九州大学学術情報リポジトリ Kyushu University Institutional Repository

Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

Brezina, Jan Graduate School of Mathematics, Kyushu University

 $\verb|https://hdl.handle.net/2324/24652|$

出版情報: MI Preprint Series. 2012-10, 2012-08-23. 九州大学大学院数理学研究院

バージョン: 権利関係:

MI Preprint Series

Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

Jan Brezina

MI 2012-10

(Received August 23, 2012)

Faculty of Mathematics Kyushu University Fukuoka, JAPAN

Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

Jan Březina *

Abstract

The global in time existence of strong solutions to the compressible Navier-Stokes equation around time-periodic parallel flows in \mathbb{R}^n , $n \geq 2$, is established under smallness conditions on Reynolds number, Mach number and initial perturbations. Furthermore, it is proved for n=2 that the asymptotic leading part of solutions is given by a solution of one-dimensional viscous Burgers equation multiplied by timeperiodic function. In the case $n \geq 3$ the asymptotic leading part of solutions is given by a solution of n-1-dimensional heat equation with convective term multiplied by time-periodic function.

Mathematics Subject Classification

Keywords. Compressible Navier-Stokes equation, global existence, asymptotic behavior, time-periodic, viscous Burgers equation.

1 Introduction

In this paper we study the stability of solutions around a time-periodic parallel flow to the compressible Navier-Stokes equation with time-periodic external force and time-periodic boundary conditions.

We consider the system of equations

$$\partial_{\widetilde{t}}\widetilde{\rho} + \operatorname{div}\left(\widetilde{\rho}\widetilde{v}\right) = 0, \tag{1.1}$$

$$\widetilde{\rho}(\partial_{\widetilde{t}}\widetilde{v} + \widetilde{v} \cdot \nabla \widetilde{v}) - \mu \Delta \widetilde{v} - (\mu + \mu') \nabla \operatorname{div} \widetilde{v} + \nabla \widetilde{P}(\widetilde{\rho}) = \widetilde{\rho} \widetilde{g}, \tag{1.2}$$

in an *n* dimensional infinite layer $\Omega_{\ell} = \mathbb{R}^{n-1} \times (0, \ell)$:

$$\Omega_{\ell} = \{ \widetilde{x} = {}^{T}(\widetilde{x}', \widetilde{x}_{n});$$

$$\widetilde{x}' = {}^{T}(\widetilde{x}_{1}, \dots, \widetilde{x}_{n-1}) \in \mathbb{R}^{n-1}, 0 < \widetilde{x}_{n} < \ell \}.$$

Here, $n \geq 2$; $\widetilde{\rho} = \widetilde{\rho}(\widetilde{x}, \widetilde{t})$ and $\widetilde{v} = {}^{T}(\widetilde{v}^{1}(\widetilde{x}, \widetilde{t}), \dots, \widetilde{v}^{n}(\widetilde{x}, \widetilde{t}))$ denote the unknown density and velocity at time $\widetilde{t} \geq 0$ and position $\widetilde{x} \in \Omega_{\ell}$, respectively; \widetilde{P} is the pressure, smooth function of $\widetilde{\rho}$, where for given $\rho_* > 0$ we assume

$$\widetilde{P}'(\rho_*) > 0;$$

 μ and μ' are the viscosity coefficients that are assumed to be constants satisfying $\mu > 0$, $\frac{2}{n}\mu + \mu' \ge 0$; div, ∇ and Δ denote the usual divergence, gradient and Laplacian with respect to \tilde{x} . Here and in what follows T. denotes the transposition.

In (1.2) \widetilde{g} is assumed to have the form

$$\widetilde{\boldsymbol{q}} = {}^{T}(\widetilde{q}^{1}(\widetilde{x}_{n}, \widetilde{t}), 0, \dots, 0, \widetilde{q}^{n}(\widetilde{x}_{n})),$$

with \tilde{g}^1 being a τ -periodic function in time, where $\tau > 0$.

The system (1.1)–(1.2) is considered under boundary condition

$$\widetilde{v}|_{\widetilde{x}_n=0} = \widetilde{V}^1(t)\boldsymbol{e}_1, \quad \widetilde{v}|_{\widetilde{x}_n=\ell} = 0,$$
 (1.3)

and initial condition

$$(\widetilde{\rho}, \widetilde{v})|_{\widetilde{t}=0} = (\widetilde{\rho}_0, \widetilde{v}_0), \tag{1.4}$$

where \widetilde{V}^1 is a τ -periodic function of time and $\boldsymbol{e}_1 = {}^T(1,0,\ldots,0) \in \mathbb{R}^n$. Under suitable conditions on $\widetilde{\boldsymbol{g}}$ and \widetilde{V}^1 , problem (1.1)–(1.3) has smooth time-periodic solution $\overline{u}_p =$ $^{T}(\overline{\rho}_{p},\overline{v}_{p})$ satisfying

^{*}Graduate School of Mathematics, Kyushu University, Fukuoka 819-0395, JAPAN

$$\overline{\rho}_p = \overline{\rho}_p(\widetilde{x}_n) \ge \widetilde{\rho}_1, \quad \frac{1}{\ell} \int_0^\ell \overline{\rho}_p(\widetilde{x}_n) \, d\widetilde{x}_n = \rho_*,$$

$$\overline{v}_p = {}^T(\overline{v}_p^1(\widetilde{x}_n, \widetilde{t}), 0, \dots, 0), \quad \overline{v}_p^1(\widetilde{x}_n, \widetilde{t} + \tau) = \overline{v}_p^1(\widetilde{x}_n, \widetilde{t}),$$

for a positive constant $\widetilde{\rho}_1$.

The aim of this paper is to give an asymptotic description of large time behavior of perturbations from \overline{u}_p when Reynolds and Mach numbers are sufficiently small.

To formulate the problem for perturbations, we introduce the following dimensionless variables:

$$\widetilde{x} = \ell x, \quad \widetilde{t} = \frac{\ell}{V} t, \quad \widetilde{v} = V v, \quad \widetilde{\rho} = \rho_* \rho, \quad \widetilde{P} = \rho_* V^2 P,$$

with

$$\widetilde{w} = Vw, \quad \widetilde{\phi} = \rho_* \gamma^{-2} \phi, \quad \widetilde{V}^1 = VV^1, \quad \widetilde{\boldsymbol{g}} = \frac{\mu V}{\rho_* \ell^2} \boldsymbol{g},$$

where

$$\gamma = \frac{\sqrt{\widetilde{P}'(\rho_*)}}{V}, \quad V = \frac{\rho_*\ell^2}{\mu} \left\{ |\partial_{\widetilde{t}}\widetilde{V}^1|_{C^0(\mathbb{R})} + |\widetilde{g}^1|_{C^0(\mathbb{R} \times [0,\ell])} \right\} + |\widetilde{V}^1|_{C^0(\mathbb{R})} > 0.$$

In this paper we assume V > 0. Under this change of variables the domain Ω_{ℓ} is transformed into $\Omega = \mathbb{R}^{n-1} \times (0,1)$; and $g^1(x_n,t)$, $V^1(t)$ are periodic in t with period T > 0 defined by

$$T = \frac{V}{\ell} \tau.$$

The time-periodic solution \overline{u}_p is transformed into $u_p = {}^T(\rho_p, v_p)$ satisfying

$$\rho_p = \rho_p(x_n) > 0, \int_0^1 \rho_p(x_n) dx_n = 1,$$

$$v_p = {}^T(v_p^1(x_n, t), 0, \dots, 0), \ v_p^1(x_n, t + T) = v_p^1(x_n, t).$$

It then follows that the perturbation $u(t) = {}^{T}(\phi(t), w(t)) \equiv {}^{T}(\gamma^{2}(\rho(t) - \rho_{p}), v(t) - v_{p}(t))$ is governed by the following system of equations

$$\partial_t \phi + v_p^1 \partial_{x_1} \phi + \gamma^2 \operatorname{div} (\rho_p w) = f^0, \tag{1.5}$$

$$\partial_t w - \frac{\nu}{\rho_p} \Delta w - \frac{\tilde{\nu}}{\rho_p} \nabla \text{div} \, w + v_p^1 \partial_{x_1} w + (\partial_{x_n} v_p^1) w^n \, \boldsymbol{e}_1$$

$$+\frac{\nu}{\gamma^2 \rho_p^2} (\partial_{x_n}^2 v_p^1) \phi \, \boldsymbol{e}_1 + \nabla \left(\frac{P'(\rho_p)}{\gamma^2 \rho_p} \phi \right) = \boldsymbol{f}, \tag{1.6}$$

$$w|_{\partial\Omega} = 0, (1.7)$$

$$(\phi, w)|_{t=0} = (\phi_0, w_0), \tag{1.8}$$

where f^0 and $\mathbf{f} = T(f^1, \dots, f^n)$ denote nonlinearities, i.e.,

$$f^0 = -\operatorname{div}(\phi w),$$

$$\begin{split} \boldsymbol{f} &= -\boldsymbol{w} \cdot \nabla \boldsymbol{w} + \frac{\nu \phi}{\gamma^2 \rho_p^2} \left(-\Delta \boldsymbol{w} + \frac{\partial_{x_n}^2 v_p^1}{\rho_p \gamma^2} \phi \boldsymbol{e}_1 \right) - \frac{\nu \phi^2}{\gamma^2 \rho_p^2 (\gamma^2 \rho_p + \phi)} \left(-\Delta \boldsymbol{w} + \frac{\partial_{x_n}^2 v_p^1}{\rho_p \gamma^2} \phi \boldsymbol{e}_1 \right) \\ &- \frac{\widetilde{\nu} \phi}{\rho_p (\gamma^2 \rho_p + \phi)} \nabla \mathrm{div} \, \boldsymbol{w} + \frac{\phi}{\gamma^2 \rho_p} \nabla \left(\frac{P'(\rho_p)}{\gamma^2 \rho_p} \phi \right) - \frac{1}{2\gamma^4 \rho_p} \nabla (P''(\rho_p) \phi^2) + \widetilde{P}_3(\rho_p, \phi, \partial_x \phi), \\ &\widetilde{P}_3(\rho_p, \phi, \partial_x \phi) \quad = \frac{\phi^3}{\gamma^4 (\gamma^2 \rho_p + \phi) \rho_p^3} \nabla P(\rho_p) + \frac{\phi \nabla (P''(\rho_p) \phi^2)}{2\gamma^4 \rho_p (\gamma^2 \rho_p + \phi)} \\ &- \frac{\phi^2 \nabla (P'(\rho_p) \phi)}{\gamma^4 \rho_p^2 (\gamma^2 \rho_p + \phi)} - \frac{1}{2\gamma^4 (\gamma^2 \rho_p + \phi)} \nabla (\phi^3 P_3(\rho_p, \phi)), \end{split}$$

with

$$P_3(\rho_p, \phi) = \int_0^1 (1 - \theta)^2 P'''(\theta \gamma^{-2} \phi + \rho_p) d\theta.$$

Here, div, ∇ and Δ denote the usual divergence, gradient and Laplacian with respect to x; ν , ν' and $\widetilde{\nu}$ are the non-dimensional parameters:

$$\nu = \frac{\mu}{\rho_* \ell V}, \quad \nu' = \frac{\mu'}{\rho_* \ell V}, \quad \widetilde{\nu} = \nu + \nu'.$$

We note that the Reynolds number Re and Mach number Ma are given by $Re = \nu^{-1}$ and $Ma = \gamma^{-1}$, respectively. See [1] for the derivation of (1.5)–(1.8).

In the case g^1 and V^1 do not depend on t, problem (1.1)–(1.3) has a stationary parallel flow. The stability of stationary parallel flows were studied in [5, 6, 7, 11]. It was shown in [6] and [7] that the stationary parallel flow is asymptotically stable under sufficiently small initial perturbations in $H^m(\Omega) \cap L^1(\Omega)$ with $m \geq [n/2] + 1$, provided that $Re \ll 1$, $Ma \ll 1$ and density of the parallel flow is sufficiently close to a positive constant. Furthermore, the asymptotic behavior of perturbations from the stationary parallel flow is described by n-1 dimensional linear heat equation in the case $n \geq 3$ ([6]) and by one-dimensional viscous Burgers equation in the case n=2 ([7]).

The case of time-periodic parallel flows was considered in [1, 2] for $Re \ll 1$ and $Ma \ll 1$. In [1, 2] the authors investigated the linearized problem, i.e., (1.5)–(1.8) with $(f^0, \mathbf{f}) = (0, 0)$, which is written as

$$\partial_t u + L(t)u = 0, \quad w|_{x_n = 0.1} = 0, \quad u|_{t=s} = u_0.$$
 (1.9)

Here, $u = T(\phi, w)$ and L(t) is operator of the form

$$L(t) = \begin{pmatrix} v_p^1(t)\partial_{x_1} & \gamma^2 \operatorname{div}(\rho_p \cdot) \\ \nabla \left(\frac{P'(\rho_p)}{\gamma^2 \rho_p} \cdot \right) & -\frac{\nu}{\rho_p} \Delta I_n - \frac{\tilde{\nu}}{\rho_p} \nabla \operatorname{div} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \frac{\nu}{\gamma^2 \rho_p^2} \partial_{x_n}^2 v_p^1(t) \boldsymbol{e}_1 & v_p^1(t) \partial_{x_1} I_n + (\partial_{x_n} v_p^1(t)) \boldsymbol{e}_1^T \boldsymbol{e}_n \end{pmatrix}.$$

$$(1.10)$$

Note that L(t) satisfies L(t) = L(t+T).

In [1, 2] spectral properties of the solution operator U(t, s) for (1.9) were studied by using Fourier transform with respect to $x' \in \mathbb{R}^{n-1}$. The Fourier transform of (1.9) can be written in the form:

$$\frac{d}{dt}\widehat{u} + \widehat{L}_{\xi'}(t)\widehat{u} = 0, \ t > s, \quad \widehat{u}|_{t=s} = \widehat{u}_0, \tag{1.11}$$

where \widehat{u} denotes the Fourier transform of u in x'; and ξ' is dual variable to x'. For each $\xi' \in \mathbb{R}^{n-1}$ and for all $t \geq s$ there exists a unique evolution operator $\widehat{U}_{\xi'}(t,s)$ for (1.11).

Since $\widehat{L}_{\xi'}(t)$ is T-time periodic, the spectrum of $\widehat{U}_{\xi'}(T,0)$ plays an important role in the study of large time behavior. It was shown in [1] that the spectrum of $\widehat{U}_{\xi'}(T,0)$ satisfies the following inclusion

$$\sigma(\widehat{U}_{\xi'}(T,0)) \subseteq \begin{cases} \{e^{\lambda_{\xi'}T}\} \cup \{|\lambda| < q_1\} & (|\xi'| < r), \\ \{|\lambda| < q_1\} & (|\xi'| \ge r), \end{cases}$$

for a constant $0 < q_1 < 1$ and $0 < r \ll 1$. Here, $e^{\lambda_{\xi'}T}$ is the simple eigenvalue of $\widehat{U}_{\xi'}(T,0)$ and $\lambda_{\xi'} = -i\kappa_0\xi_1 - \kappa_1\xi_1^2 - \kappa''|\xi''|^2 + O(|\xi'|^3)$ with $\kappa_0 \in \mathbb{R}$, $\kappa_1 > 0$, $\kappa'' > 0$ and $\xi' = T(\xi_1, \xi'')$, $\xi'' = (\xi_2, \dots, \xi_{n-1})$.

In [2] spectral properties of $\widehat{U}_{\xi'}(t,s)$ were investigated for $|\xi'| < r$ by using the Floquet theory. A family $\{\mathbb{P}(t)\}_{t\in\mathbb{R}}$ of bounded projections on $L^2(\Omega)$ was constructed to represent $\mathbb{P}(t)U(t,s)$ as

$$\mathbb{P}(t)U(t,s) = \mathcal{Q}(t)e^{(t-s)\Lambda}\mathcal{P}(s). \tag{1.12}$$

Here, $e^{t\Lambda} = \mathscr{F}^{-1}\widehat{\chi}_1 e^{\lambda_{\xi'}t}\mathscr{F}$ with frequency cut off function $\widehat{\chi}_1 : \widehat{\chi}_1(\xi') = 1 \ (|\xi'| < r), \ \widehat{\chi}_1(\xi') = 0 \ (|\xi'| \ge r),$ and $\mathscr{Q}(t) = \mathscr{F}^{-1}\widehat{\chi}_1\widehat{\mathscr{Q}}_{\xi'}(t)\mathscr{F}$ and $\mathscr{P}(t) = \mathscr{F}^{-1}\widehat{\chi}_1\widehat{\mathscr{P}}_{\xi'}(t)\mathscr{F}$ with

$$\widehat{\mathcal{Q}}_{\xi'}(t): \mathbb{C} \to L^2(0,1) \text{ and } \widehat{\mathscr{P}}_{\xi'}(t): L^2(0,1) \to \mathbb{C},$$

expanded as

$$\widehat{\mathcal{Q}}_{\xi'}(t) = \mathcal{Q}^{(0)}(t) + i\xi' \cdot \mathcal{Q}^{(1)}(t) + O(|\xi'|^2),$$

$$\widehat{\mathcal{P}}_{\xi'}(t) = \mathcal{P}^{(0)} + i\xi' \cdot \mathcal{P}^{(1)}(t) + O(|\xi'|^2),$$

for $|\xi'| \leq r$, where $\mathcal{Q}^{(0)}(t)\sigma = \sigma u^{(0)}(\cdot,t)$ ($\sigma \in \mathbb{C}$), $u^{(0)}(\cdot,t) = u^{(0)}(x_n,t)$ is a function T-periodic in t and $\mathcal{P}^{(0)}u = [\phi]$ ($u = {}^T(\phi, w) \in L^2(0,1)$). One consequence of (1.12) is that

$$\|\partial_{x'}^k \partial_{x_n}^l \mathbb{P}(t) U(t,s) u_0\|_{L^2(\Omega)} \le C(1+t-s)^{-\frac{n-1}{4}-\frac{k}{2}} \|u_0\|_{L^1(\Omega)},$$

$$\|(I - \mathbb{P}(t))U(t,s)u_0\|_{H^1(\Omega)} \le e^{-d(t-s)}(\|u_0\|_{H^1 \times L^2} + \|\partial_{x'}w_0\|_{L^2}),$$

$$\|\partial_{x'}^k \partial_{x_n}^l (\mathbb{P}(t) U(t,s) u_0 - \sigma_{t,s}[u_0] u^{(0)}(t))\|_{L^2(\Omega)} \leq C(t-s)^{-\frac{n-1}{4} - \frac{1}{2} - \frac{k}{2}} \|u_0\|_{L^1(\Omega)},$$

for $t-s \ge T$, $s \ge 0$; $k=0,1,\ldots,l=0,\ldots,m$ for $m \ge 2$. Here, $\sigma_{t,s}[u_0] = \sigma_{t,s}(x')[u_0]$ is a function whose Fourier transform in x' is given by

$$\mathscr{F}(\sigma_{t,s}[u_0]) = e^{-(i\kappa_0\xi_1 + \kappa_1\xi_1^2 + \kappa''|\xi''|^2)(t-s)} [\widehat{\phi}_0(\xi')],$$

where $[\widehat{\phi}_0(\xi')]$ is a quantity given by

$$[\widehat{\phi}_0(\xi')] = \int_0^1 \widehat{\phi}_0(\xi', x_n) \, dx_n,$$

with $\widehat{\phi}_0$ being the Fourier transform of ϕ_0 in x' and $\kappa_0 \in \mathbb{R}$, $\kappa_1 > 0$, $\kappa'' > 0$ are positive constants depending on ρ_*, l, V, μ, μ' and $\widetilde{P}'(\rho_*)$.

Another consequence of (1.12) is that if u(t) is a solution of

$$\partial_t u + L(t)u = f, \ u|_{t=0} = u_0,$$

then $\mathbb{P}(t)u(t)$ is represented as

$$\mathbb{P}(t)u(t) = \mathcal{Q}(t)\left(e^{t\Lambda}\mathcal{P}(0)u_0 + \int_0^t e^{(t-z)\Lambda}\mathcal{P}(z)f(z)dz\right). \tag{1.13}$$

In this paper we show the following results. Let u_0 be sufficiently small in $H^m(\Omega) \cap L^1(\Omega)$ for a given $m \geq [n/2] + 1$; and let u_0 satisfy a suitable compatibility condition, then there exists unique solution u(t) of (1.5)–(1.8) in $C([0,\infty); H^m(\Omega))$, provided that $Re \ll 1$, $Ma \ll 1$ and $|1 - \rho_p|_{C^{m+1}([0,1])} \ll 1$. Furthermore, u(t) satisfies

$$\|\partial_{x'}^k u(t)\|_{L^2(\Omega)} \le O(t^{-\frac{n-1}{4} - \frac{k}{2}}), \ k = 0, 1,$$

as $t \to \infty$.

In the case n=2, we show that the asymptotic leading term of perturbation u(t) is described by a solution of one-dimensional viscous Burgers equation, i.e.,

$$||u(t) - (\sigma u^{(0)})(t)||_2 = O(t^{-\frac{3}{4} + \delta}), \ \forall \delta > 0,$$

as $t \to \infty$. Here, $u^{(0)} = u^{(0)}(x_2, t)$ is a given time-periodic function; and $\sigma = \sigma(x_1, t)$ is function satisfying

$$\partial_t \sigma - \kappa_1 \partial_{x_1}^2 \sigma + \kappa_0 \partial_{x_1} \sigma + \omega_0 \partial_{x_1} (\sigma^2) = 0, \ \sigma|_{t=0} = \int_0^1 \phi_0(x_1, x_2) \ dx_2, \tag{1.14}$$

with constants $\kappa_0 \in \mathbb{R}$, $\kappa_1 > 0$ being the same ones as those in λ_{ξ_1} and $\omega_0 \in \mathbb{R}$ determined by the nonlinearity \mathbf{F} .

In the case $n \geq 3$, we show that the asymptotic leading term of u(t) is the same one as for the linearized problem and thus it is given by n-1-dimensional heat equation with convective term, i.e.,

$$||u(t) - (\sigma u^{(0)})(t)||_2 = O(t^{-\frac{n-1}{4} - \frac{1}{2}} \eta_n(t)),$$

as $t \to \infty$. Here, $\sigma = \sigma(x', t)$ is function satisfying

$$\partial_t \sigma - \kappa_1 \partial_{x_1}^2 \sigma - \kappa'' \Delta'' \sigma + \kappa_0 \partial_{x_1} \sigma = 0, \ \sigma|_{t=0} = \int_0^1 \phi_0(x', x_n) \ dx_n,$$

with constants $\kappa_0 \in \mathbb{R}$, $\kappa_1, \kappa'' > 0$ being the same ones as those in $\lambda_{\xi'}$; where $\Delta'' = \partial_{x_2}^2 + \cdots + \partial_{x_{n-1}}^2$; and $\eta_n(t) = \log(1+t)$ when n=3 and $\eta_n(t)=1$ when $n \geq 4$.

The proof of the main results is given by a combination of various estimates for $\mathbb{P}(t)U(t,s)$ mentioned above and a variant of Matsumura-Nishida energy method ([6, 7], cf. [12]). We decompose the solution u(t)

of (1.5)-(1.8) into the $\mathbb{P}(t)$ -part and $(I-\mathbb{P}(t))$ -part. Considering the $\mathbb{P}(t)$ -part, we represent $\mathbb{P}(t)u(t)$ as in (1.13) with $f=T(f^0,f)$ being the nonlinearity given in (1.5) and (1.6). We then combine various estimates on $\mathbb{P}(t)$ and $\mathbb{P}(t)U(t,s)$ to obtain the necessary estimates on $\mathbb{P}(t)u(t)$. On the other hand, $(I-\mathbb{P}(t))u(t)$ can be estimated by a variant of Matsumura-Nishida energy method as in the case of the stationary parallel flow ([7]). However, in contrast to [7], the linearized operator has time-dependent coefficients. Therefore a modification of the argument in [7] is needed for the time-periodic case to aquire the necessary energy estimate. It is worth mentioning that in the case n=2 the asymptotic leading part of u(t) is not described by the linearized problem due to the quadratic nonlinearities $-\text{div}\,(\phi w),\,\frac{\nu\phi}{\gamma^2\rho_p^2}\left(-\partial_{x_n}^2w^1+\frac{\partial_{x_n}^2v_p}{\rho_p\gamma^2}\phi\right)$ and $-\frac{1}{2\gamma^4\rho_p}\partial_{x_n}(P''(\rho_p)\phi^2)$. This leads to the 1-dimensional Burgers equation (1.14).

Our result is an extension of previous results on the stationary case [5, 6, 7, 11] to the case of time-periodic external force and time-periodic boundary conditions.

Structure of this paper is the following. In Section 2 we introduce basic notations that are used throughout the paper. In Section 3 we state the main results. In Section 4 we present the results on spectral properties of the linearized problem obtained in [2]. In Section 5 we introduce decomposition of solution u(t) to (1.5)–(1.8) based on the spectral properties of L(t) introduced in Section 4. Moreover, we prove the a priori estimate using the estimates on $\mathbb{P}(t)u(t)$ and $(I - \mathbb{P}(t))u(t)$ from subsequent sections 6, 7 and 8. In Section 6 we show estimate for $\mathbb{P}(t)u(t)$ using properties of $\mathbb{P}(t)$ and $\mathbb{P}(t)U(t,s)$. In Section 7 we obtain estimate on $(I - \mathbb{P}(t))u(t)$ using energy method. In Section 8 we estimate the nonlinearities f^0 and f. Finally, in Section 9 we prove the asymptotic behavior of solutions.

2 Notation

In this section we introduce some notations which are used throughout the paper. For a domain E we denote by $L^p(E)$ the usual Lebesgue space on E and its norm is denoted by $\|\cdot\|_{L^p(E)}$ for $1 \le p \le \infty$. Let k be a nonnegative integer. $H^k(E)$ denotes the k-th order L^2 Sobolev space on E with norm $\|\cdot\|_{H^k(E)}$. $C_0^k(E)$ stands for the set of all C^k functions which have compact support in E. We denote by $H_0^1(E)$ the completion of $C_0^1(E)$ in $H^1(E)$.

