I I .A.a. ap(b, in I (a)) EA:::Jl.. (=>I [2])
I I I I I ap(b,inl(a))El.. (:::JE)
I I I I I I bE AV -,A:::J 1.. (.,def)
I I I I I I I [bE., (AV .,A)] (Discharged 1)
I I I I I I i n I (a) E AV -,A (V I 1)
I I I I I I I [a E A] (0 i scharged 2)

-- E :--%*-EUODHILOS-II: Proof Sheet 1 - CTT EUODHILOS-II P

[bE •(A V •AJ]1 • [a E Af
& E A V •A ::J __L •dd ·inl(a) E A V •A Vl�

ap(&,
_
·iul(a)) E __L ::JJ., ::J Aa.ap(b,tnl(a)) E A ::J __L 1-f [bE •(A V •AJ]1 I . .\a.ap(b,·inl(a)) E •.4 '' c· J;) I . 4 4 of C'l . (\ J . . {. . V _

v E.· V ,_. ::J __L m'f' /\a. ap(v, 't'lt (a))) E A V •A I::
ap(b, inr(.\a.ap(b, ·inl(a)))) E __L ::J

.\&.up(b, ·inr(.\u.ap(b. ·iul(a)))) E •(A V •A) ::J j_ ::JJ,
.

.\b b . >. b . {
. . . (·dd .ap(· , ·tnr(a.ap(, w (a)))) E •• A V •A)

Figure 7.2: A Proof of the Double Negation of the Excluded Middle Law in Intuition­

istic Type Theory

Proof Example:

The screen image in Figure 7.2 shows the proof of the double negation of the excluded

middle law. In the upper window, the proof is displayed in a full-tree representation,

whereas in the lower window the same proof is displayed with a DVI previewer by

using the Y.TEX macros for having a better view of the proof trees.

7.2 Modal Logic

Modal logic [37] is a variety of classical logic extended by adding two modal expres­

sions: DA and 0 A. These propositions assert that "it is necessary that proposition

A holds" and "it is possible that proposition A holds," respectively.

In this section we present two formulation examples. The first example is a stan­

dard one of propositional modal logic and the other one is a logic for program verifi­

cation which is formulated by using modal operators, where for each program p, two

modal operators [p] and < p > are introduced.

(A) Modal Logic T

Language:

Two modal operators, D (necessity) and 0 (possibility) , are add d to the language

of classical propositional logic:

%ROOT Formula

%META_ VARIABLES

Identifier = "[A-Z] [A-Z0-9]*"

%PRODUCTIONS

AtomicFormula : := "j_" ;

AtomicFormula ::= Identifier

Formula AtomicFormula

Formula - "•" Formula

Formula - "0" Formula '

Formula "0" Formula ;
Formula " (" Formula ") "

Formula - Formula "/\" Formula

Formula Formula "V" Formula

Formula - Formula II:) II Formula

Formula Formula "=" Formula

Axiom:

The first three axioms come from ordinary propositional logic, and the rest are specific

to the modal logic T.

(1) A� (B �A)
(2) (A� (B �C))� ((A� B)� (A� C))
(3) (-.A� -.B) � (B �A)
(4) DA �A
(5) D(A �B) � (DA � DB)

Inference Rule:

A A� B
!liP B

AD DA

Rewriting Rule:

We will use the following rewriting rules:

A�l_
df -.A -. e

-.o-.A 01 f OA ce

-.0-.A (A� B) 1\ (B �A)
DA Dele[=def A=B

•(-.A V ·B) A 1\ B ,
A 1\ B !\clef B 1\ A !\exchange

-.A:> B
A VB Vdef

•(A 1\ B)
---- cle_jnorganl -.Av-.B

106

AVE
B V A V exchange

•(A VB)
---- clc.J11organ2 -.A 1\ -.B

Name :

A/\ 0 A::> B ::::> A/\ B *DEOUCT:t 1

OCA/\ B) C ---, ---,)
I ---, ---,0 (A/\ B) (---, def)

I ---,0 (A/\ B) ::) l_ (*DEDUCT:*= [2])
I l_ (MP)
I I OA (MP)
I I I [0AA0 (A::::>B)] (Discharged 1)
I I I OA/\ D (A::::> B) ::::>OA (Theorem)
I I OA=> l_ C -,def)
I I I -,OA (0def)
I I I -,-,D-,A (---, ---,)

I I I 0---,A CD)
I I I I -,A (MP)
I I I I I ---, AV ---,A C V def)
I I I I I I ---, ---,A::>---, A C ---, ---,)
I I I I I I A=> -,A (=>TRANS)
I I I I I A::::>B (MP)
I I I I I I OCA=>B) (MP)
I I I I I I I [OA/\ D (A::> B) J (D i «<f'r-,ra.:>rl

I I I I I I OA/\ D (A::::>B) =>D (A=> B)
I I I I I DCA=>B) ::::> (A::::>B) (Axiom)
I I I I B::::> -,A (---, ---,)
I I I I I -, -,B::::>-,A (Vdef)
I I I I I I -,Bv -,A (V exchange)
I I I I I I I -,Av -,B (de_morganl)
I I I I I I I I ---, (A/\ B) (MP)
I I I I I I I I I O--. (A/\8) (Odef$
I I I I I I I I I I --.0 ---,---, (A/\ B) C--.--.)
I I I I I I I I I I I [-,OCA/\ B)J $
I I I I I I I I I 0 ---, (A/\B)::::> ---, (A/\B) $
1 1 -,Av -,A::> -.A cv I)
I I I -,A:J -,A (Theorem)
I I I -,A::> -.A (Theorem)

-- E :--%*-EUODHILOS-II· Proof Sheet 1- T EUODHILOS-II Proof Edttor - (

Figure 7.3: A Proof of OA 1\ D(A � B) � O(A 1\ B) in Modal Logic T

Proof Example:

Figure 7.3 shows a proof of OA 1\ D(A � B) � O(A 1\ B). To prove this proposition,

we use propositional theorems. W ithout these theorems, the proof would be much

larger and more difficult.

Proof Example in the DCGo Framework:

Figure 7.4 is an example in DCGo framework, where a proof example of "a strong

correctness assertion is implied from a termination assertion and a weak correctness

assertion" is displayed in the screen.

107

INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCLRULE

REWRITING_RULE

AXIOM

PROVER

DERIVEO_RULE

THEOREM

PROOF

** EXIT **

formula -->

formula! -->
formula! -->

** exit

IIEP

IIEQ

III

VE

VIP

VIQ

:JE

:JI

"-E
"-l

formula2 --> formula2,and,fo
formula2 --> formula3;

formula3 --> ''('',formula,'')";
formula3 --> not, formula3;
formula3 --> modall, lormula3;
formula3 --> modal2,formula3;
formula3 --> atomic_rormula;

imply --> �����;
or --> "V";
and --> "A";
not --> ''.-....'';
modal! --> " O " ;
modal2 --> "</";

**

[�pliO (p:Jq) J
-(IIEP{l})

�p

[OpAO(p:Jq) J
-(AEQ{l})

O(p-;jq) O{p:Jq)-;j(p:Jq)
------- C:JE{l})

p:Jq

2
["-¢ (pllq) J
<�0->0"-{2})
[]--(pllq) []--(p/\q)-:;)"' (pAq)
---------(:JE {2})

"-(pllq)
-(dc_morgan{2})

"-PY"-q
--(change {2})
"-qv�p
--(Y->:J {2})

------------ (san-dan {1, 2})
p:::l"-p
--(Y->-:;)(R) {1, 2})

"'PV"'P
--(V{I,2})

"'P
-(DI {1, 2})
o--p
-{"-0->D--(R) {1, 2})
"'¢P

----------------("-E{l, 2})

** ncUJ **
** exit **
1\-:;)_tO_-:;):J

y
V->-:;)

:J->Y

"""E
[]--->�¢

�¢->O�

change

j_
--("-1{1})

�o<pllq)
---- <�E{i})

(/(pllq)
-----(:JI {})
0pAO(p:Jq):J0(pi\q)

REWRITING_RULE:mod;

INFERENCE_RULE:mod;

p

OP

** Side conditon **
** Define **

Figure 7.4: A Proof of <> p 1\ [](p � q) �<> (p 1\ q) on EUODHILOS-I

Theorem:

f-<> p 1\ [](p � q) �<> (p 1\ q)

(B) Dynamic Logic

Dynamic logic [33] is a kind of multi-modal logic which is an extension to classical logic.

The principal formulas in dynamic logic are the dynamic formulas of the form " [a)p"

and its dual "<a>p", read informally ''after executing the program a the proposition

p holds", where "a" is a regular or context-free program and "p" is a first-order or

dynamic formula. They can be easily dealt with in the DCGo framework of EUO­

DHILOS-I.

108

Language:

dynamic_formula --> "<", regular_program, ">", formula3;

dynamic_formula --> "[", regular_program, "]", formula3;

formula -->

formula -->

formulaO -->

formulaO -->

formula! -->

formula! -->

formula2 -->

formula2 -->

formula3 -->

formula3 -->

formula3 -->

formula3 -->

formula3 -->

formula3 -->

formula3 -->

formula, "=" formulaO; '

formulaO;

formulaO, II ::) II > formula!;

formula!;

formula!, "V", formula2;

formula2;

formula2, "I\ II' formula3;

formula3;
It (tl , formula, II) II ;
11-11 formula3;

dynamic_formula;

"true";

term,

term,

term,

"="

">",

">" - '

term;

term;

term;

term --> variable I constant;

term --> term, "+", term I term, "-" term I term, "x 11
, term I

term '
" I II I " (" ' t e rm ' ") " ;

variable --> "x" "y" I "z" I "n";

constant --> "0" "1";

regular_program --> regular_program, ";", regular_program1;

regular_program --> regular_program, "I", regular_program1;

regular_program --> regular_program1;

regular_program1 --> regular_program2, "*";
regular_program1 --> regular_program2;

regular_program2 --> assignment_statement;

regular_program2 --> formula, 11?";

regular_program2 --> " (", regular_program, ") " ;

assignment_statement --> variable, ":=", term;

regular_program2 --> meta_program;

formula3 --> meta_formula, " (", term, ") ";

formula3 --> meta_formula;

term --> meta_term;

109

variable --> meta_variable;
meta_term --> meta_variable;
meta_program --> "A" I "B";

meta_variable --> "X";

meta_formula --> "P" I "Q" I "R" I "S".

with_priority
"!";

"x"; ("+", "-"); ("<", "["); (" - ", ''>", '':2:", "=");

"/\"; "V"; "�"; "="; ("?", ":="); "*"; (";", "I");
without_priority

meta_formula.

Axiom:

(1) [Q?)P = (Q � P) (test)

(2) [X := T]P(X) = P(T) (assignment axiom)

(3) [A; B]P = [A][B]P (composition)

(4) <A; B > P =<A>< B > P (composition)

(5) [A!B]P = ([A]P 1\ [B]P) (nondeterministic selection)

(6) P(X) 1\ X = T � P(T) (substitution)

(7) x = 0 � (x = 0 �true) (arith)

Inference Rule:

mod us ponens:

necessitation:

in variance:

convergence:

p P�Q
Q

P�Q

[A]P � [A]Q

n "2: 01\ P(n + 1) �<A> P(n)

n 2:: 01\ P(n) �<A*> P(O)

110

composition 1:

composition 2:

derived-rule1:

replacement 1:

replacement 2:

symmetricity:

Rewriting Rule:

def:

neg-elim:

double-neg-elim:

arithmetic:

true-elim:

P �<A> Q Q �< B > R
P �< A;B > R

P � [A]Q Q � [B]R

P � [A;B]R

P �<A> Q R � [A)S

PI\R�<A>(QAR)

P(Q) Q=R

P(R)

P�Q Q=R
P�R

P=::Q
Q=P

[A]P

rvrv P
p

n"2:01\x=n
x"20

true 1\ P
p

111

d�namic_log i c SYNTAX : dynamic_logic

INFORMATION
SOFT_KEYBOARD

save make test structure print reshape exit

--> 1eft_diamond1regular_program1right_diamon!

--> Jeft_box,regular_program,right_box,formul!

AXIOM : dynamic_logic

IJimil����,l!m� formula --> formula, equivalence, formulaO; save wff _editor reshape
formula --> formulaO; t-r�--------------......j

exit

--> formulaO, imply, formula!;
--> formu I at;

--> formula1,or,formula2;

--> formula2;

[Q?JP:(QJP)

[X:=TJP(X):P(T)

[A;BJP;;;[AJ[BJP

REWRITING_RULE:
- ----�--

zXx!=n!�[(x>O?)](zXx!=n!Ax>O) zXx!=n!Ax>O�[z:=xXz](zX(x-i)!=n!)
---(comp20)

zXx! =n! � [(x>O?; z: =xXz) J (zX (x-1)! =n!)

:)<(z:=1)>(n�0Ax=n)
1 -----(compl 0)

zXx!=n!�[((x>O?;z:=xXz);x:=x-1)

0) x=O�<(x=O?)>true
I-----------------------(c omp 1 {})

zXx!=n!�[(((x>O?;z:=xXz);x:=x-1)*

);x:=x-1)*);x=O?)>true x=n�[(z:=1; ((
1 ------------------(ar i t h 0)

x:=x-1)*);x=O?)>true

x<::Oi\x=n:x ((z: ;;;1 j ((x>O?; z: =xXz); x: ;;;x-1) *); x;;;O?)> (trueAz=n!)
---(trE{})

�OAx=n:x ((z: =1; ((x>O?; z: ;;;xXz); x: =x-1) *); x=O?)> (z:n!)

sheet_!

Figure 7.5: Total Correctness Theorem m Dynamic Logic

Lemma:

(1) < (x = 0)? >true= (x = 0 :J true)

(2) n � 0 1\ x = n + 1 :J< (x > 0)? > (x = n + 1)

(3) x = n + 1 :J< z := x x z > (x = n + 1)

(4) x = n + 1 :J< x := x- 1 > (x = n)

(5) z x x! = n! 1\ x > 0 :J [z := x x z](z x (x- 1)! = n!)

(6) z x (x- 1)! = n! :J [x := x- 1](z x x! = n!)

(7) x = n :J [z := l](z x x! = n!)

(8) z x x! = n! :J [(x = O)?](z = n!)

112

Proof Example:

One of the example proofs in this logic is the following properties of a factorial pro­

gram:

(1) Termination:

X � 0 :J< Z := 1; ((x > 0)?; Z :=X X z; X:= X- 1)*; (x

(2) Partial Correctness:

x = n :J [z := 1; ((x > 0)?; z := x x z; x := x- 1)*; (x

(3) Total Correctness:

0)? >true

0) ?](z n!)

x � 0 1\ x = n :J< z := 1; ((x > 0)?; z := x x z; x := x- 1)*; (x = 0)? > (z = n!)

Figure 7.5 is an example screen of proving the total correctness theorem of the

factorial program.

7.3 Intensional Logic

Intensional logic[25] is a higher-order modal logic based on the simple type theory,

which requires context-sensitive constraints on terms. It includes a lot of complicated

logical concepts which are all well described in the DCGo notation.

