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7.1 Martin-Lof's Intuitionistic Type Theory 

This example is a tiny subset of the intuitionistic type theory described in [2] and 

[55]. Based on the formulas-as-types notation, a type is represented as a formula 

that gives a formal specification and its element represents a program that satisfies 

the specification. This principal expression is represented in an intuitionistic type 

theory as a judgment of the form "xEA", reads "x is a proof of a proposition A" in 

formulas-as-types interpretation, where "x" is an expression in .A.-calculus and "A" 

is a first-order formula interpreted as a type. The judgment is naturally and well 

described in the EUODHILOS framework [78; 98; 100]. 
We present two description examples; one on EUODHILOS-I in the DCGo nota­

tion and the other on EUODHILOS-II in the BNF -based notation. 

Description and Proof Example in DCGo-based framework 

The language definition consists of four parts: an object language, a metalanguage, 

interface between the meta and object languages and the constructor declaration as 

follows. This is a typical classification of the descriptions in the DCGo notation. 

Language: 

'1. Meta_language 

meta_term --> meta_term1; 

meta_type --> "A" I "B"; 
meta_term1 --> "F" meta_const I meta_variable; 

meta_const --> "a" I ''b"; 

meta_variable --> "X"; 

I. Object_language 

judgement --> term, "E", type; 

term --> bind_op, variable, 

term, ".", term I 
II (II > term, ")" 

II II term I 

type --> type, ":J", type 

type, "v", type 

"-", type I 
II ( II > type ' II ) II 

basic_type; 

variable --> "
x

" "f"; 

constant --> "c" "d"; 

basic_type --> "P" I "l_"; 
bind_op --> "..\"; 

I. Interface between meta and object languages 

type --> meta_type; 

variable --> meta_variable. 

'1. Constructor declaration 

with_priority 

"-"; "v":left; ":J":left; ".":left; "..\"; "E"; 

without_priority 

"inl", "inr", meta_term1. 

It is notable that the syntax definition for the metalanguage is provided for defin­

ing inference rules schematically, and the operators have precedence in the indicated 

order as well as their associativity, and the functors or predicates, e.g., "inl" in the 

term "inl(x )", are listed simply by themselves or the non terminals by which they are 

denoted, under the heading "predicate". As has been described in Chapter 4, the 

constructor declaration tells the parser and the unparser that the terminal name de­

clared to be an operator or the terminal name denoted by the nonterminal character 

string is entitled to become the principal operator of the internal structure for an 

expression generated by the grammar rules. 

11-11 term I Inference Rule: 
"inl", " (", term, ")" I "inr", " (", term, ")" I 

variable I constant I 
meta_term1, " (", term, ")" I meta_term; 
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The intuitionistic type theory is defined by a number of natural deduction style in­

ference rules. For the purpose of illustration we consider just four rules and one 
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INFORMATION ** new ** ** new ** 
SOFT_KEYBOARD ** exit 

SYNTAX 1\Ei 

INFERENCE_RULE 
AE2 

REWRITING_RULE 
AI 
VE 

AXIOM vii 

PROVER _thea VI2 
DERIVED_RULE ::JE 

THEOREM ::JI 

PROOF ljE 

** EXIT ** 
ljl 

3E 

31 

fEA::JB aEA 

app(f,a)EB 

** Side conditon 
** Define ** 

bEB 

** ** exit ** 
---def 
+def 
*def 
D1 
D2 
E 

R1 
R2 
alpha 

2 
[xEA] [yE�(AV"-A)] 
-(VI 1 {1}) -( .... def {2}) 
inl (x)EAV"'A yEAV .... A::J� 
------C::JE{1,2}) 

app(y, in! (x))Ei 
-------(::JI {2}) 
AX.app(y, in! <x>>EA�� 
-----( .... def (R) {2}) 2 
AX.app(y,inl(x))E .... A [ye....(AV .... A)] 

--------(VI2{2}) -( .... def {2}) 
inr(�x.app(y,inl (X)))EAV"'A yEAV .... A::Jj_ 
-------------(::JE {2}) 

app(y, inr(Ax.app(y,inl (x))))E� 
---------------(::Jl{}) 

'•sf'�.• • AY. app (y, i nr (AX. app (!:J, in I (X)))) e.... (AV .... A) ::Jj_ 
l t--i�n� r�(�b�) E�A�V�B�������:t::===�==�� -------------( .... def (R) {}) 

** Side conditon .... A 
Ay.app(y,inr(Ax.app(!:J1inl(x))))E ........ (AV .... A) 

** Define ** 

sheet_t 

Figure 7.1: Intuitionistic Type Theory and Constructive Proof on EUODHILOS-I 

rewriting rule. These are the rules for function introduction and elimination, the two 

rules for V-introduction, and the rewriting rule for the definition rv A = A � _l. As 

can be recognized in these example inference rule definitions, if we see only the right 

sides of the judgme1�ts the rule is exactly that of the natural deduction rules for the 

classical propositional logic. 

�-I: 

[yEA) 

f(yjx) E B 

Ax.f(x) E A� B 
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Side Condition: y is not free in B 

�-E: 

inl-I: 

inr-I: 

Rewriting Rule: 

def: 

Proof Example: 

fEA�B aEA 
app(f, a) E B 

a E A 
inl(a) E A VB 

bE B 
inr(b)EA VB 

A�l_ 
rvA 

Figure 7.1 displays the proof of the theorem''·""·"' (AV rv A). The theorem means that 

the law of the double negation of the excluded middle cannot be refuted. This is an 

instance of Glivenko's theorem that if A is any tautology of the classical propositional 

calculus then the proposition rvrv A is always constructively valid. For further de­

tails about how the proof has been constructed using our various proof facilities and 

methods, refer to [102]. 

Description and Proof Example in EUODHILOS-11 

Also in the description framework of EUODHILOS-II, the intuitionistic type theory 

can be formulated in a similar way. We present the actual description example for 

the same example logical system in order to provide a comparison example between 

the two EUODHILOS frameworks. 
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Language: 

The syntax definition is as follows: 

%ROOT Judgement 

%META_ VARIABLES 

Meta_ Var = "[u-z] [0-9] * 11 

Meta_ Term = 11 [a-kr-t] [0-9] *" 

Meta_ Type = "[A-GO-T] [0-9] *'1 

Meta_Judgement = "[IJ] [0-9]*" ; 

/.PRODUCTIONS 
Judgement 
Judgement 
Judgement 
Judgement 
Judgement 

Meta_Judgement 
Meta_Judgement "(" Type ")11 

Meta_Judgement "(" Term ")11 

Term "E11 Type 

Type 11 =11 Type 

Judgement Term 
Op1 "inl"; 

Op1 
Op1 -

Op1 
Op2 

Dp2 
Op2 

Op3 

"inr"; 
"car"; 
"cdr"; 
"ap" ; 
"cons" 
"Ell 

"D" 

"=" 

Variable 
Term 

Term 

: : = Meta_ Var 
Variable ; 

Meta_Term ; 

Term 11 E11 Type 

Term Meta_Term "(11 List Of Term ")11 

Term 

Term 

Term 
Term 

Term 

Arg2 

Op1 "(11 

Op2 "(11 

Op3 "(" 

Term "/11 

Term 

Arg2 

Arg3 
Term 

II ).11 @Term 11. II 
II II , Term 

")" 
")II 

")" 

[ Term ] 

Arg3 

Term 

Term II II , Term 11," Term ; 
. ·= Term L1st Of Term 

List_Of_Term 
Type 11 j_" 

Term 11 " List_Of_Term 

Type 

Type 

Type 

Meta_ Type 
Meta_Type "(11 List Of Term ")11 

"(" Type ")11 ; 

102 

Type 

Type 

Type 

Type 

Type 

Type 
"(" 

Type 
"(" 

Axiom: 

-

-

-

"'I/ II 
-

"3" 

"•" Type 
Type "/" 

Type "/\" 

Type IIV" 

Type II :J II 

@Variable 

@Variable 

Type 

Type 

Type 
Type 

liE II Type II) II [ Type J 

liE" Type II) II [ Type J 

There are two axioms, a = a E A and A = A, which give the identity properties for 

the elements and the types, respectively. 

Inference Rule: 

:JI: 
[x E A] 

fEB 
AX.j E A :J B 

Side Condition: (NOT-FREE ("x" . Variable) ("B" . Type)) 

Note that the rule body looks the same to the previous example, whereas the side 

condition is specified in a different style of description. The other rules are omitted 

here. 

Rewriting Rule: 

cons: 

A:Jl_ 
-.A 

cons( car( t), cdr( t)) 
t 
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� EUODHJLOS-11: Proof Sheet 1- CTT ��� � 
Name : ONEM 

.Ab.a b inr .Aa.a b inl a 'E-,-, AV-,A -,def 
.Ab.ap(b, inr(.Aa.ap(b, inl(a))))E-,(AV-,A):::Jl.. (=>I [1]) 
I ap(b, i nr( A a. ap(b, in I (a)))) E 1.. (=>E) 
I I bEAV -,A:=>l.. ("�def) 
I I I [bE-, (AV -,A)] (Discharged 1) 
I I inr(.Aa.ap(b, inl (a))) EAV-,A (VI2) 
I I I .Aa.ap(b,inl(a))E-,A ("�def) 
I I I I .A.a. ap(b, in I (a)) EA:::Jl.. (=>I [2]) 
I I I I I ap(b,inl(a))El.. (:::JE) 
I I I I I I bE AV -,A:::J 1.. ( .,def) 
I I I I I I I [bE., (AV .,A)] (Discharged 1) 
I I I I I I i n I (a) E AV -,A ( V I 1) 
I I I I I I I [a E A] (0 i scharged 2) 

-- E :--%*-EUODHILOS-II: Proof Sheet 1 - CTT EUODHILOS-II P 

[bE •(A V •AJ]1 • [a E Af 
& E A V •A ::J __L •dd ·inl(a) E A V •A Vl� 

ap(&,
_
·iul(a)) E __L ::JJ., ::J Aa.ap(b,tnl(a)) E A ::J __L 1-f [bE •(A V •AJ]1 I . .\a.ap(b,·inl(a)) E •.4 '' c· J;) I . 4 4 of C'l . ( \ J . . {. . V _ 

v E.· V ,_. ::J __L m'f' /\a. ap(v, 't'lt (a))) E A V •A I:: 
ap(b, inr(.\a.ap(b, ·inl(a ))) ) E __L ::J 

.\&.up(b, ·inr(.\u.ap(b. ·iul(a)))) E •(A V •A ) ::J j_ ::JJ, 
. 

.\b b . >. b . { 
. . . ( ·dd .ap( · , ·tnr( a.ap( , w (a)))) E •• A V •A) 

Figure 7.2: A Proof of the Double Negation of the Excluded Middle Law in Intuition­

istic Type Theory 

Proof Example: 

The screen image in Figure 7.2 shows the proof of the double negation of the excluded 

middle law. In the upper window, the proof is displayed in a full-tree representation, 

whereas in the lower window the same proof is displayed with a DVI previewer by 

using the Y.TEX macros for having a better view of the proof trees. 

7.2 Modal Logic 

Modal logic [37 ] is a variety of classical logic extended by adding two modal expres­

sions: DA and 0 A. These propositions assert that "it is necessary that proposition 

A holds" and "it is possible that proposition A holds," respectively. 

In this section we present two formulation examples. The first example is a stan­

dard one of propositional modal logic and the other one is a logic for program verifi­

cation which is formulated by using modal operators, where for each program p, two 

modal operators [p] and < p > are introduced. 

(A) Modal Logic T 

Language: 

Two modal operators, D (necessity ) and 0 (possibility ) , are add d to the language 

of classical propositional logic: 

%ROOT Formula 

%META_ VARIABLES 

Identifier = "[A-Z] [A-Z0-9]*" 

%PRODUCTIONS 

AtomicFormula : := "j_" ; 

AtomicFormula ::= Identifier 

Formula AtomicFormula 

Formula - "•" Formula 

Formula - "0" Formula ' 

Formula "0" Formula ; 
Formula " ( " Formula ") " 

Formula - Formula "/\" Formula 

Formula Formula "V" Formula 

Formula - Formula II:) II Formula 

Formula Formula "=" Formula 



Axiom: 

The first three axioms come from ordinary propositional logic, and the rest are specific 

to the modal logic T. 

(1) A� (B �A) 
(2) (A� (B �C))� ((A� B)� (A� C)) 
(3) (-.A� -.B) � (B �A) 
(4) DA �A 
(5) D(A �B) � (DA � DB) 

Inference Rule: 

A A� B 
!liP B 

AD DA 

Rewriting Rule: 

We will use the following rewriting rules: 

A�l_ 
df -.A -. e 

-.o-.A 01 f OA ce 

-.0-.A (A� B) 1\ (B �A) 
DA Dele[ =def A=B 

•( -.A V ·B) A 1\ B , 
A 1\ B !\clef B 1\ A !\exchange 

-.A:> B 
A VB Vdef 

•(A 1\ B) 
---- cle_jnorganl -.Av-.B 
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AVE 
B V A V exchange 

•(A VB) 
---- clc.J11organ2 -.A 1\ -.B 

Name : 

A/\ 0 A::> B ::::> A/\ B *DEOUCT:t 1 

OCA/\ B) C ---, ---,) 
I ---, ---,0 (A/\ B) ( ---, def) 

I ---,0 (A/\ B) ::) l_ (*DEDUCT:*= [2]) 
I l_ (MP) 
I I OA (MP) 
I I I [0AA0 (A::::>B)] (Discharged 1) 
I I I OA/\ D (A::::> B) ::::>OA (Theorem ) 
I I OA=> l_ C -,def) 
I I I -,OA (0def) 
I I I -,-,D-,A ( ---, ---,) 

I I I 0---,A CD) 
I I I I -,A (MP) 
I I I I I ---, AV ---,A C V def) 
I I I I I I ---, ---,A::>---, A C ---, ---,) 
I I I I I I A=> -,A (=>TRANS) 
I I I I I A::::>B (MP) 
I I I I I I OCA=>B) (MP) 
I I I I I I I [ OA/\ D (A::> B) J (D i «<f'r-,ra.:>rl 

I I I I I I OA/\ D (A::::>B) =>D (A=> B) 
I I I I I DCA=>B) ::::> (A::::>B) (Axiom) 
I I I I B::::> -,A (---, ---,) 
I I I I I -, -,B::::>-,A (Vdef) 
I I I I I I -,Bv -,A (V exchange) 
I I I I I I I -,Av -,B (de_morganl) 
I I I I I I I I ---, (A/\ B) (MP) 
I I I I I I I I I O--. (A/\8) (Odef$ 
I I I I I I I I I I --.0 ---,---, (A/\ B) C--.--.) 
I I I I I I I I I I I [ -,OCA/\ B)J $ 
I I I I I I I I I 0 ---, (A/\B)::::> ---, (A/\B) $ 
1 1 -,Av -,A::> -.A cv I) 
I I I -,A:J -,A (Theorem) 
I I I -,A::> -.A (Theorem ) 

-- E :--%*-EUODHILOS-II· Proof Sheet 1- T EUODHILOS-II Proof Edttor - ( 

Figure 7.3: A Proof of OA 1\ D(A � B) � O(A 1\ B) in Modal Logic T 

Proof Example: 

Figure 7.3 shows a proof of OA 1\ D(A � B) � O(A 1\ B). To prove this proposition, 

we use propositional theorems. W ithout these theorems, the proof would be much 

larger and more difficult. 