We simply denote by $L^p(E)$ (resp., $H^k(E)$) the set of all vector fields $w = {}^T(w^1, \ldots, w^n)$ on E with $w^j \in L^p(E)$ (resp., $H^k(E)$), $j = 1, \ldots, n$, and its norm is also denoted by $\|\cdot\|_{L^p(E)}$ (resp., $\|\cdot\|_{H^k(E)}$). For $u = {}^T(\phi, w)$ with $\phi \in H^k(E)$ and $w = {}^T(w^1, \ldots, w^n) \in H^l(E)$, we define $\|u\|_{H^k(E) \times H^l(E)}$ by $\|u\|_{H^k(E) \times H^l(E)} = \|\phi\|_{H^k(E)} + \|w\|_{H^l(E)}$. When k = l, we simply write $\|u\|_{H^k(E) \times H^k(E)} = \|u\|_{H^k(E)}$.

In the case $E = \Omega$ we abbreviate $L^p(\Omega)$ (resp., $H^k(\Omega)$) as L^p (resp., H^k). In particular, we denote the norm of L^p (resp., H^k) by $\|\cdot\|_p$ (resp., $\|\cdot\|_{H^k}$).

In the case E = (0,1) we denote the norm $|\cdot|_{L^2(0,1)}$ (resp., $|\cdot|_{H^k(0,1)}$) by $|\cdot|_2$ (resp., $|\cdot|_{H^k}$). The inner product of L^2 is denoted by

$$(f,g) = \int_{\Omega} f(x)g(x) dx, \quad f,g \in L^2.$$

Furthermore, we introduce a weighted inner product $\langle \cdot, \cdot \rangle_{\Omega}$ defined by

$$\langle u_1, u_2 \rangle_{\Omega} = \int_{\Omega} \phi_1 \phi_2 \frac{P'(\rho_p)}{\gamma^4 \rho_p} dx + \int_{\Omega} w_1 w_2 \rho_p dx,$$

for $u_j = {}^T(\phi_j, w_j) \in L^2$, j = 1, 2; and for $u_j = {}^T(\phi_j, w_j) \in L^2(0, 1)$, j = 1, 2, we also define $\langle u_1, u_2 \rangle$ by

$$\langle u_1, u_2 \rangle = \int_0^1 \phi_1 \overline{\phi}_2 \frac{P'(\rho_p)}{\gamma^4 \rho_p} dx_n + \int_0^1 w_1 \overline{w}_2 \rho_p dx_n.$$

Here, \overline{g} denotes the complex conjugate of g.

Furthermore, for $f \in L^1(0,1)$ we denote the mean value of f in (0,1) by [f]:

$$[f] = (f,1) = \int_0^1 f(x_n) dx_n.$$

For $u = T(\phi, w) \in L^1(0, 1)$ with $w = T(w^1, \dots, w^n)$ we define [u] by

$$[u] = [\phi] + [w^1] + \dots + [w^n].$$

We often write $x \in \Omega$ as

$$x = {}^{T}(x', x_n), \ x' = {}^{T}(x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1}.$$

Partial derivatives of function u in x, x', x_n and t are denoted by $\partial_x u$, $\partial_{x'} u$, $\partial_{x_n} u$ and $\partial_t u$, respectively. We also write higher order partial derivatives of u in x as $\partial_x^k u = (\partial_x^\alpha u; |\alpha| = k)$; by $\Delta' = \sum_{i=1}^{n-1} \partial_{x_i}^2$, $\nabla' = (\partial_{x_1}, \dots, \partial_{x_{n-1}})$ and $\operatorname{div}' = \nabla'$ we denote the Lapacian, gradient and divergence with respect to x', respectively.

We denote $k \times k$ identity matrix by I_k . In particular, when k = n + 1, we simply write I for I_{n+1} . We define $(n + 1) \times (n + 1)$ diagonal matrices Q_i , Q' and \widetilde{Q} by

$$Q_j = \text{diag}(0, \dots, 0, \underbrace{1}_{j-th}, 0, \dots, 0), \quad j = 0, 1, \dots, n,$$

and

$$Q' = \text{diag}(0, 1, \dots, 1, 0), \ \widetilde{Q} = \text{diag}(0, 1, \dots, 1).$$

We then have for $u = {}^{T}(\phi, w) \in \mathbb{R}^{n+1}, w = {}^{T}(w^{1}, \dots, w^{n}) = {}^{T}(w', w^{n}),$

$$Q_0 u = \begin{pmatrix} \phi \\ 0 \end{pmatrix}, \quad Q_j u = \begin{pmatrix} 0 \\ w^j \\ 0 \end{pmatrix}, \quad Q_n u = \begin{pmatrix} 0 \\ 0 \\ w^n \end{pmatrix}, \quad Q' u = \begin{pmatrix} 0 \\ w' \\ 0 \end{pmatrix}, \quad \widetilde{Q} u = \begin{pmatrix} 0 \\ w \end{pmatrix}.$$

We denote $e_1' = {}^T(1, 0, \dots, 0) \in \mathbb{R}^{n-1}$. We note that

$$[Q_0 u] = [\phi]$$
 for $u = {}^T (\phi, w)$.

For a function f = f(x') $(x' \in \mathbb{R}^{n-1})$, we denote its Fourier transform by \widehat{f} or $\mathscr{F} f$:

$$\widehat{f}(\xi') = (\mathscr{F}f)(\xi') = \int_{\mathbb{R}^{n-1}} f(x')e^{-i\xi' \cdot x'} dx'.$$

The inverse Fourier transform is denoted by \mathscr{F}^{-1} :

$$(\mathscr{F}^{-1}f)(x') = (2\pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} f(\xi') e^{i\xi' \cdot x'} d\xi'.$$

For closed linear operator A in X we denote the spectrum of A by $\sigma(A)$. We denote the set of all bounded linear operators from X_0 into itself by $L(X_0)$ and denote the norm by $|\cdot|_{L(X_0)}$. For operators A, B we denote [A, B] the commutator, i.e., [A, B] = AB - BA. For time interval $[a, b] \subset \mathbb{R}$, we denote the usual Bochner spaces by $L^2(a, b; X)$, $H^m(a, b; X)$, etc., where X denotes a Banach space.

Definition 2.1 For a domain E we define the following function spaces:

$$X_0 = H^1(0,1) \times L^2(0,1), \quad H^j_*(E) = \begin{cases} H^{-1}(E) = (H^1_0)^*(E) & \text{for } j = -1, \\ L^2(E) & \text{for } j = 0, \\ H^j(E) \cap H^1_0(E) & \text{for } j \ge 1. \end{cases}$$

Definition 2.2 We introduce the following norms:

$$[f(t)]_k = \left(\sum_{j=0}^{\left[\frac{k}{2}\right]} \|\partial_t^j f(t)\|_{H^{k-2j}}\right)^{\frac{1}{2}},$$

$$\||Df(t)\||_k = \begin{cases} \|\partial_x f(t)\|_2 & \text{for } k = 0, \\ ([[\partial_x f(t)]]_k^2 + [[\partial_t f(t)]]_{k-1}^2)^{\frac{1}{2}} & \text{for } k \ge 1. \end{cases}$$

Remark 2.3 Let us note that

$$||Dv||_{m-1} \le 2[v]_m \text{ and } [v]_m \le ||v||_2 + ||Dv||_{m-1},$$

for $[v]_m < \infty$.

Definition 2.4 Let $m \ge \lfloor n/2 \rfloor + 1$. For $\tau > 0$ we define a function space $Z^m(\tau)$ by

$$Z^{m}(\tau) = \{ u \in \bigcap_{j=0}^{\left[\frac{m}{2}\right]} C^{j}([0,\tau]; H^{m-2j}), \|u\|_{Z^{m}(\tau)} < \infty \},$$

where

$$||u||_{Z^m(\tau)} = \sup_{0 \le z \le \tau} [u(z)]_m + \left(\int_0^\tau ||Dw(z)||_m^2 dz\right)^{\frac{1}{2}}.$$

3 Main results

In this section we state the main results of this paper.

In the whole article we assume the following regularity for \widetilde{g} and \widetilde{V}^1 .

Assumptions 3.1 For a given integer $m \geq [n/2] + 1$ assume that $\widetilde{\mathbf{g}} = {}^{T}(\widetilde{g}^{1}(\widetilde{x}_{n}, \widetilde{t}), 0, \dots, 0, \widetilde{g}^{n}(\widetilde{x}_{n}))$ and $\widetilde{V}^{1}(\widetilde{t})$ belong to the following spaces:

 $\widetilde{g}^n \in C^{m+1}[0,\ell],$

and

$$\widetilde{g}^{1} \in \bigcap_{j=0}^{\left[\frac{m+1}{2}\right]} C_{per}^{j}([0,\tau]; H^{m+1-2j}(0,\ell)),$$

$$\widetilde{V}^{1} \in C_{per}^{\left[\frac{m+2}{2}\right]}([0,\tau]).$$

Furthermore, we assume

$$\widetilde{P}(\cdot) \in C^{m+2}(\mathbb{R}).$$

It is straightforward that g and V^1 belong to similar spaces as \widetilde{g} and \widetilde{V}^1 .

Under Assumptions 3.1 one can see that flow u_p has the following properties (see [1]).

Proposition 3.2 There exists $\delta_0 > 0$ such that if

$$\nu |g^n|_{C^{m+1}([0,1])} \le \delta_0,$$

then the following assertions hold true (see [1]). The flow $u_p = {}^T(\rho_p(x_n), v_p(x_n, t))$ exists and under Assumptions 3.1, it satisfies

$$v_p \in \bigcap_{j=0}^{\left[\frac{m+3}{2}\right]} C_{per}^j(J_T; H^{m+3-2j}(0,1)), \quad \rho_p \in C^{m+2}[0,1],$$

and

$$0 < \rho_1 \le \rho_p(x_n) \le \rho_2, \ \int_0^1 \rho_p(x_n) dx_n = 1, \ v_p(x_n, t) = {}^T(v_p^1(x_n, t), 0),$$

with

$$P'(\rho) > 0 \text{ for } \rho_1 \le \rho \le \rho_2,$$

$$|1 - \rho_p|_{C^{k+1}([0,1])} \le \frac{C}{\gamma^2} \nu(|P''|_{C^{k-1}(\rho_1,\rho_2)} + |g^n|_{C^k([0,1])}), \quad k = 1, \dots, m+1,$$

$$|P'(\rho_p) - \gamma^2|_{C^0([0,1])} \le \frac{C}{\gamma^2} \nu|g^n|_{C^0([0,1])},$$
(3.1)

for some constants $0 < \rho_1 < 1 < \rho_2$.

First, let us introduce the local existence result. To do so, we rewrite (1.5)–(1.8) in the form

$$\partial_t \phi + v \cdot \nabla \phi = -\gamma^2 w \cdot \nabla \rho_p - \rho \operatorname{div} w, \tag{3.2}$$

$$\rho \partial_t w - \nu \Delta w - \widetilde{\nu} \nabla \operatorname{div} w = -\frac{\nu}{\gamma^2 \rho_p} \partial_{x_n}^2 v_p \phi - \nabla (P(\rho) - P(\rho_p)) - \rho (v \cdot \nabla v), \tag{3.3}$$

$$w|_{\partial\Omega} = 0, (3.4)$$

$$(\phi, w)|_{t=0} = (\phi_0, w_0), \tag{3.5}$$

where $\rho = \rho_p + \gamma^{-2}\phi$ and $v = v_p + w$.

Next, let us mention the compatibility condition for $u_0 = {}^T(\phi_0, w_0)$. We look for a solution $u = {}^T(\phi, w)$ of (3.2)–(3.5) in $\bigcap_{j=0}^{\left[\frac{m}{2}\right]} C^j([0,\infty); H^{m-2j})$ satisfying $\int_0^t \|\partial_x w(z)\|_{H^m}^2 dz < \infty$ for all $t \ge 0$ with $m \ge [n/2] + 1$. Therefore, we need to require the compatibility condition for the initial value $u_0 = {}^T(\phi_0, w_0)$, which is formulated as follows.

Let $u = {}^T(\phi, w)$ be a smooth solution of (3.2)–(3.5). Then $\partial_t^j u = {}^T(\partial_t^j \phi, \partial_t^j w), j \geq 1$ is inductively determined by

$$\partial_t^j \phi = -v \cdot \nabla \partial_t^{j-1} \phi - \rho \operatorname{div} \partial_t^{j-1} w - \gamma^2 \partial_t^{j-1} w \cdot \nabla \rho_p - \{ [\partial_t^{j-1}, v \cdot \nabla] \phi + [\partial_t^{j-1}, \rho] \operatorname{div} w \},$$

and

$$\begin{split} \partial_t^j w &= -\rho^{-1} \{ -\nu \Delta \partial_t^{j-1} w - \widetilde{\nu} \nabla \text{div} \, \partial_t^{j-1} w + P'(\rho) \nabla \partial_t^{j-1} \rho \} - \rho^{-1} \{ \gamma^{-2} [\partial_t^{j-1}, \phi] \partial_t w + [\partial_t^{j-1}, P'(\rho)] \nabla \rho \} \\ &- \rho^{-1} \{ \frac{\nu}{\gamma^2 \rho_n} \partial_t^{j-1} (\partial_{x_n}^2 v_p \phi) - \partial_t^{j-1} \nabla P(\rho_p) \} - \rho^{-1} \partial_t^{j-1} (\rho (v \cdot \nabla v)). \end{split}$$

From these relations we see that $\partial_t^j u|_{t=0} = {}^T (\partial_t^j \phi, \partial_t^j w)|_{t=0}$ is inductively given by $u_0 = {}^T (\phi_0, w_0)$ in the following way:

$$\partial_t^j u|_{t=0} = {}^T (\partial_t^j \phi, \partial_t^j w)|_{t=0} = {}^T (\phi_j, w_j) = u_j,$$

where

$$\phi_{j} = -v_{0} \cdot \nabla \phi_{j-1} - \rho_{0} \operatorname{div} w_{j-1} - \gamma^{2} w_{j-1} \cdot \nabla \rho_{p} - \sum_{l=1}^{j-1} {j-1 \choose l} \{ v_{l} \cdot \nabla \phi_{j-1-l} + \gamma^{-2} \phi_{l} \operatorname{div} w_{j-1} \},$$

and

$$w_{j} = -\rho_{0}^{-1} \{ -\nu \Delta w_{j-1} - \widetilde{\nu} \nabla \operatorname{div} w_{j-1} + P'(\rho_{0}) \nabla \rho_{j-1} \} - \rho_{0}^{-1} \sum_{l=1}^{j-1} \binom{j-1}{l} \{ \gamma^{-2} \phi_{l} w_{j-l} \}$$

$$+a_{l}(\phi_{0};\phi_{1},\ldots,\phi_{l})\nabla\rho_{j-1-l}\}-\rho_{0}^{-1}\frac{\nu}{\gamma^{2}\rho_{p}}\sum_{l=0}^{j-1}\binom{j-1}{l}\partial_{t}^{j-1-l}\partial_{x_{n}}^{2}v_{p}(0)\phi_{l}+\delta_{1j}\rho_{0}^{-1}\nabla P(\rho_{p})$$

$$-\rho_0^{-1}G_{j-1}(\phi_0, w_0, \partial_x w_0; \phi_1, \dots, \phi_{j-1}, w_1, \dots, w_{j-1}, \partial_x w_1, \dots, \partial_x w_{j-1}),$$

with $v_l = \partial_t^l v_p(0) + w_l$, $\rho_l = \delta_{1l}\rho_p + \gamma^{-2}\phi_l$; and $a_l(\phi_0; \phi_1, \dots, \phi_l)$ is certain polynomial in ϕ_1, \dots, ϕ_l ; and analogously. Here, δ_{1j} denotes the Kronecker's delta.

By the boundary condition $w|_{\partial\Omega}=0$ in (3.4), we necessarily have $\partial_t^j w|_{\partial\Omega}=0$, and hence,

$$w_j|_{\partial\Omega}=0.$$

Assume that $u = {}^T(\phi, w)$ is a solution of (3.2) -(3.5) in $\bigcap_{j=0}^{\left[\frac{m}{2}\right]} C^j([0, \tau_0]; H^{m-2j})$ for some $\tau_0 > 0$. Then from above observation, we need the regularity $u_j = {}^T(\phi_j, w_j) \in H^{m-2j} \times H^{m-2j}$ for $j = 1, \ldots, [m/2]$, which, indeed follows from the fact that $u_0 = {}^T(\phi_0, w_0) \in H^m$ with $m \ge [n/2] + 1$. Furthermore, it is necessary to require that $u_0 = {}^T(\phi_0, w_0)$ satisfies the \widehat{m} -th order compatibility condition:

$$w_j \in H_0^1 \text{ for } j = 0, \dots, \widehat{m} = \left[\frac{m-1}{2} \right].$$

Now, we can apply local solvability result obtained in [8] to show the following assertion.

Proposition 3.3 Let $n \geq 2$, m be an integer satisfying $m \geq \lfloor n/2 \rfloor + 1$ and M > 0. Assume that $u_0 = 1$ $^{T}(\phi_{0}, w_{0}) \in H^{m}$ satisfies the following conditions:

(a) $||u_0||_{H^m} \leq M$ and u_0 satisfies the \widehat{m} -th compatibility condition,

$$(b) -\frac{\gamma^2}{4}\rho_1 \le \phi_0.$$

Then there exists a positive number τ_0 depending on M and ρ_1 such that problem (3.2)–(3.5) has a unique solution u(t) on $[0, \tau_0]$ satisfying $u(t) \in Z^m(\tau_0)$.

Remark 3.4 It is straightforward to see that solution u(t) of (3.2)-(3.5) is a solution of (1.5)-(1.8). Condition (b) in previous proposition assures that $\gamma^{-2}\phi_0 + \rho_p > \frac{3}{4}\rho_1$.

We are in a position to state our main results of this paper.

Theorem 3.5 Suppose that n=2 and let m be an integer satisfying $m \geq 2$. There are positive numbers ν_0

and γ_0 such that if $\nu \geq \nu_0$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_0^2$ then the following assertions hold true. There is a positive number ε_0 such that if $u_0 = {}^T(\phi_0, w_0) \in H^m \cap L^1$ satisfies the \widehat{m} -th compatibility condition and $\|u_0\|_{H^m \cap L^1} \leq \varepsilon_0$, then there exists a unique global solution $u(t) = {}^T(\phi(t), w(t))$ of (1.5)–(1.8)with n=2 in $\bigcap_{j=0}^{\left[\frac{m}{2}\right]} C^{j}([0,\infty); H^{m-2j})$ which satisfies

$$\|\partial_{x'}^k u(t)\|_2 = O(t^{-\frac{1}{4} - \frac{k}{2}}), \ k = 0, 1,$$
 (3.6)

$$||u(t) - (\sigma u^{(0)})(t)||_2 = O(t^{-\frac{3}{4} + \delta}), \ \forall \delta > 0,$$
(3.7)

as $t \to \infty$. Here, $u^{(0)} = u^{(0)}(x_2, t)$ is function given in Lemma 4.9 below; $\sigma = \sigma(x_1, t)$ is function satisfying

$$\partial_t \sigma - \kappa_1 \partial_{x_1}^2 \sigma + \kappa_0 \partial_{x_1} \sigma + \omega_0 \partial_{x_1} (\sigma^2) = 0, \ \sigma|_{t=0} = \int_0^1 \phi_0(x_1, x_2) \ dx_2,$$

with given constants $\kappa_0, \omega_0 \in \mathbb{R}, \kappa_1 > 0$.

Theorem 3.6 Suppose that $n \geq 3$ and let m be an integer satisfying $m \geq \lfloor n/2 \rfloor + 1$. There are positive

numbers ν_0 and γ_0 such that if $\nu \geq \nu_0$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_0^2$ then the following assertions hold true. There is a positive number ε_0 such that if $u_0 = {}^T(\phi_0, w_0) \in H^m \cap L^1$ satisfies the \widehat{m} -th compatibility condition and $||u_0||_{H^m \cap L^1} \leq \varepsilon_0$, then there exists a unique global solution $u(t) = {}^T(\phi(t), w(t))$ of (1.5)–(1.8)in $\bigcap_{j=0}^{\left[\frac{m}{2}\right]} C^j([0,\infty); H^{m-2j})$ which satisfies

$$\|\partial_{x'}^k u(t)\|_2 = O(t^{-\frac{n-1}{4} - \frac{k}{2}}), \ k = 0, 1,$$
 (3.8)

$$||u(t) - (\sigma u^{(0)})(t)||_2 = O(t^{-\frac{n-1}{4} - \frac{1}{2}} \eta_n(t)),$$
 (3.9)

as $t \to \infty$. Here, $\sigma = \sigma(x', t)$ is function satisfying

$$\partial_t \sigma - \kappa_1 \partial_{x_1}^2 \sigma - \kappa'' \Delta'' \sigma + \kappa_0 \partial_{x_1} \sigma = 0, \ \sigma|_{t=0} = \int_0^1 \phi_0(x', x_n) \ dx_n,$$

with given constants $\kappa_0 \in \mathbb{R}$, $\kappa_1, \kappa'' > 0$; where $\Delta'' = \partial_{x_2}^2 + \cdots + \partial_{x_{n-1}}^2$; and $\eta_n(t) = \log(1+t)$ when n = 3and $\eta_n(t) = 1$ when $n \geq 4$.

As in [8, 12], the global existence result in Theorem 3.5 and Theorem 3.6 is proved by combining the local existence and the a priori estimate. Next we introduce the a priori estimate.

Proposition 3.7 Let $n \geq 2$ and m be an integer satisfying $m \geq \lfloor n/2 \rfloor + 1$. There are positive numbers ν_0 and γ_0 such that if $\nu \geq \nu_0$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_0^2$, then the following assertion holds true.

There exists number $\varepsilon_1 > 0$ such that if solution u(t) of (1.5)–(1.8) is in $Z^m(\tau)$ and u(t) satisfies $||u_0||_{H^m \cap L^1} \leq \varepsilon_1$, then there holds the estimate

$$[u(t)]_m^2 \le C_1 ||u_0||_{H^m \cap L^1}^2,$$

for a constant $C_1 > 0$ independent of τ .

Remark 3.8 In the proof of Proposition 3.7 we use the estimate (3.1) with k = m only, i.e.,

$$|1 - \rho_p|_{C^{m+1}([0,1])} \le \frac{C}{\gamma^2} \nu(|P''|_{C^{m-1}(\rho_1,\rho_2)} + |g^n|_{C^m([0,1])}).$$

Moreover, we require the boundedness of ρ_p in $C^{m+1}([0,1])$ only.

The global existence of the solution u(t) follows from Proposition 3.3 and the a priori estimate in Proposition 3.7 in standard manner as follows.

Proof of global existence. Let $n \ge 2$ and let us fix $m \ge \lfloor n/2 \rfloor + 1$ and $\nu \ge \nu_0$, $\gamma^2/(\nu + \widetilde{\nu}) \ge \gamma_0^2$ such that Proposition 3.7 holds true.

Since $m \ge \lfloor n/2 \rfloor + 1$ we have the Sobolev inequality

$$||f||_{\infty} \le C_S ||f||_{H^m}$$
, for any $f \in H^m(\Omega)$. (3.10)

Let us define $\varepsilon_0 > 0$ as

$$\varepsilon_0 = \min\{\varepsilon_1, \frac{\gamma^2}{4C_S}\rho_1, \frac{\varepsilon_1}{\sqrt{C_1}}, \frac{\gamma^2}{4C_S\sqrt{C_1}}\rho_1\}.$$

Here, ε_1 and C_1 are given by Proposition 3.7.

Let $||u_0||_{H^m \cap L^1} \leq \varepsilon_0$ satisfies \widehat{m} -th compatibility condition. It is easy to see that such u_0 satisfies conditions (a), (b) of Proposition 3.3 and therefore, there exits $\tau_0 > 0$, which is determined by ε_1 , such that the problem (1.5)–(1.8) has a unique solution $u(\cdot) \in Z^m(\tau_0)$.

Since $\varepsilon_0 \leq \varepsilon_1$ we see from Proposition 3.7 that u(t) satisfies

$$[[u(\tau_0)]]_m^2 \le C_1 ||u_0||_{H^m \cap L^1}^2 \le \min\{\varepsilon_1^2, \left(\frac{\gamma^2}{4C_S}\rho_1\right)^2\}.$$
(3.11)

Thus, $||u(\tau_0)||_{H^m} \leq \varepsilon_1$ and $u(\tau_0)$ satisfies conditions (a) and (b) of Proposition 3.3. Hence, there exists unique extension of solution u(t) of (1.5)–(1.8) on $[\tau_0, 2\tau_0]$ and we get

$$u(\cdot) \in Z^m(2\tau_0).$$

It is straightforward to see that we can use Proposition 3.7 again, to obtain estimate (3.11) for $u(2\tau_0)$, which enables us to extend solution u(t) on $[0, 3\tau_0]$. By repeating this procedure the existence on $[0, \infty)$ is showed. This concludes the proof.

Proposition 3.7 together with L^2 -decay estimates (3.6) and (3.8) are proved in Sections 4-8. The asymptotic behavior, i.e., (3.7) and (3.9), is proved in Section 9.

4 Spectral properties of the linearized operator

Let us write (1.5)–(1.8) in the form

$$\partial_t u + L(t)u = \mathbf{F},$$

$$w|_{\delta\Omega} = 0, \ u|_{t=0} = u_0.$$
(4.1)

Here, $u = {}^{T}(\phi, w)$; $\mathbf{F} = {}^{T}(f^{0}, \mathbf{f})$ with $\mathbf{f} = {}^{T}(f^{1}, \dots, f^{n})$ is the nonlinearity; and L(t) is the operator given in (1.10)

In this section we introduce the spectral properties of the linearized problem, i.e., (4.1) with $\mathbf{F} = 0$. These results were established in [2]. At the end of this section we show regularity improvements for ϕ .