Language:

meta_formula --> pred_const, "(", term(_), ")";

meta_formula --> meta_formula, "=>", meta_formula;

pred_const --> "beweis";

meta_formula --> meta_term(_);

meta_ variable --> "X" I "Y";

meta_ term(_) --> "R" I "S" I "A" "B" I "P" I "F";
meta_term(_) --> meta_variable;

meta_term(_) --> meta_term(_), colon, type(_);

meta_type(_) --> "a" I "b" I "c" I "T" I "T1" I "T2" I "T3";

113

term(t) --> term(t), "=:J", term1(t);

term(T) --> term1(T);

term1(t) --> term1(t), "V", term2(t);

term1(T) --> term2(T);

term2(t) --> term2(t), "/\", term3(t);

term2(T) --> term3(T);

term3(t) --> term3(T), "=", term7(T);

term3(T) --> term7(T);

term7(T2) --> term7((s,(T1,T2))), "{", term(T1), "}";
term7(T) --> term4(T);

term4(t) --> bind_op, variable(T), ".", term5(t);

bind_op --> "\/" I "::3";
term4((T1, T2)) --> bind_op, variable(T1), ".", term5(T2);

term4(T) --> term5(T);

bind_op --> ",\";
term5(t) --> " -", term5(t);

term5(T2) --> term5((T1, T2)), "
•

"
, term6(T1);

term5(T) --> term6(T);

term6((s,T)) --> "�", term6(T);

term6(T) --> "v", term6((s,T));

term6(t) --> "[]", term6(t);

term6(t) --> "<>", term6(t);

term6(T) --> "(", term(T), ")";

term6(T) --> variable(T) I constant(T);

term6(T) --> meta_term2(T), "(", term(_), ")";

meta_term2(T) --> meta_term(T);

term6(T) --> meta_term(T);

variable(T)

constant(t)

constant(T)

truth_ value

-->
-->
-->
-->

var_sym, ":", type(T) I meta_variable,

truth_value, ":'', type(t);

const_sym, ":", type(T);

"true" I "false";

var _sym --> "x" I "y" I "p";

const_sym --> "fish" I "believe" I "walk" I "j";

type (e) --> ''e";
type(t) --> "t";

type(T) --> meta_type(_);

type((T1,T2)) --> "(", type(T1), " 11 type(T2), ")";

type((s,T)) --> "(s,", type(T), ")".

with_priority

114

II .II
. ' type(T);

(II : II 1 tt
J

If) ;

("�", "v", "[]", "<>");
("•

"' "- fl) ;

"{";
bind_op;
11-11 . -

'

"I\ II ;

"V";

without_priority

meta_term2, pred_const.

Axiom:

(1) G: (t,t) •true: t 1\ G: (t,t) • false: t = VX: t.G: (t,t) •X: t

(2) X: a= Y: a� F: (a, t) • X: a= F: (a, t) • Y: a
(3) VX: a.(F: (a, b) • X: a= G: (a, b) • X: a)= (F: (a, b) = G: (a, b))

(4) (AX: a.A(X; a)) • B = A(B)
(5) [](v F: (s, a) =v G: (s, a)) = (F: (s, a)= G: (s, a))
(6)v�A:a=A:a

Inference Rule:

Reflection -1:

Reflection-2:

=>I:

Replace-1:

beweis(A)
A

A
beweis(A)

[A]

B
A=>B

A(R) R=S

A(S)

115

Replace-2:

Symmetricity:

Rewriting Rule:

\1- Definition:

Brace convention:

Notational convention:

Lemma:

A(B) = A(R) R = S

A(B) = A(S)

R=S
S=R

..\X : a.P : t = ..\X : a.true : t
\IX: a.P : t

A{R}

CA). R

F•G
F(G)

(1) (P : t =true : t) = P: t

(2) ..\X : a.Q : b = ..\X : a.Q : b

Proof Example:

The following metatheorem 1s ingeniously proved usmg the idea of the reflection

principle [l14] .

Generalization rule:

f- P : t =>f- \lx : a.P : t

Figure 7.6 illustrates a proof of this generalization rule.

In Montague's language theory, natural language sentences are first translated into

expressions in intensional logic, which in turn are analyzed by using the possible world

semantics. Under the defined intensional logic, the following complicated intensional

formula:

116

A(R) R=S

A(S/R)

** Side condilon **

** Define **

SYNTAX : intensional_logic
save make test structure print reshape ex.

term4(t) --> bind_op,variable(T),".", term5(t);

term4(T) --> term5(T);

term4((T1,T2)) --> lambda,variable(Ti),".",term5(T2);

1 ambda --> "A.";

bind_op --> "1:1";"3";

termS(t) --> not,term5(t);

not --> """";

term5(T2) --> term5((T11T2)),apply, term6(T1);

term5(T) --> lermG(T);

apply --> "0";

INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCE_RULE

REWRITING_RULE

AXIOM

PROVER

DERIVED_RULE

THEOREM

PROOF ll...,r-:n-.,--,....-r-r7��--,-__,ll.,_dl terrn6 ((s, T)) --> intension, t erm6 (T);

** EXIT **

A

** Side conditon

** Define **

R: (t, t)Otrue: tAR: (t, t)Ofalse: t=I:IX: t. R: <t, t)OX: t

X: a=Y: a:::lF: (a, t)OX: a=F: (a, t)@Y: a

\:IX: a. (F; (a, b)OX: a=R: (a, b)OX: a)= (F: (a, b) =R: (a, b))

(AX:a.A(X:a))OB:A(B)

0 c�F: (s, a) =�R: (s, a))= (F: Cs, a) =R: (s, a))

V"'A:a=A:a

R=R

[beweis(P: t)]

--(Refl {1})

P: l

(P: t=true: t)=P: t

----(s!,Jm{))

P: I= (P: t=true: I)

-------(Rep I {I})

sheet_t

P:t=lrue:t AX: a. P: t=AX: a. P: t

----------(sub-Rep {1})

AX:a.P:t=AX:a.true: t

-------- ctldef {1})

tiX: a. P: t

-----(Ref2{1})

beweis(I:IX:a.P: t)

---------(�I{})

beweis(P:t)Qbeweis(tiX:a.P:t)

Figure 7.6: A Proof of the Generalization Rule in Intensional Logic

(..A.p: (s, (e, t)).3x: e.(fish: (e, t) • x: e 1\ p: (s, (e, t)){x e}))
.� ..\y: e.(believe: ((s, t), (e, t))

• � (walk : (e, t) • y : e) • j : e)

which is a translation of a natural language sentence ((John believes that a fish walks",

easily and precisely reduces to a simpler and legible one:

3x: e(fish: (e, t) • x e 1\ believe: ((s, t), (e, t)) • �(walk (e, t) • x: e) • j e).

This theorem also has been proved easily.

117

7.4 Hoare Logic

Hoare logic [35] is the most well known logic for the axiomatic semantics of a program­
ming language and the verification of a program. The principal formula in Hoare logic

is a form of "P{S}Q", reads "if the property P holds, then after executing the pro­
gram S, the property Q holds", where P and Q are first-order formulas and S is a
program in an ALGOL-like programming language. These syntactic objects are easily
described in the DCGo framework, as well as the inference rules of Hoare logic which
is a kind of Hilbert-type logical system.

Language:

h-formula -->formula, "{", program, "}", formula;

formula --> formula, ":J", formula1;

formula --> formula1;

formula1 --> formula1, "V", formula2;

formula1 --> formula2;

f ormula2 --> f ormula2, "I\" , f ormula3;

formula2 --> formula3;

formula3 --> "(", formula, ")";

formula3 -- "-", formula3;

formula3 --> basic_formula;

basic_formula --> "true" I term, "=" term;

term --> variable I constant I "(", term, ")" I

term, "+", term I term, "*", term I term,

variable --> "x" "y" I "z";

constant --> "1" "0";

program --> program, ";", program1;

program--> program1;

program1 --> assignment_statement I

II I II • . '

"while", formula, "do", program, "od" I

"if", formula, "then", program, "else", program, "fi" I

"(", program, ")";

assignment_statement -->variable, ":=", term;

meta_program --> "A" "B";

meta_var --> "X" I "Y" I meta_var, "/", term;

meta_ term --> "T";

118

meta_formula --> "P" I "E" I "F" I "G";
basic_formula --> meta_var;

term --> meta_term;

variable --> meta_var;

program --> meta_program;

program1 --> meta_program.

with_priority
II! II; 11*11; 11+11;

Axiom:

" - " · - '

Conjunction-elimination:

Substitution:

''/\"; "V"; ":J";

EI\F� E

" ·- " · .- '

P(X) 1\ X = T � P(T)

Assignment axiom:

Arithmetic:

Inference rule:

Consequence rule 1:

Consequence rule 2:

Composition rule:

P(T){ X := T} P(X)

true� 1 = 0!

E � F F{A}G
E{A}G

E{A}F F � G
E{A}G

E{A}F F{B}G
E{A;B}G

119

"while"; "if"; "{".

Hoare_logic SYNTAX : Hoare_logic AXIOI� : Hoare_logic

save make test structu save wff_editor

h_formula --> formula,Ieft_bra true::J1=0!

left_brace --> "{"; z=y!A�Cy=x)::Jz=y!
right_brace --> "}";

variable --> "a''l"b":"x":"y'':"

constant --> "1":"011;

reshape exit INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCE_RULE

REWRITING_RULE
AXIOM

PROVER

DERIVED_RULE program --> program,semi_colon
PAQ::JP INFERENCE_RULE:Hoai

THEOREM

PROOF

program --> program!; P(T/X) {X:=T}P(X)

** EXIT **

gcd_prop1 n ame:repe t i l ion
program! --> assignmenl_slalem (X>Y)::J(gcd(X,V)=gcd(X-Y,V)) f----'--------i
program! --> while, formula, "do' gcd_prop2

FAG{A}F

00¢¢LJ{--il���·�· F{whileGdoAod}FA�G
. . . . _.

Q Q LJ ;{21Dl� EJ •(>j.•
** Side conditon **
** Define **

naone:arith

z=y!

=1}z=O!
seq10)

z=O! {!J:=O}z=y!
1 ------(comp {})

z=y! A� Cy=x) ::n=y!
------(ar i th {})
z=y!A�y=x::Jz*(y+l)=(y+i)! z* (y+i) = (y+ 1)! {y: =y+1} z*y=y!
-----------------(conseq t 0)

Z*\J=\J! {Z: =Z*!J} z=y!
--------------------(comp {})

z=y!A�y=x{y:=y+l;z:=z*y}z=y!
--------------(repe ti {})
z=y! {whi I e�y=xdoy: =y+1; z: =z*yod} z=y! A�y=x
----------------- <�EO>

{z:=l;y:=O>z=y! z=y! {whi I e�y=xdoy: =y+l; z: =z*yod} z=y! Ay=x
1------------------------------------Ccomp 0)

true{z:=i;y:=O; (while�!J=xdo!J:=y+i;z:=z*yod)}z=x!

heet_t

Figure 7. 7: Partial Correctness Proof of a Factorial Program in Hoare Logic

Conditional rule:

Repetition rule:

Rewriting rule:

Arithmetic rule:

E !\ F{A}G E!\ r-.J F{B}G

E{ if F then A else B fi}G

F !\ G{A}F

F{while G do A od}F!\"' G

z = y!
Z X (y + 1) = (y + 1)!

120

z=

Proof Example:

The screen layout of the proof of the following partial correctness assertion of a

factorial program is shown in Figure 7. 7:

true{z := 1; y := 0; while rv (y = x)do y := y + 1; z := z * y od}z = x!

with the precondition "true" and postcondition "z=x!". For such a proof, we have
often used an external ATP system which was connected to EUODHILOS-I through
the theorem prover interface, in order to search for arithmetical theorems from its

theorem database.

7.5 Linear Logic

Linear logic was originated from J .- Y. Girard[26] and is usually described in the
sequent style formalization. Unlike the classical logic LK, it lacks the two structural
rules of weakening and contraction, so that it is suitable for handling the properti s of
finite resources. From these differences the free creation and deletion of an arbitrary

proposition are prohibited in Linear Logic.

Petri net[54] is a computation model of concurrent processes, and is used to analyze

their properties. The behavior of Petri net can be represented naturally in linear
logic[31], because the tokens in a Petri net has the property of resources. To be

precise, the diagram:

A B

0--.f----.0
denotes that "if we have a token on condition A, then it IS possible to fire event t.

Firing t exhausts the token on A and provides a token on B." This can be translated

into the linear logic sequent A f- B.

The reachability problem, which is common 111 Petri net theory, can be replaced

with the provability problem in linear logic.

Consider the following Petri net:

121

r B s D

A

u

The problem is to determine whether the proposition "if there are two tokens on A,

a token can reach F" holds. In linear logic, this problem is expressed as A, A � F.

Language:

We specify a language system that can represent the above problem.

/.ROOT Sequent

/.META_ VARIABLES

Meta_Formula = "[P-R] [0-9]*" ;

Meta_Formula List = "[L-N] [0-9]*"

%PRODUCTIONS

Sequent

Sequent

Sequent

Formula_List "f-" Formula List

Formula_List "f-"

"f-" Formula List

Formula List

Formula List

Formula List

Atomic Formula

Atomic Formula

Meta_Formula_List

Formula ;

Formula_List

"A"

"8"

Atomic Formula "C"

Atomic Formula

Atomic Formula

"D"

"E"

Atomic Formula "F"

Formula - Meta Formula

Atomic Formula

" " '

Formula

Formula

Formula

"(" Formula ")" ;

Formula "®" Formula

122

Formula List

Axiom:

Name : NETl

A.A F CUT
A, A f-D®E
I A f-D
I I A f-B
I I B f-D
I A f-E
I I A f-C
I I c f-E
D®E f-F
I 0, E f-F

(®R)
(CUT)
(Axiom Netl)
(Axiom Net2) •

(CUT)
(Axiom Net3)
(Axiom Net4)
(®L)
(Axiom Net5)

-- E :--%*-EUODHILOS-II. Proof Sheet 1- Petri EUOOHI

� CU031.A.IIJI�l:J�Jtrvf ""' - I .-]' _: - - ,,,.�!:::_..A 1'
------------�---�----·�---·-� -�··-- . -

A f- B B f- D CUT A f- C C f- E CUT
A f- D A f- E nR

A,Af-D0E �

A,Af- F

D, E f- F
0L

D IS,1 E f- F
Cl T

L�

� ,]
E3
I·M•.oal
1""''""'1

Figure 7.8: Proof of the Reachability Problem.

Transitions of the above Petri net are expressed as follows:

Inference Rule:

r: A� B

t: A� C

s: B � D

u: C�E
v: D, E�F

We will use only the following four inference rules in this example:

(1) CUT :

(2) EXCHL:

L�P P�Q
L�Q

P, Q�M

Q, P�M

123

(3) @1:

(4) &R:

Proof Example:

P, Q f- M

P&Qf-M

Ll f- P L2 f- Q

Ll, L2 f- P 0 Q

The formula to be proved is A, A f- F. Its simplest proof is shown in Figure 7.8,

where the lower part is the same proof tree displayed by the DVI previewer.

7.6 First-Order Logic

In this section we present two description and proof examples for classical first-order

logic.