Proof Example in the DCGo Framework: 

Figure 7.4 is an example in DCGo framework, where a proof example of "a strong 

correctness assertion is implied from a termination assertion and a weak correctness 

assertion" is displayed in the screen. 
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INFORMATION 

SOFT_KEYBOARD 

SYNTAX 

INFERENCLRULE 

REWRITING_RULE 

AXIOM 

PROVER 

DERIVEO_RULE 

THEOREM 

PROOF 

** EXIT ** 

formula --> 

formula! --> 
formula! --> 

** exit 

IIEP 

IIEQ 

III 

VE 

VIP 

VIQ 

:JE 

:JI 

"-E 
"-l 

formula2 --> formula2,and,fo 
formula2 --> formula3; 

formula3 --> ''('',formula,'')"; 
formula3 --> not, formula3; 
formula3 --> modall, lormula3; 
formula3 --> modal2,formula3; 
formula3 --> atomic_rormula; 

imply --> �����; 
or --> "V"; 
and --> "A"; 
not --> ''.-....''; 
modal! --> " O " ; 
modal2 --> "</"; 

** 

[�pliO (p:Jq) J 
-(IIEP{l}) 

�p 

[OpAO(p:Jq) J 
-(AEQ{l}) 

O(p-;jq) O{p:Jq)-;j(p:Jq) 
------- C:JE{l}) 

p:Jq 

2 
["-¢ (pllq) J 
<�0->0"-{2}) 
[]--(pllq) []--(p/\q)-:;)"' (pAq) 
---------(:JE {2}) 

"-(pllq) 
-(dc_morgan{2}) 

"-PY"-q 
--(change {2}) 
"-qv�p 
--(Y->:J {2} ) 

------------ (san-dan {1, 2}) 
p:::l"-p 
--(Y->-:;)(R) {1, 2}) 

"'PV"'P 
--(V{I,2}) 

"'P 
-(DI {1, 2}) 
o--p 
-{"-0->D--(R) {1, 2}) 
"'¢P 

----------------("-E{l, 2}) 

** ncUJ ** 
** exit ** 
1\-:;)_tO_-:;):J 

y 
V->-:;) 

:J->Y 

"""E 
[]--->�¢ 

�¢->O� 

change 

j_ 
--("-1{1}) 

�o<pllq) 
---- <�E{i}) 

(/(pllq) 
-----(:JI {}) 
0pAO(p:Jq):J0(pi\q) 

REWRITING_RULE:mod; 

INFERENCE_RULE:mod; 

p 

OP 

** Side conditon ** 
** Define ** 

Figure 7.4: A Proof of <> p 1\ [](p � q) �<> (p 1\ q) on EUODHILOS-I 

Theorem: 

f-<> p 1\ [](p � q) �<> (p 1\ q) 

(B) Dynamic Logic 

Dynamic logic [33] is a kind of multi-modal logic which is an extension to classical logic. 

The principal formulas in dynamic logic are the dynamic formulas of the form " [a)p" 

and its dual "<a>p", read informally ''after executing the program a the proposition 

p holds", where "a" is a regular or context-free program and "p" is a first-order or 

dynamic formula. They can be easily dealt with in the DCGo framework of EUO­

DHILOS-I. 
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Language: 

dynamic_formula --> "<", regular_program, ">", formula3; 

dynamic_formula --> "[", regular_program, "]", formula3; 

formula --> 

formula --> 

formulaO --> 

formulaO --> 

formula! --> 

formula! --> 

formula2 --> 

formula2 --> 

formula3 --> 

formula3 --> 

formula3 --> 

formula3 --> 

formula3 --> 

formula3 --> 

formula3 --> 

formula, "=" formulaO; ' 

formulaO; 

formulaO, II ::) II > formula!; 

formula!; 

formula!, "V", formula2; 

formula2; 

formula2, "I\ II' formula3; 

formula3; 
It ( tl , formula, II) II ; 
11-11 formula3; 

dynamic_formula; 

"true"; 

term, 

term, 

term, 

"=" 

">", 

">" - ' 

term; 

term; 

term; 

term --> variable I constant; 

term --> term, "+", term I term, "-" term I term, "x 11
, term I 

term ' 
" I II I " ( " ' t e rm ' " ) " ; 

variable --> "x" "y" I "z" I "n"; 

constant --> "0" "1"; 

regular_program --> regular_program, ";", regular_program1; 

regular_program --> regular_program, "I", regular_program1; 

regular_program --> regular_program1; 

regular_program1 --> regular_program2, "*"; 
regular_program1 --> regular_program2; 

regular_program2 --> assignment_statement; 

regular_program2 --> formula, 11?"; 

regular_program2 --> " ( ", regular_program, " ) " ; 

assignment_statement --> variable, ":=", term; 

regular_program2 --> meta_program; 

formula3 --> meta_formula, " ( ", term, ") "; 

formula3 --> meta_formula; 

term --> meta_term; 
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variable --> meta_variable; 
meta_term --> meta_variable; 
meta_program --> "A" I "B"; 

meta_variable --> "X"; 

meta_formula --> "P" I "Q" I "R" I "S". 

with_priority 
"!"; 

"x"; ("+", "-"); ("<", "["); (" - ", ''>", '':2:", "="); 

"/\"; "V"; "�"; "="; ("?", ":="); "*"; (";", "I"); 
without_priority 

meta_formula. 

Axiom: 

(1) [Q?)P = (Q � P) (test) 

(2) [X := T]P(X) = P(T) (assignment axiom) 

(3) [A; B]P = [A][B]P (composition) 

(4) <A; B > P =<A>< B > P (composition) 

(5) [A!B]P = ([A]P 1\ [B]P) (nondeterministic selection) 

(6) P(X) 1\ X = T � P(T) (substitution) 

(7) x = 0 � (x = 0 �true) (arith) 

Inference Rule: 

mod us ponens: 

necessitation: 

in variance: 

convergence: 

p P�Q 
Q 

P�Q 

[A]P � [A]Q 

n "2: 01\ P(n + 1) �<A> P(n) 

n 2:: 01\ P(n) �<A*> P(O) 
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composition 1: 

composition 2: 

derived-rule1: 

replacement 1: 

replacement 2: 

symmetricity: 

Rewriting Rule: 

def: 

neg-elim: 

double-neg-elim: 

arithmetic: 

true-elim: 

P �<A> Q Q �< B > R 
P �< A;B > R 

P � [A]Q Q � [B]R 

P � [A;B]R 

P �<A> Q R � [A)S 

PI\R�<A>(QAR) 

P(Q) Q=R 

P(R) 

P�Q Q=R 
P�R 

P=::Q 
Q=P 

[A]P 

rvrv P 
p 

n"2:01\x=n 
x"20 

true 1\ P 
p 
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d�namic_log i c SYNTAX : dynamic_logic 

INFORMATION 
SOFT_KEYBOARD 

save make test structure print reshape exit 

--> 1eft_diamond1regular_program1right_diamon! 

--> Jeft_box,regular_program,right_box,formul! 

AXIOM : dynamic_logic 

IJimil����,l!m� formula --> formula, equivalence, formulaO; save wff _editor reshape 
formula --> formulaO; t-r�--------------......j 

exit 

--> formulaO, imply, formula!; 
--> formu I at; 

--> formula1,or,formula2; 

--> formula2; 

[Q?JP:(QJP) 

[X:=TJP(X):P(T) 

[A;BJP;;;[AJ[BJP 

REWRITING_RULE: 
- ----�--

zXx!=n!�[(x>O?)](zXx!=n!Ax>O) zXx!=n!Ax>O�[z:=xXz](zX(x-i)!=n!) 
-----------------------------------------------(comp20) 

zXx! =n! � [ (x>O?; z: =xXz) J (zX (x-1)! =n!) 

:)<(z:=1)>(n�0Ax=n) 
1 -----(compl 0) 

zXx!=n!�[((x>O?;z:=xXz);x:=x-1) 

0) x=O�<(x=O?)>true 
I-----------------------( c omp 1 {} ) 

zXx!=n!�[(((x>O?;z:=xXz);x:=x-1)* 

);x:=x-1)*);x=O?)>true x=n�[(z:=1; (( 
1 ------------------(ar i t h 0 ) 

x:=x-1)*);x=O?)>true 

x<::Oi\x=n:x ( (z: ;;;1 j ( (x>O?; z: =xXz); x: ;;;x-1) *); x;;;O?)> (trueAz=n!) 
-------------------------------------------------(trE{}) 

�OAx=n:x ( (z: =1; ( (x>O?; z: ;;;xXz); x: =x-1) *); x=O?)> (z:n!) 

sheet_! 

Figure 7.5: Total Correctness Theorem m Dynamic Logic 

Lemma: 

(1) < (x = 0)? >true= (x = 0 :J true) 

(2) n � 0 1\ x = n + 1 :J< (x > 0)? > (x = n + 1) 

(3) x = n + 1 :J< z := x x z > (x = n + 1) 

(4) x = n + 1 :J< x := x- 1 > (x = n ) 

(5) z x x! = n! 1\ x > 0 :J [z := x x z](z x (x- 1)! = n!) 

(6) z x (x- 1)! = n! :J [x := x- 1](z x x! = n!) 

(7) x = n :J [z := l](z x x! = n!) 

(8) z x x! = n! :J [(x = O)?](z = n!) 

112 

Proof Example: 

One of the example proofs in this logic is the following properties of a factorial pro­

gram: 

(1) Termination: 

X � 0 :J< Z := 1; ((x > 0)?; Z :=X X z; X:= X- 1)*; (x 

(2) Partial Correctness: 

x = n :J [z := 1; ((x > 0)?; z := x x z; x := x- 1)*; (x 

( 3) Total Correctness: 

0)? >true 

0) ?]( z n!) 

x � 0 1\ x = n :J< z := 1; ((x > 0)?; z := x x z; x := x- 1)*; (x = 0)? > (z = n!) 

Figure 7.5 is an example screen of proving the total correctness theorem of the 

factorial program. 

7.3 Intensional Logic 

Intensional logic[25] is a higher-order modal logic based on the simple type theory, 

which requires context-sensitive constraints on terms. It includes a lot of complicated 

logical concepts which are all well described in the DCGo notation. 

Language: 

meta_formula --> pred_const, "(", term(_), ")"; 

meta_formula --> meta_formula, "=>", meta_formula; 

pred_const --> "beweis"; 

meta_formula --> meta_term(_); 

meta_ variable --> "X" I "Y"; 

meta_ term(_) --> "R" I "S" I "A" "B" I "P" I "F"; 
meta_term(_) --> meta_variable; 

meta_term(_) --> meta_term(_), colon, type(_); 

meta_type(_) --> "a" I "b" I "c" I "T" I "T1" I "T2" I "T3"; 
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term(t) --> term(t), "=:J", term1(t); 

term(T) --> term1(T); 

term1(t) --> term1(t), "V", term2(t); 

term1(T) --> term2(T); 

term2(t) --> term2(t), "/\", term3(t); 

term2(T) --> term3(T); 

term3(t) --> term3(T), "=", term7(T); 

term3(T) --> term7(T); 

term7(T2) --> term7((s,(T1,T2))), "{", term(T1), "}"; 
term7(T) --> term4(T); 

term4(t) --> bind_op, variable(T), ".", term5(t); 

bind_op --> "\/" I "::3"; 
term4((T1, T2)) --> bind_op, variable(T1), ".", term5(T2); 

term4(T) --> term5(T); 

bind_op --> ",\"; 
term5(t) --> " -", term5(t); 

term5(T2) --> term5((T1, T2)), "
•

"
, term6(T1); 

term5(T) --> term6(T); 

term6((s,T)) --> "�", term6(T); 

term6(T) --> "v", term6((s,T)); 

term6(t) --> "[]", term6(t); 

term6(t) --> "<>", term6(t); 

term6(T) --> "(", term(T), ")"; 

term6(T) --> variable(T) I constant(T); 

term6(T) --> meta_term2(T), "(", term(_), ")"; 

meta_term2(T) --> meta_term(T); 

term6(T) --> meta_term(T); 

variable(T) 

constant(t) 

constant(T) 

truth_ value 

--> 
--> 
--> 
--> 

var_sym, ":", type(T) I meta_variable, 

truth_value, ":'', type(t); 

const_sym, ":", type(T); 

"true" I "false"; 

var _sym --> "x" I "y" I "p"; 

const_sym --> "fish" I "believe" I "walk" I "j"; 

type (e) --> ''e"; 
type(t) --> "t"; 

type(T) --> meta_type(_); 

type((T1,T2)) --> "(", type(T1), " 11 type(T2), ")"; 

type((s,T)) --> "(s,", type(T), ")". 

with_priority 
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II .II 
. ' type(T); 

( II : II 1 tt 
J 

If ) ; 

("�", "v", "[]", "<>"); 
( "•

"' "- fl ) ; 

"{"; 
bind_op; 
11-11 . -

' 

"I\ II ; 

"V"; 

without_priority 

meta_term2, pred_const. 