Now, let us consider the linearized problem

$$\partial_t u + L(t)u = 0, \ t > s, \ w|_{x_n = 0, 1} = 0, \ u|_{t = s} = u_0.$$
 (4.2)

We introduce space Z_s defined by

$$Z_s = \{u = {}^T(\phi, w); \phi \in C_{loc}([s, \infty); H^1), \ \partial_{x'}^{\alpha'} w \in C_{loc}([s, \infty); L^2) \cap L^2_{loc}([s, \infty); H^1_0) \ (|\alpha'| \leq 1), \ w \in C_{loc}((s, \infty); H^1_0)\}.$$

In [1] we showed that for any initial data $u_0 = {}^T(\phi_0, w_0)$ satisfying $u_0 \in H^1 \cap L^2$ with $\partial_{x'} w_0 \in L^2$ there exists a unique solution u(t) of linear problem (4.2) in Z_s . We denote U(t, s) the evolution operator for (4.2) given by

$$u(t) = U(t, s)u_0.$$

To investigate problem (4.2) we consider the Fourier transform of (4.2). We thus obtain

$$\frac{d}{dt}\widehat{u} + \widehat{L}_{\xi'}(t)\widehat{u} = 0, \ t > s, \quad \widehat{u}|_{t=s} = \widehat{u}_0. \tag{4.3}$$

Here $\widehat{\phi} = \widehat{\phi}(\xi', x_n, t)$ and $\widehat{w} = \widehat{w}(\xi', x_n, t)$ are the Fourier transforms of $\phi = \phi(x', x_n, t)$ and $w = w(x', x_n, t)$ in $x' \in \mathbb{R}^{n-1}$ with $\xi' \in \mathbb{R}^{n-1}$ being the dual variable; $\widehat{L}_{\xi'}(t)$ is an operator on X_0 with domain $D(\widehat{L}_{\xi'}(t)) = H^1(0, 1) \times H^2_*(0, 1)$, which takes the form

$$\begin{split} \widehat{L}_{\xi'}(t) &= \begin{pmatrix} i\xi_1 v_p^1(t) & i\gamma^2 \rho_p^T \xi' & \gamma^2 \partial_{x_n}(\rho_p \cdot) \\ i\xi' \frac{P'(\rho_p)}{\gamma^2 \rho_p} & \frac{\nu}{\rho_p} (|\xi'|^2 - \partial_{x_n}^2) I_{n-1} + \frac{\widetilde{\nu}}{\rho_p} \xi'^T \xi' & -i\frac{\widetilde{\nu}}{\rho_p} \xi' \partial_{x_n} \\ \partial_{x_n} \left(\frac{P'(\rho_p)}{\gamma^2 \rho_p} \cdot \right) & -i\frac{\widetilde{\nu}}{\rho_p}^T \xi' \partial_{x_n} & \frac{\nu}{\rho_p} (|\xi'|^2 - \partial_{x_n}^2) - \frac{\widetilde{\nu}}{\rho_p} \partial_{x_n}^2 \\ &+ \begin{pmatrix} 0 & 0 & 0 \\ \frac{\nu}{\gamma^2 \rho_p^2} (\partial_{x_n}^2 v_p^1(t)) e_1' & i\xi_1 v_p^1(t) I_{n-1} & \partial_{x_n} (v_p^1(t)) e_1' \\ 0 & 0 & i\xi_1 v_p^1(t) \end{pmatrix}. \end{split}$$

Let us note that $\widehat{L}_{\xi'}(t)$ is sectorial uniformly with respect to $t \in \mathbb{R}$ for each $\xi' \in \mathbb{R}^{n-1}$. As for the evolution operator $\widehat{U}_{\xi'}(t,s)$ for (4.3) we have the following results.

Lemma 4.1 For each $\xi' \in \mathbb{R}^{n-1}$ and for all $t \geq s$ there exists unique evolution operator $\widehat{U}_{\xi'}(t,s)$ for (4.3) that satisfies

$$|\widehat{L}_{\xi'}(t)\widehat{U}_{\xi'}(t,s)|_{L(X_0)} \le C_{t_1t_2}, \ t_1 \le s < t \le t_2.$$

Furthermore, for $u_0 \in X_0$, $f \in C^{\alpha}([s,\infty);X_0), \alpha \in (0,1]$ there exists unique classical solution u of inhomogeneous problem

$$\frac{d}{dt}u + \widehat{L}_{\xi'}(t)u = f, \ t > s, \quad u|_{t=s} = u_0, \tag{4.4}$$

satisfying $u \in C_{loc}([s,\infty);X_0) \cap C^1(s,\infty;X_0) \cap C(s,\infty;H^1(0,1) \times H^2_*(0,1));$ and the solution u is given by

$$u(t) = (\phi(t), w(t)) = \widehat{U}_{\xi'}(t, s)u_0 + \int_s^t \widehat{U}_{\xi'}(t, z)f(z)dz.$$

Next, let us introduce adjoint problem to

$$\partial_t u + \widehat{L}_{\mathcal{E}'}(t)u = 0, \ t > s, \ u|_{t=s} = u_0.$$

Lemma 4.2 For each $\xi' \in \mathbb{R}^{n-1}$ and for all $s \leq t$ there exists unique evolution operator $\widehat{U}_{\xi'}^*(s,t)$ for adjoint problem

$$-\partial_s u + \hat{L}_{\mathcal{E}'}^*(s)u = 0, \ s < t, \ u|_{s=t} = u_0,$$

on X_0 . Here, $\widehat{L}_{\xi'}^*(s)$ is an operator on X_0 with domain $D(\widehat{L}_{\xi'}^*(s)) = H^1(0,1) \times H^2_*(0,1)$, which takes the form

$$\begin{split} \widehat{L}_{\xi'}^*(s) &= \begin{pmatrix} -i\xi_1 v_p^1(s) & -i\gamma^2 \rho_p{}^T \xi' & -\gamma^2 \partial_{x_n}(\rho_p \cdot) \\ -i\xi' \frac{P'(\rho_p)}{\gamma^2 \rho_p} & \frac{\nu}{\rho_p} (|\xi'|^2 - \partial_{x_n}^2) I_{n-1} + \frac{\widetilde{\nu}}{\rho_p} \xi'^T \xi' & -i\frac{\widetilde{\nu}}{\rho_p} \xi' \partial_{x_n} \\ -\partial_{x_n} \left(\frac{P'(\rho_p)}{\gamma^2 \rho_p} \cdot \right) & -i\frac{\widetilde{\nu}}{\rho_p} T \xi' \partial_{x_n} & \frac{\nu}{\rho_p} (|\xi'|^2 - \partial_{x_n}^2) - \frac{\widetilde{\nu}}{\rho_p} \partial_{x_n}^2 \end{pmatrix} \\ &+ \begin{pmatrix} 0 & \frac{\nu\gamma^2}{P'(\rho_p)} (\partial_{x_n}^2 v_p^1(s))^T e_1' & 0 \\ 0 & -i\xi_1 v_p^1(s) I_{n-1} & 0 \\ 0 & \partial_{x_n} (v_p^1(s))^T e_1' & -i\xi_1 v_p^1(s) \end{pmatrix}. \end{split}$$

Moreover, $\widehat{L}_{\xi'}^*(s)$ satisfies $\langle \widehat{L}_{\xi'}(s)u,v \rangle = \langle u, \widehat{L}_{\xi'}^*(s)v \rangle$ for $s \in \mathbb{R}$ and $u,v \in H^1 \times H^2_*$ and

$$|\widehat{L}_{\mathcal{E}'}^*(s)\widehat{U}_{\mathcal{E}'}^*(s,t)|_{L(X_0)} \le C_{t_1t_2}, \ t_1 \le s < t \le t_2.$$

Furthermore, for $u_0 \in X_0$, $f \in C^{\alpha}((-\infty,t];X_0), \alpha \in (0,1]$ there exists unique classical solution u of inhomogeneous problem

$$-\frac{d}{ds}u + \widehat{L}_{\xi'}^*(s)u = f, \ s < t, \quad u|_{s=t} = u_0, \tag{4.5}$$

satisfying $u \in C_{loc}((-\infty,t];X_0) \cap C^1(-\infty,t;X_0) \cap C(-\infty,t;H^1(0,1) \times H^2_*(0,1));$ and the solution u is given by

$$u(s) = (\phi(s), w(s)) = \widehat{U}_{\xi'}^*(s, t)u_0 + \int_s^t \widehat{U}_{\xi'}^*(s, z)f(z)dz.$$

Note that $\widehat{U}_{\xi'}(t,s)$ and $\widehat{U}^*_{\xi'}(s,t)$ are defined for all $t\geq s$ and

$$\widehat{U}_{\mathcal{E}'}(t+T,s+T) = \widehat{U}_{\mathcal{E}'}(t,s), \ \widehat{U}_{\mathcal{E}'}^*(s+T,t+T) = \widehat{U}_{\mathcal{E}'}^*(s,t).$$

Lemma 4.3 There exist positive numbers ν_1 and γ_1 such that if $\nu \geq \nu_1$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_1^2$ then there exists $r_0 > 0$ such that for each ξ' with $|\xi'| \leq r_0$ there hold the following statements.

(i) The spectrum of operator $\widehat{U}_{\xi'}(T,0)$ on $H^1(0,1)\times H^1_0(0,1)$ satisfies

$$\sigma(\widehat{U}_{\xi'}(T,0)) \subset \{\mu_{\xi'}\} \cup \{\mu : |\mu| \le q_0\},$$

with constant $q_0 < \operatorname{Re} \mu_{\xi'} < 1$. Here, $\mu_{\xi'} = e^{\lambda_{\xi'}T}$ is simple eigenvalue of $\widehat{U}_{\xi'}(T,0)$ and $\lambda_{\xi'}$ has an expansion

$$\lambda_{\xi'} = -i\kappa_0 \xi_1 - \kappa_1 \xi_1^2 - \kappa'' |\xi''|^2 + O(|\xi'|^3), \tag{4.6}$$

where $\kappa_0 \in \mathbb{R}$ and $\kappa_1 > 0$, $\kappa'' > 0$.

Moreover, let $\widehat{\Pi}_{\xi'}$ denote the eigenprojection associated with $\mu_{\xi'}$. There holds

$$|\widehat{U}_{\mathcal{E}'}(t,s)(I-\widehat{\Pi}_{\mathcal{E}'})u|_{H^1} \leq Ce^{-d(t-s)}|(I-\widehat{\Pi}_{\mathcal{E}'})u|_{X_0},$$

for $u \in X_0$ and $T \le t - s$. Here, d is a positive constant depending on r_0 .

(ii) The spectrum of operator $\widehat{U}_{\mathcal{E}'}^*(0,T)$ on $H^1(0,1)\times H^1_0(0,1)$ satisfies

$$\sigma(\widehat{U}_{\xi'}^*(0,T)) \subset \{\overline{\mu}_{\xi'}\} \cup \{\mu : |\mu| \le q_0\}.$$

Here, $\overline{\mu}_{\xi'}$ is simple eigenvalue of $\widehat{U}_{\xi'}^*(0,T)$.

Furthermore, let $\widehat{\Pi}_{\xi'}^*$ denote the eigenprojection associated with $\overline{\mu}_{\xi'}$. There holds

$$\langle \widehat{\Pi}_{\xi'} u, v \rangle = \langle u, \widehat{\Pi}_{\xi'}^* v \rangle,$$

for $u, v \in X_0$.

Next, we introduce Floquet theory.

Definition 4.4 Let $k = 1, 2, \ldots$ Let us define spaces Y_{per}^k as

$$Y_{per}^1 = L_{per}^2([0,T];X_0),$$

$$Y_{per}^{k} = \bigcap_{j=0}^{\left\lfloor \frac{k}{2} \right\rfloor} H_{per}^{j}([0,T]; H^{k-2j}(0,1) \times H^{k-1-2j}(0,1)), \text{ for } k \ge 2.$$

Here, for Banach space X and j = 0,... spaces $L^2_{per}([0,T];X)$ and $H^j_{per}([0,T];X)$ consist of functions from $L^2([0,T];X)$ and $H^j([0,T];X)$, respectively, that are restrictions of T-periodic functions.

Definition 4.5 We define operator $B_{\xi'}$ on space Y_{per}^1 with domain

$$D(B_{\mathcal{E}'}) = H^1_{ner}([0,T]; X_0) \cap L^2_{ner}([0,T]; H^1(0,1) \times H^2_*(0,1)),$$

in the following way

$$B_{\xi'}v = \partial_t v + \widehat{L}_{\xi'}(\cdot)v,$$

for $v \in D(B_{\xi'})$. Moreover, we define formal adjoint operator $B_{\xi'}^*$ with respect to inner product $\frac{1}{T} \int_0^T \langle \cdot, \cdot \rangle dt$ as

$$B_{\xi'}^* v = -\partial_t v + \widehat{L}_{\xi'}^*(\cdot)v,$$

for $v \in D(B_{\xi'}^*) = D(B_{\xi'})$.

Remark 4.6 Operators $B_{\xi'}$ and $B_{\xi'}^*$ are closed, densely defined on Y_{per}^1 for each fixed $\xi' \in \mathbb{R}^{n-1}$.

Definition 4.7 Let $k \ge 1$. We say that $u = {}^{T}(\phi, w)$ is k-regular function on time interval [a, b] whenever

$$u \in \bigcap_{j=0}^{\left[\frac{k}{2}\right]} C^{j}([a,b]; (H^{k-2j} \times H_{*}^{k-2j})(\Omega)),$$

$$\phi \in \bigcap_{j=0}^{\left[\frac{k}{2}\right]} H^{j+1}(a,b; H^{k-2j}(\Omega)), \ w \in \bigcap_{j=0}^{\left[\frac{k+1}{2}\right]} H^{j}(a,b; H_{*}^{k+1-2j}(\Omega)).$$

Lemma 4.8 There exist positive numbers $\nu_2 \geq \nu_1$ and $\gamma_2 \geq \gamma_1$ such that if $\nu \geq \nu_2$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_2^2$ then there exists $0 < r_1 \leq 1$ such that for each $|\xi'| \leq r_1$ there hold the following statements.

(i) Let $1 \le k \le m+1$. There exists $q_1 > 0$ such that spectrum of operator $B_{\xi'}$ on Y_{per}^k satisfies

$$\sigma(B_{\varepsilon'}) \subset \{-\lambda_{\varepsilon'}\} \cup \{\lambda : \operatorname{Re} \lambda > q_1\},\$$

with $0 \le -\text{Re }\lambda_{\xi'} \le \frac{1}{2}q_1$ uniform for all k. Here, $-\lambda_{\xi'}$ is simple eigenvalue of $B_{\xi'}$.

(ii) Let $1 \le k \le m+1$. Spectrum of operator $B_{\xi'}^*$ on Y_{per}^k satisfies

$$\sigma(B_{\varepsilon'}^*) \subset \{-\overline{\lambda}_{\varepsilon'}\} \cup \{\lambda : \operatorname{Re} \lambda \ge q_1\}.$$

Here, $-\overline{\lambda}_{\xi'}$ is simple eigenvalue of $B_{\xi'}^*$.

(iii) There exist $u_{\xi'}$ and $u_{\xi'}^*$ eigenfunctions associated with $-\lambda_{\xi'}$ and $-\overline{\lambda}_{\xi'}$, respectively, with the following properties:

$$\langle u_{\mathcal{E}'}(t), u_{\mathcal{E}'}^*(t) \rangle = 1,$$

$$u_{\xi'}(t) = u^{(0)}(t) + i\xi' \cdot u^{(1)}(t) + |\xi'|^2 u^{(2)}(\xi', t),$$

$$u_{\xi'}^*(t) = u^{*(0)} + i\xi' \cdot u^{*(1)}(t) + |\xi'|^2 u^{*(2)}(\xi', t),$$

for $t \in \mathbb{R}$. Here, all functions

$$u_{\xi'}, u_{\xi'}^*, u^{(0)}, u^{(0)*}, u^{(1)}, u^{(1)*}, u^{(2)}(\xi'), u^{(2)*}(\xi'),$$

are T-periodic in t, m + 1-regular on [0,T] and we have estimate

$$\sup_{z \in J_T} \sum_{j=0}^{\left[\frac{m+1}{2}\right]} |\partial_z^j u(z)|_{H^{m+1-2j}}^2 + \int_0^T \sum_{j=0}^{\left[\frac{m}{2}\right]} |\partial_z^{j+1} u|_{H^{m+1-2j} \times H^{m-2j}}^2 + |\partial_z^{\left[\frac{m+3}{2}\right]} Q_0 u|_2^2 + |u|_{H^{m+1} \times H^{m+2}}^2 dz \le C,$$

for $u \in \{u_{\xi'}, u_{\xi'}^*, u^{(2)}(\xi'), u^{(2)*}(\xi')\}\$ and a constant C > 0 depending on r_1 .

Let us introduce more properties of $u^{(0)}$.

Lemma 4.9 Function $u^{(0)}(t)$ satisfies $\partial_t u^{(0)} + \widehat{L}_0(t)u^{(0)} = 0$ and $u^{(0)}(t) = u^{(0)}(t+T)$ for all $t \in \mathbb{R}$. Function $u^{(0)}(t)$ is given as

$$u^{(0)}(x_n,t) = {}^{T}(\phi^{(0)}(x_n), w^{(0),1}(x_n,t), 0).$$

Here,

$$\phi^{(0)}(x_n) = \alpha_0 \frac{\gamma^2 \rho_p(x_n)}{P'(\rho_p(x_n))}, \qquad \alpha_0 = \left[\frac{\gamma^2 \rho_p}{P'(\rho_p)}\right]^{-1},$$

$$w^{(0),1}(x_n,t) = -\frac{1}{\gamma^2} \int_{-\infty}^t e^{-(t-s)\nu A} \nu \frac{\alpha_0 \gamma^2}{P'(\rho_p) \rho_p} (\partial_{x_n}^2 v_p^1(s)) ds,$$

where A denotes the uniformly elliptic operator on $L^2(0,1)$ with domain $D(A)=(H^2\cap H^1_0)(0,1)$ and

$$Av = -\frac{1}{\rho_p(x_n)} \partial_{x_n}^2 v,$$

for $v \in D(A)$. Moreover, function $w^{(0),1}$ satisfies

$$\partial_t w^{(0),1}(t) - \frac{\nu}{\rho_p(x_n)} \partial_{x_n}^2 w^{(0),1}(t) = -\frac{\nu}{\gamma^2} \frac{\alpha_0 \gamma^2}{P'(\rho_p) \rho_p} (\partial_{x_n}^2 v_p^1(t)), \tag{4.7}$$

for all $t \in \mathbb{R}$ and

$$||w^{(0),1}(t)||_{C^{m+1}(\Omega)} = O(\frac{1}{\gamma^2}).$$

In the rest of this section we assume that $\nu \geq \nu_2$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_2^2$.

Definition 4.10 We define $\hat{\chi}_1$ by

$$\widehat{\chi}_1(\xi') = \begin{cases} 1, & |\xi'| < r_1, \\ 0, & |\xi'| \ge r_1, \end{cases}$$

for $\xi' \in \mathbb{R}^{n-1}$.

Now, we introduce time-periodic operators based on $u_{\xi'}$ and $u_{\xi'}^*$.

Definition 4.11 We define operators $\mathscr{P}(t): L^2(\Omega) \to L^2(\mathbb{R}^{n-1})$ by

$$\mathscr{P}(t)u = \mathscr{F}^{-1}\{\widehat{\mathscr{P}}_{\xi'}(t)\widehat{u}\},\$$

$$\widehat{\mathscr{P}}_{\xi'}(t)\widehat{u} = \widehat{\chi}_1 \langle \widehat{u}, u_{\xi'}^*(t) \rangle,$$

for $u \in L^2$ and $t \in [0, \infty)$. We define operators $\mathcal{Q}(t) : L^2(\mathbb{R}^{n-1}) \to L^2(\Omega)$ by

$$\mathcal{Q}(t)\sigma = \mathcal{F}^{-1}\{\widehat{\mathcal{Q}}_{\xi'}(t)\widehat{\sigma}\},\$$

$$\widehat{\mathcal{Q}}_{\xi'}(t)\widehat{\sigma} = \widehat{\chi}_1 u_{\xi'}(\cdot, t)\widehat{\sigma},$$

for $t \in [0, \infty)$ and multiplier $\Lambda : L^2(\mathbb{R}^{n-1}) \to L^2(\mathbb{R}^{n-1})$ by

$$\Lambda \sigma = \mathscr{F}^{-1} \{ \widehat{\chi}_1 \lambda_{\xi'} \widehat{\sigma} \},\,$$

for $\sigma \in L^2(\mathbb{R}^{n-1})$.

Moreover, we define projections $\mathbb{P}(t)$ and $\mathbb{P}^*(t)$ on $L^2(\Omega)$ as

$$\mathbb{P}(t)u = \mathscr{F}^{-1}\{\widehat{\chi}_1\langle u, u_{\xi'}^*(t)\rangle u_{\xi'}(\cdot, t)\} = \mathscr{Q}(t)\mathscr{P}(t)u,$$

$$\mathbb{P}^*(t)u = \mathscr{F}^{-1}\{\widehat{\chi}_1\langle u, u_{\xi'}(t)\rangle u_{\xi'}^*(\cdot, t)\},\,$$

for $t \in [0, \infty)$ and $u \in L^2$.

We define projection $\Pi^{(0)}(t)$ on $L^2(\Omega)$ as

$$\Pi^{(0)}(t)u = [Q_0u]u^{(0)}(t),$$

for $t \in [0, \infty)$ and $u \in L^2$.

In terms of P(t) we have the following decomposition of U(t,s).

Lemma 4.12 $\mathbb{P}(t)$ and $\mathbb{P}^*(t)$ satisfies the following:

(i)
$$\mathbb{P}(t)(\partial_t + L(t))u(t) = (\partial_t + L(t))\mathbb{P}(t)u(t) = \mathcal{Q}(t)[(\partial_t - \Lambda)\mathcal{P}(t)u(t)],$$
 for $u \in L^2([0,T]; H^1 \times H^2_*) \cap H^1([0,T]; L^2).$

(ii)
$$\mathbb{P}(t)U(t,s) = U(t,s)\mathbb{P}(s) = \mathcal{Q}(t)e^{(t-s)\Lambda}\mathcal{P}(s).$$

If $u \in L^1$, then

$$\|\partial_t^j \partial_{x'}^k \partial_{x_n}^l \mathbb{P}(t) U(t,s) u\|_2 \le C (1+t-s)^{-\frac{n-1}{4}-\frac{k}{2}} \|u\|_1,$$

for $0 < 2j + l < m + 1, k = 0, \dots$

(iii) For $u, v \in L^2$ there holds

$$\langle \mathbb{P}(t)u, v \rangle = \langle u, \mathbb{P}^*(t)u \rangle.$$

If $u \in L^2$, then

$$\|\partial_t^j \partial_{x'}^k \partial_{x_n}^l (\mathbb{P}^*(t)u)\|_2 \le C \|u\|_2,$$

for $0 \le 2j + l \le m + 1$, $k = 0, 1, \dots$

(iv)
$$(I - \mathbb{P}(t))U(t,s) = U(t,s)(I - \mathbb{P}(s))$$
 satisfies

$$||(I - \mathbb{P}(t))U(t,s)u||_{H^1} \le Ce^{-d(t-s)}(||u||_{H^1 \times L^2} + ||\partial_{x'}w||_2),$$

for $t - s \ge T$. Here d is a positive constant.

Next, let us show the asymptotic properties of U(t,s). First, let us define a semigroup $\mathcal{H}(t)$ on $L^2(\mathbb{R}^{n-1})$ associated with a linear heat equation with a convective term:

$$\partial_t \sigma - \kappa_1 \partial_{x_1}^2 \sigma - \kappa'' \Delta'' \sigma + \kappa_0 \partial_{x_1} \sigma = 0.$$

Definition 4.13 We define operator $\mathcal{H}(t)$ as

$$\mathscr{H}(t)\sigma = \mathscr{F}^{-1}[e^{-(i\kappa_0\xi_1 + \kappa_1\xi_1^2 + \kappa''|\xi''|^2)t}\widehat{\sigma}],$$

for $\sigma \in L^2(\mathbb{R}^{n-1})$. Here, κ_0, κ_1 and κ'' are given by (4.6).

Lemma 4.14 There hold the following estimates for $1 \le p \le 2$ and $k = 0, 1, \ldots$

(i)
$$\|\partial_{x'}^{k}(\mathscr{H}(t)\sigma)\|_{L^{2}(\mathbb{R}^{n-1})} \leq Ct^{-\frac{n-1}{2}(\frac{1}{p}-\frac{1}{2})-\frac{k}{2}} \|\sigma\|_{L^{p}(\mathbb{R}^{n-1})}, \tag{4.8}$$

$$for \ \sigma \in L^{p}(\mathbb{R}^{n-1}).$$

(ii) Λ generates uniformly continuous group $\{e^{t\Lambda}\}_{t\in\mathbb{R}}$ and

$$\|\partial_{x'}^k e^{t\Lambda} \sigma\|_{L^2(\mathbb{R}^{n-1})} \le C(1+t)^{-\frac{n-1}{2}(\frac{1}{p}-\frac{1}{2})-\frac{k}{2}} \|\sigma\|_{L^p(\mathbb{R}^{n-1})},\tag{4.9}$$

for $\sigma \in L^p(\mathbb{R}^{n-1})$.

(iii) It holds the relation,

$$\mathscr{P}(t)U(t,s) = e^{(t-s)\Lambda}\mathscr{P}(s).$$

Set $\sigma = [Q_0 u]$. Then

$$\|\partial_{x'}^{k}(e^{(t-s)\Lambda}\mathscr{P}(s)u - \mathscr{H}(t-s)\sigma)\|_{L^{2}(\mathbb{R}^{n-1})} \le C(t-s)^{-\frac{n-1}{2}(\frac{1}{p}-\frac{1}{2})-\frac{k+1}{2}}\|u\|_{p},\tag{4.10}$$

for $u \in L^p$. Furthermore, for any $\sigma \in L^p(\mathbb{R}^{n-1})$ there holds

$$\|(e^{(t-s)\Lambda} - \mathcal{H}(t-s))\partial_{x'}^k \sigma\|_{L^2(\mathbb{R}^{n-1})} \le C(t-s)^{-\frac{n-1}{2}(\frac{1}{p}-\frac{1}{2})-\frac{k+1}{2}} \|\sigma\|_{L^p(\mathbb{R}^{n-1})}. \tag{4.11}$$

Next, we introduce the properties of $\mathcal{Q}(t)$ and $\mathcal{P}(t)$.