(A) Unsolvability of the Halting Problem

Axiom:

(1) :=lx(A(x) 1\ Vy(C(y) � VzD(x,y,z))) � :=lw(C(w) 1\ Vy(C(y) � VzD(w,y,z)))
(Church's thesis)

(2) Vw(C(w) 1\ Vy(C(y) � 'v'zD(w,y,z)) � 'v'y'v'z((C(y) 1\ H(y,z) � H(w,y,z) 1\

O(w,g)) 1\ (C(y)/\ "'H(y,z) � H(w,y,z) 1\ O(w,b))))

(3) :=Jw(C(y) 1\ Vy((C(y) 1\ H(y,y) � H(w,y,y) 1\ O(w,g)) 1\ (C(y)/\"' H(y,y) �

H(w,y,y) 1\ O(w,b)))) � :=lv(C(v) 1\ Vy((C(y) 1\ H(y,y) � H(v,y) 1\ O(v,g)) 1\

(C(y)/\"' H(y,y) � H(v,y) 1\ O(v,b))))

(4) :=lv(C(y)/\Vy((C(y)/\H(y,y) � H(v,y)/\O(v,g))/\(C(y)/\ "'H(y,y) � H(v,y)/\
O(v,b))) � :=Ju(C(u) 1\ Vy((C(y) 1\ H(y,y) �r--.1 H(u,y)) 1\ (C(y)/\ r--.1 H(y,y) �

H(u, y) 1\ O(u, b))))

where the meaning of each predicate is as follows:

A (x): xis an algorithm ,

C (y): y is a computer program in some programming language ,

124

INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCE_RULE

REWRITING_RULE

AXIOM

PROVER

�ormula --> formula,equivalence,formulal;
formula --> formula!;

formula! --> formula1,imply,formula2;
formula! --> formula2;

formula2 --> formula2,or, formula3;
formula2 --> formula3;

•
save wff_editor reshape exit

r

3v(C(v)AHy((C(y)AH(y,y)::>H(v,y)A0(v,g))A(C(y)A�HCy,y)::>H(v,y)A0(v
))A(C(y)A�H(y,y)::>H(u,y)AO(u,b))))

p P::>Q

0

** Side condi

** Define **

�P

** Side conditon **

** De fine **

3w(C(w)AHyC(C(y)AH(y,y)::>HCw,y,y)A0(w,g))A(C(y)A�HCy,y)::>H(w,y,y)A0(w,b))))::>3v(C(v)AHy((C(y)AH(y,y)::>H(!
v,y)AQ(v,g))A(C(y)A�HCy,y)::>H(v,y)AO(v,b))))

0

g))A(C(y)A�HCy,y)::>HCv,y)AO(v,b))))
1------------C::>E{i} l

heet_i

.l

----- <�I 0)

�3xCA(x)AHy(C(y)::>HzOCx,y,z)))

Figure 7.9: Unsolvability of the Halting Problem in First-Ord r Logic

D(x,y,z): xis able to decide whether y halts with given input z,

H(x,y): x halts with given input y,

H(x,y,z): x halts with given inputs y and z,

O(x,g): x outputs g; i.e. x halts , and

O(x,b): x outputs b; i.e. x does not halt.

Proof Example:

Figure 7.9 shows part of a proof of the theorem that no algorithm to solve the halting

problem [lO] exists:

f-"' :=Jx(A(x) 1\ Vy(C(y) � VzD(x,y,z)))

125

induct j ve_proot -------------- •
INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCE-RULE

REWRITING_RULE _theor�

** new **
** exit **
lnd

inst

subst

substl

S!Jm

[P(T/0))

P(O) P((XOT)/0)

tin. P(n/0)

** Side conditon **
** Define **

save make test structure print reshape exit

�ormula --> formula, equal, formulaO;
formula --> formulaO;

formulaO --> bind_op,varlable,".",formulai;
formulaO --> formula1;

formula! --> formula1,op, formula2;
formula! --> formula2;

formula2 --> append,"(", formula,",",formula,")";
formula2 --> term;

AXIOM : inductive_proof
term -->
term -->
term -->
term -->

constant;
save variable;

"(",formula,">"; r
term,op,term; x=x

wff_editor

constant --> ''0'' ;
variable --> "u":":x":"�11:

append(O,T)=T

reshape

append(XOT,S)=XOappend(T,S)
term --> meta_term;

x=x

exi i

-------------------------------(in
,append(u,z))J append(xOv,append(u,z))=xOappend(!J,append(u,z)) append(append(O,u),z)=append(append <O,
--(subst (if) (s!Jm 0)

xOappend(!J,append(u1z))=append(xO!J,append(u,z)) append(append(O,u>,z>=app
---(trans(1})
nd(xOv,append(u,z)) append

tlx. (append(append(x,u),z)=append(x,append(u,z)))

shee L 1

Figure 7.10: Structural Induction Proof in First-Order Logic

(B) Structural Induction on List Structure

As another example proof for first-order logic we take a recursive data structure which

is popularly used for defining new data types.

Proof Example:

Figure 7.10 is a proof for the theorem:

� Vx'Vy'Vz.append(append(x, y), z) = append(x, append(y, z))

which expresses the associativity of the append function.

The structural induction is a well-used method for proving useful properties for

the data structures that are defined in terms of recursion.

126

·�-·=. . . . - . .

oooo'LJ�-(1���-·�·
(tiE(})
O:ii
- (V J P O)
O�j Vr (j)
-(:S-> ())
j<O:::>r(j)

2 ----(til{
[j:OJ tlj (j<O:::lr (j

.(chg {2})
O=j

I
[tlp(p(O)Atln(p(n):::>p(n+l)):::ltlnp(n))] r (j)

(tiE (I}) ---(:>I{
p(O)stlj (j:.;O:::>r (j)) p(O)Atln(p(n):::>p(n+l)):::>tlnp(n) j=O:::>r(j)

(rep2 (1}) <=
p(n)!!tlj (j�:::lr(j)) tlj (j�O:::lr (j))Atln (p (n):::lp (n+l)):::ltlnp (n) j �O:::lr (j)

Crep2(1}) (tl
+l:::lr(j)) tJ j C j .:SO:::lr C j)) A tin (tl j (j .;Sn:::lr < j)) :::lp (n+ 1)) :::ltlntl j (j ,:Sn:::lr (j)) tl j (j :.;0 :::lr (j))

(rep2{1})
j ::;;O:::lr < j)) A tin (tlj (j �:::lr C j)) :::ltlj { j .:sn+ 1 :::lr < j))) :::ltlntl j (j .:snx (j))

tlntlj {j�Dr (j))
(t:1E(11 3})

tJ j (j ,:Sn:::lr (j))
(t1E(1, 3})

n.;Sn:::lr (n)
(::lEU, 3} >

r(n)
--(til {1, 3})
tlnr(n)

(:::ll (1})
tin Ctlj (j<n:::lr(j)):::lr (n)):::ltlnr (n)

(t:1l (1})
tlr (tin (tlj (j<n:::lr (j)):::lr (n)):::ltlnr (n))

(:::ll {})
tlp(p(0)Atln(p(n)�p(n+1)):::lt:1np(n)):::ltlr(tln(tlj(j<n:::lr(j)):::>r(n)):::ltlnr(n))

heet_l

Figure 7.11: Proof Examples of Second-Order Logic

7.7 Second-Order Logic

We present a proof of second-order logic as an example of higher-order logic.

Proof Example:

Figure 7.11 proves that the principle of the mathematical induction 1s equivalent to

the principle of the complete induction:

� Vp[p(O)!\Vn(p(n) :J p(n+1)) :J Vnp(n)] = Vr[Vn(Vj(j < n :J r(j)) :J r(n)) :J Vnr(n)]

127

INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCE_RULE

REWRITING_RULE

AXIOM

PROVER

DERIVED_RULE

THEOREM

PROOF

** EXIT **

REWR IT I NG_F

** new **

name: fond

AX=X

A is fond of X

save make test structure print reshape exit

'formula --> term,"=", term :
term, .. is fond of ", term
term," is egocentrlc";

term --> b_term :
b_term,"'',b_term:
meta_term,"/",meta_term;

b_term --> constant : variable meta_term
b_term, "

•
"

, b_term
"{",term,")";

constant --> "M";
variabJ e --> "a"-"e": "x";

meta_formula --> "F";
meta_formula --> meta_pred,"(",term,"J";

meta_pred --> meta_formula;
meta_term --> "A"-"E":"R"-"Z".

operator

"•"i
"/"i

predicate
u is fond of .. ,

(A•B)X=A(BX) -- (sbst {})

AXIOM : mocking_bird_puzzle
save wff_editor reshape exit

r
MX=XX

(A•B)X:A(BX)

0

" is ecogentric",
meta_pred.

(AoM)X=A(MX) MX=XX ----- (sbst 0) (sbst {})
UloM) (AoM)=A<M(AoM)) 1-HAoM): (A.M) (A oM) ------------ (eq{})

(AoM) (AoM)=A((AoM) (A·M))

name:esocentric

A is fond of A
sheet_l

A is egocentric

Figure 7.12: Combinatory Logic: Mocking Bird Puzzle

7.8 Combinatory Logic

This proof example is taken from the Smullyan's book [108] in which each combinator

is interpreted as a bird in a wood, where each bird will reply with a bird name as it

is called with a bird name. In this formulation the proposition "z = x • y" says that

the bird x will reply with the bird z as it is called with y.

Axiom:

(1) Mockingbird condition

Vx.mx = xx

(2) Composition

VxVyVw.(x • y)w = x(yw)

128

Proof Example:

The proof example 111 Figure 7.12 is the one for the first theorem below. In this

example, the x in the theorem is represented by A and a metavariable was used for

y in the above theorem. The metavariab]e for y is instantiated gradually and in the

final proof of the window, it is (A • M)(A • M), which is the bird that the bird A is

fond of. This is an example proof of problem solving by starting the proof procedure

with inputting a metavariable to the place where the solution should appear and when

the proof terminates the solution to the problem is obtained as the substituted result

to the metavariable.

(1) Every bird of the forest is fond of at least one bird.

� Vx:::ly(xy = y)

(2) At least one bird is egocentric or narcissistic.

�:::Jx(xx=x)

7.9 General Logic

General logic [l05] is a kind of Gentzen-type formal system which yields a unified

account of a fairly wide range of logical systems. Diverse logics are displayed as

variations on a single theme. Such a general logic have been very successfully and

smoothly handled on the DCGo framework by specifying those variations on a single

theme as rewriting rules.

Proof Example:

The proof examples in the various systems covered in Slaney's general logic include:

(1) true : (rv p � q) � (rv q � p)
(2) p � q, p � r : p � q&r
(3) Distribution: p, q V r : p&q V r
(4) true :rv (A& '""A)
(5) Reductio ad absurdum: X; B: A&'"" A� X :rv B

(6) Baffling formula: true: :::ly.(g(y) --7 Vx.g(x))

129

INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCE_RULE

REWRITING_RULE

AXIOM

PROVER

DERIVED_RULE

THEOREM

PROOF

** EXIT **

bunch, ", ", bunch :
bunch,";", bunch :
"{", bunch, ")" :
formula;

formula --> formula, "->'', formula
formula, "v", formula :
formula, "&", formula :
bind_op, variable,".", formula
.......... , formula :
"(", formula, "}" :
predicator, "(", variable, ")"l
"P"l"q":"r":"true";

** new **

** exlt ** "tl" : Jl3";
variable --> "v":"u": .. c":"d";

1---.:.__--1 predicator --> "g '': ''h '': "k";

** new

** exit

�\:1=>3�

�3=>\:1�

"'->=>&"'-

SRL1

SRL2

SR2

SR3_1

SR3_2

SR4

SR5_1

SR5_2

SR6

SR7

SRB

SR8

**

**

** exit **

VE

VI_ I

Vl_r

liE_ I

ch --> me1a_form1, "(", meta_arg, ")"
"X" :"Y": "Z";

--> meta_bunch : meta_form;

[X; B: A&�AJ
-CCP{I})

X:B->A&�A true:�CA&�A>
------(MTT(t})

x;true:�B
---(SR7 {1})
true;x:�B
---CSR5_1 (1})

x:�s

"(" ,

X

X,Y

")"l

X

X:A->8 Y:A

X;Y:B

** Side conditon **

** Define **

_§_ljEE'I -QF-THOU�HT: 9�Qe_!�-�-.lo_g i c _________________________ _

se If se If
�p->q:�p->q �q:�q
----- (MTT {})

�p->q;�q:�p
---CONE{})

sel
r: r

se l se l CSR4 0 >
�p->q;�q:p p:p q:q r,p:r
---CCP {}) -{&! (}) {SR2 (})
�p->q:�q->p p,q:p&q p,r:r

----(SR5_2{}) self -(VI_r(}) -{VI_I{})
true;�p->q:�q->p qVr:qYr p,q:p&qVr p,r:p&qVr

------CCP{}) {VE{})
true: <�p->q)->�q->p p, qYr: p&qYr

heet_i

se If
p->r:p->r

se If ---{SR4 0)
p->q:p->q p->r,p->q:p->r
---(SR4{}) set ---(SR2{}) set
p->q,p->r:p->q p:p p->q,p->r:p->r p:p
-----CMPP {)) CMPP {})

{p->q1p->rl;p:q {p->q,p->r);p:r
--------------{&!{})

{p->q, p->r); p, {p->q, p->r); p: q&r
-----------{SR3_1 {})

{p->q,p->r);p:q&r
------- <CP {})
p->q,p->r:p->q&r

Figure 7.13: Proof Examples in General Logic

130

7.10 Relevant Logic

The relevant logic [58] we have taken is an implicational fragment of relevant logic,

R_>. Dependency for this logic is specified as a tag of a formula, differently from the

usual set-theoretic dependency calculus, and then the tag is a composite formed from

combinators satisfying some reduction rules. Tag of R_> is to stipulate dependency

of an inference so a.s to yield a conclusion relevantly from an antecedent.

Inference Rule:

(1) Tag rule C: Caf31 = a1(3

(T1 * T3) * T2 = > P

(T1 * T2) * T3 = > P

(2) Tag rule B: Baf31 = a(f3!)

T1 * T2 * T3 = > P

T1 * (T2 * T3) = > P

(3) Tag rule W: W a(J = af3{3

(4) -+E:

T1 = > P -+ Q T2 = > P

T1 * T2 = > Q

This is a universal method for dealing with the logics that have the different

methods of dependency calculation mechanism from the one taken in EUODHILOS

systems. Note that these rules can be specified by using the rewriting rules. For

example the Tag rule C becomes like this:

(1') Tag rule C: Caf31 = a1f3

(T1 * T3) * T2
(T1 * T2) * T3

131

INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCE_RULE

REWRITING_RULE

AXIOM

PROVER

DERIVED_RULE

THEOREM

PROOF

T1=>P->Q T2=>P

** Side condit

** Define **

formula --> formula,"->", formula
"(",formula,")" :
"p":"q":"r":
meta_formul a;

meta_formuJa --> ''P'' :''O'':"R'';

tag --> tag, "*"• tag :
"(",tag,")" :
"a":"b":"c":"d":
11K11: "I": "C": "8": "CB": "W";

meta_ tag;
meta_tag --> "Tt":"T2":"T3".

operator
("->"' "*");
"=>".