Axiom: 

(1) G: (t,t) •true: t 1\ G: (t,t) • false: t = VX: t.G: (t,t) •X: t 

(2) X: a= Y: a� F: (a, t) • X: a= F: (a, t) • Y: a 
(3) VX: a.(F: (a, b) • X: a= G: (a, b) • X: a)= (F: (a, b) = G: (a, b)) 

(4 ) (AX: a.A(X; a)) • B = A(B) 
(5 ) [ ](v F: (s, a) =v G: (s, a)) = (F: (s, a)= G: (s, a)) 
(6)v�A:a=A:a 

Inference Rule: 

Reflection -1: 

Reflection-2: 

=>I: 

Replace-1: 

beweis(A) 
A 

A 
beweis(A) 

[A] 

B 
A=>B 

A(R) R=S 

A(S) 
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Replace-2: 

Symmetricity: 

Rewriting Rule: 

\1- Definition: 

Brace convention: 

Notational convention: 

Lemma: 

A(B) = A(R) R = S 

A(B) = A(S) 

R=S 
S=R 

..\X : a.P : t = ..\X : a.true : t 
\IX: a.P : t 

A{R} 

CA). R 

F•G 
F(G) 

(1) (P : t =true : t) = P: t 

(2) ..\X : a.Q : b = ..\X : a.Q : b 

Proof Example: 

The following metatheorem 1s ingeniously proved usmg the idea of the reflection 

principle [l14] . 

Generalization rule: 

f- P : t =>f- \lx : a.P : t 

Figure 7.6 illustrates a proof of this generalization rule. 

In Montague's language theory, natural language sentences are first translated into 

expressions in intensional logic, which in turn are analyzed by using the possible world 

semantics. Under the defined intensional logic, the following complicated intensional 

formula: 
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A(R) R=S 

A(S/R) 

** Side condilon ** 

** Define ** 

SYNTAX : intensional_logic 
save make test structure print reshape ex. 

term4(t) --> bind_op,variable(T),".", term5(t); 

term4(T) --> term5(T); 

term4((T1,T2)) --> lambda,variable(Ti),".",term5(T2); 

1 ambda --> "A."; 

bind_op --> "1:1";"3"; 

termS(t) --> not,term5(t); 

not --> """"; 

term5(T2) --> term5((T11T2)),apply, term6(T1); 

term5(T) --> lermG(T); 

apply --> "0"; 

INFORMATION 

SOFT_KEYBOARD 

SYNTAX 

INFERENCE_RULE 

REWRITING_RULE 

AXIOM 

PROVER 

DERIVED_RULE 

THEOREM 

PROOF ll...,r-:n-.,--,....-r-r7��--,-__,ll.,_dl terrn6 ( (s, T)) --> intension, t erm6 (T); 

** EXIT ** 

A 

** Side conditon 

** Define ** 

R: (t, t)Otrue: tAR: (t, t)Ofalse: t=I:IX: t. R: <t, t)OX: t 

X: a=Y: a:::lF: (a, t )OX: a=F: (a, t )@Y: a 

\:IX: a. (F; (a, b)OX: a=R: (a, b)OX: a)= (F: (a, b) =R: (a, b)) 

(AX:a.A(X:a))OB:A(B) 

0 c�F: (s, a) =�R: (s, a))= (F: Cs, a) =R: (s, a)) 

V"'A:a=A:a 

R=R 

[beweis(P: t)] 

--(Refl {1}) 

P: l 

(P: t=true: t)=P: t 

----(s!,Jm{)) 

P: I= (P: t=true: I) 

-------(Rep I {I} ) 

sheet_t 

P:t=lrue:t AX: a. P: t=AX: a. P: t 

----------(sub-Rep {1}) 

AX:a.P:t=AX:a.true: t 

-------- ctldef {1}) 

tiX: a. P: t 

-----(Ref2{1}) 

beweis(I:IX:a.P: t) 

---------(�I{}) 

beweis(P:t)Qbeweis(tiX:a.P:t) 

Figure 7.6: A Proof of the Generalization Rule in Intensional Logic 

(..A.p: (s, (e, t)).3x: e.(fish: (e, t) • x: e 1\ p: (s, (e, t)){x e} )) 
.� ..\y: e.(believe: ((s, t), (e, t)) 

• � (walk : ( e, t) • y : e) • j : e) 

which is a translation of a natural language sentence ((John believes that a fish walks", 

easily and precisely reduces to a simpler and legible one: 

3x: e(fish: (e, t) • x e 1\ believe: ((s, t), (e, t)) • �(walk (e, t) • x: e) • j e). 

This theorem also has been proved easily. 
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7.4 Hoare Logic 

Hoare logic [35] is the most well known logic for the axiomatic semantics of a program­
ming language and the verification of a program. The principal formula in Hoare logic 

is a form of "P{S}Q", reads "if the property P holds, then after executing the pro­
gram S, the property Q holds", where P and Q are first-order formulas and S is a 
program in an ALGOL-like programming language. These syntactic objects are easily 
described in the DCGo framework, as well as the inference rules of Hoare logic which 
is a kind of Hilbert-type logical system. 

Language: 

h-formula -->formula, "{", program, "}", formula; 

formula --> formula, ":J", formula1; 

formula --> formula1; 

formula1 --> formula1, "V", formula2; 

formula1 --> formula2; 

f ormula2 --> f ormula2, "I\" , f ormula3; 

formula2 --> formula3; 

formula3 --> "(", formula, ")"; 

formula3 -- "-", formula3; 

formula3 --> basic_formula; 

basic_formula --> "true" I term, "=" term; 

term --> variable I constant I "(", term, ")" I 

term, "+", term I term, "*", term I term, 

variable --> "x" "y" I "z"; 

constant --> "1" "0"; 

program --> program, ";", program1; 

program--> program1; 

program1 --> assignment_statement I 

II I II • . ' 

"while", formula, "do", program, "od" I 

"if", formula, "then", program, "else", program, "fi" I 

"(", program, ")"; 

assignment_statement -->variable, ":=", term; 

meta_program --> "A" "B"; 

meta_var --> "X" I "Y" I meta_var, "/", term; 

meta_ term --> "T"; 
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meta_formula --> "P" I "E" I "F" I "G"; 
basic_formula --> meta_var; 

term --> meta_term; 

variable --> meta_var; 

program --> meta_program; 

program1 --> meta_program. 

with_priority 
II! II; 11*11; 11+11; 

Axiom: 

" - " · - ' 

Conjunction-elimination: 

Substitution: 

''/\"; "V"; ":J"; 

EI\F� E 

" ·- " · .- ' 

P( X) 1\ X = T � P(T) 

Assignment axiom: 

Arithmetic: 

Inference rule: 

Consequence rule 1: 

Consequence rule 2: 

Composition rule: 

P(T){ X := T} P(X) 

true� 1 = 0! 

E � F F{A}G 
E{A}G 

E{A}F F � G 
E{A}G 

E{A}F F{B}G 
E{A;B}G 
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Hoare_logic SYNTAX : Hoare_logic AXIOI� : Hoare_logic 

save make test structu save wff_editor 

h_formula --> formula,Ieft_bra true::J1=0! 

left_brace --> "{"; z=y!A�Cy=x)::Jz=y! 
right_brace --> "}"; 

variable --> "a''l"b":"x":"y'':" 

constant --> "1":"011; 

reshape exit INFORMATION 

SOFT_KEYBOARD 

SYNTAX 

INFERENCE_RULE 

REWRITING_RULE 
AXIOM 

PROVER 

DERIVED_RULE program --> program,semi_colon 
PAQ::JP INFERENCE_RULE:Hoai 

THEOREM 

PROOF 

program --> program!; P(T/X) {X:=T}P(X) 

** EXIT ** 

gcd_prop1 n ame:repe t i l ion 
program! --> assignmenl_slalem (X>Y)::J(gcd(X,V)=gcd(X-Y,V)) f----'--------i 
program! --> while, formula, "do' gcd_prop2 

FAG{A}F 

00¢¢LJ{--il���·�· F{whileGdoAod}FA�G 
. . . . _. 

Q Q LJ ;{21Dl� EJ •(>j.• 
** Side conditon ** 
** Define ** 

naone:arith 

z=y! 

=1}z=O! 
seq10) 

z=O! {!J:=O}z=y! 
1 ------(comp {}) 

z=y! A� Cy=x) ::n=y! 
------(ar i th {}) 
z=y!A�y=x::Jz*(y+l)=(y+i)! z* (y+i) = (y+ 1)! {y: =y+1} z*y=y! 
-----------------(conseq t 0) 

Z*\J=\J! {Z: =Z*!J} z=y! 
--------------------(comp {}) 

z=y!A�y=x{y:=y+l;z:=z*y}z=y! 
--------------(repe ti {}) 
z=y! {whi I e�y=xdoy: =y+1; z: =z*yod} z=y! A�y=x 
----------------- <�EO> 

{z:=l;y:=O>z=y! z=y! {whi I e�y=xdoy: =y+l; z: =z*yod} z=y! Ay=x 
1------------------------------------Ccomp 0) 

true{z:=i;y:=O; (while�!J=xdo!J:=y+i;z:=z*yod)}z=x! 

heet_t 

Figure 7. 7: Partial Correctness Proof of a Factorial Program in Hoare Logic 

Conditional rule: 

Repetition rule: 

Rewriting rule: 

Arithmetic rule: 

E !\ F{A}G E!\ r-.J F{B}G 

E{ if F then A else B fi}G 

F !\ G{A}F 

F{while G do A od}F!\"' G 

z = y! 
Z X (y + 1) = (y + 1)! 
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z= 

Proof Example: 

The screen layout of the proof of the following partial correctness assertion of a 

factorial program is shown in Figure 7. 7: 

true{z := 1; y := 0; while rv (y = x)do y := y + 1; z := z * y od}z = x! 

with the precondition "true" and postcondition "z=x!". For such a proof, we have 
often used an external ATP system which was connected to EUODHILOS-I through 
the theorem prover interface, in order to search for arithmetical theorems from its 

theorem database. 

7.5 Linear Logic 

Linear logic was originated from J .- Y. Girard[26] and is usually described in the 
sequent style formalization. Unlike the classical logic LK, it lacks the two structural 
rules of weakening and contraction, so that it is suitable for handling the properti s of 
finite resources. From these differences the free creation and deletion of an arbitrary 

proposition are prohibited in Linear Logic. 

Petri net[54] is a computation model of concurrent processes, and is used to analyze 

their properties. The behavior of Petri net can be represented naturally in linear 
logic[31], because the tokens in a Petri net has the property of resources. To be 

precise, the diagram: 

A B 

0--.f----.0 
denotes that "if we have a token on condition A, then it IS possible to fire event t. 

Firing t exhausts the token on A and provides a token on B." This can be translated 

into the linear logic sequent A f- B. 

The reachability problem, which is common 111 Petri net theory, can be replaced 

with the provability problem in linear logic. 

Consider the following Petri net: 
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r B s D 

A 

u 

The problem is to determine whether the proposition "if there are two tokens on A, 

a token can reach F" holds. In linear logic, this problem is expressed as A, A � F. 

Language: 

We specify a language system that can represent the above problem. 

/.ROOT Sequent 

/.META_ VARIABLES 

Meta_Formula = "[P-R] [0-9]*" ; 

Meta_Formula List = "[L-N] [0-9]*" 

%PRODUCTIONS 

Sequent 

Sequent 

Sequent 

Formula_List "f-" Formula List 

Formula_List "f-" 

"f-" Formula List 

Formula List 

Formula List 

Formula List 

Atomic Formula 

Atomic Formula 

Meta_Formula_List 

Formula ; 

Formula_List 

"A" 

"8" 

Atomic Formula "C" 

Atomic Formula 

Atomic Formula 

"D" 

"E" 

Atomic Formula "F" 

Formula - Meta Formula 

Atomic Formula 

" " ' 

Formula 

Formula 

Formula 

"(" Formula ")" ; 

Formula "®" Formula 

122 

Formula List 

Axiom: 

Name : NETl 

A.A F CUT 
A, A f-D®E 
I A f-D 
I I A f-B 
I I B f-D 
I A f-E 
I I A f-C 
I I c f-E 
D®E f-F 
I 0, E f-F 

(®R) 
(CUT) 
(Axiom Netl) 
(Axiom Net2) • 

(CUT) 
(Axiom Net3) 
(Axiom Net4) 
(®L) 
(Axiom Net5) 

-- E :--%*-EUODHILOS-II. Proof Sheet 1- Petri EUOOHI 

� CU031.A.IIJI�l:J�Jtrvf ""' - I .-]' _: - - ,,,.�!:::_..A 1' 
------------�---�----·�---·-� -�··-- . -

A f- B B f- D CUT A f- C C f- E CUT 
A f- D A f- E nR 

A,Af-D0E � 

A,Af- F 

D, E f- F 
0L 

D IS,1 E f- F 
Cl T 

L� 

� ........ ,] 
E3 
I·M•.oal 
1""''""'1 

Figure 7.8: Proof of the Reachability Problem. 

Transitions of the above Petri net are expressed as follows: 

Inference Rule: 

r: A� B 

t: A� C 

s: B � D 

u: C�E 
v: D, E�F 

We will use only the following four inference rules in this example: 

(1) CUT : 

(2) EXCHL: 

L�P P�Q 
L�Q 

P, Q�M 

Q, P�M 

123 



(3) @1: 

(4 ) &R: 

Proof Example: 

P, Q f- M 

P&Qf-M 

Ll f- P L2 f- Q 

Ll, L2 f- P 0 Q 

The formula to be proved is A, A f- F. Its simplest proof is shown in Figure 7.8, 

where the lower part is the same proof tree displayed by the DVI previewer. 

7.6 First-Order Logic 

In this section we present two description and proof examples for classical first-order 

logic. 