Proposition 4.15 $\mathcal{Q}(t)$ has the following properties:

(i)
$$\mathcal{Q}(t+T) = \mathcal{Q}(t), \ \partial_{x'}^{k} \mathcal{Q}(t) = \mathcal{Q}(t)\partial_{x'}^{k}.$$

(ii)
$$\mathcal{Q}(t)\sigma \in \bigcap_{j=0}^{\left[\frac{m+1}{2}\right]} C_{per}^{j}(J_T; H^{m+1-2j} \times H_*^{m+1-2j}),$$

$$\widetilde{Q}\mathcal{Q}(t)\sigma\in\bigcap_{j=0}^{\left[\frac{m+2}{2}\right]}H_{per}^{j}(J_{T};H_{*}^{m+2-2j}),$$

and

$$\|\partial_t^j \partial_{x'}^k \partial_{x_n}^l (\mathcal{Q}(t)\sigma)\|_2 \le C \|\sigma\|_{L^2(\mathbb{R}^{n-1})}, \ 0 \le 2j+l \le m+1, \ k=0,1,\ldots,$$
 for $\sigma \in L^2(\mathbb{R}^{n-1})$.

(iii)
$$(\partial_t + L(t))(\mathcal{Q}(t)\sigma(t)) = \mathcal{Q}(t)(\partial_t - \Lambda)\sigma(t),$$
 for $\sigma \in H^1_{loc}([0,\infty); L^2(\mathbb{R}^{n-1})).$

(iv) $\mathcal{Q}(t)$ is decomposed as

$$\mathcal{Q}(t) = \mathcal{Q}^{(0)}(t) + \operatorname{div}' \mathcal{Q}^{(1)}(t) + \Delta' \mathcal{Q}^{(2)}(t).$$

Here, $\mathcal{Q}^{(0)}(t)\sigma = (\mathcal{F}^{-1}\{\widehat{\chi}_1\widehat{\sigma}\})u^{(0)}(\cdot,t)$, $\mathcal{Q}^{(1)}(t)$ and $\mathcal{Q}^{(2)}(t)$ share the same properties given in (i) and (ii) for $\mathcal{Q}(t)$.

Proposition 4.16 $\mathscr{P}(t)$ has the following properties:

(i)
$$\mathscr{P}(t+T) = \mathscr{P}(t), \ \partial_{x'}^k \mathscr{P}(t) = \mathscr{P}(t)\partial_{x'}^k, \ \partial_{x_n} \mathscr{P}(t) = 0.$$

(ii)
$$\mathscr{P}(t)u \in \bigcap_{j=0}^{\left[\frac{m+1}{2}\right]} C_{per}^{j}(J_T; H^k(\mathbb{R}^{n-1})), \text{ for all } k = 0, 1, \dots,$$

and

$$\|\partial_t^j \partial_{x'}^k (\mathscr{P}(t)u)\|_{L^2(\mathbb{R}^{n-1})} \le C\|u\|_2, \ 0 \le 2j \le m+1, \ k=0,1,\ldots,$$

for $u \in L^2$.

Moreover,

$$\|\mathscr{P}(t)u\|_{L^2(\mathbb{R}^{n-1})} \le C\|u\|_p,$$

for $u \in L^p$ and $1 \le p \le 2$.

(iii)
$$\mathscr{P}(t)(\partial_t + L(t))u(t) = (\partial_t - \Lambda)(\mathscr{P}(t)u(t)),$$
 for $u \in L^2_{loc}([0,\infty); H^1 \times H^2_*) \cap H^1_{loc}([0,\infty); L^2).$ (4.12)

(iv) $\mathcal{P}(t)$ is decomposed as

$$\mathscr{P}(t) = \mathscr{P}^{(0)} + \operatorname{div}' \mathscr{P}^{(1)}(t) + \Delta' \mathscr{P}^{(2)}(t).$$

Here,

$$\mathscr{P}^{(0)}u=\mathscr{F}^{-1}\{\widehat{\chi}_1\langle\widehat{u},u^{*(0)}\rangle\}=\mathscr{F}^{-1}\{\widehat{\chi}_1[Q_0\widehat{u}]\},$$

$$\mathscr{P}^{(1)}(t)u = \mathscr{F}^{-1}\{\widehat{\chi}_1\langle\widehat{u}, u^{*(1)}(t)\rangle\},\$$

$$\mathscr{P}^{(2)}(t)u = \mathscr{F}^{-1}\{-\widehat{\chi}_1\langle \widehat{u}, u^{*(2)}(\xi', t)\rangle\}.$$

 $\mathscr{P}^{(p)}(t)$, p=0,1,2, share the same properties given in (i) and (ii) for $\mathscr{P}(t)$.

(v) There holds

$$\|\partial_{x'}^k e^{(t-s)\Lambda} \mathscr{P}(s)u\|_{L^2(\mathbb{R}^{n-1})} \le C(1+t-s)^{-\frac{n-1}{2}(\frac{1}{p}-\frac{1}{2})-\frac{k}{2}} \|u\|_p, \tag{4.13}$$

$$\|\partial_{x'}^k e^{(t-s)\Lambda} \mathscr{P}^{(q)}(s) u\|_{L^2(\mathbb{R}^{n-1})} \le C(1+t-s)^{-\frac{n-1}{2}(\frac{1}{p}-\frac{1}{2})-\frac{k}{2}} \|u\|_p, \ q=0,1,2, \tag{4.14}$$

for $u \in L^p$, $1 \le p \le 2$ and k = 0, 1, ...

Remark 4.17 Note that $\Pi^{(0)}(t)$ and $\mathcal{Q}^{(0)}(t)\mathcal{P}^{(0)}$ are not identical operators.

To close this section, we show improvements of regularity for ϕ .

Proposition 4.18 Let $u = T(\phi, w) \in Z^m(\tau)$ for $m \ge \lfloor n/2 \rfloor + 1$ be a solution of (4.1). There holds

$$\phi \in \bigcap_{j=1}^{\left[\frac{m+1}{2}\right]} C^{j}([0,\tau]; H^{m+1-2j}). \tag{4.15}$$

Proof. From definition of $Z^m(\tau)$ we have

$$u \in \bigcap_{j=0}^{\left[\frac{m}{2}\right]} C^{j}([0,\tau]; H^{m-2j}) \text{ and } \sup_{0 \le z \le \tau} [\![u(z)]\!]_{m} < \infty.$$

We write (1.5) as

$$\partial_t \phi = -v_p^1 \partial_{x_1} \phi - \gamma^2 \operatorname{div}(\rho_p w) - \operatorname{div}(\phi w).$$

Taking $[\cdot]_{m-1}$ -norm we obtain

$$[\![\partial_t \phi]\!]_{m-1} \le [\![v_p^1 \partial_{x_1} \phi]\!]_{m-1} + \gamma^2 [\![\rho_p w]\!]_m + [\![\phi w]\!]_m$$

Since $m \ge \lfloor n/2 \rfloor + 1$ we get using Lemma 8.3 (ii) that

$$[\![\partial_t \phi]\!]_{m-1} \le C([\![\phi]\!]_m) \{ [\![v_p^1]\!]_m [\![\phi]\!]_m + [\![\phi]\!]_{H^m} [\![w]\!]_m + [\![\phi]\!]_m [\![w]\!]_m \}.$$

This concludes the proof.

5 Decomposition of the solution

In this section we decompose solution u(t) of (4.1) and we prove the a priori estimate in Proposition 3.7. We decompose u(t) into several parts based on the spectral properties of L(t). In this section we assume that $\nu \geq \nu_2$ and $\gamma^2/(\nu + \tilde{\nu}) \geq \gamma_2^2$ unless further restricted.

Let us first introduce some notation and projection operators. Let $\hat{\chi}_2$ and $\hat{\chi}_3$ be defined by

$$\widehat{\chi}_2(\xi') = \mathbf{1}_{[r_1,1)}(|\xi'|) \text{ and } \widehat{\chi}_3(\xi') = \mathbf{1}_{[1,\infty)}(|\xi'|).$$

We then define $[f]_j$, $j = 1, 2, \infty$ by

$$[f]_j = \mathscr{F}^{-1}(\widehat{\chi}_j[\widehat{f}]), \quad j = 1, 2,$$

$$[f]_{\infty} = [f]_1 + [f]_2 = \mathscr{F}^{-1}((\hat{\chi}_1 + \hat{\chi}_2)[\hat{f}]).$$

Next, we define $P_{\infty,j}$, j = 1, 2, 3 as

$$\begin{split} P_{\infty,1}(t)u &= \mathscr{F}^{-1}(\widehat{P}_{\infty,1}(t)\widehat{u}), \quad \widehat{P}_{\infty,1}(t)\widehat{u} = \widehat{\chi}_1(I - \widehat{\mathscr{Q}}_{\xi'}(t)\widehat{\mathscr{P}}_{\xi'}(t))\widehat{u}, \\ P_{\infty,j}u &= \mathscr{F}^{-1}(\widehat{P}_{\infty,j}\widehat{u}), \quad \widehat{P}_{\infty,j}\widehat{u} = \widehat{\chi}_j\widehat{u} \quad (j=2,3). \end{split}$$

By setting

$$\widetilde{P}_{\infty}(t) = I - \mathbb{P}(t), \quad P_{\infty}^{(0)}(t) = P_{\infty,1}(t) + P_{\infty,2},$$

we get

$$I = \mathbb{P}(t) + \widetilde{P}_{\infty}(t), \quad \widetilde{P}_{\infty}(t) = P_{\infty}^{(0)}(t) + P_{\infty,3}.$$

Using above operators we decompose solution u(t) into

$$u(t) = \mathbb{P}(t)u(t) + \widetilde{P}_{\infty}(t)u(t),$$

with

$$\mathbb{P}(t)u(t) = \sigma_1(t)u^{(0)}(t) + u_1(t),$$

$$\widetilde{P}_{\infty}(t)u(t) = \sigma_{\infty}(t)u^{(0)}(t) + u_{\infty}(t),$$

where

$$\sigma_1(t) = \mathscr{P}(t)u(t), \quad u_1(t) = (\mathscr{Q}(t) - \mathscr{Q}^{(0)}(t))\mathscr{P}(t)u(t),$$

$$\sigma_{\infty}(t) = [Q_0 P_{\infty}^{(0)}(t) u(t)] = [Q_0 P_{\infty}^{(0)}(t) u(t)]_{\infty}, \quad u_{\infty}(t) = P_{\infty}(t) u(t).$$

By P_{∞} we denote the operator defined as

$$P_{\infty}(t) = (I - \Pi^{(0)}(t))P_{\infty}^{(0)}(t) + P_{\infty,3}.$$

Remark 5.1 Notice that $\sigma_1(t)$, $\sigma_{\infty}(t)$ and $u^{(0)}(t)$ are separate functions. Furthermore, notice that

$$||u_1(t)||_2 \le C||\partial_{x'}\sigma_1(t)||_2.$$

Next, we derive the equations for σ_1 , σ_∞ and u_∞ . We define $\mathcal{M}(t)$ by

$$\mathcal{M}(t) = \widetilde{A} + \widetilde{B}(t),$$

with

$$\widetilde{A} = \begin{pmatrix} 0 & 0 \\ 0 & -\frac{\nu}{\rho_p} \Delta' I_{n-1} - \frac{\widetilde{\nu}}{\rho_p} \nabla' \operatorname{div} \\ 0 & (-\frac{\widetilde{\nu}}{\rho_p} \partial_{x_n} \operatorname{div}', -\frac{\nu}{\rho_p} \Delta') \end{pmatrix}, \quad \widetilde{B}(t) = \begin{pmatrix} v_p^1(t) \partial_{x_1} & \gamma^2 \rho_p \operatorname{div}' & 0 \\ \frac{P'(\rho_p)}{\gamma^2 \rho_p} \nabla' & v_p^1(t) \partial_{x_1} I_{n-1} & 0 \\ 0 & 0 & v_p^1(t) \partial_{x_1} \end{pmatrix}.$$

Proposition 5.2 Let $\tau > 0$ and u(t) be a solution of (4.1) in $Z^m(\tau)$. Then there hold

$$\sigma_{k} \in \bigcap_{j=0}^{\left[\frac{m}{2}\right]} C^{j}([0,\tau]; H^{l}(\mathbb{R}^{n-1})), \quad \int_{0}^{\tau} ||D\sigma_{k}(z)||_{m} dz < \infty, \quad k = 1, \infty, \quad l = 0, 1, \dots,$$

$$u_{1} \in \bigcap_{j=0}^{\left[\frac{m}{2}\right]} C^{j}([0,\tau]; H^{m+1-2j}), \quad \int_{0}^{\tau} ||Dw_{1}(z)||_{m} dz < \infty,$$

$$u_{\infty} \in Z^{m}(\tau), \quad \int_{0}^{\tau} [\![\partial_{t}\phi_{\infty}(z)]\!]_{m-1} dz < \infty.$$

Moreover, σ_1 , σ_{∞} and u_{∞} satisfy

$$\sigma_1(t) = e^{(t-s)\Lambda} \mathscr{P}(s) u_0 + \int_s^t e^{(t-z)\Lambda} \mathscr{P}(z) \mathbf{F}(z) dz, \tag{5.1}$$

$$\partial_t \sigma_\infty + [Q_0 \widetilde{B}(\sigma_\infty u^{(0)} + u_\infty)]_\infty = [Q_0 P_\infty^{(0)} \mathbf{F}]_\infty, \tag{5.2}$$

$$\partial_t u_{\infty} + L(t)u_{\infty} + \mathcal{M}(t)(\sigma_{\infty}u^{(0)}) - [Q_0\widetilde{B}(\sigma_{\infty}u^{(0)} + u_{\infty})]_{\infty}u^{(0)} = P_{\infty}\mathbf{F}.$$

$$(5.3)$$

$$w_{\infty}|_{x_n=0,1}=0,$$

$$\sigma_{\infty}|_{t=0} = \sigma_{\infty,0}, \quad u_{\infty}|_{t=0} = u_{\infty,0}.$$

Here, $\sigma_{\infty,0} = [Q_0 P_{\infty}^{(0)}(0) u_0]_{\infty}, u_{\infty,0} = P_{\infty} u_0.$

Proof. Since $u \in Z^m(\tau)$, the regularity assertions on σ_k $(k=1,\infty)$ and u_1 follow from properties of $\mathscr{P}(t)$, $\mathscr{Q}(t)$ and (4.15). As for u_{∞} , we already know that $\mathbb{P}Z^m(\tau) \subset Z^m(\tau)$ and therefore $\widetilde{P}_{\infty}Z^m(\tau) \subset Z^m(\tau)$. Since it is straightforward to see that $P_{\infty,3}Z^m(\tau) \subset Z^m(\tau)$ we have $P_{\infty}^{(0)}Z^m(\tau) \subset Z^m(\tau)$. Finally, from properties of $u^{(0)}(t)$ we obtain $\Pi^{(0)}P_{\infty}^{(0)}Z^m(\tau) \subset Z^m(\tau)$. Therefore, $u_{\infty} \in Z^m(\tau)$. $\int_0^{\tau} [\![\partial_t \phi_{\infty}(z)]\!]_{m-1} dz < \infty$ follows in analogous way using (4.15).

As for (5.1), it follows from (4.1) and (4.12) that

$$(\partial_t - \Lambda)\sigma_1(t) = \mathscr{P}(t)\mathbf{F}(t).$$

The rest is standard.

As for (5.2) and (5.3), we first apply $\widetilde{P}_{\infty}(t)$ to (4.1) to get

$$\partial_t(\widetilde{P}_{\infty}u) + L(t)\widetilde{P}_{\infty}u = \widetilde{P}_{\infty}\mathbf{F}.$$
(5.4)

Next, we apply $P_{\infty}^{(0)}(t)$ and $P_{\infty,3}$ to (5.4) to obtain

$$\partial_t (P_{\infty}^{(0)} u) + L(t) P_{\infty}^{(0)} u = P_{\infty}^{(0)} \mathbf{F}, \tag{5.5}$$

$$\partial_t(P_{\infty,3}u) + L(t)P_{\infty,3}u = P_{\infty,3}\mathbf{F}.$$
(5.6)

Since $[Q_0L(t)v] = [Q_0\mathcal{M}(t)v]$ for $\widetilde{Q}v|_{x_2=0,1} = 0$ and $[Q_0\mathcal{M}(t)v] = [Q_0\widetilde{B}(t)v]$ for any v, we get by applying $[Q_0\cdot]$ to (5.5)

$$\partial_t \sigma_\infty + [Q_0 \widetilde{B}(t) P_\infty^{(0)} u] = [Q_0 P_\infty^{(0)} \mathbf{F}]. \tag{5.7}$$

There holds

$$[Q_0\widetilde{B}(t)P_{\infty}^{(0)}u] = [Q_0\widetilde{B}(\sigma_{\infty}u^{(0)}(t) + (I - \Pi^{(0)}(t))P_{\infty}^{(0)}u)]_{\infty} = [Q_0\widetilde{B}(\sigma_{\infty}u^{(0)} + u_{\infty})]_{\infty},$$

and thus (5.2) follows from (5.7).

To obtain (5.3) we use the fact that $\partial_t \Pi^{(0)}(t) + L(t)\Pi^{(0)}(t) = \mathcal{M}(t)\Pi^{(0)}(t)$. Applying $I - \Pi^{(0)}(t)$ to (5.5) gives us

$$\partial_t((I - \Pi^{(0)}(t))P_{\infty}^{(0)}u) + L(t)(I - \Pi^{(0)}(t))P_{\infty}^{(0)}u + \mathcal{M}(t)(\sigma_{\infty}u^{(0)}(t)) - \Pi^{(0)}(t)\widetilde{B}(t)(P_{\infty}^{(0)}u) = (I - \Pi^{(0)}(t))P_{\infty}^{(0)}\boldsymbol{F}. \tag{5.8}$$

(5.3) now follows by adding (5.6) and (5.8). This completes the proof.

Let us state some properties of σ_1 , σ_{∞} and u_{∞} parts.

Lemma 5.3 There hold the following inequalities.

(i)
$$\|\partial_{x'}^{k}[Q_{0}P_{\infty}^{(0)}u]_{\infty}\|_{2} \leq \|[Q_{0}P_{\infty}^{(0)}u]_{\infty}\|_{2}, \ k = 0, 1, \dots,$$

(ii)
$$||P_{\infty}u||_2 \le C||\partial_x P_{\infty}u||_2 \quad \text{if } \widetilde{Q}u|_{x_n=0,1} = 0.$$

(iii) Let $\tau > 0$ and u(t) be a solution of (4.1) in $Z^m(\tau)$. Then there hold

$$\|\partial_{x'}^k \sigma_1\|_2 \le C \|\partial_{x'} \sigma_1\|_2, \|\partial_{x'}^k \sigma_\infty\|_2 \le C \|\partial_{x'} \sigma_\infty\|_2, k = 1, 2, \dots,$$

$$\|\phi_{\infty}\|_2 \le C\|\partial_x \phi_{\infty}\|_2,$$

$$||w_{\infty}||_2 \leq C||\partial_x w_{\infty}||_2$$

$$\|\Lambda \sigma_1\|_2 \le C \|\partial_{x'} \sigma_1\|_2.$$

Proof. Inequality (i) is obvious since supp $(\hat{\chi}_1 + \hat{\chi}_2) \subset \{|\xi'| \leq 1\}$. As for (ii), since supp $\hat{\chi}_3 \subset \{|\xi'| \geq 1\}$, we see that

$$||P_{\infty,3}u||_2 \le ||\partial_{x'}P_{\infty,3}u||_2$$

Since $\widetilde{Q}u|_{x_n=0,1}=0$, we have $\widetilde{Q}P_{\infty}^{(0)}u|_{x_n=0,1}=0$, and hence, $\widetilde{Q}(I-\Pi^{(0)}(t))P_{\infty}^{(0)}u|_{x_n=0,1}=0$. By the Poincaré inequality we obtain

$$\|\widetilde{Q}(I - \Pi^{(0)}(t))P_{\infty}^{(0)}u\|_{2} \leq \|\partial_{x_{n}}\widetilde{Q}(I - \Pi^{(0)}(t))P_{\infty}^{(0)}u\|_{2}.$$

Furthermore, since $[Q_0(I - \Pi^{(0)}(t))P_{\infty}^{(0)}u] = 0$, we see from the Poincaré inequality that

$$||Q_0(I - \Pi^{(0)}(t))P_{\infty}^{(0)}u||_2 \le ||\partial_{x_n}Q_0(I - \Pi^{(0)}(t))P_{\infty}^{(0)}u||_2.$$

It then follows that

$$||P_{\infty}u||_2 \le C\{||\partial_x(I - \Pi^{(0)}(t))P_{\infty}^{(0)}u||_2 + ||\partial_x P_{\infty,3}u||_2\} \le C||\partial_x P_{\infty}u||_2.$$

Here, we used $(\partial_x (I - \Pi^{(0)}(t)) P_{\infty}^{(0)} u, \partial_x P_{\infty,3} u) = 0$, which follows from the fact $\hat{\chi}_1 \hat{\chi}_3 = \hat{\chi}_2 \hat{\chi}_3 = 0$ and the Plancherel theorem.

As for (iii), it follows from the proof of (i) and (ii).

We prove the a priori estimate in Proposition 3.7 by estimating the following quantities. Let u(t) be solution of (4.1) in $Z^m(\tau)$ and let u(t) be decomposed as above, i.e.,

$$u(t) = \sigma_1(t)u^{(0)}(t) + u_1(t) + \sigma_{\infty}(t)u^{(0)}(t) + u_{\infty}(t).$$

We define $M(t) \geq 0$ by

$$M(t)^2 = M_1(t)^2 + \sup_{0 \le z \le t} (1+z)^{\frac{n+1}{2}} E_{\infty}(z), \quad t \in [0,\tau].$$

Here, $M_1(t)$ and $E_{\infty}(t)$ are defined as

$$M_1(t) = \sup_{0 \le z \le t} (1+z)^{\frac{n-1}{4}} \|\sigma_1(z)\|_2 + \sup_{0 \le z \le t} (1+z)^{\frac{n+1}{4}} \{ \|\partial_{x'}\sigma_1(z)\|_2 + \sum_{j=1}^{\left[\frac{m}{2}\right]} \|\partial_z^j \sigma_1(z)\|_2 \},$$

and

$$E_{\infty}(t) = [u_{\infty}(t)]_{m}^{2} + [\sigma_{\infty}(t)]_{m}^{2}.$$

Finally, we introduce quantity $D_{\infty}(t)$ for $u_{\infty}(t) = {}^{T}(\phi_{\infty}(t), w_{\infty}(t))$:

$$D_{\infty}(t) = [\![\partial_x \phi_{\infty}(t)]\!]_{m-1}^2 + [\![\partial_t \phi_{\infty}]\!]_{m-1}^2 + [\![|Dw_{\infty}(t)||]\!]_m^2 + [\![|D\sigma_{\infty}(t)||]\!]_m^2.$$

Remark 5.4 From properties of $\mathcal{Q}^{(p)}(t)$, p = 1, 2, we see that

$$\|\partial_{x'}^k \partial_{x_n}^l \partial_t^j u_1(t)\|_2 \le C \||D\sigma_1(t)\||_m, \ 0 \le 2j+l \le m+1, \ k=0,1,\ldots,$$

and there holds

$$\sup_{0 \le z \le t} (1+z)^{\frac{n+1}{4}} \{ [\![u_1(z)]\!]_m + [\![\partial_x u_1(z)]\!]_m \} \le CM_1(t).$$

Therefore, we do not need special estimates for $u_1(t)$.

We show the following estimates for $M_1(t)$ and $E_{\infty}(t)$.

Proposition 5.5 There exist positive constants ν_0 and γ_0 such that if $\nu \geq \nu_0$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_0^2$, then the following assertions hold true.

There exists $\varepsilon_2 > 0$ such that if solution u(t) of (4.1) in $Z^m(\tau)$ satisfies $\sup_{0 \le z \le t} [\![u(z)]\!]_m \le \varepsilon_2$ and $M(t) \le 1$ for all $t \in [0,\tau]$, then the following estimates hold uniformly for $t \in [0,\tau]$ with C > 0 independent of τ .

$$M_1(t) \le C\{\|u_0\|_1 + M(t)^2\},$$
 (5.9)

$$E_{\infty}(t) + \int_{0}^{t} e^{-a(t-z)} D_{\infty}(z) dz \le C \left\{ e^{-at} E_{\infty}(0) + (1+t)^{-\frac{n+1}{2}} M(t)^{4} + \int_{0}^{t} e^{-a(t-z)} \widetilde{R}(z) dz \right\}.$$
 (5.10)

Here, $a = a(\nu, \tilde{\nu}, \gamma)$ is a positive constant; and $\tilde{R}(t)$ is quantity that satisfies

$$\widetilde{R}(t) \le C\{(1+t)^{-\frac{n+1}{2}}M(t)^3 + M(t)D_{\infty}(t)\},$$
(5.11)

whenever $\sup_{0 \le z \le t} \llbracket u(z) \rrbracket_m \le \varepsilon_2$ and $M(t) \le 1$.

The proof of Proposition 5.5 is given in Sections 6-8. We prove (5.9), (5.10) and (5.11) in Sections 6, 7 and 8, respectively.

Assuming that Proposition 5.5 holds true, we can show the following estimate.

Proposition 5.6 If $\nu \geq \nu_0$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_0^2$, then the following assertion holds true. There exists number $\varepsilon_3 > 0$ such that if solution u(t) of (4.1) in $Z^m(\tau)$ satisfies $||u_0||_{H^m \cap L^1} \leq \varepsilon_3$, then there holds the estimate

$$M(t) \le C \|u_0\|_{H^m \cap L^1},\tag{5.12}$$

for a constant C > 0 independent of τ .

As an immediate consequence of (5.12) we see that the a priory estimate in Proposition 3.7 holds true. Moreover, (5.12) provides us with the following decay estimates:

$$[\![u(t)]\!]_m \le C(1+t)^{-\frac{n-1}{4}} |\![u_0|\!]_{H^m \cap L^1},$$

$$\|\partial_{x'}^k u(t)\|_2 \leq C(1+t)^{-\frac{n-1}{4}-\frac{k}{2}} \|u_0\|_{H^m\cap L^1},\ k=0,1,$$

and

$$||u(t) - \sigma_1(t)u^{(0)}(t)||_2 \le C(1+t)^{-\frac{n+1}{4}}||u_0||_{H^m \cap L^1},$$
 (5.13)

for $t \in [0, \tau]$. This proves (3.6) and (3.8).