** Side condit

** Define **

** Side condit

** Define **

** Side conditon *

** Define **

SHEET_Qf_THOUGHT:relevant_lo

2
[a=>P->(Q->R)] [c=>P]
-----(->E {1 1 2}) 3

SHEET_Qf_THOUGHT:relevant_lc

4 5

5
[a=>P->(P->Ql] [b=>Pl
----- <->E{4 , 5})

a*b=>P->Q [b=>PJ
------(->E {4, 5})

(a*bl*b=>O
(Tag_rule_W{4,5})

a*b=>Q
--(->11{4})
a=>P->Q

-----(->12{})
(P->(P->Ql)->(P->Q)

a*c=>Q->R [b=>Q]
----- <->E{t, 2, 3) >

(a*cl*b=>R
(Tag_rule_0{1,2,3))

<a*bl*c=>R
--- (->11 {1, 3})

a*b=>P->R
----(->11 {1})
a=>Q->(P->Rl

------(->12{})
(P->(0->R))->(Q->(P->R))

Figure 7.14: Proof Examples in Relevant Logic

Proof Example:

The following typical theorems of relevant logic has been proved in this formulation.

(1) (Permutation)

(2) (Prefixing)

(3) (Contraction)
(P ---* (P ---* Q)) ---* (P ---* Q)

(4) (Self-Implication)

132

7.11 Category Theory

Category theory[52] was formulated as the theory of "naturalness." It is a mathe­
matical theory of objects and arrows, or morphisms, which is used in various theories
in computer science.

An elementary category theory have been built up. In this formulation we chose
arrow-only notation; i.e. objects are identified with the identity arrow in order to
make the theory easy to handle with. Note that this example theory deal with the
partially-defined concept of composition of arrows. A composite expression F.G of
two arrows F and G does not always make sense. In this formulation the proposition
given as an arrow expression means to state that such an arrow exists. For example,
if we put F.G as a proposition, it means that F and G are composable.

Proof Example:

Figure 7.15 is a sample proof. In the upper center part of the upper screen m the
figure is a proof of the theorem:

cod(F. G) =cod(G)

which says that "the codomain of the composition F.G of an arrow F and an arrow
G (as far as they are composable) is the same codomain of G."

At a little bit right of the lower center of the figure is another sheet of thought
with small proofs. This part proves that ((from assumptions F=G and G=GG, the
formula F=GG can be deduced"(i.e. the transitivity of = relation) by using the
primitive inference rule ''=repl-formula". Obviously this will be used as a derived
rule.

In the lower window of Figure 7.15 is a proof of the theorem:

F : obj = > F : is o

133

INFORMATION

SOFT_KEYBOARD

SYNTAX

INFERENCE_RULE

REWRITING_RULE

AXIOM

PROVER

DERIVED_RULE

THEOREM

PROOF

U EXIT **

III(F)

F

** Side conditon **

** De fine **

8

[F:obj]

G

(right-id (1})

G.cod(G)=G

1 --(3F(1})

[F.GJ G.cod{G)

---{dot+dot {I})

1-. lJ. cod W>
----(dot-E {I})

cod{F.Cl=dom{cod(C))

1

[r. GJ

(3F(1})
G

(cod: obj-T (I})

cod(G):obj

--(dom(obj) (1})

dom(cod(C))=cod(G)

----------(=Iran" (1})

cod(F.G)=cod(G)

F.G rF=Gl rG=GGJ

(=repl-formula(2,3})

F=GG cod(rl=dom(G)

** Side conditon **

** Define **

8

[F:obj]

heet_2

8

[F:obj]

(3F {8})

F

(right-id{8})

F.cod(F)=F

8 --(=sym {8})

[F:obj] F=F.cod(F)

--(=repl-formula{8})

F.cod(F):obj

-------------(=repl-formula{8})

-(dom (obj) {8})

dom(F)=F

--(=sym {8})

F=dom(F)

--------(=trans{8})

(cod (obj) (8})

cod(F)=F

cod(F)=dorn(F)

F.dom(F):obj

INFERENCE_RULE:c

coeq-E(cod)

coeq-E(dum)

dom:obj-I

dom{obj)

dom-1

dot+dot

dot-E

dot-1

dol-left

dot-right

epic-E

epic- I

1 nl -T

in2-I

init-map

lnil-rnap-E(inil)

init-map-E(obj)

i,;o-I

left-id

left-tnv

monic-E

monic-[

pri-I

pr2-l

8

[F: obj]

(3F{8})

F

(I e ft- i d { 8})

dom(F).F=F

8 -(=sym {8})

[F:objl F=dom(F).F

-(=repl-forrnula{8})

dom(F).F:obj

---------------------(iso-J{8})

F: iso

---- (:::>!{})
F:obj:::>F: iso

sheet_i

Figure 7.15: A Formulation and Proofs of Category Theory

134

Chapter 8

Application to Knowledge

Acquisition Support Systen1s

The aim of this chapter is to present an application of EUODHILOS architecture to a

new field which is considered to become very important in the future and indicate that

it has wider application field other than pure logic-based reasoning. The application

field dealt with in this chapter is knowledge managem nt (KM) for a numb r of people

such as in a research group, a department, a corporation, and so on, where each person

is involved in formal reasoning.

We develop a framework of a knowledge acquisition support systems(KASSs) as

an application of the reasoning assistant system framework of EUODHILOS towards

the field of knowledge management.

We classify the knowledge data into two types: domain-knowledge and meta­

knowledge [72]. The domain-knowledge is the knowledge that describ s the targ t

domain. In our framework, the domain-knowledge is the data that specifies a logical

system, which consists of language system and derivation system descriptions. By

meta-knowledge we means the data that are obtained in the reasoning and problem

solving. In our framework, the meta-knowledge consists of theorems, derived rules,

and tactics.

The most important difference of these two types of knowledge is that the former

IS given by the users whereas the latter are generated, in a sense, mechanically in

reasoning steps. The validity of domain-data depends on the validity of the formal

model which the user specifies. The meta-data, on the other hand, are only a conse­

quence of formal systems and reasoning. Their evaluation are not by validation but

by their usefulness.

135

We provide a model of creating and sharing domain-knowledge and meta-knowledge

among a group of people, where these two kinds of knowledge are represented in a

logical framework. The problem and its domain are described in a formal or logical

system. The users solve problems by using an interactive general-purpose reasoning

assistant system like EUODHILOS which provides assisting facilities based on the

incubator model of reasoning. The meta-knowledge (i.e. theorems, derived-rules and

tactics) is acquired in such reasoning. Each meta-knowledge data is shared among a

group of users in assistance with helper agents that form an agent network, who locate

in the background of the reasoning assistant system. The agent network shares not

only the meta-knowledge but also their reputation or evaluation information. It en­

ables the system to perform "social selection [69]" of knowledge which helps the users

with selecting appropriate ones. This model gives a new perspective to semi- or fully

automated knowledge acquisition, group reasoning assistant system, and knowledge

managem nt.

8.1 Background

It is going to be widely recognized these days that creating and having valuable and

us ful knowldg is crucially important for companies being creative [76] . From this

recognition, growing number of companies are paying more attention to knowledge

management [45] technologies and systems. However the bottleneck of knowledge

acquisition [47; 74] still remains a big problem. How can we acquire useful knowledge

efficiently? W ithout solving this problem, knowledge management systems will have

only limited success in creating and having a good use of knowledge in a company

and contribute to keeping the company being competitive and also in other kinds

of groups of people for being active and creative. In this chapter, we investigate a

model for creating and sharing logic-based domain- and meta-knowledge among a

group of people based on the model of EUODHILOS. Following to this model it is

easier to acquire and share knowledge than dealing only with the knowledge extracted

from human brains. Thus it will be a good choice for the companies to start with

constructing knowledge management systems that deal with logical knowledge.

In a logical framework domain-knowledge is represented as a logic or a theory that

consists of a language and a derivation system, whereas meta-knowledge is generated

in the proving process and acquired as theorems, derived rules, and tactics. The

language system gives basic vocabulary for describing the problem domain. By the

derivation system, we specify the ontological [75] structures and their relations. Meta-

136

knowledge is created in sheets of thought based on th incubator model of reasoning.

The model for sheets of thought in this chapter is an xtension to th one in other

chapters in such a way that some number of cliff rent helper agents may b attached to

the sheets and work together with th human user and help th us r with incubation of

ideas in reasoning. Users will participate in this process by giving goals or conjectures

to be proved, creating new results by applying tactics, and so on. The meta-knowledge

data obtained in such a process will be circulated and evaluated with a network of

communication agents. They are socially selected according to their reputation in

usefulness.

The rest of this chapter is organized as follows. In S ction 8.2, we give an acquisi­

tion model for logic-based domain-knowledge and a model for creating and acquiring

meta-knowledge from reasoning on the target domain. In Section 8.3, we describe

the logical framework of the knowledge acquisition system, which is based on that of

the general-purpose reasoning assistant system EUODHILOS. Then we present the

organization of the knowledge acquisition support system. The major idea is also

borrowed from the reasoning assistant system EUODHILOS. The sheets of thought

play the central role in meta-knowledge creation. The model for this environment is

similar to "chemical reactor" or incubator of ideas in reasoning. Agents will monitor

how new meta-knowledge data are created and help the user with reason effectively.

In Section 8.4, we present a mechanism where agents work cooperatively with other

agents, circulate and share useful meta-knowledge data and evaluate them o that

useful data are to be "socially selected." In Section 8.5, w conclud th di cussion

and suggest some of the important problems to be solved in the future research in

this direction.

8.2 Models of Logically-Represented Knowledge

Acquisition

In this section we present two models for knowledge acquisition processes. The first

one is the model for domain-knowledge acquisition, where the knowledge is extracted

from human brain, whereas the other is the model for meta-knowledge acquisition,

where the knowledge is generated in the reasoning process. Note that the difference

in this respect induces a great difference in usefulness of these two kinds of knowledge.

137

(1) Model of Domain-Knowledge Acquisition

We borrow the model of acquisition process of domain-knowledge extracted from

human brain from the reasoning process model taken in EUODHILOS (Figure 3.1) .

This is the one normally considered as knowledge acquisition process, which is also

the process of scientific discovery.

The process consists of four basic steps. We will explain what they are like ac­

cording to the figure clockwise from the top part:

(1) Observation:
First of all the image comes into human mind through his or her observation

and experience.

(2) Fonnalization:
This is the step of analyzing our mental image and trying to extract knowledge

and represent it formally. In our logic-based approach we have to find out the

fundamental vocabulary for representing the target domain, and the structural

rules of the target domain. In other word, this is the step of constructing a

logical mod l of the domain.

(3) Deduction:
Superficially the previous steps are sufficient for constructing logical models.

However, we recognize, from our experiences, that it is far from finishing the

process of model making because it is quite difficult to construct a sufficient

model in the first attempt. So it will be necessary to check if the model is good

enough. We make conjectures that should be satisfied in the model and do some

deductions on the model to see if the conjectures are really provable. This is

the step for it.

(4) Verification:
As has been pointed out, most of the cases of constructing a logical model, it is

not sufficient in the first trial. W hat should we do if we find it is not sufficient

in the test of the previous step? Together with the third step, we compare the

behaviour of the model and that of the nature or the real domain. Then we

move back to the first step of observing and think what is/are wrong with the

current model. Then we repeat the whole processes again and again until we

have a satisfactory model.

138

Logical Model
(Theory)

On(box,wbeel)

in(window, box)

' �

Sheet of Thought

0 0
0 cJ 0

0
0 0 0

00 0
0

0
c9

0 0 0

Theorems

Derived Rules

Tactics

0

Conjecture
I"

Tactics

Use•·

Figure 8.1: Meta-Knowledge Acquisition Model

(2) Model of Meta-Knowledge Acquisition

W hen the logical model is constructed, we will move to the problem solving phase,

where we describe the problem in one or more logical formulas and solve it via proving

the goal formulas. Meta-knowledge, consisting of theorems, derived-rules, and tactics,

is produced in this reasoning process.

The model of acquiring meta-knowledge is illustrated in Figure 8.1. In this phase

the proof-supporting facilities play the central role, which we call the sheet of thought.

The user interacts with the sheet of thought by, for example, giving conjectures or

goal formulas, tactics to apply to the proof fragments. On the sheet various proof

fragments or partially constructed proofs are placed and waiting for being combined

to grow up to be a complete proof. In the back of the sheet is the logical model that

describes the target domain. The useful results of reasoning are stored in the theory

database, where the created meta-knowledge data are saved, supposing to be used in

the later reasoning processes.

Comparing to domain-knowledge, meta-knowledge has a great advantage in terms

of acquisition:

(i) The meta-knowledge data are saved because the human user recognizes their

usefulness and value; theorems are representing valuable results, and other two,

derived rules and tactics, are considered to be useful in later reasoning. There­

fore they are expected to be more useful than those chosen automatically by

some criteria.

139

(ii) The validity of the meta-knowledge is guaranteed objectively. Theorems and
derived rules have proofs of them. A tactic can be judged by applying the tactic
to the proving situation; if it succeeds it is valid in the situation, if it fails it is
invalid. Thus we can somehow automate the acquisition procedure for tactics.

We will discuss this aspect in detail later.

8.3 Knowledge Representation and Creation

As has been illustrated in Figure 3.2, the data of EUODHILOS-II consists of two
parts: the logic specification part and the proof construction part, which correspond
to the two types of knowledge mentioned in Section 8.2. In Section 8.3, we deal with
the data for the logic specification that are for representing the domain-knowledge.
The data used in the proof construction part that relates to meta-knowledge will be
dealt with in Section 8.3.

The logical framework of EUODHILOS is, unlike other well-known generic rea­
soning assistant systems[27; 29; 85], based on the natural deduction[89] style, thus
easier to use for human reasoners, because:

(i) it is relation-based so that it is applicable to any style of reasoning, such as
forward, backward, and mixed derivations, and

(ii) it allows assumptions for reasoning, so that it meets to the natural human
reasoning style. We put special effort on usability[73] in designing EUODHI­
LOS systems. The "usability" here does not mean just user-interface issues. We
think the issues such as the system sufficiently meets the users' way of thinking
or it is flexible enough to a wide variety of needs, are crucially important in
usability issues.

(1) Domain-Knowledge Representation

In order to represent a domain-knowledge that corresponds to the logic specification
part of Figure 3.2, we specify the language system first, then the domain with the
derivation system that consists of axioms and one or more rules. The name of the
logic corresponds to its target domain.

140

(i) Language System:

As was described in Chapter 4, a language system specifies th fundamental vocabu­
lary for expressing the target domain. In our case it specifies the logical expressions
such as formulas, terms, expressions, etc.. We may call this an ontology[75] or a
knowledge representation. In our framework, users are able to specify what expres­
sions to use according to their preferences by defining a language systen1.

(ii) Derivation System for Representing Domain-Knowledge:

As was described in Chapter 5, the derivation system consists of axioms, inference
rules, and rewriting rules. In our current situation, it is desirable to have richer
descriptions structures. We will leave this issue for the future. These rules are
represented in a natural deduction[89] formalism, where users can perform assumption
based reasoning. The domain structures represented in derivation systems are (i)
logical structure, and (ii) domain-specific structure. There are a couple of choices
depending on the skill level of the user. For a novice user, the system will provide a
library of various logics and theories and the user just chooses what he or she wants.
A medium-level user will borrow the fundamental logical structure from the library,
then specify the domain-dependent knowledge by either modifying a theory in the
library or setting all the additional structure description. An expert user who knows
much about the description framework will specify all the structures by himself or
herself, including logical structure.