(A) Unsolvability of the Halting Problem 

Axiom: 

(1 ) :=lx(A(x) 1\ Vy(C(y) � VzD(x,y,z))) � :=lw(C(w) 1\ Vy(C(y) � VzD(w,y,z))) 
(Church's thesis ) 

(2) Vw(C(w) 1\ Vy(C(y) � 'v'zD(w,y,z)) � 'v'y'v'z((C(y) 1\ H(y,z) � H(w,y,z) 1\ 

O(w,g)) 1\ (C(y)/\ "'H(y,z) � H(w,y,z) 1\ O(w,b)))) 

(3) :=Jw(C(y) 1\ Vy((C(y) 1\ H(y,y) � H(w,y,y) 1\ O(w,g)) 1\ (C(y)/\"' H(y,y) � 

H(w,y,y) 1\ O(w,b)))) � :=lv(C(v) 1\ Vy((C(y) 1\ H(y,y) � H(v,y) 1\ O(v,g)) 1\ 

(C(y)/\"' H(y,y) � H(v,y) 1\ O(v,b)))) 

(4) :=lv(C(y)/\Vy((C(y)/\H(y,y) � H(v,y)/\O(v,g))/\(C(y)/\ "'H(y,y) � H(v,y)/\ 
O(v,b))) � :=Ju(C(u) 1\ Vy((C(y) 1\ H(y,y) �r--.1 H(u,y)) 1\ (C(y)/\ r--.1 H(y,y) � 

H(u, y) 1\ O(u, b)))) 

where the meaning of each predicate is as follows: 

A (x): xis an algorithm , 

C (y): y is a computer program in some programming language , 
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INFORMATION 

SOFT_KEYBOARD 

SYNTAX 

INFERENCE_RULE 

REWRITING_RULE 

AXIOM 

PROVER 

�ormula --> formula,equivalence,formulal; 
formula --> formula!; 

formula! --> formula1,imply,formula2; 
formula! --> formula2; 

formula2 --> formula2,or, formula3; 
formula2 --> formula3; 

• 
save wff_editor reshape exit 

r 

3v(C(v)AHy((C(y)AH(y,y)::>H(v,y)A0(v,g))A(C(y)A�HCy,y)::>H(v,y)A0(v 
))A(C(y)A�H(y,y)::>H(u,y)AO(u,b)))) 

p P::>Q 

0 

** Side condi 

** Define ** 

�P 

** Side conditon ** 

** De fine ** 

3w(C(w)AHyC(C(y)AH(y,y)::>HCw,y,y)A0(w,g))A(C(y)A�HCy,y)::>H(w,y,y)A0(w,b))))::>3v(C(v)AHy((C(y)AH(y,y)::>H(! 
v,y)AQ(v,g))A(C(y)A�HCy,y)::>H(v,y)AO(v,b)))) 

0 

g))A(C(y)A�HCy,y)::>HCv,y)AO(v,b)))) 
1------------C::>E{i} l 

heet_i 

.l 

----- <�I 0) 

�3xCA(x)AHy(C(y)::>HzOCx,y,z))) 

Figure 7.9: Unsolvability of the Halting Problem in First-Ord r Logic 

D(x,y,z): xis able to decide whether y halts with given input z, 

H(x,y): x halts with given input y, 

H(x,y,z): x halts with given inputs y and z, 

O(x,g ): x outputs g; i.e. x halts , and 

O(x,b ): x outputs b; i.e. x does not halt. 

Proof Example: 

Figure 7.9 shows part of a proof of the theorem that no algorithm to solve the halting 

problem [lO ] exists: 

f-"' :=Jx(A(x) 1\ Vy(C(y) � VzD(x,y,z))) 
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induct j ve_proot -------------- • 
INFORMATION 

SOFT_KEYBOARD 

SYNTAX 

INFERENCE-RULE 

REWRITING_RULE _theor� 

** new ** 
** exit ** 
lnd 

inst 

subst 

substl 

S!Jm 

[P(T/0)) 

P(O) P((XOT)/0) 

tin. P(n/0) 

** Side conditon ** 
** Define ** 

save make test structure print reshape exit 

�ormula --> formula, equal, formulaO; 
formula --> formulaO; 

formulaO --> bind_op,varlable,".",formulai; 
formulaO --> formula1; 

formula! --> formula1,op, formula2; 
formula! --> formula2; 

formula2 --> append,"(", formula,",",formula,")"; 
formula2 --> term; 

AXIOM : inductive_proof 
term --> 
term --> 
term --> 
term --> 

constant; 
save variable; 

"(",formula,">"; r 
term,op,term; x=x 

wff_editor 

constant --> ''0'' ; 
variable --> "u":":x":"�11: 

append(O,T)=T 

reshape 

append(XOT,S)=XOappend(T,S) 
term --> meta_term; 

x=x 

exi i 

-------------------------------(in 
,append(u,z))J append(xOv,append(u,z))=xOappend(!J,append(u,z)) append(append(O,u),z)=append(append <O, 
--(subst (if) (s!Jm 0) 

xOappend(!J,append(u1z))=append(xO!J,append(u,z)) append(append(O,u>,z>=app 
-----------------------------------------------(trans(1}) 
nd(xOv,append(u,z)) append 

tlx. (append(append(x,u),z)=append(x,append(u,z))) 

shee L 1 

Figure 7.10: Structural Induction Proof in First-Order Logic 

(B) Structural Induction on List Structure 

As another example proof for first-order logic we take a recursive data structure which 

is popularly used for defining new data types. 

Proof Example: 

Figure 7.10 is a proof for the theorem: 

� Vx'Vy'Vz.append(append(x, y), z) = append(x, append(y, z)) 

which expresses the associativity of the append function. 

The structural induction is a well-used method for proving useful properties for 

the data structures that are defined in terms of recursion. 
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·�-·=. . . . - . . 

oooo'LJ�-(1���-·�· 
(tiE(}) 
O:ii 
- ( V J P O ) 
O�j Vr (j) 
-(:S-> () ) 
j<O:::>r(j) 

2 ----(til{ 
[j:OJ tlj (j<O:::lr (j 

.(chg {2}) 
O=j 

I 
[tlp(p(O)Atln(p(n):::>p(n+l)):::ltlnp(n))] r (j) 

(tiE (I}) ---(:>I{ 
p(O)stlj (j:.;O:::>r (j)) p(O)Atln(p(n):::>p(n+l)):::>tlnp(n) j=O:::>r(j) 

(rep2 (1} ) <= 
p(n)!!tlj (j�:::lr(j)) tlj (j�O:::lr (j) )Atln (p (n):::lp (n+l) ):::ltlnp (n) j �O:::lr (j) 

Crep2(1}) (tl 
+l:::lr(j)) tJ j C j .:SO:::lr C j)) A tin (tl j ( j .;Sn:::lr < j) ) :::lp (n+ 1)) :::ltlntl j ( j ,:Sn:::lr ( j ) ) tl j ( j :.;0 :::lr ( j ) ) 

(rep2{1}) 
j ::;;O:::lr < j)) A tin (tlj (j �:::lr C j)) :::ltlj { j .:sn+ 1 :::lr < j))) :::ltlntl j ( j .:snx ( j)) 

tlntlj {j�Dr (j)) 
(t:1E(11 3}) 

tJ j (j ,:Sn:::lr ( j)) 
(t1E(1, 3}) 

n.;Sn:::lr (n) 
(::lEU, 3} > 

r(n) 
--(til {1, 3}) 
tlnr(n) 

(:::ll ( 1} ) 
tin Ctlj (j<n:::lr(j) ):::lr (n)):::ltlnr (n) 

(t:1l ( 1} ) 
tlr (tin (tlj (j<n:::lr (j) ):::lr (n)):::ltlnr (n)) 

(:::ll {} ) 
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heet_l 

Figure 7.11: Proof Examples of Second-Order Logic 

7.7 Second-Order Logic 

We present a proof of second-order logic as an example of higher-order logic. 

Proof Example: 

Figure 7.11 proves that the principle of the mathematical induction 1s equivalent to 

the principle of the complete induction: 

� Vp[p(O)!\Vn(p(n) :J p(n+1)) :J Vnp(n)] = Vr[Vn(Vj(j < n :J r(j)) :J r(n)) :J Vnr(n)] 
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** EXIT ** 

REWR IT I NG_F 

** new ** 

name: fond 

AX=X 

A is fond of X 

save make test structure print reshape exit 

'formula --> term,"=", term : 
term, .. is fond of ", term 
term," is egocentrlc"; 

term --> b_term : 
b_term,"'',b_term: 
meta_term,"/",meta_term; 

b_term --> constant : variable meta_term 
b_term, "

•
"

, b_term 
"{",term,")"; 

constant --> "M"; 
variabJ e --> "a"-"e": "x"; 

meta_formula --> "F"; 
meta_formula --> meta_pred,"(",term,"J"; 

meta_pred --> meta_formula; 
meta_term --> "A"-"E":"R"-"Z". 

operator 

"•"i 
"/"i 

predicate 
u is fond of .. , 

(A•B)X=A(BX) -- (sbst {}) 

AXIOM : mocking_bird_puzzle 
save wff_editor reshape exit 

r 
MX=XX 

(A•B)X:A(BX) 

0 

" is ecogentric", 
meta_pred. 

(AoM)X=A(MX) MX=XX ----- (sbst 0) (sbst {}) 
UloM) (AoM)=A<M(AoM)) 1-HAoM): (A.M) (A oM) ------------ (eq{}) 

(AoM) (AoM)=A((AoM) (A·M)) 

name:esocentric 

A is fond of A 
sheet_l 

A is egocentric 

Figure 7.12: Combinatory Logic: Mocking Bird Puzzle 

7.8 Combinatory Logic 

This proof example is taken from the Smullyan's book [108] in which each combinator 

is interpreted as a bird in a wood, where each bird will reply with a bird name as it 

is called with a bird name. In this formulation the proposition "z = x • y" says that 

the bird x will reply with the bird z as it is called with y. 

Axiom: 

( 1) Mockingbird condition 

Vx.mx = xx 

(2) Composition 

VxVyVw.(x • y)w = x(yw) 
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Proof Example: 

The proof example 111 Figure 7.12 is the one for the first theorem below. In this 

example, the x in the theorem is represented by A and a metavariable was used for 

y in the above theorem. The metavariab]e for y is instantiated gradually and in the 

final proof of the window, it is (A • M)(A • M), which is the bird that the bird A is 

fond of. This is an example proof of problem solving by starting the proof procedure 

with inputting a metavariable to the place where the solution should appear and when 

the proof terminates the solution to the problem is obtained as the substituted result 

to the metavariable. 

( 1 ) Every bird of the forest is fond of at least one bird. 

� Vx:::ly(xy = y) 

(2) At least one bird is egocentric or narcissistic. 

�:::Jx(xx=x) 

7.9 General Logic 

General logic [ l05] is a kind of Gentzen-type formal system which yields a unified 

account of a fairly wide range of logical systems. Diverse logics are displayed as 

variations on a single theme. Such a general logic have been very successfully and 

smoothly handled on the DCGo framework by specifying those variations on a single 

theme as rewriting rules. 

Proof Example: 

The proof examples in the various systems covered in Slaney's general logic include: 

( 1) true : ( rv p � q) � ( rv q � p) 
(2) p � q, p � r : p � q&r 
(3) Distribution: p, q V r : p&q V r 
( 4) true :rv (A& '""A) 
(5 ) Reductio ad absurdum: X; B: A&'"" A� X :rv B 

(6) Baffling formula: true: :::ly.(g(y) --7 Vx.g(x)) 
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** EXIT ** 

bunch, ", ", bunch : 
bunch,";", bunch : 
"{", bunch, ")" : 
formula; 

formula --> formula, "->'', formula 
formula, "v", formula : 
formula, "&", formula : 
bind_op, variable,".", formula 
.......... , formula : 
"(", formula, "}" : 
predicator, "(", variable, ")"l 
"P"l"q":"r":"true"; 

** new ** 

** exlt ** "tl" : Jl3"; 
variable --> "v":"u": .. c":"d"; 

1---.:.__--1 predicator --> "g '': ''h '': "k"; 

** new 

** exit 

�\:1=>3� 

�3=>\:1� 

"'->=>&"'-

SRL1 

SRL2 

SR2 

SR3_1 

SR3_2 

SR4 

SR5_1 

SR5_2 

SR6 

SR7 

SRB 

SR8 

** 

** 

** exit ** 

VE 

VI_ I 

Vl_r 

liE_ I 

ch --> me1a_form1, "(", meta_arg, ")" 
"X" :"Y": "Z"; 

--> meta_bunch : meta_form; 

[X; B: A&�AJ 
-CCP{I}) 

X:B->A&�A true:�CA&�A> 
------(MTT(t}) 

x;true:�B 
---(SR7 {1} ) 
true;x:�B 
---CSR5_1 (1}) 

x:�s 

"(" , 

X 

X,Y 

")"l 

X 

X:A->8 Y:A 

X;Y:B 

** Side conditon ** 

** Define ** 

_§_ljEE'I -QF-THOU�HT: 9�Qe_!�-�-.lo_g i c _________________________ _ 

se If se If 
�p->q:�p->q �q:�q 
----- (MTT {} ) 

�p->q;�q:�p 
---CONE{}) 

sel 
r: r 

se l se l CSR4 0 > 
�p->q;�q:p p:p q:q r,p:r 
---CCP {}) -{&! (}) {SR2 (}) 
�p->q:�q->p p,q:p&q p,r:r 

----(SR5_2{}) self -(VI_r(}) -{VI_I{}) 
true;�p->q:�q->p qVr:qYr p,q:p&qVr p,r:p&qVr 

------CCP{}) {VE{}) 
true: <�p->q)->�q->p p, qYr: p&qYr 

heet_i 

se If 
p->r:p->r 

se If ---{SR4 0) 
p->q:p->q p->r,p->q:p->r 
---(SR4{}) set ---(SR2{}) set 
p->q,p->r:p->q p:p p->q,p->r:p->r p:p 
-----CMPP {) ) CMPP {} ) 

{p->q1p->rl;p:q {p->q,p->r);p:r 
--------------{&!{}) 

{p->q, p->r); p, {p->q, p->r); p: q&r 
-----------{SR3_1 {}) 

{p->q,p->r);p:q&r 
------- <CP {}) 
p->q,p->r:p->q&r 

Figure 7.13: Proof Examples in General Logic 
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7.10 Relevant Logic 

The relevant logic [58 ] we have taken is an implicational fragment of relevant logic, 

R_>. Dependency for this logic is specified as a tag of a formula, differently from the 

usual set-theoretic dependency calculus, and then the tag is a composite formed from 

combinators satisfying some reduction rules. Tag of R_> is to stipulate dependency 

of an inference so a.s to yield a conclusion relevantly from an antecedent. 