Proof of Proposition 5.6 If $\sup_{0 \le z \le t} \llbracket u(z) \rrbracket_m \le \varepsilon_2$ and $M(t) \le 1$, then we see from (5.10) and (5.11) that

$$E_{\infty}(t) + \int_{0}^{t} e^{-a(t-z)} D_{\infty}(z) dz \le C \left\{ e^{-at} E_{\infty}(0) + (1+t)^{-\frac{n+1}{2}} M(t)^{4} + \int_{0}^{t} e^{-a(t-z)} \left\{ (1+z)^{-\frac{n+1}{2}} M(z)^{3} + M(z) D_{\infty}(z) \right\} dz \right\}$$

$$\leq C\{e^{-at}E_{\infty}(0) + (1+t)^{-\frac{n+1}{2}}M(t)^3 + M(t)\int_0^t e^{-a(t-z)}D_{\infty}(z)dz\}.$$

Therefore, using continuity of $E_{\infty}(t)$ and compatibility conditions we obtain

$$(1+t)^{\frac{n+1}{2}}E_{\infty}(t) + \mathcal{D}(t) + \le C\{\|u_0\|_{H^m}^2 + M(t)^3 + M(t)\mathcal{D}(t)\},\tag{5.14}$$

with

$$\mathscr{D}(t) = (1+t)^{\frac{n+1}{2}} \int_0^t e^{-a(t-z)} D_{\infty}(z) dz.$$

It follows from (5.9) and (5.14) that

$$M(t)^{2} + \sup_{0 \le z \le t} \mathcal{D}(z) \le C_{1} \{ \|u_{0}\|_{H^{m} \cap L^{1}}^{2} + M(t)^{3} + M(t) \sup_{0 \le z \le t} \mathcal{D}(t) \},$$
(5.15)

whenever $\sup_{0 \le z \le t} [u(z)]_m \le \varepsilon_2$ and $M(t) \le 1$. In the same way as in [7, Proof of Proposition 5.4] using (5.15) one can show that there exists $\varepsilon_3 > 0$ such that if $||u_0||_{H^m \cap L^1} < \varepsilon_3$, then

$$M(t) < 2C_2 ||u_0||_{H^m \cap L^1},$$

for all $t \in [0, \tau]$ with $C_2 > 0$ independent of τ . This concludes the proof.

Estimates on $\sigma_1(t)$ 6

In this section we estimate the $\mathbb{P}(t)$ -part of u(t). Since

$$\mathbb{P}(t)u(t) = \sigma_1(t)u^{(0)}(t) + u_1(t),$$

where $\sigma_1(t) = \mathscr{P}(t)u(t)$ and $u_1(t) = (\mathscr{Q}(t) - \mathscr{Q}^{(0)}(t))\mathscr{P}(t)u(t)$, it is enough to obtain estimates for σ_1 (see Remark 5.4). In this section we assume that $\nu \geq \nu_2$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_2^2$.

Let us first make an observation. Regarding the spectral properties of linearized operator, we expect $\sigma_1(t)$ to be the most slowly decaying part of u(t). Therefore, the most slowly decaying part of the nonlinearity F(t, u(t)) would be given by the terms containing only $\sigma_1(t)^2$. There are two such terms in F(t, u(t)),

$$\frac{\nu\phi}{\gamma^2\rho_p^2} \left(-\partial_{x_n}^2 w^1 + \frac{\partial_{x_n}^2 v_p^1}{\gamma^2 \rho_p} \phi \right) \boldsymbol{e}_1 \quad \text{and} \quad -\frac{1}{2\gamma^4 \rho_p} \partial_{x_n} \left(P''(\rho_p) \phi^2 \right) \boldsymbol{e}_n.$$

Since $w^{(0),1}$ satisfies (4.7), we can define $\sigma_1^2 \mathbf{F}_1$ with $\mathbf{F}_1 = \mathbf{F}_1(x_n,t)$ as

$$\boldsymbol{F}_{1} = {}^{T}\left(0, \ \frac{\phi^{(0)}(x_{n})}{\gamma^{2}\rho_{p}}\partial_{t}w^{(0),1}(x_{n},t), \ \frac{1}{2\gamma^{4}\rho_{p}(x_{n})}\partial_{x_{n}}\left(P''(\rho_{p}(x_{2}))\{\phi^{(0)}(x_{n})\}^{2}\right)\right).$$

We thus write

$$\boldsymbol{F} = \sigma_1^2 \boldsymbol{F}_1 + \boldsymbol{F}_2, \tag{6.1}$$

where $\mathbf{F}_2 = \mathbf{F} - \sigma_1^2 \mathbf{F}_1$ contains terms involving u_{∞} , its derivatives and terms of order $O(\sigma_1 \partial_{x'} \sigma_1)$ like $\sigma_1 u_1$, and $O(\sigma_1^3)$, but not just $O(\sigma_1^2)$. In particular, we have that $Q_0 \mathbf{F} = Q_0 \mathbf{F}_2$.

First we introduce two lemmas.

Lemma 6.1 There hold the following relations.

$$[Q_0 \mathbf{F}] = -\operatorname{div}'[\phi w'],$$

(ii)
$$\mathscr{P}(t)\mathbf{F}(t) = -\operatorname{div}'[\phi(t)w'(t)]_1 + \operatorname{div}'\mathscr{P}^{(1)}(t)\mathbf{F}(t) + \Delta'\mathscr{P}^{(2)}(t)\mathbf{F}(t).$$

Proof. Since $w|_{x_n=0,1}=0$, by integration by parts, we have

$$[Q_0 \mathbf{F}] = -\mathrm{div}'[\phi w'].$$

This shows (i). As for (ii), it is straightforward from definition of $\mathscr{P}^{(0)}$ and (i).

Remark 6.2 Let $\varepsilon_5 > 0$ be number such that

$$C_s \varepsilon_5 \le \frac{\gamma^2 \rho_1}{4}.$$

Here, $C_S > 0$ comes from Sobolev inequality (3.10). Then whenever $[u(t)]_m \le \varepsilon_5$, we have

$$\|\phi(t)\|_{\infty} \le C_S \llbracket u(t) \rrbracket_m \le C_S \varepsilon_5 \le \frac{\gamma^2 \rho_1}{4},$$

and hence,

$$\rho(x,t) = \rho_p(x_2) + \gamma^{-2}\phi(x,t) \ge \rho_1 - \gamma^{-2} \|\phi(t)\|_{\infty} \ge \frac{3\rho_1}{4} > 0.$$

Therefore, we see that $\widetilde{Q}\mathbf{F}(t)$ is smooth whenever $[\![u(t)]\!]_m \leq \varepsilon_5$.

Using inequality $\|\sigma_1\|_{\infty} \leq C\|\sigma_1\|_2^{1/2}\|\partial_{x'}\sigma_1\|_2^{1/2}$ (see Lemmas 8.2 (iii) and 5.3 (iii)), it is not difficult to verify the following estimates on nonlinearities. We omit the proof.

Lemma 6.3 Let solution u(t) of (4.1) in $Z^m(\tau)$ satisfies $\sup_{0 \le z \le t} [u(z)]_m \le \varepsilon_5$ and $M(t) \le 1$ for $t \in [0, \tau]$, then there hold the following estimates for $t \in [0, \tau]$ with C > 0 independent of τ .

(i)
$$\|\partial_{x'}(\sigma_1^2(t))\|_1 \le C(1+t)^{-\frac{n}{2}}M(t)^2,$$

(ii)
$$\|\operatorname{div}'[\phi w'](t)\|_{1} \le C(1+t)^{-\frac{n}{2}}M(t)^{2},$$

(iii)
$$\|[\phi w'](t)\|_1 < C(1+t)^{-\frac{n-1}{2}}M(t)^2,$$

(iv)
$$\|\mathbf{F}(t)\|_{1} \le C(1+t)^{-\frac{n-1}{2}}M(t)^{2},$$

(v)
$$\|\mathbf{F}_2(t)\|_1 \le C(1+t)^{-\frac{n}{2}}M(t)^2,$$

(vi)
$$\|\mathbf{F}(t)\|_{2} < C(1+t)^{-\frac{2n-1}{4}}M(t)^{2},$$

(vii)
$$\|\partial_{x'}(\sigma_1^2(t))\|_2 \le C(1+t)^{-\frac{2n+1}{4}}M(t)^2.$$

Finally, we prove (5.9).

Proposition 6.4 There exists number $\varepsilon_4 > 0$ such that if a solution u(t) of (4.1) in $Z^m(\tau)$ satisfies $\sup_{0 \le z \le t} [\![u(z)]\!]_m \le \varepsilon_4$ and $M(t) \le 1$ for all $t \in [0,\tau]$, then the estimate

$$M_1(t) \le C\{\|u_0\|_1 + M(t)^2\},\$$

holds uniformly for $t \in [0, \tau]$ with C > 0 independent of τ .

Proof. We write (5.1) for s = 0 as

$$\sigma_1(t) = e^{t\Lambda} \mathscr{P}(0)u_0 + I(t),$$

where

$$I(t) = \int_0^t e^{(t-z)\Lambda} \mathscr{P}(z) F(z) dz.$$

(4.13) yields

$$\|\partial_{x'}^k e^{t\Lambda} \mathscr{P}(0)u_0\|_2 \le C(1+t)^{-\frac{n-1}{4}-\frac{k}{2}} \|u_0\|_1$$

for k = 0, 1. Next, we estimate I(t) which we write it as

$$I(t) = I_1(t) + I_2(t),$$

where

$$I_1(t) = \int_0^{\frac{t}{2}} e^{(t-z)\Lambda} \mathscr{P}(z) F(z) dz,$$

$$I_2(t) = \int_{\frac{t}{2}}^t e^{(t-z)\Lambda} \mathscr{P}(z) F(z) dz.$$

By Lemma 6.1 (ii), we have

$$e^{(t-z)\Lambda} \mathscr{P}(z) \mathbf{F}(z) = \operatorname{div}' e^{(t-z)\Lambda} \{ -[\phi w']_1 + \mathscr{P}^{(1)} \mathbf{F} + \nabla' \mathscr{P}^{(2)} \mathbf{F} \}(z).$$

It then follows from (4.14) and Lemma 6.3 that

$$\|\partial_{x'}^k I_1(t)\|_2 \le C \int_0^{\frac{t}{2}} (1+t-z)^{-\frac{n+1}{4}-\frac{k}{2}} \left\{ \|[\phi w'](z)\|_1 + \|F(z)\|_1 \right\} dz$$

$$\leq CM(t)^2 \int_0^{\frac{t}{2}} (1+t-z)^{-\frac{n+1}{4}-\frac{k}{2}} (1+z)^{-\frac{n-1}{2}} dz \leq C(1+t)^{-\frac{n-1}{4}-\frac{k}{2}} M(t)^2,$$

for k = 0, 1.

As for $I_2(t)$, using (6.1) and Lemma 6.1 (ii) we write $\mathscr{P}(z)\mathbf{F}(z)$ as

$$\mathscr{P} \boldsymbol{F} = -\mathrm{div}'[\phi w']_1 + (\mathscr{P}^{(1)} + \nabla' \mathscr{P}^{(2)}) \cdot \nabla'(\sigma_1)^2 \boldsymbol{F}_1 + (\mathrm{div}' \mathscr{P}^{(1)} + \Delta' \mathscr{P}^{(2)}) \boldsymbol{F}_2.$$

It then follows from (4.14) and Lemma 6.3 that

$$\|\partial_{x'}^{k} I_{2}(t)\|_{2} \leq C \int_{\frac{t}{2}}^{t} (1+t-z)^{-\frac{n-1}{4}-\frac{k}{2}} \{\|\operatorname{div}'[\phi w'](z)\|_{1} + \|\nabla'(\sigma_{1}(z))^{2}\|_{1} + \|F_{2}(z)\|_{1}\} dz$$

$$\leq CM(t)^{2} \int_{\frac{t}{2}}^{t} (1+t-z)^{-\frac{n-1}{4}-\frac{k}{2}} (1+z)^{-\frac{n}{2}} dz \leq C(1+t)^{-\frac{n-1}{4}-\frac{k}{2}} M(t)^{2},$$

for k = 0, 1. We thus obtain

$$\sum_{k=0}^{1} (1+t)^{\frac{n-1}{4} + \frac{k}{2}} \|\partial_{x'}^{k} \sigma_{1}(t)\|_{2} \le C\{\|u_{0}\|_{1} + M(t)^{2}\}.$$

$$(6.2)$$

It remains to estimate time derivatives. From (5.1) we see that

$$\partial_t \sigma_1(t) = \Lambda \sigma_1(t) + \mathscr{P}(t) \mathbf{F}(t). \tag{6.3}$$

It then follows from Lemma 6.3 (vi) and previous result that

$$\|\partial_t \sigma_1(t)\|_2 \le C\{\|\partial_{x'} \sigma_1(t)\|_2 + \|\mathscr{P}(t)F(t)\|_2\} \le C(1+t)^{-\frac{n+1}{4}}\{\|u_0\|_1 + M(t)^2\}.$$

Concerning $\|\partial_t^{j+1}\sigma_1(t)\|_2$ for $j=1,\ldots,\lfloor \frac{m}{2}\rfloor-1$, we obtain from (6.3)

$$\|\partial_t^{j+1}\sigma_1(t)\|_2 \le C\{\|\partial_t^{j}\sigma_1(t)\|_2 + \|\partial_t^{j}(\mathscr{P}(t)\mathbf{F}(t))\|_2\}.$$

Since

$$\|\partial_t^j \mathbf{F}(t)\|_2 \le C(1+t)^{-\frac{n+1}{4}} M(t)^2$$

for $0 \le 2j \le m-2$ as we see in Propositions 8.5 (i)–(iii) and 8.6 (i), we find by induction on j, that estimate

$$\|\partial_t^{j+1}\sigma_1(t)\|_2 \le C_j(1+t)^{-\frac{n+1}{4}} \{\|u_0\|_1 + M(t)^2\},\tag{6.4}$$

holds for $j = 0, 1, \dots, [\frac{m}{2}] - 1$.

The desired result now follows from (6.2) and (6.4). This completes the proof.

7 Estimates on $\widetilde{P}_{\infty}u(t)$

In this section we prove estimate (5.10) for σ_{∞} and u_{∞} by a variant of Matsumura-Nishida energy method as in the case of stationary parallel flow ([7]). Since coefficients of the linearized operator depend on time some extra terms arise in contrast to [7]. We omit the proofs that can be obtained as modification of those in [7]. In this section we assume that $\nu \geq \nu_2$ and $\gamma^2/(\nu + \tilde{\nu}) \geq \gamma_2^2$ unless further restricted.

First, let us show the following inequality.

Proposition 7.1 There exists $\nu_0 \geq \nu_2$ and $\gamma_0 \geq \gamma_2$ such that if $\nu \geq \nu_0$ and $\gamma^2/(\nu + \widetilde{\nu}) \geq \gamma_0^2$ the solution u(t) of (4.1) in $Z^m(\tau)$ satisfies

$$\frac{d}{dt}\widetilde{E}(t) + 2D(t) \le \widetilde{R}(t). \tag{7.1}$$

Here, $\widetilde{E}(t)$, D(t) and $\widetilde{R}(t)$ are quantities such that

- (i) $\widetilde{E}(t) + [\![\partial_{x_n}^2 w_{\infty}(t)]\!]_{m-2}^2$ is equivalent to $E_{\infty}(t)$,
- (ii) D(t) is equivalent to $D_{\infty}(t)$,
- (iii) $\widetilde{R}(t)$ satisfies estimate (5.11).

We introduce some quantities. Let $E^{(0)}[\widetilde{P}_{\infty}u]$ and $D^{(0)}[w]$ be defined by

$$E^{(0)}[\widetilde{P}_{\infty}u] = \frac{\alpha_0}{\gamma^2} \|\sigma_{\infty}\|_2^2 + \frac{1}{\gamma^2} \|\sqrt{\frac{P'(\rho_p)}{\gamma^2 \rho_p}} \phi_{\infty}\|_2^2 + \|\sqrt{\rho_p} w_{\infty}\|_2^2,$$

for $\widetilde{P}_{\infty}(t) = \sigma_{\infty} u^{(0)} + u_{\infty}$ with $u_{\infty} = T(\phi_{\infty}, w_{\infty})$; and

$$D^{(0)}[w_{\infty}] = \nu \|\nabla w_{\infty}\|_{2}^{2} + \widetilde{\nu} \|\operatorname{div} w_{\infty}\|_{2}^{2}.$$

Note that,

$$\langle Au(t), u(t)\rangle_{\Omega} = D^{(0)}[w(t)],$$

for $u = {}^{T}(\phi, w) \in Z^{m}(\tau)$, and

$$\langle B(t)u(t), v(t)\rangle_{\Omega} = -\langle u(t), B(t)v(t)\rangle_{\Omega},$$

for $u, v \in Z^m(\tau)$, $\widetilde{Q}u|_{x_n=0,1} = \widetilde{Q}v|_{x_n=0,1} = 0$. In particular,

$$\langle B(t)u(t), u(t)\rangle_{\Omega} = 0,$$

for $u \in Z^m(\tau)$, $\tilde{Q}u|_{x_n=0,1} = 0$.

We denote the tangential derivatives $\partial_t^j \partial_{x'}^k$ by $T_{j,k}$:

$$T_{j,k}u = \partial_t^j \partial_{x'}^k u.$$

In this section we often use $||w^{(0),1}(t)||_{C^{m+1}(\Omega)} = O(\frac{1}{\gamma^2})$ in calculations (see Lemma 4.9). It is straightforward to see that following lemma holds true.

Lemma 7.2 There hold the following assertions.

(i)
$$||T_{j,k+1}\sigma_{\infty}||_2^2 \le ||T_{j,1}\sigma_{\infty}||_2^2, \ k \ge 0, \ 2j \le m,$$

$$||T_{j,k}\phi_{\infty}||_2^2 \le C||\partial_x T_{j,k}\phi_{\infty}||_2^2, \ 2j+k \le m-1,$$

$$||T_{j,k}w_{\infty}||_2^2 \le C||\partial_x T_{j,k}w_{\infty}||_2^2, \ 2j+k \le m-1.$$

(ii)
$$||[Q_0\widetilde{B}(\sigma_{\infty}u^{(0)} + u_{\infty})]_{\infty}||_2^2 \le C(||\partial_{x'}\sigma_{\infty}||_2^2 + ||\partial_{x'}\phi_{\infty}||_2^2 + \gamma^4 ||\partial_{x'}w_{\infty}||_2^2).$$

(iii) If
$$w_{\infty}^2|_{x_n=0,1}=0$$
, then $[Q_0\widetilde{B}u_{\infty}]_{\infty}=[Q_0Bu_{\infty}]_{\infty}=[v_p^1\partial_{x_1}\phi_{\infty}+\gamma^2\mathrm{div}\,(\rho_p w_{\infty})]_{\infty}$.

(iv) If $w_{\infty}^2|_{x_n=0,1} = 0$ and $2j + k \le m$, then

$$\|\partial_{x'}^k \partial_t^j [Q_0 \widetilde{B}(\sigma_\infty u^{(0)} + u_\infty)]_\infty \|_2^2$$

$$\leq C \sum_{i=0}^{j} (\|\partial_{x'}^{p} \partial_{t}^{i} \sigma_{\infty}\|_{2}^{2} + \|\partial_{x'}^{q} \partial_{t}^{i} \phi_{\infty}\|_{2}^{2}) + \gamma^{4} \|\operatorname{div}(\partial_{x'}^{r} \partial_{t}^{j} w_{\infty})\|_{2}^{2} + \gamma^{4} |\partial_{x_{n}} \rho_{p}|_{\infty}^{2} \|\partial_{x'}^{s} \partial_{t}^{j} w_{\infty}\|_{2}^{2}),$$

for
$$0 \le p, q \le k + 1, 0 \le r, s \le k$$
.

We begin with L^2 -energy estimates for tangential derivatives. We set

$$\sigma_* = \sigma_1 + \sigma_{\infty}, \quad \phi_* = \phi_1 + \phi_{\infty}, \quad w_* = w_1 + w_{\infty},$$

$$u_* = {}^T(\phi_*, w_*) = u_1 + u_{\infty}.$$

We write $\widetilde{Q}\mathbf{F} = {}^{T}(0,\mathbf{f})$ in the form

$$\widetilde{Q}\boldsymbol{F} = \widetilde{\boldsymbol{F}}_0 + \widetilde{\boldsymbol{F}}_1 + \widetilde{\boldsymbol{F}}_2 + \widetilde{\boldsymbol{F}}_3.$$

Here, $\tilde{\boldsymbol{F}}_l = {}^T(0, \boldsymbol{f}_l), \ l = 0, 1, 2, 3$, with

$$\mathbf{f}_{0} = -w \cdot \nabla w - f_{1}(\rho_{p}, \phi) \Delta' \sigma_{*} w^{(0), 1} \mathbf{e}_{1} - f_{2}(\rho_{p}, \phi) \nabla (\partial_{x_{1}} \sigma_{*} w^{(0), 1})$$

$$+ f_{01}(x_n, t, \phi) \phi \sigma_* + f_{02}(x_n, \phi) \phi \nabla' \sigma_* + f_{03}(x_n, t, \phi) \phi \phi_*,$$

$$\boldsymbol{f}_1 = -f_1(\rho_p, \phi) \Delta w_* = -\text{div} \left(f_1(\rho_p, \phi) \nabla w_* \right) + {}^T(\nabla w_*) \nabla (f_1(\rho_p, \phi)),$$

$$\mathbf{f}_2 = -f_2(\rho_p, \phi) \nabla \operatorname{div} w_* = -\nabla (f_2(\rho_p, \phi) \operatorname{div} w_*) + (\operatorname{div} w_*) \nabla (f_2(\rho_p, \phi)),$$

$$\mathbf{f}_3 = -f_3(x_n, \phi)\phi\nabla\phi_*.$$

Here, ∇w_* denotes the $n \times n$ matrix $(\partial_{x_i} w_*^j)$; $f_1 = \frac{\nu \phi}{\rho_p(\gamma^2 \rho_p + \phi)}$; $f_2 = \frac{\tilde{\nu} \phi}{\rho_p(\gamma^2 \rho_p + \phi)}$; and $\boldsymbol{f}_{0l}(x_n, t, \phi)$, l = 1, 2, 3 and $f_3(x_n, \phi)$ are smooth functions of x_n , t and ϕ .

Proposition 7.3 There exists $\nu_3 > \nu_2$ such that for $\nu \geq \nu_3$ the following estimate holds for $0 \leq 2j + k \leq m$:

$$\frac{1}{2} \frac{d}{dt} E^{(0)} [T_{j,k} \widetilde{P}_{\infty} u] + \frac{1}{2} D^{(0)} [T_{j,k} w_{\infty}]$$

$$\leq R_{j,k}^{(1)} + C \{ (\frac{\nu}{\gamma^4} + \frac{1}{\gamma^4 \nu} + \frac{1}{\gamma^2}) \sum_{i=0}^{j} \|T_{i,k} \phi_{\infty}\|_2^2 + (\frac{\nu + \widetilde{\nu}}{\gamma^4} + \frac{1}{\nu \gamma^4} + \frac{1}{\gamma^2}) \sum_{i=0}^{j} \|T_{i,k+1} \sigma_{\infty}\|_2^2$$

$$+ \frac{1}{\gamma^2} \sum_{i=0}^{j-1} \|T_{i,k+1} \phi_{\infty}\|_2^2 + \frac{1}{\gamma^2} (1 - \delta_{j0}) \|\partial_t T_{j-1,k} \sigma_{\infty}\|_2^2 + \frac{1}{\nu^2} \sum_{i=0}^{j-1} D^{(0)} [T_{i,k} w_{\infty}] \},$$
(7.2)

where δ_{j0} denotes Kronecker's delta and $R_{j,k}^{(1)}$ is given by

$$R_{j,k}^{(1)} = \frac{\alpha_0}{\gamma^2} ([Q_0 T_{j,k} \mathbf{F}]_{\infty}, T_{j,k} \sigma_{\infty}) - \frac{\alpha_0}{\gamma^2} ([Q_0 T_{j,k} (\mathbb{P} \mathbf{F})]_{\infty}, T_{j,k} \sigma_{\infty}) + \widetilde{R}_{j,k}^{(1)} - \langle T_{j,k} ([Q_0 \mathbf{F}]_{\infty} u^{(0)}), T_{j,k} u_{\infty} \rangle_{\Omega}$$
$$- \langle T_{j,k} (\mathbb{P} \mathbf{F}), T_{j,k} u_{\infty} \rangle_{\Omega} + \langle T_{j,k} ([Q_0 (\mathbb{P} \mathbf{F})]_{\infty} u^{(0)}), T_{j,k} u_{\infty} \rangle_{\Omega}.$$

Here,

$$\widetilde{R}_{j,k}^{(1)} = \langle T_{j,k} \mathbf{F}, T_{j,k} u_{\infty} \rangle_{\Omega},$$

when $2j + k \leq m - 1$, and

$$\begin{split} \widetilde{R}_{j,k}^{(1)} &= -(T_{j,k}(\phi \text{div } w), T_{j,k}\phi_{\infty} \frac{P'(\rho_{p})}{\gamma^{4}\rho_{p}}) + \frac{1}{2}(\text{div } (\frac{P'(\rho_{p})}{\gamma^{4}\rho_{p}} w), |T_{j,k}\phi_{\infty}|^{2}) \\ &- (w\nabla T_{jk}(\sigma_{*}\phi^{(0)} + \phi_{1}), T_{jk}\phi_{\infty} \frac{P'(\rho_{p})}{\gamma^{4}\rho_{p}}) - ([T_{j,k}, w]\nabla\phi, T_{j,k}\phi_{\infty} \frac{P'(\rho_{p})}{\gamma^{4}\rho_{p}}) \\ &+ (T_{j,k}\boldsymbol{f}_{0}, T_{j,k}w_{\infty}\rho_{p}) + \sum_{l=1}^{3} \langle T_{j,k}\boldsymbol{f}_{l}, T_{j,k}w_{\infty}\rho_{p} \rangle_{-1}, \end{split}$$

when 2j + k = m. Here and in what follows, for $G = g + \partial_{x_j} \widetilde{g}$ with $g, \widetilde{g} \in L^2$ and $v \in H^1_0$, $\langle G, v \rangle_{-1}$ denotes

$$\langle G, v \rangle_{-1} = (g, v) - (\widetilde{g}, \partial_{x_i} v).$$

Proof. We apply $T_{j,k}$ to (5.2) and (5.3). We then take the inner products of the resulting equations with $T_{j,k}\sigma_{\infty}$ and $T_{j,k}u_{\infty}$, respectively. Integration by parts together with symmetric properties of A and B gives us the desired result in the same manner as in [7, Proposition 7.4].