By borrowing the framework of EUODHILOS systems, as was described in Chap­
ter 5, our derivation system consists of axioms, inference rules and rewriting rules.
An inference rule consists of a name, conclusion, one or more premises, and optional
side conditions. Each premise may have one or more assumptions. An axiom is an
inference rule that has no premises. A rewriting rule also resembles to an inference
rule. However it is different in two aspects:

(i) it has only one upper formula that has no assumptions, and

(ii) it is applicable for rewriting any matching sub-expressions of a logical expres­
siOn.

The framework allows users to attach one or more side conditions to the rules. It is suf­
ficient to describe ordinary logical rules by combining the side conditions: FREE-FOR,

NOT-FREE, NOT-FREE-IN-ASSM, FULL-SUBST, and SYNTAX-CAT.

141

The framework of the derivation system is, as has been pointed out in Chapter 4,

strong enough for typical styles of formulation of logical structures. In the Hilbert­

style formulation, the structure of the domain at hand is described by relatively a

large number of axioms together with a small number of inference rules like modus

ponens. In the sequent calculus formulation, most of the structural data are given

as inference rules in which formulas are represented as sequents. Only the starting

formula, for example, "A � A", is given as an axiom. A term rewriting system has

only rewriting rules. It is also possible to combine these three kinds of data. For

example we can define a derivation system based on the sequent calculus formulation

mixed with several rewriting rules. This framework is characteristic in its giving as

much freedom for the formulation style to its users. Thus the users are free to choose

the most suitable style according to their needs and preferences.

However it is still not good enough from the user interface point of view. There are

many users who have little knowledge on logics and logical framework for representing

target domains. We would need some kind of user interfacing facilities together with

the primitive user interface described in this chapter.

Example: In this example we briefly illustrate how knowledge is represented in

the logical framework. Suppose we have a job J which consists of tasks t1, t2, ... , tn.

One possible way of expressing this is as follows (or-parallel representation) :

J

This rule says that if we have done the tasks t1, t2, ... , tn, we can say we have done

the job J. In this formulation the tasks can be performed in any order.

If we want to express ordering relations among tasks, say these tasks t1, t2, ... , tn

should be done in this order, we would write (and-parallel representation) :

Axiom: t1, and

Inference rules:

t1 t2 tn

t2, t3, . . . ' J

Then we start with t1 and do t2, ... , tn following to this order until we have done J.

By combining these two types of representations we can specify both and-parallel,

or-parallel and mixed ones of both styles of constraints.

142

(2) Meta-Knowledge Representation

Meta-knowledge is created in the reasoning process and selected by users. Theorems

and derived-rules are the proved formula and reusable partial proofs, respectively.

Tactics and tacticals provide a means to automate deductions. A tactic specifies the

outline of a proof. A tactic takes a list of proofs and generates the list of proofs

obtained by applying the proof procedure described in the tactic. A tactical is a

metafunction over tactics; it combines one or more tactics and creates a new one.

Using tacticals we can create useful tactics that are complicated enough to express

our intended proof procedures. We have described for details in Chapter 6.

(3) Knowledge Creation

In this section we deal with single-user case of reasoning. EUODHILOS is the basic

model of the front-end of the knowledge creation system. From this model, we have

two phases of reasoning:

(1) describing the problem domain under consideration and

(2) the reasoning, or proving. In this section we deal with the user-interfacing and

usability issues of such a reasoning assistant system.

(i) Setting the Underlying Logic

In this chapter we suppose the users themselves give definitions of logical systems.

However in the actual application to each domain the style can be different according

to the management policy. For example, it is possible to take a style where the project

manager gives the definition of the target logic and other project members share this

definition. Note that each member can add some extra definitions to the original logic

and define his or her own theory. The theory created in this way can be used to be

inherited for defining other theories as well.

Through the syntax definition window, the users can input their definition of

logics to the system. Metavariables are used as place holders of various expressions.

The representation style of logical structure of EUODHILOS is intuitive and easy­

to-understand, because the rule is displayed in tree-form as are used in the standard

text books of logics so that the users would be able recognize the relationship of the

components at the first glance. The side conditions are given as a set of elementary

143

Sheet of Thou ht

0

0 cY 0

0
0

0

o Operation
Tactics '�

�_) User·

0;
(

�Conjectur�

�---+--------����----

8 8 Recommend

Agents

Figure 8.2: Incubator Model for Sheet of Thought

side conditions so that it enables the users define the rules in detail unlike other

logical frameworks.

(ii) Sheet of Thought

A sheet of thought is a field where users create ideas for reasoning, where a number

of elementary bits of information for reasoning, i.e. conjectures, axioms, derivation

rules, and partial proofs, are located and wait for growing by being combined to be

big blocks of proofs, and eventually to be whole proofs of theorems. We call this style

of reasoning the incubator model, which is illustrated in Figure 8.2.

Unlike the model of sheet of thought in other chapters, in the model of this

chapter, not only the user in the right side of the Figure 8.2 but also the helper

agents that appear in the bottom area are monitoring how the components in the

field are changing; we may call this a blackboard [22] model in this respect. Each

agent has its own mission and monitors the field according to it. When it finds a

pattern in its responsibility, it would take the components and create one or more

new components by combining or dividing the components it has captured. The user

controls the sheet of thought not only directly by putting conjectures, applying some

tactics, and so on, but also indirectly by giving commands to one or more agents,

assigning a new agent for additional facilities.

The commands given to an agent from the user include:

(i) confidence value; if an agent is highly confident or it has previous permission it

would act automatically without asking to the user,

144

(2) adding or deleting action list of the agent; the action list specifies what sort of

actions the agent can take, and others.

Note that the agents are not allowed to always act fully autonomously. Like

Maxims [53] agents have three states for each action item; being confident and do the

action automatically, having moderate confidence and give suggestions to the user,

and lacking confidence and just observing.

The basic operations for proving performed on a sheet of thought are basically

the same as those of the reasoning assistant system. We have described this issue in

Chapter 6.

8.4 Sharing Knowledge with Agent Network

In the previous section we deal with the single-user case. In this section we consider

the multi-user case; we propose a model of circulating and using the meta-knowledge

data created in the reasoning processes. In this model, useful meta-knowledge data

are distributively and selectively shared among the users. "Selective" here means that

only the data being estimated as useful for a user are delivered to the user. So the

data are not shared automatically among all the users. We will propose and illustrate

overall structures of this mechanism.

8.4.1 Circulating and Sharing of Knowledge

In Section 8.3 the knowledge acquisition system for single-user case was illustrated,

where the sheet of thought plays an important role. Various kinds of agents may be

attached on it. They will watch the sheet and capture the specific proof patterns they

are supposed to deal with. According to the given mission each agent will modify one

or more proof fragments with, for example, combining these proof fragments, dividing

proof fragments, giving suggestions or recommendations to the user, and so on. The

resulting theorems, derived rules, and tactics are stored to the theory database, which

are chosen by the user.

In this section we propose a model, which is illustrated in Figure 8.3 in which

every knowledge acquisition system has a special helper agent called the communica­

tion agent, who takes communications with other communication agents. With the

communications the useful meta-knowledge data and their evaluation data are circu­

lated and shared among the network agents selectively. By utilizing this network, the

users are able to use useful meta-knowledge provided from others. In this way they

145

Knowledge Acquisition Support System

Logical Model
(Theory) Sheet of Thoug ht

On(box, wheel) 0 0
0 d 0

in(window, box)
0

0 0 0

00 00
0

c9
0

0 0 0

8888
Tactics

Helper Agents

To Other

Agents

Communication

Agent

Tactics

Conjecture

�
User

Figure 8.3: Knowledge Acquisition Support Sytem

form a good cooperative relationship and each participant enjoys the benefit of this

cooperation.

Each user has a reasoning assistant system which we have explained in Section 8.3.

The system communicates with the user. In the back of the systems are agents

who are connected each other and form a network. Each agent monitors on the

sheet of thought and waits for the new meta-knowledge data being created. W hen it

finds a new knowledge data, firstly it investigates the new data; the data type, the

background theory, what logical rules it includes, and others. Then it will send the

data to its appropriate neighbouring agents.

For the networking mechanism suitable to such a purpose, we have proposed

a mechanism called "word-of-mouth agent system" [82] , in which we will have the

benefits:

(i) The information data exist and are managed distributively so that the access

traffic will be less concentrated than managing them in a central server. The

system will also be more robust.

(ii) Circulated information is located m a limited area at first. Then the area

expands adaptively according to the needs for the information.

146

Knowl�dg�

Acquisition

Support

Systfill

WOM

� 1 KAss J; Network
, 1 KAss 1 �

Kno ·edge
Acquisition

Support
S stem

Kno · dge

Acquisition

Support

S stem

Figure 8.4: Word-of-Mouth Agent Network

(iii) The evaluation data are also circulated together with the information resources

so that it is easier to choose appropriate ones from among a lot of candidates.

Figure 8.4 illustrates that the communication agents are connected each other

in a relatively small number of connections and form a WOM network. The meta­

knowldge data obtained in a knowledge acauisition support system(KASS) will be

transmitted to its neighbours. The area where the data are transmitted is relatively

small at first, then it expands its area according to the needs and reputation to it. If

the agent gets this data and finds it useful by using it, the agent will circulate the

data further. Such a mechanism will make the meta-knowledge circulate in a wide

area if its reputation is high. We will call such phenomenon "Social Selection." Such

a mechanism does not appear in other systems where they use the evaluation data

given from the users [21] .
In order to cope with sharing knowledge among agents, it is necessary to translate

the language system(ontology translation). It is relatively easy for logical expressions,

because they have similar structures comparing to the domain-dependent knowledge,

with which this translation problem is as very hard as that of the other types of

knowledge representation methods and their ontology [75] translations. We will not

discuss this type of translation in this thesis. Instead, we would put more focus on

translation of derivation systems. The derivation systems are more or less similar to

147

Basic Theory

Theoryl
Theory2

Theory4 Theory3 Theory7

Theor1'5 Theory6

Figure 8.5: An Example of Theory Hierarchy

each other comparing to other types of logical specifications. However it also has a

translation problem between different style of formalisms. Suppose we take different

types of formalisms of logics. There are three typical types of formulations; Hilbert

style, natural deduction, and sequent calculus. Generally speaking it is impossible

to convert between these types of formulation. In order to cope with this problem,

we will prepare a library which contains typical types of conversion procedures. In

the future systems, it will become practical to have a theory for translating between

different formalisms. Suppose some user develops a theory and proves a theorem that

justifies the validity of a translation algorithm, then the system allows the users to

use this algorithm for translating data from one theory to another.

One of the biggest advantages of this mechanism is that as the user works hard and

creates a lot of reasoning results he or she would appreciate the useful meta-knowledge

data. Also the created results will benefit other users. The amount of results created

in reasoning and that of benefits for reasoning obtained from others are strongly

correlating each other. This indicates that in our mechanism we will have little or no

"free-riding problems", which is a big problem for many recommender/collaborative­

filtering systems [92] .

8.4.2 Generalization of Meta-Knowledge

Theories may be created by inheriting one or more old theories or logics, thus we

have an ordering structure of theories we are dealing with in a group of users.

148

Figure 8.5 is an example of a theory hierarchy. The Basic Theory is the original

one of all the theories. Theoryl and 2 inherit the Basic Theory. Similarly Theory4 and

7 inherit Theoryl and 2, respectively. Theory3 inherits both Theoryl and 2. The rest

theories are created similarly. It would be more understandable if we take elementary

set theory for the Basic Theory, algebra for Theoryl, topology for Theory2, algebraic

topology for Theory3, and so on.

Using this hierarchical structure, we will illustrate the algorithm for generalizing

the used area of a meta-knowledge data.

Step 1:

Suppose we have a tactic created by a user who works with Theory6. It is applicable

to Theory6. The system would think the tactic may be applicable to other theories

besides Theory6. Firstly it will check out all the axioms and rules that are involved

in the tactic. If all the components included in the tactic are of Theory4, it means

that it is well applicable to Theory4.

The algorithm goes up in the hierarchy until it finds all the maximal theories that

the tactic is applicable. Suppose Theoryl is the only maximal theory.

Step 2:

In the next step, the algorithm goes down from the maximal theories and collects all

the theory names. These are all the theories that the tactic is applicable. As we are

supposing Theoryl is the only maximal theory, the theories the tactic is applicable

are Theoryl, 3, 4, 5, and 6.

Step 3:

Finally, the algorithm finds out which user uses at least one of the theories in the list.

Then the network agent of the theory sends the tactic to the network agents of the

specified users.

This mechanism is expected to create better tactics than just creating them ran­

domly, because only those tactics that have good reputation in at least one theory

are recommended to other theories.

149

8.4.3 Social Evaluation and Selection of Meta-Knowledge

As was briefly mentioned in the previous section, dealing with evaluation or reputation

data would be one of the key features for having a good use of knowledge and meta­

knowledge in a group of people or agents. The meta-knowledge data such as tactics,

theorems, and derived rules that are applicable to the sheet of thought, are gathered

to its communication agent. They are applied to the sheet of thought. If they succeed

they will get high evaluation values (i.e. good reputation) , whereas if they fail they

will be evaluated low. The meta-knowledge data which is of high reputation would

be circulated among a wide range of agents and thus will survive in the network.

On the other hand, the meta-knowledge having poor reputation will not be used by

any agent and will be disappeared in the long run. We call this mechanism "social

selection [69]."

This mechanism can be effectively applied to finding useful meta-knowledge data

because meta-knowledge are "testable" and thus safe to be applied. We cannot apply

it to domain-knowledge. Suppose we have a domain-knowledge "bird(x) � fly(x)"
in Singapore. It is also strongly supported in Hong Kong, in Japan, in America, in

Europe, etc. etc .. Eventhough we cannot apply this domain-knowledge to Antarctica,

where it is not true and "bird(x) � swim(x)" may be the most important knowledge

about birds there. This difference comes from that domain-knowledge gives starting

knowledge about the domain, thus we have to add new knowledge or delete old ones

with much care. It directly affects to the validity of the domain model. On the

other hand, using meta-knowledge does not affect to the validity of the model. A

non-theorem cannot be a theorem even if we want to do. The usefulness of a tactic

can be verified only after we apply it to the actual proofs.

An agent gets a meta-knowledge data with information such as which agent eva­

lutes it with what value. The agent then estimates its usefulness in the domain he

is dealing with. He may have a number of estimation functions. Considering the

estimated value of these functions and the evaluation values from other agents, the

agent calculates its initial evaluation value for the meta-knowledge. This value will

be modified after the knowledge is applied to various proof constructions. The agent

also estimates usefulness for his neighbouring agents. If he is confident on usefulness

of a meta-knowledge for another agent, i.e. the estimated usefulness value is greater

than a value determined previously, then the meta-knowledge will be introduced to

the neighbouring agent. By repeating this process meta-knowledge data are selected

socially; meta-knowledge with good reputation will be distributed widely and be used

150

in many times.