Inference Rule: 

(1) Tag rule C: Caf31 = a1(3 

(T1 * T3) * T2 = > P 

(T1 * T2) * T3 = > P 

(2) Tag rule B: Baf31 = a(f3!) 

T1 * T2 * T3 = > P 

T1 * (T2 * T3) = > P 

(3) Tag rule W: W a(J = af3{3 

(4) -+E: 

T1 = > P -+ Q T2 = > P 

T1 * T2 = > Q 

This is a universal method for dealing with the logics that have the different 

methods of dependency calculation mechanism from the one taken in EUODHILOS 

systems. Note that these rules can be specified by using the rewriting rules. For 

example the Tag rule C becomes like this: 

(1') Tag rule C: Caf31 = a1f3 

(T1 * T3) * T2 
(T1 * T2) * T3 
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T1=>P->Q T2=>P 

** Side condit 

** Define ** 

formula --> formula,"->", formula 
"(",formula,")" : 
"p":"q":"r": 
meta_formul a; 

meta_formuJa --> ''P'' :''O'':"R''; 

tag --> tag, "*"• tag : 
"(",tag,")" : 
"a":"b":"c":"d": 
11K11: "I": "C": "8": "CB": "W"; 

meta_ tag; 
meta_tag --> "Tt":"T2":"T3". 

operator 
("->"' "*"); 
"=>". 

** Side condit 

** Define ** 

** Side condit 

** Define ** 

** Side conditon * 

** Define ** 

SHEET_Qf_THOUGHT:relevant_lo 
------------------------

2 
[a=>P->(Q->R)] [c=>P] 
-----(->E {1 1 2}) 3 

SHEET_Qf_THOUGHT:relevant_lc 

4 5 

5 
[a=>P->(P->Ql] [b=>Pl 
----- <->E{4 , 5}) 

a*b=>P->Q [b=>PJ 
------(->E {4, 5}) 

(a*bl*b=>O 
(Tag_rule_W{4,5}) 

a*b=>Q 
--(->11{4}) 
a=>P->Q 

-----(->12{}) 
(P->(P->Ql)->(P->Q) 

a*c=>Q->R [b=>Q] 
----- <->E{t, 2, 3) > 

(a*cl*b=>R 
(Tag_rule_0{1,2,3)) 

<a*bl*c=>R 
--- (->11 {1, 3}) 

a*b=>P->R 
----(->11 {1}) 
a=>Q->(P->Rl 

------(->12{}) 
(P->(0->R))->(Q->(P->R)) 

Figure 7.14: Proof Examples in Relevant Logic 

Proof Example: 

The following typical theorems of relevant logic has been proved in this formulation. 

(1) (Permutation) 

(2) (Prefixing) 

(3) (Contraction) 
(P ---* (P ---* Q)) ---* (P ---* Q) 

( 4) (Self-Implication) 
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7.11 Category Theory 

Category theory[52] was formulated as the theory of "naturalness." It is a mathe­
matical theory of objects and arrows, or morphisms, which is used in various theories 
in computer science. 

An elementary category theory have been built up. In this formulation we chose 
arrow-only notation; i.e. objects are identified with the identity arrow in order to 
make the theory easy to handle with. Note that this example theory deal with the 
partially-defined concept of composition of arrows. A composite expression F.G of 
two arrows F and G does not always make sense. In this formulation the proposition 
given as an arrow expression means to state that such an arrow exists. For example, 
if we put F.G as a proposition, it means that F and G are composable. 

Proof Example: 

Figure 7.15 is a sample proof. In the upper center part of the upper screen m the 
figure is a proof of the theorem: 

cod( F. G) =cod( G) 

which says that "the codomain of the composition F.G of an arrow F and an arrow 
G (as far as they are composable) is the same codomain of G." 

At a little bit right of the lower center of the figure is another sheet of thought 
with small proofs. This part proves that ((from assumptions F=G and G=GG, the 
formula F=GG can be deduced"(i.e. the transitivity of = relation) by using the 
primitive inference rule ''=repl-formula". Obviously this will be used as a derived 
rule. 

In the lower window of Figure 7.15 is a proof of the theorem: 

F : obj = > F : is o 
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---{dot+dot {I}) 

1-. lJ. cod W> 
----(dot-E {I}) 

cod{F.Cl=dom{cod(C)) 

1 

[r. GJ 

(3F(1}) 
G 

(cod: obj-T (I}) 

cod(G):obj 

--(dom(obj) (1}) 

dom(cod(C))=cod(G) 

----------(=Iran" (1}) 

cod(F.G)=cod(G) 

F.G rF=Gl rG=GGJ 

(=repl-formula(2,3}) 

F=GG cod(rl=dom(G) 

** Side conditon ** 

** Define ** 

8 

[F:obj] 

heet_2 

8 

[F:obj] 

(3F {8}) 

F 

(right-id{8}) 

F.cod(F)=F 

8 --(=sym {8} ) 

[F:obj] F=F.cod(F) 

--(=repl-formula{8}) 

F.cod(F):obj 

-------------(=repl-formula{8}) 

-(dom (obj) {8}) 

dom(F)=F 

--(=sym {8}) 

F=dom(F) 

--------(=trans{8}) 

(cod (obj) (8}) 

cod(F)=F 

cod(F)=dorn(F) 

F.dom(F):obj 

INFERENCE_RULE:c 

coeq-E(cod) 

coeq-E(dum) 

dom:obj-I 

dom{obj) 

dom-1 

dot+dot 

dot-E 

dot-1 

dol-left 

dot-right 

epic-E 

epic- I 

1 nl -T 

in2-I 

init-map 

lnil-rnap-E(inil) 

init-map-E(obj) 

i,;o-I 

left-id 

left-tnv 

monic-E 

monic-[ 

pri-I 

pr2-l 

8 

[F: obj] 

(3F{8}) 

F 

(I e ft- i d { 8} ) 

dom(F).F=F 

8 -(=sym {8}) 

[F:objl F=dom(F).F 

-(=repl-forrnula{8}) 

dom(F).F:obj 

---------------------(iso-J{8}) 

F: iso 

---- (:::>!{}) 
F:obj:::>F: iso 

sheet_i 

Figure 7.15: A Formulation and Proofs of Category Theory 
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Chapter 8 

Application to Knowledge 

Acquisition Support Systen1s 

The aim of this chapter is to present an application of EUODHILOS architecture to a 

new field which is considered to become very important in the future and indicate that 

it has wider application field other than pure logic-based reasoning. The application 

field dealt with in this chapter is knowledge managem nt ( KM ) for a numb r of people 

such as in a research group, a department, a corporation, and so on, where each person 

is involved in formal reasoning. 

We develop a framework of a knowledge acquisition support systems( KASSs ) as 

an application of the reasoning assistant system framework of EUODHILOS towards 

the field of knowledge management. 

We classify the knowledge data into two types: domain-knowledge and meta­

knowledge [72]. The domain-knowledge is the knowledge that describ s the targ t 

domain. In our framework, the domain-knowledge is the data that specifies a logical 

system, which consists of language system and derivation system descriptions. By 

meta-knowledge we means the data that are obtained in the reasoning and problem 

solving. In our framework, the meta-knowledge consists of theorems, derived rules, 

and tactics. 

The most important difference of these two types of knowledge is that the former 

IS given by the users whereas the latter are generated, in a sense, mechanically in 

reasoning steps. The validity of domain-data depends on the validity of the formal 

model which the user specifies. The meta-data, on the other hand, are only a conse­

quence of formal systems and reasoning. Their evaluation are not by validation but 

by their usefulness. 
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We provide a model of creating and sharing domain-knowledge and meta-knowledge 

among a group of people, where these two kinds of knowledge are represented in a 

logical framework. The problem and its domain are described in a formal or logical 

system. The users solve problems by using an interactive general-purpose reasoning 

assistant system like EUODHILOS which provides assisting facilities based on the 

incubator model of reasoning. The meta-knowledge (i.e. theorems, derived-rules and 

tactics ) is acquired in such reasoning. Each meta-knowledge data is shared among a 

group of users in assistance with helper agents that form an agent network, who locate 

in the background of the reasoning assistant system. The agent network shares not 

only the meta-knowledge but also their reputation or evaluation information. It en­

ables the system to perform "social selection [69 ]" of knowledge which helps the users 

with selecting appropriate ones. This model gives a new perspective to semi- or fully 

automated knowledge acquisition, group reasoning assistant system, and knowledge 

managem nt. 

8.1 Background 

It is going to be widely recognized these days that creating and having valuable and 

us ful knowldg is crucially important for companies being creative [76] . From this 

recognition, growing number of companies are paying more attention to knowledge 

management [45] technologies and systems. However the bottleneck of knowledge 

acquisition [47; 74 ] still remains a big problem. How can we acquire useful knowledge 

efficiently? W ithout solving this problem, knowledge management systems will have 

only limited success in creating and having a good use of knowledge in a company 

and contribute to keeping the company being competitive and also in other kinds 

of groups of people for being active and creative. In this chapter, we investigate a 

model for creating and sharing logic-based domain- and meta-knowledge among a 

group of people based on the model of EUODHILOS. Following to this model it is 

easier to acquire and share knowledge than dealing only with the knowledge extracted 

from human brains. Thus it will be a good choice for the companies to start with 

constructing knowledge management systems that deal with logical knowledge. 

In a logical framework domain-knowledge is represented as a logic or a theory that 

consists of a language and a derivation system, whereas meta-knowledge is generated 

in the proving process and acquired as theorems, derived rules, and tactics. The 

language system gives basic vocabulary for describing the problem domain. By the 

derivation system, we specify the ontological [75] structures and their relations. Meta-
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knowledge is created in sheets of thought based on th incubator model of reasoning. 

The model for sheets of thought in this chapter is an xtension to th one in other 

chapters in such a way that some number of cliff rent helper agents may b attached to 

the sheets and work together with th human user and help th us r with incubation of 

ideas in reasoning. Users will participate in this process by giving goals or conjectures 

to be proved, creating new results by applying tactics, and so on. The meta-knowledge 

data obtained in such a process will be circulated and evaluated with a network of 

communication agents. They are socially selected according to their reputation in 

usefulness. 

The rest of this chapter is organized as follows. In S ction 8.2, we give an acquisi­

tion model for logic-based domain-knowledge and a model for creating and acquiring 

meta-knowledge from reasoning on the target domain. In Section 8.3, we describe 

the logical framework of the knowledge acquisition system, which is based on that of 

the general-purpose reasoning assistant system EUODHILOS. Then we present the 

organization of the knowledge acquisition support system. The major idea is also 

borrowed from the reasoning assistant system EUODHILOS. The sheets of thought 

play the central role in meta-knowledge creation. The model for this environment is 

similar to "chemical reactor" or incubator of ideas in reasoning. Agents will monitor 

how new meta-knowledge data are created and help the user with reason effectively. 

In Section 8.4, we present a mechanism where agents work cooperatively with other 

agents, circulate and share useful meta-knowledge data and evaluate them o that 

useful data are to be "socially selected." In Section 8.5, w conclud th di cussion 

and suggest some of the important problems to be solved in the future research in 

this direction. 

8.2 Models of Logically-Represented Knowledge 

Acquisition 

In this section we present two models for knowledge acquisition processes. The first 

one is the model for domain-knowledge acquisition, where the knowledge is extracted 

from human brain, whereas the other is the model for meta-knowledge acquisition, 

where the knowledge is generated in the reasoning process. Note that the difference 

in this respect induces a great difference in usefulness of these two kinds of knowledge. 
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(1) Model of Domain-Knowledge Acquisition 

We borrow the model of acquisition process of domain-knowledge extracted from 

human brain from the reasoning process model taken in EUODHILOS ( Figure 3.1 ) . 

This is the one normally considered as knowledge acquisition process, which is also 

the process of scientific discovery. 

The process consists of four basic steps. We will explain what they are like ac­

cording to the figure clockwise from the top part: 

(1) Observation: 
First of all the image comes into human mind through his or her observation 

and experience. 

(2) Fonnalization: 
This is the step of analyzing our mental image and trying to extract knowledge 

and represent it formally. In our logic-based approach we have to find out the 

fundamental vocabulary for representing the target domain, and the structural 

rules of the target domain. In other word, this is the step of constructing a 

logical mod l of the domain. 

(3) Deduction: 
Superficially the previous steps are sufficient for constructing logical models. 

However, we recognize, from our experiences, that it is far from finishing the 

process of model making because it is quite difficult to construct a sufficient 

model in the first attempt. So it will be necessary to check if the model is good 

enough. We make conjectures that should be satisfied in the model and do some 

deductions on the model to see if the conjectures are really provable. This is 

the step for it. 

( 4) Verification: 
As has been pointed out, most of the cases of constructing a logical model, it is 

not sufficient in the first trial. W hat should we do if we find it is not sufficient 

in the test of the previous step? Together with the third step, we compare the 

behaviour of the model and that of the nature or the real domain. Then we 

move back to the first step of observing and think what is/are wrong with the 

current model. Then we repeat the whole processes again and again until we 

have a satisfactory model. 
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Figure 8.1: Meta-Knowledge Acquisition Model 

(2) Model of Meta-Knowledge Acquisition 

W hen the logical model is constructed, we will move to the problem solving phase, 

where we describe the problem in one or more logical formulas and solve it via proving 

the goal formulas. Meta-knowledge, consisting of theorems, derived-rules, and tactics, 

is produced in this reasoning process. 

The model of acquiring meta-knowledge is illustrated in Figure 8.1. In this phase 

the proof-supporting facilities play the central role, which we call the sheet of thought. 