We next derive the H^1 -parabolic estimates for w_{∞} . We define $J[\widetilde{P}_{\infty}u]$ by

$$J[\widetilde{P}_{\infty}u] = -2\langle \sigma_{\infty}u^{(0)} + u_{\infty}, B\widetilde{Q}u_{\infty}\rangle_{\Omega} \text{ for } \widetilde{P}_{\infty}u = \sigma_{\infty}u^{(0)} + u_{\infty}.$$

A direct computation shows that if $\gamma^2 \geq 1$ then

$$|J[\widetilde{P}_{\infty}u]| \le \frac{b_0 \gamma^2}{\nu} E^{(0)}[\widetilde{P}_{\infty}] + \frac{1}{2} D^{(0)}[w_{\infty}],$$

for some constant $b_0 > 0$.

Let b_1 be a positive constant (to be determined later) and define $E^{(1)}[\widetilde{P}_{\infty}u]$ by

$$E^{(1)}[\widetilde{P}_{\infty}u] = \frac{2b_1\gamma^2}{\nu}E^{(0)}[\widetilde{P}_{\infty}u] + D^{(0)}[w_{\infty}] + J[\widetilde{P}_{\infty}u].$$

Note that if $b_1 \geq b_0$ then $E^{(1)}[\widetilde{P}_{\infty}u]$ is equivalent to $E^{(0)}[\widetilde{P}_{\infty}u] + D^{(0)}[w_{\infty}]$.

Proposition 7.4 There exists $b_1 \ge \max\{b_0, 8C_0\}$ such that if $\nu \ge \nu_3$, $\gamma^2 \ge 1$ and $\frac{\gamma^2}{\nu + \widetilde{\nu}} \ge \max\{1, \gamma_2^2\}$ then the following estimate holds for $0 \le 2j + k \le m - 1$,

$$\frac{1}{2} \frac{d}{dt} E^{(1)}[T_{j,k} \widetilde{P}_{\infty} u] + \frac{b_1 \gamma^2}{\nu} \frac{3}{4} D^{(0)}[T_{j,k} w_{\infty}] + \frac{1}{2} \|\sqrt{\rho_p} T_{j,k} \partial_t w_{\infty}\|_2^2 \le R_{j,k}^{(2)}$$

$$+ C \sum_{i=0}^{j} \{ (\frac{\nu^2}{\gamma^4} + \frac{1}{\nu}) \|T_{i,k} \phi_{\infty}\|_2^2 + (\frac{\nu + \widetilde{\nu}}{\gamma^2} + \frac{1}{\nu}) \|T_{i,k+1} \sigma_{\infty}\|_2^2 + \frac{1}{\nu} \|T_{i,k+1} \phi_{\infty}\|_2^2$$

$$+ \frac{1}{\nu} (1 - \delta_{j0}) \|\partial_t T_{j-1,k} \sigma_{\infty}\|_2^2 \} + C_0 \frac{\gamma^2}{\nu} (1 + \frac{C}{\nu^2}) \sum_{i=0}^{j-1} D^{(0)}[T_{i,k} w_{\infty}].$$
(7.3)

where

$$R_{j,k}^{(2)} = \frac{2b_1 \gamma^2}{\nu} R_{j,k}^{(1)} + C \|T_{j,k} \mathbf{F}\|_2^2.$$

Proof. We apply $T_{j,k}$ to (5.3) and take inner product with $\partial_t T_{j,k} \widetilde{Q} u_{\infty}$ to obtain the desired result in the same manner as in [7, Proposition 7.5].

As for the disipative estimates for x_n -derivatives of ϕ_{∞} , we have the following inequality.

Proposition 7.5 The following estimate holds for $0 \le 2j + k + l \le m - 1$:

$$\frac{1}{2} \frac{d}{dt} \frac{1}{\gamma^2} \| \sqrt{\frac{P'(\rho_p)}{\gamma^2 \rho_p}} T_{j,k} \partial_{x_n}^{l+1} \phi_{\infty} \|_2^2 + \frac{1}{2(\nu + \widetilde{\nu})} \| \frac{P'(\rho_p)}{\gamma^2} \partial_{x_n}^{l+1} T_{j,k} \phi_{\infty} \|_2^2 \le R_{j,k,l}^{(3)} + C \frac{\nu + \widetilde{\nu}}{\gamma^4} \| K_{j,k,l} \|_2^2, \tag{7.4}$$

where

$$R_{j,k,l}^{(3)} = \left| \frac{1}{2} (\text{div} \left(\frac{P'(\rho_p)}{\gamma^4 \rho_p} w \right), |T_{j,k} \partial_{x_n}^{l+1} \phi_{\infty}|^2) \right| + C \frac{\nu + \widetilde{\nu}}{\gamma^4} ||H_{j,k,l}||_2^2,$$

with

$$||H_{j,k,l}||_{2}^{2} \leq C\{||[T_{j,k}\partial_{x_{n}}^{l+1}, w] \cdot \nabla \phi_{\infty}||_{2}^{2} + ||T_{j,k}\partial_{x_{n}}^{l+1}(\widetilde{Q_{0}P_{\infty}F})||_{2}^{2} + ||\frac{\gamma^{2}\rho_{p}^{2}}{\nu + \widetilde{\nu}}T_{j,k}\partial_{x_{n}}^{l}(Q_{n}P_{\infty}F)||_{2}^{2}\},$$

and

$$\widetilde{Q_0 P_\infty} \mathbf{F} = -\phi \operatorname{div} w - w \cdot \nabla (\sigma_* \phi^{(0)} + \phi_1) - \{Q_0 \mathbb{P} \mathbf{F} + [Q_0 P_\infty^{(0)} \mathbf{F}]_\infty \phi^{(0)}\}$$

Here, $K_{j,k,l}$ is estimated as

$$\begin{split} \frac{\nu + \widetilde{\nu}}{\gamma^4} \| K_{j,k,l} \|_2^2 &\leq C \frac{\nu + \widetilde{\nu}}{\gamma^2} \big\{ \frac{\nu^2}{\nu + \widetilde{\nu}} \| T_{j,k+1} \partial_{x_n}^l \partial_x w_\infty \|_2^2 + \frac{1}{\nu + \widetilde{\nu}} \| \sqrt{\rho_p} T_{j,k} \partial_{x_n}^l \partial_t w_\infty \|_2^2 \\ &+ \frac{\nu^2}{\gamma^2} (\sum_{q=0}^{l-1} \| T_{j,k+1} \partial_{x_n}^q \partial_x w_\infty \|_2^2 + \sum_{q=0}^{l} \| T_{j,k} \partial_{x_n}^q \partial_x w_\infty \|_2^2 + \sum_{i=0}^{j} \| T_{i,k+1} w_\infty \|_2^2) \\ &+ \frac{1}{\nu + \widetilde{\nu}} \sum_{i=0}^{j} \sum_{q=0}^{l} \| T_{i,k+1} \partial_{x_n}^q w_\infty \|_2^2 \\ &+ \frac{1}{\gamma^2} \left(\sum_{i=0}^{j} \sum_{q=0}^{l+1} \| T_{i,k+1} \partial_{x_n}^q \phi_\infty \|_2^2 + \sum_{i=0}^{j} \| T_{i,k+1} \sigma_\infty \|_2^2 + \sum_{q=0}^{l} \| \partial_{x_n}^q T_{j,k} \phi_\infty \|_2^2 \right) \big\}. \end{split}$$

Proof. We obtain the desired result in the same manner as in [7, Proposition 7.6].

The following estimate for the material derivative of ϕ_{∞} plays an important role to obtain the dissipative estimate for higher order x_2 -derivatives of w_{∞} . We denote the material derivative of ϕ_{∞} by $\dot{\phi}_{\infty}$:

$$\dot{\phi}_{\infty} = \partial_t \phi_{\infty} + (v_n + w) \cdot \nabla \phi_{\infty}.$$

Proposition 7.6 The following estimates hold for $0 \le 2j + k + l \le m - 1$:

(i)
$$\frac{1}{2} \frac{d}{dt} \frac{1}{\gamma^{2}} \| \sqrt{\frac{P'(\rho_{p})}{\gamma^{2} \rho_{p}}} T_{j,k} \partial_{x_{n}}^{l+1} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} \|_{2}^{l+1} \nabla_{x_{n}}^{l+1} \partial_{x_{n}}^{l+1} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} \|_{2}^{2} + \frac{1}{4(\nu + \widetilde{\nu})} \|$$

where c_0 is a positive constant and $R_{j,k,l}^{(3)}$ and $K_{j,k,l}$ satisfy the same estimates as in Proposition 7.5.

(ii) Let $0 \le q \le k$ and $0 \le 2j + k \le m$. Then

$$\frac{\nu + \widetilde{\nu}}{\gamma^4} \| T_{j,k} \dot{\phi}_{\infty} \|_2^2 \le C \{ R_{j,k}^{(4)} + D^{(0)} [T_{j,k} w_{\infty}] + \frac{\nu^2 (\nu + \widetilde{\nu})}{\gamma^4} \| T_{j,k} w_{\infty} \|_2^2$$

$$(7.6)$$

$$+ \frac{\nu + \widetilde{\nu}}{\gamma^4} \sum_{i=0}^{J} \|T_{i,k+1}\sigma_{\infty}\|_{2}^{2} + \frac{\nu + \widetilde{\nu}}{\gamma^4} \sum_{i=0}^{J} \|T_{i,q}\phi_{\infty}\|_{2}^{2} \},$$

where $R_{i,k}^{(4)} = \frac{\nu + \widetilde{\nu}}{\gamma^4} \|T_{j,k} \widetilde{Q_0 P_\infty F}\|_2^2$.

Proof. The desired result is obtained in the same manner as in [7, Proposition 7.7].

Let us derive the dissipative estimates for σ_{∞} .

 $\textbf{Proposition 7.7} \ \ Let \ \gamma^2/(\nu+\widetilde{\nu}) \geq \max\{1,\gamma_2^2\}, \ then \ there \ holds \ the \ following \ estimate \ for \ 0 \leq 2j+k \leq m-1 \leq m-1$

$$\frac{1}{2} \frac{d}{dt} \frac{\nu}{\gamma^2(\nu + \widetilde{\nu})} \|T_{j,k}\sigma_{\infty}\|_2^2 + \frac{\alpha_1}{2(\nu + \widetilde{\nu})} \|\nabla' T_{j,k}\sigma_{\infty}\|_2^2 \le R_{j,k}^{(5)}$$
(7.7)

$$+C\frac{\nu^2}{\gamma^4(\nu+\widetilde{\nu})}(1-\delta_{j0})\|\partial_t T_{j-1,k}\sigma_{\infty}\|_2^2 + \frac{1}{\nu+\widetilde{\nu}}(\frac{\alpha_1}{16} + C\frac{\nu+\widetilde{\nu}}{\gamma^2})\sum_{i=0}^{j-1}\|T_{i,k+1}\sigma_{\infty}\|_2^2$$

$$+C\{\frac{1}{\nu+\widetilde{\nu}}\|\sqrt{\rho_p}T_{j,k}\partial_t w_\infty\|_2^2+\sum_{i=0}^j D^{(0)}[T_{i,k}w_\infty]+\frac{1}{\nu+\widetilde{\nu}}\sum_{i=0}^j\|\frac{P'(\rho_p)}{\gamma^2}T_{i,p}\partial_{x_n}\phi_\infty\|_2^2\},$$

where $\alpha_1 > 0$ is a constant, p is any integer satisfying $0 \le p \le k$, and

$$R_{j,k}^{(5)} = \frac{\nu}{\gamma^2(\nu + \widetilde{\nu})} (Q_0 T_{j,k}(P_{\infty}^{(0)} \mathbf{F}), T_{j,k} \sigma_{\infty}) - \frac{1}{\nu + \widetilde{\nu}} (\operatorname{div}'[\rho_p(-\Delta)^{-1}(\rho_p T_{j,k} Q'(P_{\infty} \mathbf{F}))]_{\infty}, T_{j,k} \sigma_{\infty}).$$

Here, $(-\Delta)^{-1}$ is the inverse of $-\Delta$ on $L^2(\Omega)$ with domain $D(-\Delta)=H^2(\Omega)\cap H^1_0(\Omega)$.

Proof. The desired result is obtained in the same manner as in [7, Proposition 7.8].

Next, we estimate the higher order derivatives.

Proposition 7.8 If $\nu \geq 1$ then there holds the following estimate for $0 \leq 2j + k + l \leq m - 1$:

$$\frac{\nu^{2}}{\nu + \widetilde{\nu}} \|\partial_{x}^{l+2} T_{j,k} w_{\infty}\|_{2}^{2} + \frac{1}{\nu + \widetilde{\nu}} \|\partial_{x}^{l+1} T_{j,k} \phi_{\infty}\|_{2}^{2} \leq C R_{j,k,l}^{(6)} + C \{ (\frac{1}{\nu + \widetilde{\nu}} + \frac{\nu + \widetilde{\nu}}{\gamma^{4}}) \sum_{i=0}^{j} \|T_{i,k+1} \sigma_{\infty}\|_{2}^{2} + \frac{\nu + \widetilde{\nu}}{\gamma^{4}} \sum_{i=0}^{j} \|T_{i,k} \phi_{\infty}\|_{H^{l}}^{2} + \frac{\nu + \widetilde{\nu}}{\gamma^{4}} \|T_{j,k} \dot{\phi}_{\infty}\|_{H^{l+1}}^{2} + \frac{1}{\nu + \widetilde{\nu}} \|\partial_{t} T_{j,k} w_{\infty}\|_{H^{l}}^{2} + (\frac{1}{\nu + \widetilde{\nu}} + \frac{\nu^{2}(\nu + \widetilde{\nu})}{\gamma^{4}}) \sum_{i=0}^{j} \|T_{i,k} w_{\infty}\|_{H^{l+1}}^{2} + D^{(0)}[T_{j,k} w_{\infty}] \}, \tag{7.8}$$

where

$$R_{j,k,l}^{(6)} = \frac{\nu + \widetilde{\nu}}{\gamma^4} \|T_{j,k} \widetilde{Q_0 P_\infty F}\|_{H^{l+1}}^2 + \frac{1}{\nu + \widetilde{\nu}} \|T_{j,k} (\widetilde{Q} P_\infty F)\|_{H^l}^2.$$

Proof. We use the estimates for the Stokes system. Let $T(\widetilde{\phi}, \widetilde{w})$ be the solution of the Stokes system

$$\operatorname{div} \widetilde{w} = F \text{ in } \Omega,$$

$$-\Delta \widetilde{w} - \nabla \widetilde{\phi} = G \text{ in } \Omega,$$

$$\widetilde{w}|_{\delta\Omega} = 0.$$

Then for any $l \in \mathbb{Z}$, $l \geq 0$, there exists a constant C > 0 such that

$$\|\partial_x^{l+2}\widetilde{w}\|_2^2 + \|\partial_x^{l+1}\widetilde{\phi}\|_2^2 \le C\{\|F\|_{H^{l+1}}^2 + \|G\|_{H^l}^2 + \|\partial_x\widetilde{w}\|_2^2\},\tag{7.9}$$

(see, e.g., [3][4, Appendix]).

We rewrite (5.3) in the form of Stokes system with $\widetilde{w} = T_{j,k} w_{\infty}$ and $\widetilde{\phi} = \frac{P'(\rho_p)}{\nu \gamma^2} T_{j,k} \phi_{\infty}$. The desired result is then obtained by using (7.9) (cf. [7, Proposition 7.9]).

At last we estimate the time derivatives of σ_{∞} and ϕ_{∞} .

Proposition 7.9 (i) If $0 \le 2j + k \le m - 1$, then there holds the following estimate:

$$\|\partial_t T_{j,k} \sigma_{\infty}\|_2^2 \le C\{R_{j,k}^{(7)} + \sum_{i=0}^j (\|T_{i,k+1} \sigma_{\infty}\|_2^2 + \|T_{i,k+1} \phi_{\infty}\|_2^2) + \gamma^4 \|T_{j,k+1} w_{\infty}\|_2^2\}, \tag{7.10}$$

Here, $R_{j,k}^{(7)} = \|[Q_0 T_{j,k}(P_{\infty}^{(0)} \mathbf{F})]_{\infty}\|_2^2$

(ii) If $0 \le k + 2j \le m - 1$ then there holds the following estimate:

$$\|\partial_t^{j+1}\phi_{\infty}\|_{H^k}^2 \le C\{R_j^{(8)} + \sum_{i=0}^j (\|\partial_{x'}\partial_t^i\phi_{\infty}\|_{H^k}^2 + \|\partial_{x'}\partial_t^i\sigma_{\infty}\|_2^2) + \gamma^4 \|\partial_x\partial_t^jw_{\infty}\|_{H^k}^2\}$$
 (7.11)

Here, $R_{j,k}^{(8)} = \|\partial_t^j (Q_0 P_\infty \mathbf{F})\|_{H^k}^2$.

Proof. The estimates (7.10) and (7.11) follow from (5.2) and the first line of (5.3).

Proposition 7.1 now follows from combination of results in Propositions 7.3–7.9.

Proof of Proposition 7.1. Let us define

$$\widetilde{E}^{(0)}(t) = \sum_{\substack{2j+k \le m \\ 2j \ne m}} E^{(0)}[T_{j,k}\widetilde{P}_{\infty}u(t)], \quad \widetilde{E}^{(1)}(t) = \sum_{\substack{2j+k \le m-1}} E^{(1)}[T_{j,k}\widetilde{P}_{\infty}u(t)],$$

$$E^{(2)}(t) = \sum_{2j+k \le m-1} \frac{1}{\gamma^2} \| \sqrt{\frac{P'(\rho_p)}{\gamma^2 \rho_p}} \partial_{x_n} T_{j,k} \phi_{\infty}(t) \|_2^2, \quad E^{(3)}(t) = \sum_{2j+k \le m-1} \frac{\nu}{\gamma^2 (\nu + \widetilde{\nu})} \| T_{j,k} \sigma_{\infty}(t) \|_2^2,$$

and

$$\begin{split} \widetilde{D}^{(0)}(t) &= \sum_{2j+k \leq m} D^{(0)}[T_{j,k}w_{\infty}(t)], \\ D^{(1)}(t) &= \sum_{2j+k \leq m-1} \left(\frac{3b_1\gamma^2}{2\nu(\nu+\widetilde{\nu})} D^{(0)}[T_{j,k}w_{\infty}(t)] + \frac{1}{\nu+\widetilde{\nu}} \|\sqrt{\rho_p}T_{j,k}\partial_t w_{\infty}(t)\|_2^2 \right), \\ D^{(2)}(t) &= \sum_{2j+k \leq m-1} \left(\frac{1}{2(\nu+\widetilde{\nu})} \|\frac{P'(\rho_p)}{\gamma^2} \partial_{x_n}T_{j,k}\phi_{\infty}(t)\|_2^2 + \min\{1,2c_0\} \frac{\nu+\widetilde{\nu}}{\gamma^4} \|T_{j,k}\dot{\phi}_{\infty}(t)\|_{H^1}^2 \right), \\ D^{(3)}(t) &= \sum_{2j+k \leq m-1} \frac{\alpha_1}{\nu+\widetilde{\nu}} \|\nabla'T_{j,k}\sigma_{\infty}(t)\|_2^2. \end{split}$$

Let b_l , l = 2, ..., 5, be positive numbers and let us consider

$$\sum_{2j+k \le m|2j \ne m} \{2 \times (7.2) + 2b_2 \times (7.6)\}$$

$$+ \sum_{2j+k \le m-1} \{\frac{2}{\nu + \widetilde{\nu}} \times (7.3) + 2b_2 \times (7.5)_{l=0} + 2b_3 \times (7.7) + b_4 \times (7.8)_{l=0}\}$$

$$+ \sum_{2j+k \le m-1} \frac{1}{(\nu + \widetilde{\nu})\gamma^2} b_5 \times ((7.10) + (7.11)) + 2\frac{b_6}{\nu + \widetilde{\nu}} \times (7.2)_{2j=m}.$$

Then we obtain

$$\frac{d}{dt}E^{(4)}(t) + D^{(4)}(t) + \frac{1}{(\nu + \widetilde{\nu})\gamma^2}b_5 \sum_{2j+k \le m-1} (\|\partial_t T_{j,k}\sigma_\infty\|_2^2 + \|\partial_t^{j+1}\phi_\infty(t)\|_k^2)$$
(7.12)

$$\leq \sum_{j=1}^{8} R^{(j)}(t) + RHS.$$

Here,

$$E^{(4)}(t) = \widetilde{E}^{(0)} + \frac{1}{\nu + \widetilde{\nu}} \widetilde{E}^{(1)}(t) + b_2 E^{(2)}(t) + b_3 E^{(3)}(t) + \frac{b_6}{\nu + \widetilde{\nu}} E^{(0)}[\partial_t^{\left[\frac{m}{2}\right]} \widetilde{P}_{\infty} u(t)],$$

$$D^{(4)} = \widetilde{D}^{(0)}(t) + D^{(1)}(t) + b_2 D^{(2)}(t) + b_3 D^{(3)}(t) + b_4 \sum_{2j+k \le m-1} \left(\frac{\nu^2}{\nu + \widetilde{\nu}} \|\partial_x^2 T_{j,k} w_\infty\|_2^2 + \frac{1}{\nu + \widetilde{\nu}} \|\partial_x T_{j,k} \phi_\infty\|_2^2\right) + \frac{b_6}{\nu + \widetilde{\nu}} D^{(0)} \left[\partial_t^{\left[\frac{m}{2}\right]} w_\infty\right],$$

and

$$R^{(1)} = \sum_{2j+k \le m} R_{j,k}^{(1)}, \ R^{(p)} = \sum_{2j+k \le m-1} R_{j,k}^{(p)}, \ p = 2, 5, 7, 8, \ R^{(4)} = \sum_{2j+k \le m} R_{j,k}^{(4)},$$

$$R^{(p)} = \sum_{2j+k \le m-1} R^{(p)}_{j,k,0}, \ p = 3, 6,$$

with

$$RHS = C(\frac{\nu + \widetilde{\nu}}{\gamma^2} + \frac{1}{\nu}) \frac{1}{\nu + \widetilde{\nu}} \sum_{2j+k \le m-1} \|\partial_x T_{j,k} \phi_\infty\|_2^2 + C(\frac{\nu + \widetilde{\nu}}{\gamma^2} + \frac{1}{\nu} + b_4) \frac{1}{\nu + \widetilde{\nu}} \sum_{2j+k \le m-1} \|\partial_{x'} T_{j,k} \sigma_\infty\|_2^2$$

$$+ C(\frac{1}{\gamma^2} + \frac{1}{\nu(\nu + \widetilde{\nu})}) \sum_{2j+k \le m-2} \|\partial_t T_{j,k} \sigma_\infty\|_2^2 + C(\frac{1}{\nu^2} + b_2 + b_3 + b_4) \sum_{2j+k \le m|2j \ne m} D^{(0)}[T_{j,k} w_\infty]$$

$$+ (\frac{b_1}{4} + b_5 C) \frac{\gamma^2}{\nu(\nu + \widetilde{\nu})} \sum_{2j+k \le m-1} D^{(0)}[T_{j,k} w_\infty] + C(b_2 + b_3 + b_4) \sum_{2j+k \le m-1} \frac{1}{\nu + \widetilde{\nu}} \|\sqrt{\rho_p} T_{j,k} \partial_t w_\infty\|_2^2$$

$$+ \frac{b_3 \alpha_1}{4(\nu + \widetilde{\nu})} \sum_{2j+k \le m-3} \|T_{j,k+1} \sigma_\infty\|_2^2 + Cb_3 \frac{1}{\nu + \widetilde{\nu}} \sum_{2j+k \le m-1} \|\frac{P'(\rho_p)}{\gamma^2} \partial_{x_n} T_{j,k} \phi_\infty\|_2^2$$

$$+ Cb_4 \frac{\nu + \widetilde{\nu}}{\gamma^4} \sum_{2j+k \le m-1} \|T_{j,k} \dot{\phi}_\infty\|_{H^1}^2 + Cb_6 \frac{1}{(\nu + \widetilde{\nu})\gamma^2} (\|\partial_t^{\left[\frac{m}{2}\right]} \phi_\infty\|_2^2 + \|\partial_t^{\left[\frac{m}{2}\right]} \sigma_\infty\|_2^2).$$

There exists $\nu_0 \ge \max\{1, \nu_3\}$, $\gamma_0 \ge \max\{1, \gamma_2\}$ and 1 > b > 0 such that if $b_4 < b_3 < b_2$ and $b_6 \le b_5 \le b_1$ appropriately with $b_l \le b$ for $l = 2, \ldots, 4$, and $\nu \ge \nu_0$ and $\gamma^2/(\nu + \widetilde{\nu}) \ge \gamma_0^2$ we can absorb most of the terms from RHS in the left-hand side of (7.12) to get

$$\frac{d}{dt}E^{(4)}(t) + \frac{1}{2}D^{(4)}(t) + \frac{1}{2}\frac{1}{(\nu+\widetilde{\nu})\gamma^{2}}b_{5}\sum_{2j+k\leq m-1}\|\partial_{t}T_{j,k}\sigma_{\infty}\|_{2}^{2} + \frac{1}{2}\frac{1}{(\nu+\widetilde{\nu})\gamma^{2}}b_{5}\sum_{2j\leq m-2}\|\partial_{t}^{j+1}\phi_{\infty}(t)\|_{2}^{2} \quad (7.13)$$

$$\leq C\sum_{j=1}^{8}R^{(j)}(t) + C\sum_{2j+k\leq m-2}\|\partial_{t}T_{j,k}\sigma_{\infty}\|_{2}^{2}\frac{1}{\nu+\widetilde{\nu}}.$$