8.4.4 Modification and Composition of Tactics

In order to produce a variety of useful meta-knowledge, we provide a means to create

tactics by modifying and combining those tactics we already have. The generated

tactics are evaluated and useful tactics are selected in the social selection mechanism

described in the previous section. We will show some example methods of creating

new tactics. Firstly, we present the definition of tactics.

(a) Definition:

A tactic is constructed in either one of the (i) primitive tactics: axioms and rules, or

(ii) combined tactics: the tactics of the form T(t1, t2, ... , tn), where t1, t2, ... , t.,1 are

tactics and T is a tactical with arity n.

Tacticals are the primitive functions that generate tactics by combining one or

more tactics. Some of the most popular tacticals are REPEAT, THEN, ORELSE, and so

on.

(b) Modification:

Here are two possible modifications:

(i) t => t' = REPEAT t, and

(ii) t = t1 THEN t2 => t' = t1 THEN t2 ORELSE (t2 THEN ti)

(c) Composition:

These algorithms create tactics from the tactics that are considered useful (in a theory

or more of them) . It would be reasonable to assume those tactics generated in these

algorithms are expected to be more useful than those generated from arbitrary tactics.

The new tactics will be used and be selected in the social selection mechanism

that we have illustrated in the previous section. In these processes tactics will be

evolved in the agent network. This is important because it gives a mechanism for

automatically acquiring useful knowledge.

151

8.5 Chapter Summary

We have proposed a model of creating and acquiring logic-based domain-knowledge

and meta-knowledge. Domain-knowledge is represented in a logical framework by bor­

rowing the EUODHILOS architecture, in which rules are represented in a tree-from

based on the natural deduction style formalism. The model of domain-knowledge

acquisition is the one for creating a logical model of the target-domain, which is, in

nature, through repeating trial and error processes. Meta-knowledge is originally cre­

ated in reasoning and chosen as such by the users. The reasoning process, which we

call the incubator model of reasoning, is performed in the sheet of thought, on which

small proof fragments grow to be complete proofs as the reasoning advances. Users

participate this process by setting goals, manipulating proof fragments, applying tac­

tics, and so on. Some helper agents also work on the sheet. They monitor the situation

and help whenever they find their helping patterns. The resulting meta-knowledge is

circulated among the communication agents. The circulating meta-knowledge data

are applied to the sheets of thought on which they are expected to be useful. The

results of application is evaluated and such reputation information is also circulated

and used in the recommendations to the users. This application and evaluation mech­

anism is called social selection.

In dealing with the logic-based knowledge we have advantages such as:

• Not only the ordinary manual knowledge acquisition, we are also able to create

and use automatically-acquired knowledge,

• We can deal with both manual and automatic evaluation data so that we can

combine them appropriately and realize the social selection mechanism, and

• Logic-based knowledge can be easily used combined with the systems and algo­

rithms developed in the research on logics including theorem proving, automated

reasoning, and so on.

The characteristic features of the incubator model include:

• Agents automatically assist various patterns of reasoning. The user can easily

customize the assisting feature by modifying the helper agents.

• In this model, the communication agents work cooperatively and circulate the

useful meta-knowledge. It is a great advantage that as the user work hard on his

or her reasoning, the user would have more knowledge data from the network,

152

thus it will benefit to his or her reasoning. At the same time, the more amount

of knowledge will be created and thus contribute to the reusing of knowledge

as well.

• Such a flexible model can be realized due to taking the relation-based flexible

logical framework and its supporting environment by the sheets of thought.

W ith these characteristic features the models proposed in this chapter will give a

new perspective to (semi-)automated knowledge acquisition, group reasoning assistant

system, knowledge management and others.

Comparing with other reasoning systems [5; 9; 15; 19; 27; 29; 42; 85] , we believe

EUODHILOS is the most suitable one for reasoning in such a situation described in

this chapter, because for this purpose the system should take a good balance as a

logical system and an interactive user-oriented one; which we have been taking much

effort in designing EUODHILOS systems.

Important future plans toward the application of EUODHILOS architecture to

knowledge acquisition support systems include:

(i) Investigating corporate knowledge management systems, where the system deals

not only logic-based knowledge but also other types of knowledge such as rules

in a corporation, the data on human skills and human networks, and so on.

(ii) In this chapter we presented a simple example of sharing and reusing tactics.

This mechanism needs to be developed further so that it deals with a lot wider

matchmaking.

(iii) The interface to the users in this chapter is very simple. For more practical

applications the reasoning environment should provide more easy-to-recognize

view by using more sophisticated visualization algorithms.

(iv) Implementing and evaluating of automatic tactics improvement mechanism are

another important topics to be pursued.

(v) So far, by using a general-purpose reasoning assistant system EUODHILOS,

as was illustrated in Chapter 7, we have experimented with a variety of logics

such as: NK, a constructive type theory, Hoare logic and Dynamic logic that

are logics for programs, intensional logic, linear logic, genral logic, relevant

logic, category theory, and others [100] . So the framework for defining logical

structure is general enough for dealing with various logics. However in the

153

current interface, the users should define, read, and deal with the "raw logical

representations." In order to be used by less logic-oriented users, we have to

investigate more advanced system that does not look so much like a logical

system.

154

Chapter 9

Systen1 Comparison

The aim of this chapter is to shed light on the characteristic features of EUODHILOS

systems in comparison with related systems together with the comparison between

themselves.

Much work has been devoted to building up the systems for checking and con­

structing formal proofs in various logical systems, e.g. see [3; 43; 111; 114] for proof

checker, see [15; 27; 96] for proof editor/constructor, see [16; 30; 32; 64; 97] for gen­

eral system of computer-aided reasoning. See Chapter 2 for their natures in terms of

their assisting styles to reasoning. In this chapter we will rather confine ourselves to

various approaches to the general system for computer-assisted reasoning to which

much attention have been recently paid.

We start with classifying the styles of representation of logical systems and making

clear what our approach is like in comparison with other approaches. We take account

the reasoning systems that allow the user to somehow define the logical systems here

and classify them into the following three categories according to their approaches:

(i) Implementing logics in functional or logical programming languages

The first approach is to implement a logical system by using a programming lan­

guage. This is general in the sense that whatever systems can be implemented in

such a generic programming language. However, by considering the implementor 's

burden for programming, it is reasonable to confine ourselves to the functional and

logical languages which are supposed to be suitable in our situation. In [96], Prolog

is employed as a logic description language as well as an implementation language of

a proof constructor. The underlying programming language for specifying a variety

of logical structures including higher-order logics, it is preferable that the implemen-

155

tation language itself is higher-order; otherwise it is quite difficult for the users to
implement their intended systems. Thus HOL[29] has, as is easily guessed from the
name, a higher-order logic as the underlying programming language. In [23] and [59],
A-Prolog, which is an extension to Prolog with the higher-order facilities based on
A-calculus and hence more expressive than Prolog, is proposed to specify theorem
provers. In [90], the axioms and inference rules of a formal logical system can be
expressed as productions and semantic equations of an attribute grammar. Then, de­
pendenci s among attributes, as defined in the semantic equations of such a grammar,
express dependencies among parts of a proof. In [28], the metalanguage for interac­
tive proof in LCF[27], a polymorphically typed, functional programming language, is
used to show how logical calculuses can be represented and manipulated within it.

(ii) Encoding logics into a formal system

The second approach is based on a metalogic and its manipulation functions. The
object logics are represented and manipulated through the metalogic. Such systems
have the advantage that the object logics have rigorous semantics based on those
of the metalogics. Thus they are suitable for developing theories by extending the
object logics. However, the users are required to have specific knowledge and skills
to describe the logic properly, hence these systems are mainly intended for experts of
logics, preferably higher-order logics. The purpose of Nuprl is very similar to that of
EUODHILOS. It aims at providing the proof construction environment for a variety
of logics. But the approach to the realization of it is different to those of the reasoning
assistant systems. Nuprl has a fixed underlying logic and other logics must be defined
by using the terms of this logic. In the approach of reasoning assistant system, even
the syntax of the logic is expressed by the user. It aims at the complete realization
of logic-independent systems which can assist human reasoning in the various fields.
Proof construction methodologies are also different. In N uprl, proofs are constructed
only by refinement, while in our system, proofs are constructed by three types of
deductions; in forward, backward (same as refinement), and filling the gap in proofs.

In [30) and [32], a typed A-calculus with dependent types is used for building a logical
framework which allows for a general treatment of syntax, inference rules, and proofs.
It also has the advantage of a smooth treatment of discharge and variable occurrence
conditions in rules. In [84] and [85], a logic is encoded to a subset of a higher-order
logic. What they are aiming principally at seems to be automatic checking of rule
conditions basically in one way reasoning, with which we are confronted in applying

156

a rule. In [86], a logic is to be encoded to a subset of a higher-order logic.

(iii) Representing logics so as to directly reflect their proof theoretic nature

The third approach to a general reasoning system is quite different from other two.
The systems in the second approach provide a higher-order logic as the metalogic
and users can define the target logics in this logic. Therefore the expressive power
is quite strong and it is fairly easy to prove the justification of the representation.
However the description of logical systems are usually complex and also in many
cases the proof supporting facilities are not strong enough. Contrarily the systems
in the third approach do not assume metalogics as their underlying logics. It al­
lows users to specify logics in an easier and more direct way than others which
require them to learn a programming language or metalogic for encoding a logic.
Moreover, it provides reasoning facilities and a unique reasoning-oriented interface
to make proof construction more flexible and easier. As a result, these systems
provide novice users with extensive assistance. Besides EUODHILOS systems[67;
80], wple[l9], MURAL[42], PROOF DESIGNER[5] take this approach.

As is displayed in Table 9.1, we compare EUODHILOS-I, EUODHILOS-II, MU­
RAL, PROOF DESIGNER, and wple with the viewpoints of syntax definition frame­
work, proof style, proof representation method, derivation systems, implementation
language, and platform. From this table we read that EUODHILOS systems provide
the facilities for dealing with a much variety of representation styles of proofs and
a variety of reasoning assisting features. The new symbol definition and inputting
facility and candidate selection features are characteristic to EUODHILOS systems.

The proof style of EUODHILOS and MURAL are based on natural deduction,
wple is based on the sequent calculus, and the proof style of PROOF DESIGNER is
based on the Fitch style. Proofs are represented in tree-form on EUODHILOS and
wple. MURAL and PROOF DESIGNER use a line-based representation. Only EUO­
DHILOS and MURAL allows the mixed reasoning style. wple allows only backward
reasoning, and PROOF DESIGNER allows only forward reasoning. These compar­
isons show that EUODHILOS systems provide more flexibility in proof repres nta­
tions and proof styles than the other systems.

To conclude, the approach of EUODHILOS to a general-purpose reasoning assis­
tant system(G-RAS) differs from the other ones cited above in several respects.

• In EUODHILOS one can specify his or her own logic in a more direct and
tractable way than others which require us to learn a formal system or metalogic

157

Table 9.1: Comparison of EUODHILOS Systems with Similar G-RAS Systems

Syst m N amc EUODHILOS-I EUODHILOS-I I

Syntax Dcfiuition DC Go Context-Free Grammar

Proof R.eprcscn tat ion Natural Deduction Style Natur<d Deduction Style

Abridg d Form
Proof Display Mf'thod Tree Structure Line Form

Tree Structure

Axiom Axiom

Inference Rnle Inf renee Rule
Dl'rivations

R.cwL"iting Rule Rewriting Rule

Theorem. Deriv d-Rule T heorem. Deriv ·d-Rnlc

Forward D rivation Forward Deriva.tion

B<-tckward Derivation Backward Derivation
Proving Mrthods Mixed Derivation Mixed Derivation

Couucctio11 Connection

Proof Tactics

Im plcmeu ta.tion Language ESP Emacs Lisp

Platform PSI/SIMP OS GNU Eruacs/X Wiuclow

Syst m Name MURAL PROOF DESIGNER wple

Syntax Definition Context-Sensitive Co11text-Free Grammar Context-Free Grammar

Grammar

Proof Representation Natural Dedu ·tion Style Fitch Style Sequent Style

Proof Display Method Li11e Form Line Form Tree Structure

Axiom
Inference Rule

Derivations Inference Rule Inference Rule
Derived-Rule

Fold/Unfold

Forward Derivation

Proving Methods
B<-tckward Derivation

Forward Derivation
Backward Derivation

Mix cl Derivation Proof Tactics

Proof Tactics

Implementation Language sIll all talk- 80 Lightspeed Pascal w-Prolog

Platform UNIX Macintosh UNIX /X Window

158

for encoding a logic.

• Much emphasis has been placed on reasoning facilities and proof methods which

EUODHILOS should have in order to make proof construction more powerful

and easier. In other works on interfaces for theorem provers(e.g. [6)) , they put

major emphasis on the general interface issues. The interface of EUODHILOS

systems were designed by considering the characters of the platforms and the

general policy of EUODHILOS architecture. We believe this methodology of

system design contributes to the high usability of the system.

• The system architecture can be evaluated based on such a model-based meth­

odology [73) , where the system evaluation items were extracted according to

the model of user's reasoning and conception process. This methodology will

contribute to a more objective and comprehensive evaluation than evaluating

only in an empirical method [39] . Therefore such an approach should get more

attention for evaluating user interface in order to have a more comprehensive

evaluation of reasoning assistant systems and other types of systems.

• EUODHILOS has a unique reasoning-oriented interface not only for ra1smg

user-friendliness but also helping us conceive ideas for constructing the proofs.

Dawson's generic logic environment is very similar to our approach in many

ways, but it only deals with logics in sequent presentations with all-introduction

rules.

As has been described EUODHILOS-I and EUODHILOS-II systems share the

common fundamental design model and policy of EUODHILOS architecture. For ex­

ample, plain language specification framework, derivation system d finition facilities

based in the natural deduction style, flexible reasoning styles that meet th styl s

of human reasoning, reusing proof results with theorems and deriv d rules are their

common features. Some aspects in the implemented systems are different caused from

the differences of the implementation platforms and specific designing policies . They

include the following issues:

• Syntax Specification Framework:

In EUODHILOS-I, syntax of logical expressions are specified in the DC Go nota­

tion, whereas in EUODHILOS-II, they are specified in an BNF -based notation.

In the former notation, some context sensitive syntactic constraints can be spec­

ified by using the arguments of nonterminals. In the latter notation, one may

give specifications for binding variable and its scope in a flexible way.

159

• Validity Checking Facilities:

EUODHILOS-II is equipped with richer facilities for checking for the matching

of the derivation data and proof data to language definition.

• Proof Abridgment:

In EUODHILOS-I, the use of lemmas and derived rules mainly contribute to

building up smaller proof representations. It also support the multiple applica­

tions for rewriting rules. EUODHILOS-I I extends this framework and provides

the s mi-automated proving facility with tacticsjtacticals without providing

detailed parameters such as assumptions, application place, and others.

• Proof Representation:

In EUODHILOS-I, proof fragments are displayed in full-tree form, whereas in

EUODHILOS-II, they are represented in two forms; full line-based tree repre­

sentation, and that represented in Ib\TEX macros.

• Platform:

The platforms are different. EUODHILOS is implemented on the PSI machine

with SIMPOS operating systems. It runs on the SIMPOS window systems and

was d signed to have a good use of this environment. The platform of EUO­

DHILOS-II, on the other hand, is Emacs that runs on UNIX machines and

other popularly used machines, so that it has high portability.