The user interacts with the sheet of thought by, for example, giving conjectures or 

goal formulas, tactics to apply to the proof fragments. On the sheet various proof 

fragments or partially constructed proofs are placed and waiting for being combined 

to grow up to be a complete proof. In the back of the sheet is the logical model that 

describes the target domain. The useful results of reasoning are stored in the theory 

database, where the created meta-knowledge data are saved, supposing to be used in 

the later reasoning processes. 

Comparing to domain-knowledge, meta-knowledge has a great advantage in terms 

of acquisition: 

(i ) The meta-knowledge data are saved because the human user recognizes their 

usefulness and value; theorems are representing valuable results, and other two, 

derived rules and tactics, are considered to be useful in later reasoning. There­

fore they are expected to be more useful than those chosen automatically by 

some criteria. 
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(ii) The validity of the meta-knowledge is guaranteed objectively. Theorems and 
derived rules have proofs of them. A tactic can be judged by applying the tactic 
to the proving situation; if it succeeds it is valid in the situation, if it fails it is 
invalid. Thus we can somehow automate the acquisition procedure for tactics. 

We will discuss this aspect in detail later. 

8.3 Knowledge Representation and Creation 

As has been illustrated in Figure 3.2, the data of EUODHILOS-II consists of two 
parts: the logic specification part and the proof construction part, which correspond 
to the two types of knowledge mentioned in Section 8.2. In Section 8.3, we deal with 
the data for the logic specification that are for representing the domain-knowledge. 
The data used in the proof construction part that relates to meta-knowledge will be 
dealt with in Section 8.3. 

The logical framework of EUODHILOS is, unlike other well-known generic rea­
soning assistant systems[27; 29; 85], based on the natural deduction[89] style, thus 
easier to use for human reasoners, because: 

(i) it is relation-based so that it is applicable to any style of reasoning, such as 
forward, backward, and mixed derivations, and 

(ii) it allows assumptions for reasoning, so that it meets to the natural human 
reasoning style. We put special effort on usability[73] in designing EUODHI­
LOS systems. The "usability" here does not mean just user-interface issues. We 
think the issues such as the system sufficiently meets the users' way of thinking 
or it is flexible enough to a wide variety of needs, are crucially important in 
usability issues. 

(1) Domain-Knowledge Representation 

In order to represent a domain-knowledge that corresponds to the logic specification 
part of Figure 3.2, we specify the language system first, then the domain with the 
derivation system that consists of axioms and one or more rules. The name of the 
logic corresponds to its target domain. 
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(i) Language System: 

As was described in Chapter 4, a language system specifies th fundamental vocabu­
lary for expressing the target domain. In our case it specifies the logical expressions 
such as formulas, terms, expressions, etc.. We may call this an ontology[75] or a 
knowledge representation. In our framework, users are able to specify what expres­
sions to use according to their preferences by defining a language systen1. 

(ii ) Derivation System for Representing Domain-Knowledge: 

As was described in Chapter 5, the derivation system consists of axioms, inference 
rules, and rewriting rules. In our current situation, it is desirable to have richer 
descriptions structures. We will leave this issue for the future. These rules are 
represented in a natural deduction[89] formalism, where users can perform assumption 
based reasoning. The domain structures represented in derivation systems are (i) 
logical structure, and (ii) domain-specific structure. There are a couple of choices 
depending on the skill level of the user. For a novice user, the system will provide a 
library of various logics and theories and the user just chooses what he or she wants. 
A medium-level user will borrow the fundamental logical structure from the library, 
then specify the domain-dependent knowledge by either modifying a theory in the 
library or setting all the additional structure description. An expert user who knows 
much about the description framework will specify all the structures by himself or 
herself, including logical structure. 

By borrowing the framework of EUODHILOS systems, as was described in Chap­
ter 5, our derivation system consists of axioms, inference rules and rewriting rules. 
An inference rule consists of a name, conclusion, one or more premises, and optional 
side conditions. Each premise may have one or more assumptions. An axiom is an 
inference rule that has no premises. A rewriting rule also resembles to an inference 
rule. However it is different in two aspects: 

(i) it has only one upper formula that has no assumptions, and 

(ii) it is applicable for rewriting any matching sub-expressions of a logical expres­
siOn. 

The framework allows users to attach one or more side conditions to the rules. It is suf­
ficient to describe ordinary logical rules by combining the side conditions: FREE-FOR, 

NOT-FREE, NOT-FREE-IN-ASSM, FULL-SUBST, and SYNTAX-CAT. 
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The framework of the derivation system is, as has been pointed out in Chapter 4, 

strong enough for typical styles of formulation of logical structures. In the Hilbert­

style formulation, the structure of the domain at hand is described by relatively a 

large number of axioms together with a small number of inference rules like modus 

ponens. In the sequent calculus formulation, most of the structural data are given 

as inference rules in which formulas are represented as sequents. Only the starting 

formula, for example, "A � A", is given as an axiom. A term rewriting system has 

only rewriting rules. It is also possible to combine these three kinds of data. For 

example we can define a derivation system based on the sequent calculus formulation 

mixed with several rewriting rules. This framework is characteristic in its giving as 

much freedom for the formulation style to its users. Thus the users are free to choose 

the most suitable style according to their needs and preferences. 

However it is still not good enough from the user interface point of view. There are 

many users who have little knowledge on logics and logical framework for representing 

target domains. We would need some kind of user interfacing facilities together with 

the primitive user interface described in this chapter. 

Example: In this example we briefly illustrate how knowledge is represented in 

the logical framework. Suppose we have a job J which consists of tasks t1, t2, ... , tn. 

One possible way of expressing this is as follows ( or-parallel representation) : 

J 

This rule says that if we have done the tasks t1, t2, ... , tn, we can say we have done 

the job J. In this formulation the tasks can be performed in any order. 

If we want to express ordering relations among tasks, say these tasks t1, t2, ... , tn 

should be done in this order, we would write (and-parallel representation ) : 

Axiom: t1, and 

Inference rules: 

t1 t2 tn 

t2, t3, . . . ' J 

Then we start with t1 and do t2, ... , tn following to this order until we have done J. 

By combining these two types of representations we can specify both and-parallel, 

or-parallel and mixed ones of both styles of constraints. 
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(2) Meta-Knowledge Representation 

Meta-knowledge is created in the reasoning process and selected by users. Theorems 

and derived-rules are the proved formula and reusable partial proofs, respectively. 

Tactics and tacticals provide a means to automate deductions. A tactic specifies the 

outline of a proof. A tactic takes a list of proofs and generates the list of proofs 

obtained by applying the proof procedure described in the tactic. A tactical is a 

metafunction over tactics; it combines one or more tactics and creates a new one. 

Using tacticals we can create useful tactics that are complicated enough to express 

our intended proof procedures. We have described for details in Chapter 6. 

(3) Knowledge Creation 

In this section we deal with single-user case of reasoning. EUODHILOS is the basic 

model of the front-end of the knowledge creation system. From this model, we have 

two phases of reasoning: 

( 1) describing the problem domain under consideration and 

(2) the reasoning, or proving. In this section we deal with the user-interfacing and 

usability issues of such a reasoning assistant system. 

(i) Setting the Underlying Logic 

In this chapter we suppose the users themselves give definitions of logical systems. 

However in the actual application to each domain the style can be different according 

to the management policy. For example, it is possible to take a style where the project 

manager gives the definition of the target logic and other project members share this 

definition. Note that each member can add some extra definitions to the original logic 

and define his or her own theory. The theory created in this way can be used to be 

inherited for defining other theories as well. 

Through the syntax definition window, the users can input their definition of 

logics to the system. Metavariables are used as place holders of various expressions. 

The representation style of logical structure of EUODHILOS is intuitive and easy­

to-understand, because the rule is displayed in tree-form as are used in the standard 

text books of logics so that the users would be able recognize the relationship of the 

components at the first glance. The side conditions are given as a set of elementary 
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side conditions so that it enables the users define the rules in detail unlike other 

logical frameworks. 

(ii) Sheet of Thought 

A sheet of thought is a field where users create ideas for reasoning, where a number 

of elementary bits of information for reasoning, i.e. conjectures, axioms, derivation 

rules, and partial proofs, are located and wait for growing by being combined to be 

big blocks of proofs, and eventually to be whole proofs of theorems. We call this style 

of reasoning the incubator model, which is illustrated in Figure 8.2. 

Unlike the model of sheet of thought in other chapters, in the model of this 

chapter, not only the user in the right side of the Figure 8.2 but also the helper 

agents that appear in the bottom area are monitoring how the components in the 

field are changing; we may call this a blackboard [22] model in this respect. Each 

agent has its own mission and monitors the field according to it. When it finds a 

pattern in its responsibility, it would take the components and create one or more 

new components by combining or dividing the components it has captured. The user 

controls the sheet of thought not only directly by putting conjectures, applying some 

tactics, and so on, but also indirectly by giving commands to one or more agents, 

assigning a new agent for additional facilities. 

The commands given to an agent from the user include: 

( i ) confidence value; if an agent is highly confident or it has previous permission it 

would act automatically without asking to the user, 
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(2 ) adding or deleting action list of the agent; the action list specifies what sort of 

actions the agent can take, and others. 

Note that the agents are not allowed to always act fully autonomously. Like 

Maxims [53] agents have three states for each action item; being confident and do the 

action automatically, having moderate confidence and give suggestions to the user, 

and lacking confidence and just observing. 

The basic operations for proving performed on a sheet of thought are basically 

the same as those of the reasoning assistant system. We have described this issue in 

Chapter 6. 

8.4 Sharing Knowledge with Agent Network 

In the previous section we deal with the single-user case. In this section we consider 

the multi-user case; we propose a model of circulating and using the meta-knowledge 

data created in the reasoning processes. In this model, useful meta-knowledge data 

are distributively and selectively shared among the users. "Selective" here means that 

only the data being estimated as useful for a user are delivered to the user. So the 

data are not shared automatically among all the users. We will propose and illustrate 

overall structures of this mechanism. 

8.4.1 Circulating and Sharing of Knowledge 

In Section 8.3 the knowledge acquisition system for single-user case was illustrated, 

where the sheet of thought plays an important role. Various kinds of agents may be 

attached on it. They will watch the sheet and capture the specific proof patterns they 

are supposed to deal with. According to the given mission each agent will modify one 

or more proof fragments with, for example, combining these proof fragments, dividing 

proof fragments, giving suggestions or recommendations to the user, and so on. The 

resulting theorems, derived rules, and tactics are stored to the theory database, which 

are chosen by the user. 

In this section we propose a model, which is illustrated in Figure 8.3 in which 

every knowledge acquisition system has a special helper agent called the communica­

tion agent, who takes communications with other communication agents. With the 

communications the useful meta-knowledge data and their evaluation data are circu­

lated and shared among the network agents selectively. By utilizing this network, the 

users are able to use useful meta-knowledge provided from others. In this way they 
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form a good cooperative relationship and each participant enjoys the benefit of this 

cooperation. 

Each user has a reasoning assistant system which we have explained in Section 8.3. 

The system communicates with the user. In the back of the systems are agents 

who are connected each other and form a network. Each agent monitors on the 

sheet of thought and waits for the new meta-knowledge data being created. W hen it 

finds a new knowledge data, firstly it investigates the new data; the data type, the 

background theory, what logical rules it includes, and others. Then it will send the 

data to its appropriate neighbouring agents. 

For the networking mechanism suitable to such a purpose, we have proposed 

a mechanism called "word-of-mouth agent system" [82] , in which we will have the 

benefits: 

( i) The information data exist and are managed distributively so that the access 

traffic will be less concentrated than managing them in a central server. The 

system will also be more robust. 

(ii) Circulated information is located m a limited area at first. Then the area 

expands adaptively according to the needs for the information. 
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(iii) The evaluation data are also circulated together with the information resources 

so that it is easier to choose appropriate ones from among a lot of candidates. 

Figure 8.4 illustrates that the communication agents are connected each other 

in a relatively small number of connections and form a WOM network. The meta­

knowldge data obtained in a knowledge acauisition support system( KASS) will be 

transmitted to its neighbours. The area where the data are transmitted is relatively 

small at first, then it expands its area according to the needs and reputation to it. If 

the agent gets this data and finds it useful by using it, the agent will circulate the 

data further. Such a mechanism will make the meta-knowledge circulate in a wide 

area if its reputation is high. We will call such phenomenon "Social Selection." Such 

a mechanism does not appear in other systems where they use the evaluation data 

given from the users [21] . 
In order to cope with sharing knowledge among agents, it is necessary to translate 

the language system( ontology translation ). It is relatively easy for logical expressions, 

because they have similar structures comparing to the domain-dependent knowledge, 

with which this translation problem is as very hard as that of the other types of 

knowledge representation methods and their ontology [75] translations. We will not 

discuss this type of translation in this thesis. Instead, we would put more focus on 

translation of derivation systems. The derivation systems are more or less similar to 
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each other comparing to other types of logical specifications. However it also has a 

translation problem between different style of formalisms. Suppose we take different 

types of formalisms of logics. There are three typical types of formulations; Hilbert 

style, natural deduction, and sequent calculus. Generally speaking it is impossible 

to convert between these types of formulation. In order to cope with this problem, 

we will prepare a library which contains typical types of conversion procedures. In 

the future systems, it will become practical to have a theory for translating between 

different formalisms. Suppose some user develops a theory and proves a theorem that 

justifies the validity of a translation algorithm, then the system allows the users to 

use this algorithm for translating data from one theory to another. 

One of the biggest advantages of this mechanism is that as the user works hard and 

creates a lot of reasoning results he or she would appreciate the useful meta-knowledge 

data. Also the created results will benefit other users. The amount of results created 

in reasoning and that of benefits for reasoning obtained from others are strongly 

correlating each other. This indicates that in our mechanism we will have little or no 

"free-riding problems", which is a big problem for many recommender/collaborative­

filtering systems [92] . 

8.4.2 Generalization of Meta-Knowledge 

Theories may be created by inheriting one or more old theories or logics, thus we 

have an ordering structure of theories we are dealing with in a group of users. 
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Figure 8.5 is an example of a theory hierarchy. The Basic Theory is the original 

one of all the theories. Theoryl and 2 inherit the Basic Theory. Similarly Theory4 and 

7 inherit Theoryl and 2, respectively. Theory3 inherits both Theoryl and 2. The rest 

theories are created similarly. It would be more understandable if we take elementary 

set theory for the Basic Theory, algebra for Theoryl, topology for Theory2, algebraic 

topology for Theory3, and so on. 