Next, we estimate higher order derivatives in x_n . For $1 \le l \le m-1$, we set

$$E_l^{(4)}(t) = \sum_{2j+k \le m-1-l} \frac{1}{\gamma^2} \| \sqrt{\frac{P'(\rho_p)}{\gamma^2}} T_{j,k} \partial_{x_n}^{l+1} \phi_{\infty}(t) \|_2^2,$$

and

$$\begin{split} D_{l}^{(4)}(t) &= \sum_{2j+k \leq m-1-l} \left(\frac{1}{2(\nu+\widetilde{\nu})} \| \frac{P'(\rho_{p})}{\gamma^{2}} \partial_{x_{n}}^{l+1} T_{j,k} \phi_{\infty}(t) \|_{2}^{2} + \frac{2c_{0}(\nu+\widetilde{\nu})}{\gamma^{4}} \| T_{j,k} \partial_{x_{n}}^{l+1} \dot{\phi}_{\infty}(t) \|_{2}^{2} \right) \\ &+ b_{7} \sum_{2j+k \leq m-1-l} (\frac{\nu^{2}}{\nu+\widetilde{\nu}} \| \partial_{x}^{l+2} T_{j,k} w_{\infty}(t) \|_{2}^{2} + \frac{1}{\nu+\widetilde{\nu}} \| \partial_{x}^{l+1} T_{j,k} \phi_{\infty}(t) \|_{2}^{2}). \end{split}$$

We add $2\times(7.5)$ to $b_7\times(7.8)$ and sum over $2j+k\leq m-1-l$ to obtain

$$\frac{d}{dt}E_l^{(4)}(t) + D_l^{(4)}(t) \le CR_l^{(9)} + b_7C\frac{\nu + \widetilde{\nu}}{\gamma^4} \sum_{2j+k \le m-1-l} ||T_{j,k}\dot{\phi}_{\infty}||_{H^{l+1}}^2$$

$$+C(\frac{\nu+\widetilde{\nu}}{\gamma^2}+b_7)\frac{1}{\nu+\widetilde{\nu}}\sum_{2j+k\leq m-1-l}\|T_{j,k}\partial_t w_\infty\|_{H^l}^2+C(\frac{1}{\nu^2}+\frac{\nu+\widetilde{\nu}}{\gamma^2})\frac{\nu^2}{\nu+\widetilde{\nu}}\sum_{2j+k\leq m-1-l}\|T_{j,k}w_\infty\|_{H^{l+2}}^2$$

$$+C(b_7 + \frac{\nu + \widetilde{\nu}}{\gamma^2})\frac{1}{\nu + \widetilde{\nu}} \sum_{2j+k \le m-1-l} \|T_{j,k+1}\sigma_{\infty}\|_2^2 + C\frac{\nu + \widetilde{\nu}}{\gamma^2} \frac{1}{\nu + \widetilde{\nu}} \sum_{2j+k \le m-1-l} \|T_{j,k}\phi_{\infty}\|_{H^{l+1}}^2.$$

Here, $R_l^{(9)} = \sum_{2j+k \le m-1-l} (R_{j,k,l}^{(3)} + R_{j,k,l}^{(6)})$. Let us sum up to l to get

$$\frac{d}{dt} \sum_{p=1}^{l} E_p^{(4)}(t) + \sum_{p=1}^{l} D_p^{(4)}(t) \le C \sum_{p=1}^{l} R_p^{(9)}$$

$$+b_7 C \frac{\nu+\widetilde{\nu}}{\gamma^4} \sum_{p=1}^l \sum_{2j+k < m-1-p} \|T_{j,k} \dot{\phi}_{\infty}\|_{H^{p+1}}^2 + C (\frac{\nu+\widetilde{\nu}}{\gamma^2} + b_7) \frac{1}{\nu+\widetilde{\nu}} \sum_{p=1}^l \sum_{2j+k < m-1-p} \|T_{j,k} \partial_t w_{\infty}\|_{H^p}^2$$

$$+C(\frac{1}{\nu^{2}}+\frac{\nu+\widetilde{\nu}}{\gamma^{2}})\frac{\nu^{2}}{\nu+\widetilde{\nu}}\sum_{p=1}^{l}\sum_{2j+k\leq m-1-p}\|T_{j,k}w_{\infty}\|_{H^{p+2}}^{2}+C(b_{7}+\frac{\nu+\widetilde{\nu}}{\gamma^{2}})\frac{1}{\nu+\widetilde{\nu}}\sum_{p=1}^{l}\sum_{2j+k\leq m-1-p}\|T_{j,k+1}\sigma_{\infty}\|_{2}^{2}$$

$$+C\frac{\nu+\widetilde{\nu}}{\gamma^2}\frac{1}{\nu+\widetilde{\nu}}\sum_{p=1}^{l}\sum_{2j+k\leq m-1-p}\|T_{j,k}\phi_{\infty}\|_{H^{p+1}}^2.$$

Taking b_7 appropriately small, ν_0 and γ_0 possibly larger (based on l) we obtain

$$\frac{d}{dt} \sum_{p=1}^{l} E_p^{(4)}(t) + \frac{1}{2} \sum_{p=1}^{l} D_p^{(4)}(t) \le C \sum_{p=1}^{l} R_p^{(9)} + b_7 C \frac{\nu + \widetilde{\nu}}{\gamma^4} \sum_{2j+k \le m-2} \|T_{j,k} \dot{\phi}_{\infty}\|_{H^1}^2$$
(7.14)

$$+C\frac{1}{\nu^{2}}\frac{\nu^{2}}{\nu+\widetilde{\nu}}\sum_{2j+k\leq m-1}\|T_{j,k}\partial_{x}^{2}w_{\infty}\|_{2}^{2}+C\frac{1}{\nu+\widetilde{\nu}}\sum_{2j+k\leq m|2j\neq m}\|T_{j,k}w_{\infty}\|_{H^{1}}^{2}+C(b_{7}+\frac{\nu+\widetilde{\nu}}{\gamma^{2}})\frac{1}{\nu+\widetilde{\nu}}D^{(0)}[\partial_{t}^{\left[\frac{m}{2}\right]}w_{\infty}]$$

$$+C(\frac{1}{\nu^2} + \frac{\nu + \widetilde{\nu}}{\gamma^2})\frac{\nu^2}{\nu + \widetilde{\nu}} \sum_{2j+k \le m-2} \|\partial_x^2 T_{j,k} w_{\infty}\|_2^2 + C(\frac{1}{\nu^2} + \frac{\nu + \widetilde{\nu}}{\gamma^2}) \sum_{2j+k \le m-2} D^{(0)}[T_{j,k} w_{\infty}]$$

$$+C(b_{7}+\frac{\nu+\widetilde{\nu}}{\gamma^{2}})\frac{1}{\nu+\widetilde{\nu}}\sum_{2j+k\leq m-1}\|T_{j,k+1}\sigma_{\infty}\|_{2}^{2}+C\frac{\nu+\widetilde{\nu}}{\gamma^{2}}\frac{1}{\nu+\widetilde{\nu}}\sum_{2j+k\leq m-2}\|\partial_{x}T_{j,k}\phi_{\infty}\|_{2}^{2}.$$

Now adding $2\times(7.13)$ together with (7.14) and taking possibly b_7 smaller, ν_0 and γ_0 larger we obtain

$$\frac{d}{dt}(2E^{(4)}(t) + \sum_{p=1}^{l} E_p^{(4)}(t)) + (D^{(4)}(t) + \sum_{p=1}^{l} D_p^{(4)}(t)) + \frac{1}{(\nu + \widetilde{\nu})\gamma^2} b_5 \sum_{2j \le m-1} \|\partial_t T_{j,k} \sigma_{\infty}\|_2^2 + \frac{1}{(\nu + \widetilde{\nu})\gamma^2} b_5 \sum_{2j \le m-2} \|\partial_t^{j+1} \phi_{\infty}(t)\|_2^2$$
(7.15)

$$\leq C(\sum_{j=1}^{8} R^{(j)}(t) + \sum_{p=1}^{l} R_{p}^{(9)}) + C \sum_{2j+k \leq m-2} \|\partial_{t} T_{j,k} \sigma_{\infty}\|_{2}^{2} \frac{1}{\nu + \widetilde{\nu}}.$$

To absorb the last term on the right-hand side we use induction on m. Let m = 1 then we have from (7.15) that

$$\frac{d}{dt}(2E_1^{(4)}(t) + \sum_{p=1}^{l} E_{p,1}^{(4)}(t)) + (D_1^{(4)}(t) + \sum_{p=1}^{l} D_{p,1}^{(4)}(t))$$
(7.16)

$$+ \frac{1}{(\nu + \widetilde{\nu})\gamma^2} b_5 \|\partial_t \sigma_\infty\|_2^2 \le C(\sum_{j=1}^8 R^{(j)}(t) + \sum_{p=1}^l R_p^{(9)}).$$

Let m=2 then

$$\frac{d}{dt}(2E^{(4)}(t) + \sum_{p=1}^{l} E_{p}^{(4)}(t)) + (D^{(4)}(t) + \sum_{p=1}^{l} D_{p}^{(4)}(t))
+ \frac{1}{(\nu + \widetilde{\nu})\gamma^{2}} b_{5} \sum_{k \leq 1} \|\partial_{t} T_{0,k} \sigma_{\infty}\|_{2}^{2} + \frac{1}{(\nu + \widetilde{\nu})\gamma^{2}} b_{5} \|\partial_{t}^{1} \phi_{\infty}(t)\|_{2}^{2} \leq C(\sum_{j=1}^{8} R^{(j)}(t) + \sum_{p=1}^{l} R_{p}^{(9)})
+ C\|\partial_{t} \sigma_{\infty}\|_{2}^{2} \frac{1}{\nu + \widetilde{\nu}}.$$
(7.17)

By adding $b_8\gamma^2\times(7.16)$ to (7.17) with appropriately large $b_8>0$ we can absorb $\|\partial_t\sigma_\infty\|_2^2\frac{1}{\nu+\tilde{\nu}}$ to the left-hand side. It is straightforward to see that this can be done from m to m+1. Therefore, we have

$$C_{1} \frac{d}{dt} (2E^{(4)}(t) + \sum_{p=1}^{l} E_{p}^{(4)}(t)) + (D^{(4)}(t) + \sum_{p=1}^{l} D_{p}^{(4)}(t)) + \frac{1}{(\nu + \widetilde{\nu})\gamma^{2}} b_{5} \sum_{2j+k \leq m-1} \|\partial_{t} T_{j,k} \sigma_{\infty}\|_{2}^{2} + \frac{1}{(\nu + \widetilde{\nu})\gamma^{2}} b_{5} \sum_{2j \leq m-2} \|\partial_{t}^{j+1} \phi_{\infty}(t)\|_{2}^{2} \leq C_{2} (\sum_{j=1}^{8} R^{(j)}(t) + \sum_{p=1}^{l} R_{p}^{(9)}),$$

$$(7.18)$$

with $C_1, C_2 > 0$. The desired estimate (7.1) now follows from (7.18) with l = m - 1. Estimate (5.11) for $\widetilde{R}(t)$ is given in Proposition 8.1 (ii) below. This concludes the proof.

To prove (5.10) we employ the following lemma.

Lemma 7.10 There exists $\tilde{r}_0 = \tilde{r}_0(\nu, \tilde{\nu}, \gamma)$ such that if $r_1 \leq \tilde{r}_0$, then there holds the estimate

$$||[Q_0 P_{\infty,1}(t)u]||_2 \le C||\partial_{x'}(I - \Pi^{(0)}(t))P_{\infty,1}(t)u||_2.$$

Proof. We set

$$\mathscr{R}(\xi',t) = \widehat{\mathscr{Q}}^{(0)}(t)(i\xi'\widehat{\mathscr{P}}^{(1)}(t) - |\xi'|^2\widehat{\mathscr{P}}^{(2)}(\xi',t)) + (i\xi'\widehat{\mathscr{Q}}^{(1)}(t) - |\xi'|^2\widehat{\mathscr{Q}}^{(2)}(\xi',t))\widehat{\mathscr{P}}_{\xi'}(t).$$

Since

$$\begin{aligned} [Q_0\widehat{\chi}_1(\xi')(I-\widehat{\mathcal{Q}}_{\xi'}(t)\widehat{\mathscr{P}}_{\xi'}(t))] &= [Q_0\widehat{\chi}_1(\xi')(I-\widehat{\mathcal{Q}}^{(0)}(t)\widehat{\mathscr{P}}^{(0)}-\mathscr{R}(\xi',t))] \\ &= -[Q_0\widehat{\chi}_1(\xi')\mathscr{R}(\xi',t)], \end{aligned}$$

we see that

$$\widehat{[Q_0 P_{\infty,1} u(t)]} = \widehat{[Q_0 \widehat{\chi}_1(\xi')(I - \widehat{\mathcal{Q}}_{\xi'}(t)\widehat{\mathscr{P}}_{\xi'}(t))\widehat{u}]}.$$

It then follows that

$$|[Q_0\widehat{P_{\infty,1}(t)}u]|_2 \le C|\xi'||\widehat{\chi}_1\widehat{u}|_2$$

$$\leq C|\xi'|(\widehat{\chi}_1|(I-\Pi^{(0)}(t))\widehat{u}|_2+\widehat{\chi}_1|\Pi^{(0)}(t)\widehat{u}|_2).$$

Since $(P_{\infty,1}(t))^2 = P_{\infty,1}$, we see that

$$|[\widehat{Q_0P_{\infty,1}(t)u}]|_2 \le C|\xi'|(|(I-\Pi^{(0)}(t))\widehat{P_{\infty,1}(t)u}|_2 + |[\widehat{Q_0P_{\infty,1}(t)u}]|_2),$$

for $|\xi'| \leq r_1$. Therefore, there exists a positive number \tilde{r}_0 such that if $r_1 \leq \tilde{r}_0$ then

$$|[Q_0\widehat{P_{\infty,1}}(t)u]|_2 \le C|\xi'||(I-\Pi^{(0)}(t))\widehat{P_{\infty,1}}u|_2,$$

for $|\xi'| \leq r_1$, from which we obtain

$$||[Q_0 P_{\infty,1}(t)u]||_2 \le C||\partial_{x'}(I - \Pi^{(0)}(t))P_{\infty,1}(t)u||_2.$$

This completes the proof.

Finally, we prove (5.10).

Proof of (5.10). We fix ν , $\widetilde{\nu}$, γ so that inequality (7.1) in Proposition 7.1 holds true and set $r_1 = \min\{r_0, \widetilde{r}_0, 1\}$. Then we proceed as in [7, Proof of (5.15)] to obtain

$$\widetilde{E}(t) + \frac{\nu^2}{\nu + \widetilde{\nu}} [\![\partial_{x_n}^2 w_\infty(t)]\!]_{m-2}^2 + \int_0^t e^{-\widetilde{a}(t-z)} D(z) dz \le C \{ e^{-\widetilde{a}t} \widetilde{E}(0) + R^{(10)}(t) + \int_0^t e^{-\widetilde{a}(t-z)} \widetilde{R}(z) dz \}. \tag{7.19}$$

Since

$$R^{(10)}(t) \le C(1+t)^{-\frac{n+1}{2}}M(t)^4, \tag{7.20}$$

as we show in Proposition 8.1 (i) below, we deduce (5.10) from (7.19), Proposition 7.1 (i) and (7.20). This completes the proof.

8 Estimates on the nonlinearities

In this section we estimates the nonlinearities, e.g., we prove (5.11) and (7.20). In this section we assume that $\nu \ge \nu_2$ and $\gamma^2/(\nu + \tilde{\nu}) \ge \gamma_2^2$.

Proposition 8.1 There exists number $\varepsilon_6 > 0$ such that if solution u(t) of (4.1) in $Z^m(\tau)$ satisfies $\sup_{0 \le z \le t} [\![u(z)]\!]_m \le \varepsilon_6$ and $M(t) \le 1$ for all $t \in [0,\tau]$, then the following estimates hold for all $t \in [0,\tau]$ with C > 0 independent of τ .

(i)
$$[\![\widetilde{Q} P_{\infty} \mathbf{F}(t)]\!]_{m-2} \le C(1+t)^{-\frac{2n-1}{4}} M(t)^2,$$

(ii)
$$\widetilde{R}(t) < C\{(1+t)^{-\frac{3n}{4}}M(t)^3 + (1+t)^{-\frac{n-1}{4}}M(t)D_{\infty}(t)\}.$$

To show the estimates in Proposition 8.1 we use the following inequalities.

Lemma 8.2 (i) Let $2 \le p \le \infty$ and let j and k be integers satisfying

$$0 \le j < k, \quad k > j + n\left(\frac{1}{2} - \frac{1}{p}\right).$$

Then there exists a constant C > 0 such that

$$\|\partial_x^j f\|_{L^p(\mathbb{R}^n)} \le C \|f\|_{L^2(\mathbb{R}^n)}^{1-\theta} \|\partial_x^k f\|_{L^2(\mathbb{R}^n)}^{\theta},$$

where $\theta = \frac{1}{k}(j + \frac{n}{2} - \frac{n}{n}).$

34

(ii) Let $2 \le p \le \infty$ and let j and k be integers satisfying

$$0 \le j < k, \quad k > j + n\left(\frac{1}{2} - \frac{1}{p}\right).$$

Then there exists a constant C > 0 such that

$$\|\partial_x^j f\|_{L^p(\Omega)} \le C \|f\|_{H^k(\Omega)}.$$

(iii) If $f \in H^{n-1}(\Omega)$ and f = f(x') is independent of x_n , then

$$||f||_{L^{\infty}(\Omega)} \le C||f||_{L^{2}(\Omega)}^{\frac{1}{2}} ||\partial_{x'}^{n-1}f||_{L^{2}(\Omega)}^{\frac{1}{2}}.$$

Proof. The inequality in (i) is a special case of the Galiardo-Nirenberg-Sobolev inequality which can be proved using Fourier transform. Inequality in (ii) can be obtained by (i) and the standard extension argument. As for (iii), since

$$||f||_{L^p(\Omega)} = ||f||_{L^p(\mathbb{R}^{n-1})}, \ 1 \le p \le \infty, \ ||\partial_{x'}f||_{L^2(\Omega)} = ||\partial_{x'}f||_{L^2(\mathbb{R}^{n-1})},$$

the inequality is a consequence of (i) with n = n - 1, $p = \infty$, j = 0 and k = n - 1.

Lemma 8.3 (i) Let m and m_k , k = 1, ..., l be nonnegative integers and let α_k k = 1, ..., l be multi-indeces. Suppose that

$$m \ge \left[\frac{n}{2}\right] + 1, \ 0 \le |\alpha_k| \le m_k \le m + |\alpha_k|, \ k = 1, \dots, l,$$

and

$$m_1 + \dots + m_l \ge (l-1)m + |\alpha_1| + \dots + |\alpha_l|$$

Then there exists a constant C > 0 such that

$$\|\partial_x^{\alpha_1} f_1 \cdots \partial_x^{\alpha_l} f_l\|_2 \le C \prod_{1 \le k \le l} \|f_k\|_{H^{m_k}}.$$

(ii) Let $1 \le k \le m$. Suppose that F(x,t,y) is a smooth function on $\Omega \times [0,\infty) \times I$, where I is a compact interval in \mathbb{R} . Then for $|\alpha| + 2j = k$ there hold

$$\|[\partial_x^\alpha \partial_t^j, F(x,t,f_1)]f_2\|_2 \leq \left\{ \begin{array}{l} C_0(t,f_1(t))[\![f_2]\!]_{k-1} + C_1(t,f_1(t))\{1+\||Df_1\||_{m-1}^{|\alpha|+j-1}\}\||Df_1\||_{m-1}[\![f_2]\!]_k, \\ C_0(t,f_1(t))[\![f_2]\!]_{k-1} + C_1(t,f_1(t))\{1+\||Df_1\||_{m-1}^{|\alpha|+j-1}\}\||Df_1\||_{m}[\![f_2]\!]_{k-1}. \end{array} \right.$$

Here

$$C_0(t, f_1(t)) = \sum_{\substack{(\beta, l) \le (\alpha, j) \\ (\beta, l) \ne (0, 0)}} \sup_{x} |(\partial_x^{\beta} \partial_t^{l} F)(x, t, f_1(x, t))|,$$

and

$$C_1(t, f_1(t)) = \sum_{\substack{(\beta, l) \le (\alpha, j) \\ 1 \le p \le j + |\alpha|}} \sup_{x} |(\partial_x^{\beta} \partial_t^{l} \partial_y^{p} F)(x, t, f_1(x, t))|.$$

(iii) Let $m \ge \lfloor n/2 \rfloor + 1$ then there exist constants C, C' > 0 such that

$$||f_1 \cdot f_2||_{H^m} \le C||f_1||_{H^m}||f_2||_{H^m},$$

and when $[f_1]_m \leq 1$,

$$[f_1 \cdot f_2]_m \leq C' [f_1]_m [f_2]_m.$$

Proof of previous lemma can be found in [9, 10]. We recall that u(t) is decomposed into

$$u = \sigma_1 u^{(0)} + u_1 + \sigma_\infty u^{(0)} + u_\infty,$$

and we write

$$\sigma_* = \sigma_1 + \sigma_{\infty}, \quad \phi_* = \phi_1 + \phi_{\infty}, \quad w_* = w_1 + w_{\infty},$$

$$u_* = {}^T(\phi_*, w_*) = u_1 + u_\infty.$$

Before investigating the nonlinearities we present some basic estimates.

Lemma 8.4 Let $u(t) = {}^T(\phi(t), w(t)) = (\sigma_* u^{(0)})(t) + u_*(t)$ be solution of (4.1) in $Z^m(\tau)$. The following estimates hold for all $t \in [0, \tau]$ with C > 0 independent of τ .

(i)
$$\|\sigma_*(t)\|_2 < C(1+t)^{-\frac{n-1}{4}}M(t),$$

(ii)
$$||D\sigma_*(t)||_{m-1} + ||u_*(t)||_m \le C(1+t)^{-\frac{n+1}{4}} M(t),$$

(iii)
$$\|\phi(t)\|_m + \|w(t)\|_m < C(1+t)^{-\frac{n-1}{4}}M(t),$$

(iv)
$$\|\sigma_*(t)\|_{\infty} \le C(1+t)^{-\frac{n}{4}}M(t).$$

$$||u_*(t)||_{\infty} < C(1+t)^{-\frac{n+1}{4}}M(t),$$

(vi)
$$\|\phi(t)\|_{\infty} + \|w(t)\|_{\infty} \le C(1+t)^{-\frac{n}{4}}M(t).$$

Proof. Estimates (i), (ii) and (iii) immediately follow from definition of M(t). As for (iv), we see from Lemma 8.2 (iii) and Lemma 5.3 (iii) that

$$\|\sigma_*(t)\|_{\infty} \le C\|\sigma_*(t)\|_2^{\frac{1}{2}}\|\partial_{x'}^{n-1}\sigma_*(t)\|_2^{\frac{1}{2}} \le C\|\sigma_*(t)\|_2^{\frac{1}{2}}\|\partial_{x'}\sigma_*(t)\|_2^{\frac{1}{2}} \le C(1+t)^{-\frac{n}{4}}M(t).$$

This shows (iv). Since $||u_*(t)||_{\infty} \leq C||u_*(t)||_{H^m}$ by Lemma 8.2 (ii) we get get (v) from (ii). Estimate (vi) now follows from (iv) and (v). This completes the proof.

First, we consider the estimates on $Q_0 \mathbf{F}$.

Proposition 8.5 Let u(t) be a solution of (4.1) in $Z^m(\tau)$ such that $M(t) \leq 1$ for all $t \in [0, \tau]$. There hold the following estimates for all $t \in [0, \tau]$ with C > 0 independent of τ .

(i)
$$[\![\phi \operatorname{div} w]\!]_l \le C \begin{cases} (1+t)^{-\frac{2n+1}{4}} M(t)^2 + (1+t)^{-\frac{n}{4}} M(t) |\!| |Dw_{\infty}(t)|\!| |_m, & l=m, \\ (1+t)^{-\frac{2n+1}{4}} M(t)^2, & l=m-1, \end{cases}$$

(ii)
$$[\![w \cdot \nabla(\sigma_*\phi^{(0)} + \phi_1)]\!]_m \le C(1+t)^{-\frac{2n+1}{4}} M(t)^2,$$

(iii)
$$\|w \cdot \nabla \phi_{\infty}\|_{m-1} < C(1+t)^{-\frac{2n+1}{4}} M(t)^{2},$$

(iv)
$$|(\operatorname{div}\left(\frac{P'(\rho_p)}{\gamma^4 \rho_p} w\right), |\partial_t^j \partial_x^k \phi_\infty|^2)| \le C(1+t)^{-\frac{n+1}{4}} M(t) D_\infty(t),$$

for $2j + k \le m$,

36

(v)
$$\|[\partial_t^j \partial_x^k, w] \cdot \nabla \phi\|_2 \le C(1+t)^{-\frac{n}{2}} M(t)^2 + (1+t)^{-\frac{n-1}{4}} M(t) \sqrt{D_{\infty}(t)},$$
 for $2j + k \le m$,

(vi)
$$||T_{i,k}(\phi w)||_2 \le (1+t)^{-\frac{2n-1}{4}} M(t)^2,$$

for $2j + k \leq m$.

Proof. By Lemma 5.3 (iii) we have

$$[\![\partial_{x'}\sigma_*(t)]\!]_m \le [\![\partial_{x'}\sigma_*(t)]\!]_{m-1} + [\![\partial_t\sigma_*(t)]\!]_{m-2} \le |\![|D\sigma_*(t)|\!]|_{m-1}.$$

We use this estimate and others that come from properties of $\mathcal{Q}(t)$ and $\mathcal{P}(t)$, e.g.,

$$\|\partial_{x'}^k \sigma_1\|_2 \le \|\partial_{x'} \sigma_1\|_2, \ k = 1, \dots,$$

and

$$\llbracket \nabla u_1 \rrbracket_m \le C \llbracket u_1 \rrbracket_m,$$

together with Lemma 8.3 and Lemma 8.4 to obtain estimates (i)-(vi).