160

Chapter 10

Conclusion

The aim of this chapter is to summarize what we have achieved in this thesis and

to give possible future research directions that will become more important in the

conung years.

(1) Achievements
In this thesis we have investigated a general-purpose reasoning assistant system ar­

chitecture with which users are able to define their own formal systems in logic-based

framework and reason on the defined formal system. In order to investigate such an

architecture we took the model-based approach, where we firstly mad th model for

human reasoning process, then we established an abstract system architecture called

EUODHILOS. We have developed two systems on different platforms by instantiat­

ing each components of the general architecture; EUODHILOS-I on PSI/SIMPOS

and EUODHILOS-I I on top of GNU Emacs/ Epoch/Mule which runs on the UNIX

machines. By taking such an approach we are able to clearly recognize the features

that depend on the implementation platforms and those that come from the common

architecture. For EUODHILOS-I, we chose the mouse-based menu-oriented design

that fitted to the graphical window system of the SIMPOS operating system. For

EUODHILOS-II, on the other hand, we chose the keyboard-oriented user-interface

design where the underlying environment is the GNU Emacs, which is well known as

a text editing environment.

Through various experiments of applications on a variety of logical systems and

formulations, we have demonstrated the potential and usefulness of EUODHILOS

systems. From these experiments we are convinced that the current EUODHILOS

systems are fairly useful in two senses:

161

(i) As have been the target, EUODHILOS systems are suitable to experiment with
a wide styles of logical formulations. They are especially suitable to learning­
by-experimenting style of reasoning, thus they should be well applicable to
computer-aided learning for logical systems.

(ii) Relating to the previous item, they are fairly suited as an assisting system for
developing formal systems, especially in logic-based approaches. As the model
of human reasoning process in Figure 3.1 suggests, the human user needs some
amount of exp riences before finishing the logical model construction. EUO­
DHILOS system is one of the best choices for the user to learn his or her own
logical model under construction.

We have also demonstrated how EUODHILOS systems can be applied to knowledge
management. EUODHILOS systems together with agent technologies, the logic-based
knowledge, especially the meta-data such as tactics and theorems fairly suit to be
shared among a group of people. The evaluation issues on potential and usefulness
of the system has also discussed in other papers[73; 100; 103; 104].

The issues what we put special emphasis on in this thesis are:

(a) Advantages of Generality:

The generality of EUODHILOS have been tested by using it to define various logics
and to construct proofs expressed within them. All the logics with their proofs were
created in several hours. If we had had to develop a reasoning system with the same
functions as EUODHILOS for each logic from scratch, it would have taken much more
time to do it, and we would have had to repeat almost the same task for constructing
a reasoning system every time we were working on a new logic. EUODHILOS has
demonstrated the usefulness of generality in much wider fields of applications[81;
100].

(b) Flexible and Easy-to-Use Logical Framework:

The logical framework, which gives the means to the users of expressing what logical
or formal system they want to deal with. In EUODHILOS-I, it is based on the
DC Go notation, which is an extension to DCG(Definite Clause Grammar) syntax
description framework, and natural deduction style derivation system. In EUODHI­
LOS-II, it is based on the ordinary CFG(Context Free Grammar)-based production
rules with BNF(Backus-Naur Form) notation, together with the natural deduction

162

style derivation system. We have demonstrated that by using such logical frameworks
a variety of logical structures can be dealt with in natural and easy-to-use fashion.
We have presented a variety of examples like intuitionistic logic modal logic, Hoare
logic, category theory, relevant logic, combinatory logic, and other different types of
logics, and have demonstrated that the framework is really applicable to such a wide
variety of formal systems.

(c) Proving Methodology based on Sheets of Thought:

Lots of experiments for proving have convinced us that reasoning by several sheets
of thought naturally coincides with human thought processes, such as analysis and
synthesis in scientific exploration, from the part to the whole and vice versa. It may
be also expected that they turn out to give a promising way towards proving in the
large.

It is worth noting that what we have achieved in this thesis are:

(i) to propose a new system concept and its architecture based on a model-based
approach,

(ii) to demonstrate its feasibility by implementing systems on different platforms,
and

(iii) to verify its generality and usability through experimenting with many appli a­
tions of the systems to a wide variety of logical systems.

We would also like to note here that the source codes and documentations of
EUODHILOS-I are accessible at the ICOT Free Software(IFS) site in the URL:

http://www.icot.or.jp/AITEC/IFS/IFS-abst/028.html

and the latest version of EUODHILOS-II and its sample logics together with 1nanuals,
can be downloaded from the following URL:

ftp://ftp.fujitsu.eo.jp/pub/isis/euodhilos2

(2) Future Directions

Considering the development of information technology, especially the networking
environment these days, the most important topics to be pursued for the future
directions of EUODHILOS systems are:

163

(i) Extending the Application Fields:
Knowledge management is one of the promising fields for applying G-RAS sys­

tems like EUODHILOS. In this field, most users will use such a system not for
dealing with logics or logical structures but for problem solving and decision
making by collecting a lot of knowledge and data from other systems in the net­

work. In order to adapt to such an environment, EUODHILOS systems need
to extend themselves in the method of dealing with and of representing the
knowledge. We have to extend the current system model which is designed as a
pure G-RAS system so that it is able to deal with the formulas and proofs with
less-logical representations and less-logical styles of manipulations. By taking
the user interface in such style, even the users who have little knowledge about
logics will be able to use the system.

It is also possible to develop a new application field by extending the data
from the formalized logical one to less-logical type of data, the G-RAS system
would be used in wider area of reasoning, idea creation, computer supported
cooperative work(CSCW), and others. We have been working on a system
called ZK(Zeichen blocK)[70], which deals with not only the text(verbal) data
but also other types of data such as the arrangement data and the picture data
(non-verbal or analogue data). Such a system would bridge the gaps between
the formalized reasoning in logical framework and the intuitive reasoning that
deal with the pre-formalized or image-based information. The future system in
this direction will give an environment to the people as a sharing tool for such
hybrid information that consists of verbal and non-verbal data.

(ii) Investigating more Automated Reasoning:

A wide variety of reason�ng styles should be supported by G-RAS systems.
We have described in this thesis that the reasoning assisting facilities of EUO­
DHILOS-I is implemented with putting emphasis on supporting the step-by­
step, or manual, reasoning. The built-in tactics and tacticals are introduced
in EUODHILOS-II so that the system supports from step-by-step reasoning to

semi-automated reasoning. By using them the medium-sized straightforward

reasoning can be performed quite easily. As has Kowalski pointed out[46], a
program can be seen as "Logic+ Control". From the view point of G-RAS, this
statement can be interpreted as "Problem Solving= Model + Tactics", where
the purpose of an algorithm is to solve one or a set of problems, model is the
logical model and tactics describes the control part of problem solving. By con-

164

sidering this observation and the previous discussions, the development of useful
tactics and sharing in a network would open up a new programming field, which
we call the ''reasoning programming" [71], where the users develop descriptions
or instructions that tell how to develop theorems or find solutions of the given

problems. The descriptions can be interpreted as programs in the sense that
they can be, basically, executed automatically. A reasoning program consists
of a formal model and its instruction, or a tactic of it. These different informa­
tion works together as a description of procedures. This style resembles to the
programming environment of applets running on browsers. The whole browser
window consists of HTML description and the ordinary programs, which may
further consist of Java script and Java applet working together. Considering the
complexity of environment on which the programs are executed, only one pro­
gramming language would not be sufficient. So the programming style seems to
be going to the new style, where, like the browser programming and reasoning
programming, a couple of programs written in different programming languages
work cooperatively as an integrated single program. This programming model
is also similar to that of agent programming, where different agents work to­
gether and form a system. Investigating the automated tactics programming
framework will contribute to such a new paradigm of programming.

(iii) Developing Multi-Theory Environment:

In Chapter 8, we mentioned "ontology transformation". The knowledge and
data we are using becomes larger and larger these days. The technology for
integrating knowledge and data is also becoming more and more important.
The investigation on theory revision and theory inheritance or transformation
relate to the investigation on ontologies in its essential part. This is another
important direction of research that relates to EUODHILOS, or G-RAS systems

in general.

165

166

Bibliography

[1] Abrial, J. A.: The Mathematical Construction of a Program, Science of Com­

puter Programming, Vol.4, pp.45-86, 1984.

[2] Backhouse, R. and Chisholm, P.: Do-it-Yourself Type Theory(Part 1), Bull. of

EATCS, No.34, pp.68-110, Do-it-Yourself Type Theory(Part 2), ibid., No.35,

pp.205-245, 1988.

[3] Barwise, J. and Etchemendy, J.: A Situation- Theoretic Account of Reasoning

with Hyper-Proof (Extended Abstract), STASS Meeting, 1988.

[4] Batog, T.: The Axiomatic Method in Phonology, Routledge & Kegan Paul

LTD., 1967.

[5] Bedau, M. and Moor J .: PROOF DESIGNER: A Programmable Prover's Work­

bench, Philosophy and the Computer, Westview Press, pp.218-228, 1992.

[6] Bertot, Y., Kahn, G. and Thery, L.: Proof by Pointing, Theoretical Aspects of

Computer Software, LNCS, Vol.789, Springer-Verlag, pp.141-160, 1994.

[7] Boyer, R. B. and Moore, J. S.: A Computational Logic Handbook, Academic

Press, 1988.

[8] de Bruijn, N. G.: The Mathematical Language AUTOMATH, its Usage and

Some of its Extensions, Laudet, M., Lacombe, D., Nolin, L. and Schutzenberger,

M. (eds.), Symposium on Automated Demonstration, Springer-Verlag, 1970.

[9] de Bruijn, N. G.: A Survey of the Project Automath, Seldin and Hindley (eds.),

To H. B. Curry: Essays on Combinatory Logic, Lambda calculus and Formal­

ism, Academic Press, pp.579-606, 1980.

167

[10] Burkholder, L.: The Halting Problem, SIGACT NEWS, Vol.18, No.3, pp.48-60,

1987.

[11] Chang, C.-L. and Lee, R. C.-T.: Symbolic Logic and Mechanical Theorem Prov­

ing, Academic Press, 1973.

[12] Chikayama, T.: EPS Reference Manual, ICOT Technical Report, TR-044,

ICOT, 1984.

[13] Clocksin, C. F. and Merish, C. S.: Programming in Prolog, Springer-Verlag,

1981.

[14] Constable, R. L., Johnson, S. D. and Eichenlaub, C. D.: An Introduction to

the PL/CV2 Programming Logics, LNCS, Vol.135, Springer-Verlag, 1982.

[15] Constable, R. L., et al.: Implementing Mathematics with the Nuprl Proof De­

velopment System, Prentice-Hall, 1986.

[16] Coquand, T. and Huet, G.: Constructions: A Higher Order Proof System for

Mechanizing Mathematics, LNCS, Vol.203, Springer-Verlag, pp.151-184, 1985.

[17] Dawson, M., Sadler, M. and Mainbaum, T.: Generic Logic Environment, Proc.

of CASE'BB, pp.215-218, 1988.

[18] Dawson, M.: Using the wp Generic Logic Environment, Technical Report, Dept.

of Computing, Imperial College, 1989.

[19] Dawson, M.: A General Logic Environment, PhD thesis, Dept. of Computing,

Imperial College, 1991.

[20] Earley, J.: An Efficient Context-Free Parsing Algorithm, Communications of

A CM, 3(2) , pp.94-102, 1970.

[21] Edwards, G., Kang, B.H., Preston, P. and Compton, P.: Prudent Expert Sys­

tems with Credentials: Managing the Expertise of Decision Support Systems,

International Journal of Bio-Medical Computing, Vol.40, pp.125-132, 1995.

[22] Erman, L.D., Hayes-Roth, F., Lesser, V.R. and Raj Reddy, D.: The Hearsay-II

Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty,

Computing Survey, Vol.12, pp.213-253, 1980.

168

[23] Felty, A. and Miller, D.: Specifying Theorem Provers in a Higher-Order Logic

Programming Language, LNCS, Vol.310, Springer-Verlag, pp.61-80, 1988.

[24] Fujimura, T.: Why Does Logic Matter to Philosophy?, The Journal of Philos­

ophy of Science Society Japan, Vol.14, pp.1-5, 1981. (in Japanese)

[25] Gallin, D.: Intensional and Higher-Order Modal Logic, with Applications to

Montague Semantics, North-Holland, 1975.

[26] Girard, J .-Y.: Linear Logic, Theoretical Computer Science, Vol. 50, pp.1-102,

1987.

[27] Gordon, M. J., Miller, A. J. and Wadsworth, C. P.: Edinburgh LCF, LNCS,

Vol. 78, Springer-Verlag, 1979.

[28] Gordon, M. J. C.: Representing a Logic in the LCF Metalanguage, Neel, D.

(ed.) , Tools and Nations for Program Construction, pp.163-185, Cambridge U ni­

versity Press, 1982.

[29] Gordon, M.J.: HOL - A Proof Generating System for Higher-Order Logic,

VLSI Specification, Verification and Synthesis, Kluwer Academic Publishers,

pp. 73-128, 1988.

[30] Griffin, T. G.: An Environment for Formal Systems, ECS-LFCS-87-34, Univer­

sity of Edinburgh, 1987.

[31] Gunter, C. and Gehlot, V .: Nets as Tensor Theories, De Michelins, G. (ed.),

Application and Theory of Petri Nets, pp.174-191, 1989.

[32] Harper, R., Hansell, F. and Plotkin, G.: A Framework for Defining Logics,

Proc. of Symposium on Logic in Computer Science, pp.194-204, 1987.

[33] Harel, D.: Dynamic Logic, Gabbay, D. and Guenthner, F. (eds.) , Handbook of

Philosophical Logic, Vol. II: Extensions of Classical Logic, D. Reidel, pp.497-

604, 1984.

[34] Hasegawa, R., Fujita, H. and Koshimura, M.: MGTP: A Parallel Theorem­

Proving System Based on Model Generation, Proc. 11th International Confer­

ence on Application of Prolog, 1998.

169

[35] Hoare, C. A. R.: An Axiomatic Basis for Computer Programming, Communi­

cations of A CM, Vol.l2, No.lO, pp.576-580, 583, 1969.

[36] Hopcroft, J. E. and Ullman, J. D.: Introduction to Automata Theory, Languages

and Computation, Addison-Wesley, 1979.

[37] Hughes, G.E. and Cresswell, M.J.: An Introduction to Modal Logic, Methuen,

1968.

[38] ICOT CAP-WG: The CAP Project(1)- (6) , Proc. 32nd Annual Convention IPS.

Japan, 1986. (in Japanese)

[39] Jackson, M.: Evaluation of a Semi-Automated Theorem Prover (Part I I) , User

Interfaces of Theorem Provers 1997, 1997.

[40] Jackson, P., et al. (eds.) : Logic-Based Knowledge Representation, The MIT

Press, 1989.

[41] Johnson, S.: Yacc: Yet Another Compiler-Compiler, Computing Science Tech­

nical Report, No.32, AT&T Bell Laboratories, 1975.

[42] Jones, C.B., Jones, K.D., Lindsay, P.A. and Moore, R.: MURAL: A Formal

Development Support System, Springer-Verlag, 1990.