Using this hierarchical structure, we will illustrate the algorithm for generalizing 

the used area of a meta-knowledge data. 

Step 1: 

Suppose we have a tactic created by a user who works with Theory6. It is applicable 

to Theory6. The system would think the tactic may be applicable to other theories 

besides Theory6. Firstly it will check out all the axioms and rules that are involved 

in the tactic. If all the components included in the tactic are of Theory4, it means 

that it is well applicable to Theory4. 

The algorithm goes up in the hierarchy until it finds all the maximal theories that 

the tactic is applicable. Suppose Theoryl is the only maximal theory. 

Step 2: 

In the next step, the algorithm goes down from the maximal theories and collects all 

the theory names. These are all the theories that the tactic is applicable. As we are 

supposing Theoryl is the only maximal theory, the theories the tactic is applicable 

are Theoryl, 3, 4, 5, and 6. 

Step 3: 

Finally, the algorithm finds out which user uses at least one of the theories in the list. 

Then the network agent of the theory sends the tactic to the network agents of the 

specified users. 

This mechanism is expected to create better tactics than just creating them ran­

domly, because only those tactics that have good reputation in at least one theory 

are recommended to other theories. 
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8.4.3 Social Evaluation and Selection of Meta-Knowledge 

As was briefly mentioned in the previous section, dealing with evaluation or reputation 

data would be one of the key features for having a good use of knowledge and meta­

knowledge in a group of people or agents. The meta-knowledge data such as tactics, 

theorems, and derived rules that are applicable to the sheet of thought, are gathered 

to its communication agent. They are applied to the sheet of thought. If they succeed 

they will get high evaluation values (i.e. good reputation) , whereas if they fail they 

will be evaluated low. The meta-knowledge data which is of high reputation would 

be circulated among a wide range of agents and thus will survive in the network. 

On the other hand, the meta-knowledge having poor reputation will not be used by 

any agent and will be disappeared in the long run. We call this mechanism "social 

selection [ 69]." 

This mechanism can be effectively applied to finding useful meta-knowledge data 

because meta-knowledge are "testable" and thus safe to be applied. We cannot apply 

it to domain-knowledge. Suppose we have a domain-knowledge "bird(x) � fly(x)" 
in Singapore. It is also strongly supported in Hong Kong, in Japan, in America, in 

Europe, etc. etc .. Eventhough we cannot apply this domain-knowledge to Antarctica, 

where it is not true and "bird( x) � swim( x )" may be the most important knowledge 

about birds there. This difference comes from that domain-knowledge gives starting 

knowledge about the domain, thus we have to add new knowledge or delete old ones 

with much care. It directly affects to the validity of the domain model. On the 

other hand, using meta-knowledge does not affect to the validity of the model. A 

non-theorem cannot be a theorem even if we want to do. The usefulness of a tactic 

can be verified only after we apply it to the actual proofs. 

An agent gets a meta-knowledge data with information such as which agent eva­

lutes it with what value. The agent then estimates its usefulness in the domain he 

is dealing with. He may have a number of estimation functions. Considering the 

estimated value of these functions and the evaluation values from other agents, the 

agent calculates its initial evaluation value for the meta-knowledge. This value will 

be modified after the knowledge is applied to various proof constructions. The agent 

also estimates usefulness for his neighbouring agents. If he is confident on usefulness 

of a meta-knowledge for another agent, i.e. the estimated usefulness value is greater 

than a value determined previously, then the meta-knowledge will be introduced to 

the neighbouring agent. By repeating this process meta-knowledge data are selected 

socially; meta-knowledge with good reputation will be distributed widely and be used 
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in many times. 

8.4.4 Modification and Composition of Tactics 

In order to produce a variety of useful meta-knowledge, we provide a means to create 

tactics by modifying and combining those tactics we already have. The generated 

tactics are evaluated and useful tactics are selected in the social selection mechanism 

described in the previous section. We will show some example methods of creating 

new tactics. Firstly, we present the definition of tactics. 

(a) Definition: 

A tactic is constructed in either one of the ( i ) primitive tactics: axioms and rules, or 

(ii ) combined tactics: the tactics of the form T(t1, t2, ... , tn), where t1, t2, ... , t.,1 are 

tactics and T is a tactical with arity n. 

Tacticals are the primitive functions that generate tactics by combining one or 

more tactics. Some of the most popular tacticals are REPEAT, THEN, ORELSE, and so 

on. 

(b) Modification: 

Here are two possible modifications: 

( i ) t => t' = REPEAT t, and 

(ii ) t = t1 THEN t2 => t' = t1 THEN t2 ORELSE (t2 THEN ti ) 

(c) Composition: 

These algorithms create tactics from the tactics that are considered useful (in a theory 

or more of them) . It would be reasonable to assume those tactics generated in these 

algorithms are expected to be more useful than those generated from arbitrary tactics. 

The new tactics will be used and be selected in the social selection mechanism 

that we have illustrated in the previous section. In these processes tactics will be 

evolved in the agent network. This is important because it gives a mechanism for 

automatically acquiring useful knowledge. 
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8.5 Chapter Summary 

We have proposed a model of creating and acquiring logic-based domain-knowledge 

and meta-knowledge. Domain-knowledge is represented in a logical framework by bor­

rowing the EUODHILOS architecture, in which rules are represented in a tree-from 

based on the natural deduction style formalism. The model of domain-knowledge 

acquisition is the one for creating a logical model of the target-domain, which is, in 

nature, through repeating trial and error processes. Meta-knowledge is originally cre­

ated in reasoning and chosen as such by the users. The reasoning process, which we 

call the incubator model of reasoning, is performed in the sheet of thought, on which 

small proof fragments grow to be complete proofs as the reasoning advances. Users 

participate this process by setting goals, manipulating proof fragments, applying tac­

tics, and so on. Some helper agents also work on the sheet. They monitor the situation 

and help whenever they find their helping patterns. The resulting meta-knowledge is 

circulated among the communication agents. The circulating meta-knowledge data 

are applied to the sheets of thought on which they are expected to be useful. The 

results of application is evaluated and such reputation information is also circulated 

and used in the recommendations to the users. This application and evaluation mech­

anism is called social selection. 

In dealing with the logic-based knowledge we have advantages such as: 

• Not only the ordinary manual knowledge acquisition, we are also able to create 

and use automatically-acquired knowledge, 

• We can deal with both manual and automatic evaluation data so that we can 

combine them appropriately and realize the social selection mechanism, and 

• Logic-based knowledge can be easily used combined with the systems and algo­

rithms developed in the research on logics including theorem proving, automated 

reasoning, and so on. 

The characteristic features of the incubator model include: 

• Agents automatically assist various patterns of reasoning. The user can easily 

customize the assisting feature by modifying the helper agents. 

• In this model, the communication agents work cooperatively and circulate the 

useful meta-knowledge. It is a great advantage that as the user work hard on his 

or her reasoning, the user would have more knowledge data from the network, 
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thus it will benefit to his or her reasoning. At the same time, the more amount 

of knowledge will be created and thus contribute to the reusing of knowledge 

as well. 

• Such a flexible model can be realized due to taking the relation-based flexible 

logical framework and its supporting environment by the sheets of thought. 

W ith these characteristic features the models proposed in this chapter will give a 

new perspective to (semi-)automated knowledge acquisition, group reasoning assistant 

system, knowledge management and others. 

Comparing with other reasoning systems [5; 9; 15; 19; 27; 29; 42; 85] , we believe 

EUODHILOS is the most suitable one for reasoning in such a situation described in 

this chapter, because for this purpose the system should take a good balance as a 

logical system and an interactive user-oriented one; which we have been taking much 

effort in designing EUODHILOS systems. 

Important future plans toward the application of EUODHILOS architecture to 

knowledge acquisition support systems include: 

( i ) Investigating corporate knowledge management systems, where the system deals 

not only logic-based knowledge but also other types of knowledge such as rules 

in a corporation, the data on human skills and human networks, and so on. 

(ii) In this chapter we presented a simple example of sharing and reusing tactics. 

This mechanism needs to be developed further so that it deals with a lot wider 

matchmaking. 

( iii) The interface to the users in this chapter is very simple. For more practical 

applications the reasoning environment should provide more easy-to-recognize 

view by using more sophisticated visualization algorithms. 

(iv ) Implementing and evaluating of automatic tactics improvement mechanism are 

another important topics to be pursued. 

(v ) So far, by using a general-purpose reasoning assistant system EUODHILOS, 

as was illustrated in Chapter 7, we have experimented with a variety of logics 

such as: NK, a constructive type theory, Hoare logic and Dynamic logic that 

are logics for programs, intensional logic, linear logic, genral logic, relevant 

logic, category theory, and others [ 100] . So the framework for defining logical 

structure is general enough for dealing with various logics. However in the 
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current interface, the users should define, read, and deal with the "raw logical 

representations." In order to be used by less logic-oriented users, we have to 

investigate more advanced system that does not look so much like a logical 

system. 
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Chapter 9 

Systen1 Comparison 

The aim of this chapter is to shed light on the characteristic features of EUODHILOS 

systems in comparison with related systems together with the comparison between 

themselves. 

Much work has been devoted to building up the systems for checking and con­

structing formal proofs in various logical systems, e.g. see [3; 43; 111; 114] for proof 

checker, see [15; 27; 96] for proof editor/constructor, see [16; 30; 32; 64; 97] for gen­

eral system of computer-aided reasoning. See Chapter 2 for their natures in terms of 

their assisting styles to reasoning. In this chapter we will rather confine ourselves to 

various approaches to the general system for computer-assisted reasoning to which 

much attention have been recently paid. 

We start with classifying the styles of representation of logical systems and making 

clear what our approach is like in comparison with other approaches. We take account 

the reasoning systems that allow the user to somehow define the logical systems here 

and classify them into the following three categories according to their approaches: 

(i) Implementing logics in functional or logical programming languages 

The first approach is to implement a logical system by using a programming lan­

guage. This is general in the sense that whatever systems can be implemented in 

such a generic programming language. However, by considering the implementor 's 

burden for programming, it is reasonable to confine ourselves to the functional and 

logical languages which are supposed to be suitable in our situation. In [96], Prolog 

is employed as a logic description language as well as an implementation language of 

a proof constructor. The underlying programming language for specifying a variety 

of logical structures including higher-order logics, it is preferable that the implemen-
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tation language itself is higher-order; otherwise it is quite difficult for the users to 
implement their intended systems. Thus HOL[29] has, as is easily guessed from the 
name, a higher-order logic as the underlying programming language. In [23] and [59], 
A-Prolog, which is an extension to Prolog with the higher-order facilities based on 
A-calculus and hence more expressive than Prolog, is proposed to specify theorem 
provers. In [90], the axioms and inference rules of a formal logical system can be 
expressed as productions and semantic equations of an attribute grammar. Then, de­
pendenci s among attributes, as defined in the semantic equations of such a grammar, 
express dependencies among parts of a proof. In [28], the metalanguage for interac­
tive proof in LCF[27], a polymorphically typed, functional programming language, is 
used to show how logical calculuses can be represented and manipulated within it. 

(ii) Encoding logics into a formal system 

The second approach is based on a metalogic and its manipulation functions. The 
object logics are represented and manipulated through the metalogic. Such systems 
have the advantage that the object logics have rigorous semantics based on those 
of the metalogics. Thus they are suitable for developing theories by extending the 
object logics. However, the users are required to have specific knowledge and skills 
to describe the logic properly, hence these systems are mainly intended for experts of 
logics, preferably higher-order logics. The purpose of Nuprl is very similar to that of 
EUODHILOS. It aims at providing the proof construction environment for a variety 
of logics. But the approach to the realization of it is different to those of the reasoning 
assistant systems. Nuprl has a fixed underlying logic and other logics must be defined 
by using the terms of this logic. In the approach of reasoning assistant system, even 
the syntax of the logic is expressed by the user. It aims at the complete realization 
of logic-independent systems which can assist human reasoning in the various fields. 
Proof construction methodologies are also different. In N uprl, proofs are constructed 
only by refinement, while in our system, proofs are constructed by three types of 
deductions; in forward, backward (same as refinement), and filling the gap in proofs. 

In [30) and [32], a typed A-calculus with dependent types is used for building a logical 
framework which allows for a general treatment of syntax, inference rules, and proofs. 
It also has the advantage of a smooth treatment of discharge and variable occurrence 
conditions in rules. In [84] and [85], a logic is encoded to a subset of a higher-order 
logic. What they are aiming principally at seems to be automatic checking of rule 
conditions basically in one way reasoning, with which we are confronted in applying 
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a rule. In [86], a logic is to be encoded to a subset of a higher-order logic. 

(iii) Representing logics so as to directly reflect their proof theoretic nature 

The third approach to a general reasoning system is quite different from other two. 
The systems in the second approach provide a higher-order logic as the metalogic 
and users can define the target logics in this logic. Therefore the expressive power 
is quite strong and it is fairly easy to prove the justification of the representation. 
However the description of logical systems are usually complex and also in many 
cases the proof supporting facilities are not strong enough. Contrarily the systems 
in the third approach do not assume metalogics as their underlying logics. It al­
lows users to specify logics in an easier and more direct way than others which 
require them to learn a programming language or metalogic for encoding a logic. 
Moreover, it provides reasoning facilities and a unique reasoning-oriented interface 
to make proof construction more flexible and easier. As a result, these systems 
provide novice users with extensive assistance. Besides EUODHILOS systems[67; 
80], wple[l9], MURAL[42], PROOF DESIGNER[5] take this approach. 

As is displayed in Table 9.1, we compare EUODHILOS-I, EUODHILOS-II, MU­
RAL, PROOF DESIGNER, and wple with the viewpoints of syntax definition frame­
work, proof style, proof representation method, derivation systems, implementation 
language, and platform. From this table we read that EUODHILOS systems provide 
the facilities for dealing with a much variety of representation styles of proofs and 
a variety of reasoning assisting features. The new symbol definition and inputting 
facility and candidate selection features are characteristic to EUODHILOS systems. 