[43] Ketonen, J. and Weening, J. S.: EKL-An Interactive Proof Checker, User's

Reference Manual, Dept. of Computer Science, Stanford University, 1984.

[44] Kitagawa, T.: The Relativistic Logic of Mutual Specification in Statistics, Mem.

Fac. Sci. Kyushu University, Ser. A, 17, 1, 1963.

[45] Knowledge Management Server, URL: http: I /kman. bus. utexas. edu/kman/

[46] Kowalski, R.: Algorithm=Logic+Control, Communications of ACM, Vol.22,

No.7, pp.424-436, 1979.

[47] Kunifuji, S.: New Trends of Knowledge Acquisition and Learning, Journal of

Japanese Society for Artificial Intelligence, Vol.3, No.6., pp.741-747, 1988. (in

Japanese)

[48] Kunst J.: Making Sense in Music I- The Use of Mathematical Logic, Interface,

Vol.5, pp.3-68, 1976.

170

[49] Lakatos, 1.: Proofs and Refutations-The Logic of Mathematical Discovery-,

Worrall, J. and Zabar, E. (eds.) , Cambridge University Press, 1976.

[50] Langer, S. K.: A Set of Postulates for the Logical Structure of Music, Monist,

Vol.39, pp.561-570, 1925.

[51] Lesk, M. E.: Lex- A Lexical Analysis Generator, Computing Science Technical

Report, No.39, AT&T Bell Laboratories, 1975.

[52] MacLane, S.: Categories for the Working Mathematician, Springer-Verlag,

1971.

[53] Maes, P.: Agents that Reduce Work and Information Overload, Communica­

tions of ACM, Vol.37, No.7, pp.30-40, 1994.

[54] N. Marti-Oliet and J. Meseguer: From Petri Nets to Linear Logic, Category

Theory and Computer Science, LNCS, Vol.389, Springer-Verlag, pp.313-340,

1989.

[55] Martin-Lof, P.: Intuitionistic Ty pe Theory, Bibliopolis, 1980.

[56] McCune, W .W .: Otter 3.0 Reference Manual and Guide, ANL-94/6, Argonne

National Laboratory, 1994.

URL: ftp://info.mcs.anl.gov/pub/otter/Papers/otter3_manual.ps.gz

[57] Matsumoto, Y., Tanaka, H., Hirakawa, H., Miyoshi, H. and Yasukawa, H.:

BUP: A Bottom-up Parser Embedded in Prolog, New Generation Computing,

Vol.l, pp.l45-158, 1983.

[58] Meyer, R. K.: A General Gentzen System for Implicational Calculi, Relevance

Logic Newsletter, Vol.1, No.3, pp.l89-201, 1976.

[59] Miller, D. and Nadathur, G.: A Logic Programming Approach to Manipulating

Formulas and Programs, Proc. of IEEE Symposium on Logic Programming,

pp.380-388, 1987.

[60] Minami, T. and Sawamura, H.: Proof Constructors for the Reasoning Assis­

tance, Proc. 33rd Annual Convention IPS. Japan, 1986. (in Japanese)

171

[61] Minami, T. and Sawamura, H.: A Construction of Computer-Assisted­

Reasoning System, Proc. 3rd Conference Japan Society for Software Science

and Technology, 1986. (in Japanese)

[62) Minami, T. and Sawamura, H.: Proof Construction with Working Sheets-A

Consideration on the Methodology for Computer Assisted Reasoning-, Proc.

35th Annual Convention IPS. Japan, 1987. (in Japanese)

[63) Minami, T., Sawamura, H., Satoh, K. and Tsuchiya, K.: EUODHILOS: A

General-Purpose Reasoning Assistant System-Concept and Implementation-,

liAS-SIS Research Report, No.84, FUJITSU LTD., 1988.

[64) Minami, T., Sawamura, H., Satoh, K. and Tsuchiya, K.: EUODHILOS: A

General-Purpose Reasoning Assistant System-Concept and Implementation-,

LNCS, Vol.383, Springer-Verlag, pp.l72-187, 1989.

[65) Minami, T. and Sawamura, H.: EUODHILOS: An Interactive Reasoning Assis­

tant System, Journal of Japanese Society for Artificial Intelligence, Vol.5, No.1,

1990.

[66] Minami, T., Ohashi, K., Sawamura, H. and Ohtani, T.: General-Purpose Rea­

soning Assistant System EUODHILOS Visual Manual, Research Report IIAS­

RR-92-18J, FUJITSU LABORATORIES LTD., 1992. (in Japanese)

[67) Minami, T., Sawamura, H. and Ohtani, T.: A Beginner's Guide to EUOD­

HILOS, Research Report ISIS-RR-94-llE, ISIS, FUJITSU LABORATORIES

LTD., 1994.

[68] Minami, T., Ohtani, T. and Sawamura, H.: Reasoning Assistant System

EUODHILOS-II, Fujitsu Scientific and Technical Journal, Vol.32, No.2, pp.l71-

182, 1996.

[69] Minami, T., Ohtani, T., Arima, J., and Oda, M.: Agent Society for Network

Problem Solving, Proc. 12th Annual Convention IPS. Japan Kyushu Region,

pp.129-138, 1998. (in Japanese)

[70] Minami, T., Sazuka, H., Hirakawa, S. and Ohtani, T.: Living with ZK-An

Approach towards the Communication with Analogue Messages, Pmc. of Sec­

ond International Conference on Know ledge-Based Intelligent Electronic Sys­

tems{KES'98), pp.369-374, 1998.

172

[71) Minami, T., Ohtani, T. and Sawamura, H.: Reasoning Programming, SIG Pro­

gramming of IPS. Japan, 1998. (in Japanese)

[72) Minami, T., Ohtani, T. and Sawamura, H.: Creation and Sharing of Logic-based

Domain- and Meta-Knowledge, Proc. of Pacific Rim J(nowledge Acquisition

Workshop(PKA W'98) in PRICA/'98, pp.31-48, 1998.

[73) Minami, T., Ohtani, T., and Sawamura, H.: Usability Evaluation of the

General-Purpose Reasoning Assistant System EUODHILOS-II, International

Journal of Knowledge-Based Intelligent Engineering Systems, Vol.3, No.1,

pp.27-36, 1999.

[74] Mizoguchi, R. and Kakusho 0.: Knowledge Acquisition Systems, Journal of

Japanese Society for Artificial Intelligence, Vol.3, No.6, pp. 732-7 40, 1988. (in

Japanese)

[75] Mizoguchi, R. and Ikeda, M.: Ontology Engineering-Towards the Basic Theory

and Technology for Content-Oriented Research-, Journal of Japanese Society

for Artificial Intelligence, Vol.12, No.4, pp.559-569, 1997. (in Japanese)

[76] Nonaka, I. and Takeuchi, H.: The Knowledge-Creating Company: How Japan se

Companies Create the Dynamics of Innovation, Oxford University Press, 1995.

[77] Ohashi, K., Yokota, K., Minami, T., Sawamura, H. and Ohtani, T.: An Auto­

matic Generation of a Parser and an Unparser in the Definite Clause Grammar,

Trans. IPS. Japan, Vol.31, No.ll, pp.1616-1626, 1990. (in Japanese)

[78] Ohtani, T., Sawamura, H. and Minami, T.: Implementing Constructive Type

Theory on EUODHILOS, Research Report ISIS-RR-93-14E, FUJITSU LABO­

RATORIES LTD., 1993.

[79] Ohtani, T., Sawamura, H. and Minami T.: EUODHILOS-II on top of GNU

Epoch, Bundy, A. (ed.) , Proc. 12th International Conference on Automated

Deduction{CADE-12), LNAI, Vol.814, Springer-Verlag, pp.816-820, 1994.

[80) Ohtani, T., Sawamura, H. and Minami, T.: Reasoning Assistant System

EUODHILOS-II: Operation Manual, Research Report ISIS-RR-95-19E, FU­

JITSU LABORATORIES LTD., 1995.

173

[81) Ohtani, T., Sawamura, H. and Minami, T.: Design and Implementation of Gen­

eral Reasoning Assistant System EUODHILOS-II, Trans. IPS. Japan, Vol.38,

No.1, 1997. (in Japanese)

[82) Ohtani, T. and Minami, T.: The Word-of-Mouth Agent System for F inding Use­

ful Web Documents, Asia Pacific Web Conference(APWeb98), National Natu­

ral Science Foundation of China, pp.295-300, 1998.

URL: http://www3.cm.deakin.edu.au/apweb98/FINAL/012.doc

[83) Parker, J. H.: Social Logics: Their Nature and Uses in Social Research, Cybe­

merica, Vol.25, No.4, pp.287-307, 1982.

(84] Paulson, L. C.: The Foundation of a Generic Theorem Prover, Journal of Au­

tomated Reasoning, Vol.5, pp.363-397, 1989.

(85] Paulson, L.C.: Isabelle: A Generic Theorem Prover, LNCS, Vol.828, Springer­

Verlag, 1994.

[86] Peirce, C. S.: Collected Papers of C. S. Peirce, Hartshorne, Ch. and Weiss, P.

(eds.) , Harvard University Press, 1974.

[87] Pereira, F. C. N. and Warren, D. H. D.: Definite Clause Grammars for Lan­

guage Analysis-A Survey of the Formalism and a Comparison with Augmented

Transition Networks, Artificial Intelligence, Vol.13, pp.231-278, 1980.

[88] Peyton Jones, S. L.: The Implementation of Functional Programming Lan­

guages, Prentice-Hall, 1987.

[89] Prawitz, D.: Natural Deduction - A Proof- Theoretical Study, Acta Universi­

tatis Stockholmiensis, Stockholm Studies in Philosophy, 3rd ed., Stockholm,

Almqvist & Wiksell, 1965.

[90] Reps, T. and Alpern, B.: Interactive Proof Checking, ACM Symp. on Principles

of Programming Languages, pp.36-45, 1984.

[91) Reps, T.: The Synthesizer Generator Reference Manual, Department of Com­

puter Science, Cornell University, 1985.

[92) Resnick, P. and Varian, H. R. (Eds.): Recommender Systems, Special Issue of

Communications of ACM, Vol.40, No.3, 1997.

174

[93) Ritchie, B. and Taylor, P.: The Interactive Proof Editor-An Experiment in

Interactive Theorem, ECS-LFCS-88-61, University of Edinburgh, 1988.

[94) Sakai, K.: CAP: Computer Aided Proof, Journal of Japanese Society for Arti­

ficial Intelligence, Vol.5, No.1, pp.33-40, 1990. (in Japanese)

[95) Satoh, K., Tsuchiya, K., Ono, E., Sawamura, H. and Minami, T.: Well-Formed

Formulas Editor for Argumentation Supporting System, Proc. 33rd Annual

Convention IPS. Japan, 1986. (in Japanese)

[96) Sawamura, H.: A Proof Constructor for Intensional Logic, with S5 Decision

Procedure, liAS Research Report, No.65, F UJITSU LTD., 1986.

[97) Sawamura, H. and Minami T.: Conception of General-Purpose Reasoning Assis­

tant System and Its Realization Method, SIG WGFS of IPS. Japan, 87-SF-22,

1987. (in Japanese)

[98] Sawamura, H., Minami, T., Yokota, K. and Ohashi, K.: A Logic Program­

ming Approach to Specifying Logics and Constructing Proofs, Warren, D.H.D.

and Szeredi, P. (eds.) , Proc. of the Seventh International Conference on Logic

Programming, The MIT Press, pp.405-424, 1990.

[99] Sawamura, H., Minami, T., Yokota, K. and Ohashi, K.: Potential of General­

Purpose Reasoning Assistant System EUODHILOS, Nakata, I. and Hagiya, M.

(eds.) , Software Science and Engineering: Selected Papers from the Kyoto Sym­

posia, World Scientific, 1988, Also Research Report IIAS-RR-91-8E, FUJITSU

LABORATORIES LTD., 1991.

[100] Sawamura, H., Minami, T., Ohtani, T., Yokota, K. and Ohashi, K.: A Collec­

tion of Logical Systems and Proofs Implemented in EUODHILOS I, Research

Report IIAS-RR-91-13E, F UJITSU LABORATORIES LTD., 1991.

[101] Sawamura, H., Minami, T. and Ohashi, K.: EUODHILOS: A General Reason­

ing System for a Variety of Logics, Voronkov, A. (ed.) , Proc. of International

Conference on Logic Programming and Automated Reasoning, LNAI, Vol.624,

Springer-Verlag, pp.501-503, 1992.

[102) Sawamura, H., Minami, T. and Ohashi, K.: Proof Methods based on Sheet of

Thought in EUODHILOS, Research Report IIAS-RR-92-6E, F UJITSU LABO­

RATORIES LTD., 1992.

175

[103] Sawamura, H., Minami, T. and Ohtani, T.: Application and Evaluation

of General-Purpose Reasoning Assistant System EUODHILOS, Trans. IPS.

Japan, Vol.34, No.5, pp.809-819, 1993, Also Research Report IIAS-RR-93-2J,

FUJITSU LABORATORIES LTD., 1993. (in Japanese)

[104] Sawamura, H., Minami, T., Yokota, K. and Ohashi, K.: A General­

Purpose Reasoning Assistant System EUODHILOS-Basic Features and Poten­

tial Usefulness-, Trans. IPS. Japan, Vol.36, No.3, pp.542-560, 1995.

[105] Slaney, J.: A General Logic, Australasian Journal of Philosophy, Vol.68, No.1,

pp.74-88, 1990.

[106] Slaney, J. and Meglicki, G.: MaGIC: Matrix Generator for Implication Con­

nectives, INTERIM VERSION 2.0 NOTES AND GUIDE, Technical Report

TR-ARP-1/91, Australian National University, 1991.

[107] Slaney, J.: FINDER: Finite Domain Enumerator, Technical Report TR-ARP-

1/92, Australian National University, 1992.

[108] Smullyan, R.: To Mock a Mockingbird, Alfred A. Knopf Inc., 1985.

[109] Stallman, R.M.: GNU Emacs Manual, Free Software Foundation, 1994.

[110] Thistlewaite, P. B., McRobbie, M. A. and Meyer, R. K.: Automated Theorem­

Proving in Non-Classical Logics, Pitman Publishing, 1988.

[111] Trybulec, A. and Blair, H.: Computer Assisted Reasoning with MIZAR, Proc.

of IJCA1'85, pp.26-28, 1985.

[112] Tsuchiya, K., Satoh, K., Ono, E., Sawamura, H. and Minami, T.: Well-Formed

Formulas Editor for the Reasoning Assistant System, Proc. 35th Annual Con­

vention IPS. Japan, 1987. (in Japanese)

[113] Turner, A.: Logics for Artificial Intelligence, Ellis Horwood Limited, 1984.

[114] Weyhrauch, R. W.: Prolegomena to a Theory of Mechanized Formal Reasoning,

Artificial Intelligence, Vol.13, pp.133-179, 1980.

[115] Winston, P. H. and Horn, B. K. P.: LISP, Addison-Wesley, 1981.

[116] Zanardo, A. and Rizzotti, M.: Axiomatization of Genetics 2, Formal Develop­

ment, Journal of Theoretical Biology, Vol.118, pp.145-152, 1986.

176