The proof style of EUODHILOS and MURAL are based on natural deduction, 
wple is based on the sequent calculus, and the proof style of PROOF DESIGNER is 
based on the Fitch style. Proofs are represented in tree-form on EUODHILOS and 
wple. MURAL and PROOF DESIGNER use a line-based representation. Only EUO­
DHILOS and MURAL allows the mixed reasoning style. wple allows only backward 
reasoning, and PROOF DESIGNER allows only forward reasoning. These compar­
isons show that EUODHILOS systems provide more flexibility in proof repres nta­
tions and proof styles than the other systems. 

To conclude, the approach of EUODHILOS to a general-purpose reasoning assis­
tant system( G-RAS) differs from the other ones cited above in several respects. 

• In EUODHILOS one can specify his or her own logic in a more direct and 
tractable way than others which require us to learn a formal system or metalogic 

157 



Table 9.1: Comparison of EUODHILOS Systems with Similar G-RAS Systems 

Syst m N amc EUODHILOS-I EUODHILOS-I I  

Syntax Dcfiuition DC Go Context-Free Grammar 

Proof R.eprcscn tat ion Natural Deduction Style Natur<d Deduction Style 

Abridg d Form 
Proof Display Mf'thod Tree Structure Line Form 

Tree Structure 

Axiom Axiom 

Inference Rnle Inf renee Rule 
Dl'rivations 

R.cwL"iting Rule Rewriting Rule 

Theorem. Deriv d-Rule T heorem. Deriv ·d-Rnlc 

Forward D rivation Forward Deriva.tion 

B<-tckward Derivation Backward Derivation 
Proving Mrthods Mixed Derivation Mixed Derivation 

Couucctio11 Connection 

Proof Tactics 

Im plcmeu ta.tion Language ESP Emacs Lisp 

Platform PSI/SIMP OS GNU Eruacs/X Wiuclow 

Syst m Name MURAL PROOF DESIGNER wple 

Syntax Definition Context-Sensitive Co11text-Free Grammar Context-Free Grammar 

Grammar 

Proof Representation Natural Dedu ·tion Style Fitch Style Sequent Style 

Proof Display Method Li11e Form Line Form Tree Structure 

Axiom 
Inference Rule 

Derivations Inference Rule Inference Rule 
Derived-Rule 

Fold/Unfold 

Forward Derivation 

Proving Methods 
B<-tckward Derivation 

Forward Derivation 
Backward Derivation 

Mix cl Derivation Proof Tactics 

Proof Tactics 

Implementation Language sIll all talk- 80 Lightspeed Pascal w-Prolog 

Platform UNIX Macintosh UNIX /X Window 
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for encoding a logic. 

• Much emphasis has been placed on reasoning facilities and proof methods which 

EUODHILOS should have in order to make proof construction more powerful 

and easier. In other works on interfaces for theorem provers( e.g. [6) ) , they put 

major emphasis on the general interface issues. The interface of EUODHILOS 

systems were designed by considering the characters of the platforms and the 

general policy of EUODHILOS architecture. We believe this methodology of 

system design contributes to the high usability of the system. 

• The system architecture can be evaluated based on such a model-based meth­

odology [73) , where the system evaluation items were extracted according to 

the model of user's reasoning and conception process. This methodology will 

contribute to a more objective and comprehensive evaluation than evaluating 

only in an empirical method [39 ] . Therefore such an approach should get more 

attention for evaluating user interface in order to have a more comprehensive 

evaluation of reasoning assistant systems and other types of systems. 

• EUODHILOS has a unique reasoning-oriented interface not only for ra1smg 

user-friendliness but also helping us conceive ideas for constructing the proofs. 

Dawson's generic logic environment is very similar to our approach in many 

ways, but it only deals with logics in sequent presentations with all-introduction 

rules. 

As has been described EUODHILOS-I and EUODHILOS-II systems share the 

common fundamental design model and policy of EUODHILOS architecture. For ex­

ample, plain language specification framework, derivation system d finition facilities 

based in the natural deduction style, flexible reasoning styles that meet th styl s 

of human reasoning, reusing proof results with theorems and deriv d rules are their 

common features. Some aspects in the implemented systems are different caused from 

the differences of the implementation platforms and specific designing policies . They 

include the following issues: 

• Syntax Specification Framework: 

In EUODHILOS-I, syntax of logical expressions are specified in the DC Go nota­

tion, whereas in EUODHILOS-II, they are specified in an BNF -based notation. 

In the former notation, some context sensitive syntactic constraints can be spec­

ified by using the arguments of nonterminals. In the latter notation, one may 

give specifications for binding variable and its scope in a flexible way. 
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• Validity Checking Facilities: 

EUODHILOS-II is equipped with richer facilities for checking for the matching 

of the derivation data and proof data to language definition. 

• Proof Abridgment: 

In EUODHILOS-I, the use of lemmas and derived rules mainly contribute to 

building up smaller proof representations. It also support the multiple applica­

tions for rewriting rules. EUODHILOS-I I  extends this framework and provides 

the s mi-automated proving facility with tacticsjtacticals without providing 

detailed parameters such as assumptions, application place, and others. 

• Proof Representation: 

In EUODHILOS-I, proof fragments are displayed in full-tree form, whereas in 

EUODHILOS-II, they are represented in two forms; full line-based tree repre­

sentation, and that represented in Ib\TEX macros. 

• Platform: 

The platforms are different. EUODHILOS is implemented on the PSI machine 

with SIMPOS operating systems. It runs on the SIMPOS window systems and 

was d signed to have a good use of this environment. The platform of EUO­

DHILOS-II, on the other hand, is Emacs that runs on UNIX machines and 

other popularly used machines, so that it has high portability. 
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Chapter 10 

Conclusion 

The aim of this chapter is to summarize what we have achieved in this thesis and 

to give possible future research directions that will become more important in the 

conung years. 

( 1) Achievements 
In this thesis we have investigated a general-purpose reasoning assistant system ar­

chitecture with which users are able to define their own formal systems in logic-based 

framework and reason on the defined formal system. In order to investigate such an 

architecture we took the model-based approach, where we firstly mad th model for 

human reasoning process, then we established an abstract system architecture called 

EUODHILOS. We have developed two systems on different platforms by instantiat­

ing each components of the general architecture; EUODHILOS-I on PSI/SIMPOS 

and EUODHILOS-I I  on top of GNU Emacs/ Epoch/Mule which runs on the UNIX 

machines. By taking such an approach we are able to clearly recognize the features 

that depend on the implementation platforms and those that come from the common 

architecture. For EUODHILOS-I, we chose the mouse-based menu-oriented design 

that fitted to the graphical window system of the SIMPOS operating system. For 

EUODHILOS-II, on the other hand, we chose the keyboard-oriented user-interface 

design where the underlying environment is the GNU Emacs, which is well known as 

a text editing environment. 

Through various experiments of applications on a variety of logical systems and 

formulations, we have demonstrated the potential and usefulness of EUODHILOS 

systems. From these experiments we are convinced that the current EUODHILOS 

systems are fairly useful in two senses: 
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(i) As have been the target, EUODHILOS systems are suitable to experiment with 
a wide styles of logical formulations. They are especially suitable to learning­
by-experimenting style of reasoning, thus they should be well applicable to 
computer-aided learning for logical systems. 

(ii) Relating to the previous item, they are fairly suited as an assisting system for 
developing formal systems, especially in logic-based approaches. As the model 
of human reasoning process in Figure 3.1 suggests, the human user needs some 
amount of exp riences before finishing the logical model construction. EUO­
DHILOS system is one of the best choices for the user to learn his or her own 
logical model under construction. 

We have also demonstrated how EUODHILOS systems can be applied to knowledge 
management. EUODHILOS systems together with agent technologies, the logic-based 
knowledge, especially the meta-data such as tactics and theorems fairly suit to be 
shared among a group of people. The evaluation issues on potential and usefulness 
of the system has also discussed in other papers[73; 100; 103; 104]. 

The issues what we put special emphasis on in this thesis are: 

(a) Advantages of Generality: 

The generality of EUODHILOS have been tested by using it to define various logics 
and to construct proofs expressed within them. All the logics with their proofs were 
created in several hours. If we had had to develop a reasoning system with the same 
functions as EUODHILOS for each logic from scratch, it would have taken much more 
time to do it, and we would have had to repeat almost the same task for constructing 
a reasoning system every time we were working on a new logic. EUODHILOS has 
demonstrated the usefulness of generality in much wider fields of applications[81; 
100]. 

(b) Flexible and Easy-to-Use Logical Framework: 

The logical framework, which gives the means to the users of expressing what logical 
or formal system they want to deal with. In EUODHILOS-I, it is based on the 
DC Go notation, which is an extension to DCG(Definite Clause Grammar) syntax 
description framework, and natural deduction style derivation system. In EUODHI­
LOS-II, it is based on the ordinary CFG(Context Free Grammar)-based production 
rules with BNF(Backus-Naur Form) notation, together with the natural deduction 
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style derivation system. We have demonstrated that by using such logical frameworks 
a variety of logical structures can be dealt with in natural and easy-to-use fashion. 
We have presented a variety of examples like intuitionistic logic modal logic, Hoare 
logic, category theory, relevant logic, combinatory logic, and other different types of 
logics, and have demonstrated that the framework is really applicable to such a wide 
variety of formal systems. 

(c) Proving Methodology based on Sheets of Thought: 

Lots of experiments for proving have convinced us that reasoning by several sheets 
of thought naturally coincides with human thought processes, such as analysis and 
synthesis in scientific exploration, from the part to the whole and vice versa. It may 
be also expected that they turn out to give a promising way towards proving in the 
large. 

It is worth noting that what we have achieved in this thesis are: 

(i) to propose a new system concept and its architecture based on a model-based 
approach, 

(ii) to demonstrate its feasibility by implementing systems on different platforms, 
and 

(iii) to verify its generality and usability through experimenting with many appli a­
tions of the systems to a wide variety of logical systems. 

We would also like to note here that the source codes and documentations of 
EUODHILOS-I are accessible at the ICOT Free Software(IFS) site in the URL: 

http://www.icot.or.jp/AITEC/IFS/IFS-abst/028.html 

and the latest version of EUODHILOS-II and its sample logics together with 1nanuals, 
can be downloaded from the following URL: 

ftp://ftp.fujitsu.eo.jp/pub/isis/euodhilos2 

(2) Future Directions 

Considering the development of information technology, especially the networking 
environment these days, the most important topics to be pursued for the future 
directions of EUODHILOS systems are: 

163 



(i) Extending the Application Fields: 
Knowledge management is one of the promising fields for applying G-RAS sys­

tems like EUODHILOS. In this field, most users will use such a system not for 
dealing with logics or logical structures but for problem solving and decision 
making by collecting a lot of knowledge and data from other systems in the net­

work. In order to adapt to such an environment, EUODHILOS systems need 
to extend themselves in the method of dealing with and of representing the 
knowledge. We have to extend the current system model which is designed as a 
pure G-RAS system so that it is able to deal with the formulas and proofs with 
less-logical representations and less-logical styles of manipulations. By taking 
the user interface in such style, even the users who have little knowledge about 
logics will be able to use the system. 

It is also possible to develop a new application field by extending the data 
from the formalized logical one to less-logical type of data, the G-RAS system 
would be used in wider area of reasoning, idea creation, computer supported 
cooperative work(CSCW), and others. We have been working on a system 
called ZK(Zeichen blocK)[70], which deals with not only the text(verbal) data 
but also other types of data such as the arrangement data and the picture data 
(non-verbal or analogue data). Such a system would bridge the gaps between 
the formalized reasoning in logical framework and the intuitive reasoning that 
deal with the pre-formalized or image-based information. The future system in 
this direction will give an environment to the people as a sharing tool for such 
hybrid information that consists of verbal and non-verbal data. 

(ii) Investigating more Automated Reasoning: 

A wide variety of reason�ng styles should be supported by G-RAS systems. 
We have described in this thesis that the reasoning assisting facilities of EUO­
DHILOS-I is implemented with putting emphasis on supporting the step-by­
step, or manual, reasoning. The built-in tactics and tacticals are introduced 
in EUODHILOS-II so that the system supports from step-by-step reasoning to 

semi-automated reasoning. By using them the medium-sized straightforward 

reasoning can be performed quite easily. As has Kowalski pointed out[46], a 
program can be seen as "Logic+ Control". From the view point of G-RAS, this 
statement can be interpreted as "Problem Solving= Model + Tactics", where 
the purpose of an algorithm is to solve one or a set of problems, model is the 
logical model and tactics describes the control part of problem solving. By con-
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sidering this observation and the previous discussions, the development of useful 
tactics and sharing in a network would open up a new programming field, which 
we call the ''reasoning programming" [71], where the users develop descriptions 
or instructions that tell how to develop theorems or find solutions of the given 

problems. The descriptions can be interpreted as programs in the sense that 
they can be, basically, executed automatically. A reasoning program consists 
of a formal model and its instruction, or a tactic of it. These different informa­
tion works together as a description of procedures. This style resembles to the 
programming environment of applets running on browsers. The whole browser 
window consists of HTML description and the ordinary programs, which may 
further consist of Java script and Java applet working together. Considering the 
complexity of environment on which the programs are executed, only one pro­
gramming language would not be sufficient. So the programming style seems to 
be going to the new style, where, like the browser programming and reasoning 
programming, a couple of programs written in different programming languages 
work cooperatively as an integrated single program. This programming model 
is also similar to that of agent programming, where different agents work to­
gether and form a system. Investigating the automated tactics programming 
framework will contribute to such a new paradigm of programming. 

(iii) Developing Multi-Theory Environment: 

In Chapter 8, we mentioned "ontology transformation". The knowledge and 
data we are using becomes larger and larger these days. The technology for 
integrating knowledge and data is also becoming more and more important. 
The investigation on theory revision and theory inheritance or transformation 
relate to the investigation on ontologies in its essential part. This is another 
important direction of research that relates to EUODHILOS, or G-RAS systems 

in general. 
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