In the case of estimates (i)-(iii), we first use the following expansions and then apply above estimates:

$$\phi \operatorname{div} w = \sigma_* \phi^{(0)} w^{(0),1} \partial_{x_1} \sigma_* + \sigma_* \phi^{(0)} \operatorname{div} w_* + \phi_* w^{(0),1} \partial_{x_1} \sigma_* + \phi_* \operatorname{div} w_*,$$

$$w \cdot \nabla(\sigma_* \phi^{(0)} + \phi_1) = \sigma_* \phi^{(0)} w^{(0),1} \partial_{x_1} \sigma_* + w'_* \cdot \nabla' \sigma_* \phi^{(0)} + w_*^n \sigma_* \partial_{x_n} \phi^{(0)} + \sigma_* w^{(0),1} \partial_{x_1} \phi_1 + w_* \cdot \nabla \phi_1,$$

$$w \cdot \nabla \phi_{\infty} = \sigma_* w^{(0),1} \partial_{x_1} \phi_{\infty} + w_* \cdot \nabla \phi_{\infty}.$$

This concludes the proof.

Second, we consider $\widetilde{Q}\mathbf{F} = {}^{T}(0,\mathbf{f})$. Recall that $\widetilde{Q}\mathbf{F}$ is written in the form

$$\widetilde{Q}\boldsymbol{F} = \widetilde{\boldsymbol{F}}_0 + \widetilde{\boldsymbol{F}}_1 + \widetilde{\boldsymbol{F}}_2 + \widetilde{\boldsymbol{F}}_3.$$

Here, $\widetilde{\boldsymbol{F}}_{l} = {}^{T}(0, \boldsymbol{f}_{l}), l = 0, 1, 2, 3$, with

$$\mathbf{f}_{0} = -w \cdot \nabla w - f_{1}(\rho_{p}, \phi) \Delta' \sigma_{*} w^{(0), 1} \mathbf{e}_{1} - f_{2}(\rho_{p}, \phi) \nabla (\partial_{x_{1}} \sigma_{*} w^{(0), 1})$$

$$+f_{01}(x_n,t,\phi)\phi\sigma_* + f_{02}(x_n,\phi)\phi\nabla'\sigma_* + f_{03}(x_n,t,\phi)\phi\phi_*,$$

$$f_1 = -f_1(\rho_n, \phi) \Delta w_* = -\text{div} (f_1(\rho_n, \phi) \nabla w_*) + {}^T(\nabla w_*) \nabla (f_1(\rho_n, \phi)),$$

$$\mathbf{f}_2 = -f_2(\rho_p, \phi) \nabla \operatorname{div} w_* = -\nabla (f_2(\rho_p, \phi) \operatorname{div} w_*) + (\operatorname{div} w_*) \nabla (f_2(\rho_p, \phi)),$$

$$\mathbf{f}_3 = -f_3(x_n, \phi)\phi\nabla\phi_*$$
.

Here, ∇w_* denotes the $n \times n$ matrix $(\partial_{x_i} w_*^j)$; $f_1 = \frac{\nu \phi}{\rho_p(\gamma^2 \rho_p + \phi)}$; $f_2 = \frac{\tilde{\nu} \phi}{\rho_p(\gamma^2 \rho_p + \phi)}$; and $\boldsymbol{f}_{0l}(x_n, t, \phi)$, l = 1, 2, 3 and $f_3(x_n, \phi)$ are smooth functions of x_n , t and ϕ .

Proposition 8.6 Let u(t) be solution of (4.1) in $Z^m(\tau)$ and assume that $\sup_{0 \le z \le t} [\![u(z)]\!]_m \le \varepsilon_5$ and $M(t) \le 1$ for all $t \in [0,\tau]$. The following estimates hold for all $t \in [0,\tau]$ with C > 0 independent of τ .

(i)
$$[\![\widetilde{Q} \mathbf{F}(t)]\!]_{m-2} \le C(1+t)^{-\frac{2n-1}{4}} M(t)^2,$$

(ii)
$$[\![\boldsymbol{f}_0(t)]\!]_m \le C\{ (1+t)^{-\frac{2n-1}{4}} M(t)^2 + (1+t)^{-\frac{n-1}{4}} M(t) |\!| |Dw_\infty(t) |\!| |_m \},$$

(iii)
$$\sum_{l=1}^{3} \llbracket \mathbf{f}_{l}(t) \rrbracket_{m-1} \leq C\{(1+t)^{-\frac{n}{2}} M(t)^{2} + (1+t)^{-\frac{n-1}{4}} M(t) \| |Dw_{\infty}(t)\||_{m} \},$$

(iv)
$$\sum_{l=1}^{3} \|T_{j,k} \boldsymbol{f}_{l}\|_{H^{-1}} \leq C\{(1+t)^{-\frac{n}{2}} M(t)^{2} + (1+t)^{-\frac{n-1}{4}} M(t) \|Dw_{\infty}(t)\|_{m}\},$$

for 2j + k = m. Here, we regard $T_{j,k} \boldsymbol{f}_l$ with 2j + k = m as an element in H^{-1} by $(T_{j,k} \boldsymbol{f}_l)[v] = \langle T_{j,k} \boldsymbol{f}_l, v \rangle_{-1}$ for $v \in H_0^1$,

Proof. Since $[u(t)]_m \leq \varepsilon_5$ we see that $\widetilde{Q}\mathbf{F}(t)$ is smooth. Estimates (i)–(iii) can be obtained in similar manner to the proof of Proposition 8.5 and we omit the proof.

Let us prove estimate (iv). Let 2j + k = m and let $v \in H_0^1$. If $k \ge 1$ then we see from (iii) that

$$|\langle T_{j,k} f_l, v \rangle_{-1}| = |-(T_{j,k-1} f_l, \partial_{x'} v)| \le ||T_{j,k-1} f_l||_2 ||\partial_{x'} v||_v$$

$$\leq C\{(1+t)^{-\frac{n}{2}}M(t)^{2}+(1+t)^{-\frac{n-1}{4}}M(t)||Dw_{\infty}(t)|||_{m}\}||v||_{H_{s}^{1}}.$$

We thus conclude that

$$||T_{i,k}\mathbf{f}_l||_{H^{-1}} \le C\{(1+t)^{-\frac{n}{2}}M(t)^2 + (1+t)^{-\frac{n-1}{4}}M(t)||Dw_{\infty}(t)||_m\},$$

in the case 2j + k = m, $k \ge 1$ and l = 1, 2, 3.

If k = 0, i.e., m = 2j, we write $\langle \partial_t^j \boldsymbol{f}_1, v \rangle_{-1}$ as

$$\langle \partial_t^j \boldsymbol{f}_1, v \rangle_{-1} = (\partial_t^j (f_1(\rho_p, \phi) \nabla w_*), \nabla v) + (\partial_t^j (T(\nabla w_*) \partial_{\rho_p} f_1(\rho_p, \phi) \nabla \rho_p), v)$$

$$+([\partial_t^j, {}^T(\nabla w_*)\partial_\phi f_1(\rho_p, \phi)]\nabla\phi, v) - ({}^T(\nabla w_*)\partial_\phi f_1(\rho_p, \phi)\partial_t^j\phi, \operatorname{div} v)$$

$$-(^{T}(\nabla^{2}w_{*})\partial_{\phi}f_{1}(\rho_{p},\phi)\partial_{t}^{j}\phi,v)-(^{T}(\nabla w_{*})\nabla_{\rho_{p},\phi}\partial_{\phi}f_{1}(\rho_{p},\phi)(\nabla\rho_{p}+\nabla\phi)\partial_{t}^{j}\phi,v)\equiv\sum_{i=1}^{6}I_{i}.$$

As for I_1 , we have

$$|I_1| \leq \|\partial_t^j (f_1(\rho_n, \phi) \nabla w_*)\|_2 \|\nabla v\|_2$$

As in the proof of Proposition 8.5 (i) one can estimate $\|\partial_t^j(f_1(\rho_p,\phi)\nabla w_*)\|_2$ to obtain

$$|I_1| \le C\{(1+t)^{-\frac{2n+1}{4}}M(t)^2 + (1+t)^{-\frac{n}{4}}M(t)||Dw_{\infty}(t)|||_m\}||v||_{H_0^1}.$$

Similarly, we have

$$|I_2| \le C\{(1+t)^{-\frac{2n+1}{4}}M(t)^2 + (1+t)^{-\frac{n}{4}}M(t)||Dw_\infty(t)||_m\}||v||_{H_0^1}.$$

Next, we consider I_3 which we write as follows:

$$I_3 = (\partial_{\phi} f_1(\rho_p, \phi)[\partial_t^j, {}^T(\nabla w_*)]\nabla \phi, v) + ([\partial_t^j, \partial_{\phi} f_1(\rho_p, \phi)]({}^T(\nabla w_*)\nabla \phi), v) \equiv J_1 + J_2.$$

First, we treat J_1 , we have

$$|[\partial_t^j, {}^T \nabla w_*] \nabla \phi| \le C \sum_{l=0}^{j-1} |\partial_t^l \nabla \phi| |\partial_t^{j-l} \partial_x w_*|.$$

Since

$$\frac{1}{2} - \frac{m-1-2l}{n} + \frac{1}{2} - \frac{m-2(j-l)}{n} = 1 - \frac{m-1}{n} < 1,$$

we can find p_{1l} , $p_{2l} \ge 2$ satisfying

$$\frac{1}{p_{1l}} > \frac{1}{2} - \frac{m - 1 - 2l}{n}, \ \frac{1}{p_{2l}} > \frac{1}{2} - \frac{m - 2(j - l)}{n}, \ \frac{1}{2} \le \frac{1}{p_{1l}} + \frac{1}{p_{2l}} < 1.$$

Now, we take number $p_{3l} \ge 2$ satisfying $\frac{1}{p_{3l}} = 1 - (\frac{1}{p_{1l}} + \frac{1}{p_{2l}}) > 0$. It then follows from Lemma 8.2 (ii) that

$$|(\partial_{\phi} f_1(\rho_p, \phi)[\partial_t^j, {}^T(\nabla w_*)]\nabla \phi, v)| \le C \sum_{l=0}^{j-1} \|\partial_t^l \partial_x \phi\|_{p_{1l}} \|\partial_t^{j-l} \partial_x w_*\|_{p_{2l}} \|v\|_{p_{3l}}$$

$$\leq C \sum_{l=0}^{j-1} \|\partial_t^l \partial_x \phi\|_{H^{m-1-2l}} \|\partial_t^{j-l} \partial_x w_*\|_{H^{m-2(j-l)}} \|v\|_{H_0^1} \leq C [\![\phi]\!]_m \{ [\![\partial_x w_1]\!]_m + \||Dw_\infty|||_m \} \|v\|_{H_0^1}.$$

Using Lemma 8.4 we conclude that

$$|J_1| \le C\{(1+t)^{-\frac{n}{2}}M(t)^2 + (1+t)^{-\frac{n-1}{4}}M(t)||Dw_{\infty}(t)||_m\}||v||_{H_0^1}.$$

Second, we estimate J_2 . By Lemma 8.3 (i) we have for $m_k = m - 1 - 2k$ and $m_l = m - 1 - 2l$ that

$$\|[\partial_t^j, \partial_\phi f_1(\rho_p, \phi)](T(\nabla w_*) \nabla \phi)\|_2 \le C \sum_{k+1+l=j} \|\partial_t^k (\partial_\phi^2 f_1(\rho_p, \phi) \partial_t \phi)\|_{m_k} \|\partial_t^l (T(\nabla w_*) \nabla \phi)\|_{m_l}$$

$$\leq C [\![\partial_t \phi]\!]_{m-1} [\![^T (\nabla w_*) \nabla \phi]\!]_{m-1}.$$

Therefore, we obtain

$$|J_2| \le C [\![\partial_t \phi]\!]_{m-1} [\![T(\nabla w_*) \nabla \phi]\!]_{m-1} [\![v]\!]_2,$$

By Lemma 8.3 (ii) we get

$$[\![^T(\nabla w_*)\nabla\phi]\!]_{m-1} \le C\{\|\nabla w_*\|_{\infty}[\![\partial_x\phi]\!]_{m-1} + \||D\nabla w_*\||_{m-2}[\![\nabla\phi]\!]_{m-1}\}$$

$$\leq C\{\|\partial_x w_1\|_{H^m} + \||Dw_\infty\||_m\}[\![\partial_x \phi]\!]_{m-1} \leq C\{(1+t)^{-\frac{n}{2}}M(t)^2 + (1+t)^{-\frac{n-1}{4}}M(t)\||Dw_\infty(t)\||_m\}.$$

As for $[\![\partial_t \phi]\!]_{m-1}$, we see from (6.3) and Proposition 7.9 that

$$\|\partial_t \phi\|_{m-1} \le C\{\|\partial_t \sigma_*\|_{m-1} + \|\partial_t \phi_*\|_{m-1}\} \le C\{\|\Lambda \sigma_1(t)\|_{m-1} + \|\mathscr{P}(t)F(t)\|_{m-1}$$

$$+ \|\partial_{x'}\phi_{\infty}\|_{m-1} + \|\partial_{x}w_{\infty}\|_{m-1} + \|\partial_{x'}\sigma_{\infty}\|_{m-1} + \|[Q_{0}(P_{\infty}^{(0)}F)]_{\infty}\|_{m-1} + \|Q_{0}P_{\infty}F\|_{m-1}\}.$$

Using

$$P_{\infty} \mathbf{F} = \mathbf{F} - [Q_0 \mathbf{F}]_{\infty} u^{(0)} - \{ \mathbb{P} \mathbf{F} - [Q_0 \mathbb{P} \mathbf{F}]_{\infty} u^{(0)} \},$$

and

$$[Q_0 P_{\infty}^{(0)} \mathbf{F}]_{\infty} = [Q_0 \mathbf{F}]_{\infty} - [Q_0 \mathbb{P} \mathbf{F}]_{\infty},$$

together with Lemma 8.4 we get

$$[\![\partial_t \phi]\!]_{m-1} \le C\{(1+t)^{-\frac{n+1}{4}}M(t) + [\![\mathscr{P}(t)\mathbf{F}(t)]\!]_{m-1} + [\![Q_0\mathbf{F}]\!]_{m-1}\}.$$

Since 2j=m, we have $\left[\frac{m-1}{2}\right]=\left[\frac{m-2}{2}\right]$, and hence, by properties of $\mathscr{P}(t)$,

$$[\![\mathscr{P}(t) \boldsymbol{F}(t)]\!]_{m-1} \leq C [\![\boldsymbol{F}(t)]\!]_{m-2}.$$

It then follows from Propositions 8.5 (i)-(iii) and 8.6 (i) that

$$[\![\boldsymbol{F}(t)]\!]_{m-2} + [\![Q_0\boldsymbol{F}(t)]\!]_{m-1} \leq 2[\![Q_0\boldsymbol{F}(t)]\!]_{m-1} + [\![\widetilde{Q}\boldsymbol{F}(t)]\!]_{m-2} \leq C(1+t)^{-\frac{2n-1}{4}}M(t)^2,$$

which implies

$$[\![\partial_t \phi]\!]_{m-1} \le C(1+t)^{-\frac{n+1}{4}} M(t).$$

We thus conclude

$$|J_2| \le C\{(1+t)^{-\frac{3n+1}{4}}M(t)^3 + (1+t)^{-\frac{n}{2}}M(t)^2 |||Dw_{\infty}(t)|||_m\}||v||_2.$$

Consequently,

$$|I_3| \le C\{(1+t)^{-\frac{n}{2}}M(t)^2 + (1+t)^{-\frac{n-1}{4}}M(t)||Dw_{\infty}(t)||_m\}||v||_{H^1}.$$

Since

$$|I_4| \leq |(T(\nabla w_*)\partial_{\phi} f_1(\rho_p, \phi)\partial_t^j \phi, \operatorname{div} v)| \leq C \|\nabla w_*\|_{\infty} \|\partial_t^j \phi\|_2 \|\nabla v\|_2$$

and by Lemma 8.3 (i),

$$|I_5| \leq |(^T(\nabla^2 w_*) \partial_{\phi} f_1(\rho_p, \phi) \partial_t^j \phi, v)| \leq C \|\partial_t^j \phi\|_2 \|v \nabla^2 w_*\|_2 \leq C \|\partial_t^j \phi\|_2 \|\nabla w_*\|_{H^m} \|v\|_{H^1},$$

 $|I_6| \leq |(^T(\nabla w_*)\nabla_{\rho_p,\phi}\partial_{\phi}f_1(\rho_p,\phi)(\nabla\rho_p + \nabla\phi)\partial_t^j\phi,v)| \leq C\|\nabla w_*\|_{\infty}\|\partial_t^j\phi\|_2\|v\|_{H^1}\|\rho_p + \phi\|_{H^m},$ we obtain by Lemmas 8.2 (ii) and 8.4,

$$|I_4| + |I_5| + |I_6| \le C\{(1+t)^{-\frac{n+1}{2}}M(t)^2 + (1+t)^{-\frac{n+1}{4}}M(t)||Dw_{\infty}(t)||_m\}||v||_{H_0^1}.$$

Therefore, we arrive at

$$|\langle \partial_t^j \mathbf{f}_1, v \rangle_{-1}| \le C\{(1+t)^{-\frac{n}{2}}M(t)^2 + (1+t)^{-\frac{n-1}{4}}M(t)||Dw_{\infty}(t)||_m\}||v||_{H^1}.$$

This gives

$$\|\partial_t^j \mathbf{f}_1\|_{H^{-1}} \le C\{(1+t)^{-\frac{n}{2}}M(t)^2 + (1+t)^{-\frac{n-1}{4}}M(t)\||Dw_{\infty}(t)\||_m\}.$$

Clearly, one can get the same estimate for $\|\partial_t^j f_2\|_{H^{-1}}$. Concerning $\|\partial_t^j f_3\|_{H^{-1}}$, one can write it as

$$\partial_t^j \mathbf{f}_3 = -[\partial_t^j, f_3(x_n, \phi)\phi] \nabla \phi_* - \nabla (f_3(x_n, \phi)\phi \partial_t^j \phi_*) + \nabla (f_3(x_n, \phi)\phi) \partial_t^j \phi_*,$$

and thus the desired estimate is obtained analogously to the one for $\|\partial_t^j f_1\|_{H^{-1}}$. This completes the proof.

Proof of Proposition 8.1. Since $[\![\tilde{Q}P_{\infty}F]\!]_{m-2} \leq C[\![F]\!]_{m-2}$, assertion (i) follows from Propositions 8.5 (i)–(iii) and 8.6 (i).

Let us consider R(t). We know that there holds

$$\widetilde{R}(t) \le C(\sum_{j=1}^{8} R^{(j)}(t) + \sum_{p=1}^{m-1} R_p^{(9)}).$$

Let us first show some basic estimates coming from Propositions 8.5, 8.6 and properties of P(t):

$$[Q_0 \mathbf{F}]_{m-1} \le C(1+t)^{-\frac{2n+1}{4}} M(t)^2,$$
 (8.1)

$$[\![\widetilde{Q}\mathbf{F}]\!]_{m-1} \le C\{(1+t)^{-\frac{2n-1}{4}}M(t)^2 + (1+t)^{-\frac{n-1}{4}}M(t)|\!||Dw_{\infty}(t)|\!||_m\},\tag{8.2}$$

$$\llbracket \mathbb{P} F \rrbracket_{m-1} \le C \llbracket F \rrbracket_{m-1},\tag{8.3}$$

Moreover, there holds

$$[Q_0 T_{i,k} \mathbf{F}]_{\infty} = -[\operatorname{div} T_{i,k}(\phi w)]_{\infty} = -[\operatorname{div}' T_{i,k}(\phi w')]_{\infty}, \tag{8.4}$$

since $w \in H_0^1$.

Let us begin with $R_{i,k}^{(1)}$. We write

$$R_{j,k}^{(1)} = \frac{\alpha_0}{\gamma^2} ([Q_0 T_{j,k} \mathbf{F}]_{\infty}, T_{j,k} \sigma_{\infty}) - \frac{\alpha_0}{\gamma^2} ([Q_0 T_{j,k} (\mathbb{P} \mathbf{F})]_{\infty}, T_{j,k} \sigma_{\infty}) + \widetilde{R}_{j,k}^{(1)} - \langle T_{j,k} ([Q_0 \mathbf{F}]_{\infty} u^{(0)}), T_{j,k} u_{\infty} \rangle_{\Omega})$$

$$-\langle T_{j,k}(\mathbb{P}\boldsymbol{F}), T_{j,k}u_{\infty}\rangle_{\Omega} + \langle T_{j,k}([Q_0(\mathbb{P}\boldsymbol{F})]_{\infty}u^{(0)}), T_{j,k}u_{\infty}\rangle_{\Omega} = \sum_{l=1}^{6} I_l.$$

Here,

$$I_3 = \widetilde{R}_{j,k}^{(1)} = \langle T_{j,k} \mathbf{F}, T_{j,k} u_{\infty} \rangle_{\Omega},$$

when $2j + k \leq m - 1$, and

$$I_{3} = \widetilde{R}_{j,k}^{(1)} = -(T_{j,k}(\phi \operatorname{div} w), T_{j,k}\phi_{\infty} \frac{P'(\rho_{p})}{\gamma^{4}\rho_{p}}) + \frac{1}{2}(\operatorname{div}(\frac{P'(\rho_{p})}{\gamma^{4}\rho_{p}}w), |T_{j,k}\phi_{\infty}|^{2})$$
$$-(w\nabla T_{jk}(\sigma_{*}\phi^{(0)} + \phi_{1}), T_{jk}\phi_{\infty} \frac{P'(\rho_{p})}{\gamma^{4}\rho_{p}}) - ([T_{j,k}, w]\nabla\phi, T_{j,k}\phi_{\infty} \frac{P'(\rho_{p})}{\gamma^{4}\rho_{p}}).$$
$$+(T_{j,k}\boldsymbol{f}_{0}, T_{j,k}w_{\infty}\rho_{p}) + \sum_{l=1}^{3} \langle T_{j,k}\boldsymbol{f}_{l}, T_{j,k}w_{\infty}\rho_{p} \rangle_{-1},$$

when 2j + k = m.

We first consider I_3 . If $2j + k \le m - 1$, then by applying (8.1) and (8.2), we have

$$\sum_{2j+k \le m-1} |\langle T_{j,k} \mathbf{F}, T_{j,k} u_{\infty} \rangle_{\Omega}| \le C [\![\mathbf{F}]\!]_{m-1} [\![u_{\infty}]\!]_{m-1} \le C \{ (1+t)^{-\frac{3n}{4}} M(t)^3 + (1+t)^{-\frac{n}{4}} M(t) D_{\infty}(t) \}.$$

Here, we used relation $a^2b \leq \frac{1}{2}(a^3+ab^2)$ and Lemma 8.4 (ii).

In the case 2j + k = m, we use Lemma 8.4 to calculate

$$|(w\nabla T_{jk}(\sigma_*\phi^{(0)} + \phi_1), T_{jk}\phi_\infty \frac{P'(\rho_p)}{\gamma^4 \rho_n})| \le C||w||_\infty ([\![\sigma_*]\!]_m + [\![\phi_1]\!]_m)[\![\phi_\infty]\!]_m \le C(1+t)^{-n}M(t)^3.$$

From above estimate and Propositions 8.5 (i), (iv), (v) and 8.6 (ii), (iv) we see that

$$\sum_{2i+k \le m} |I_3| \le C\{(1+t)^{-\frac{3n}{4}} M(t)^3 + (1+t)^{\frac{n-1}{4}} M(t) D_{\infty}(t)\}.$$

We next consider I_5 . If $2j + k \le m - 1$, then by (8.3) we see that

$$\sum_{2i+k \le m-1} |\langle T_{j,k}(\mathbb{P}\mathbf{F}), T_{j,k} u_{\infty} \rangle_{\Omega}| \le C [\![\mathbb{P}\mathbf{F}]\!]_{m-1} [\![u_{\infty}]\!]_{m-1} \le C [\![\mathbf{F}]\!]_{m-1} [\![u_{\infty}]\!]_{m-1}.$$

If 2j + k = m and $k \ge 1$, then from properties of P(t) we obtain

$$\sum_{2j+k=m|k\geq 1} |\langle T_{j,k}(\mathbb{P}\pmb{F}), T_{j,k}u_{\infty}\rangle_{\Omega}| \leq \sum_{2j+k=m|k\geq 1} C\|T_{j,k-1}(\mathbb{P}\pmb{F})\|_2 \|T_{j,k}u_{\infty}\|_2 \leq C[\![\pmb{F}]\!]_{m-1}[\![u_{\infty}]\!]_m.$$

In the case 2j = m, we write

$$|\langle \partial_t^j(\mathbb{P}\boldsymbol{F}), \partial_t^j u_\infty \rangle_{\Omega}| \leq C|\langle [\partial_t^j, \mathbb{P}]\boldsymbol{F}, \partial_t^j u_\infty \rangle_{\Omega}| + |\langle \mathbb{P}\partial_t^j \boldsymbol{F}, \partial_t^j u_\infty \rangle_{\Omega}| \leq C[\![\boldsymbol{F}]\!]_{m-2}[\![u_\infty]\!]_m + |\langle \mathbb{P}\partial_t^j \boldsymbol{F}, \partial_t^j u_\infty \rangle_{\Omega}|.$$

To estimate $\langle \mathbb{P} \partial_t^j \mathbf{F}, \partial_t^j u_{\infty} \rangle_{\Omega}$, we write it as

$$\langle \mathbb{P} \partial_t^j \boldsymbol{F}, \partial_t^j u_{\infty} \rangle_{\Omega} = \langle \partial_t^j \boldsymbol{F}, \mathbb{P}^* \partial_t^j u_{\infty} \rangle_{\Omega}.$$

Using integration by parts, we have

$$\langle \partial_t^j Q_0 \mathbf{F}, P^* \partial_t^j u_{\infty} \rangle_{\Omega} = (\partial_t^j (\phi w), \nabla \left(Q_0(\mathbb{P}^* \partial_t^j u_{\infty}) \frac{P'(\rho_p)}{\gamma^4 \rho_p} \right)).$$

Since

$$\|\nabla \left(Q_0(\mathbb{P}^*\partial_t^j u_\infty) \frac{P'(\rho_p)}{\gamma^4 \rho_p}\right)\|_2 \le C \|\partial_t^j u_\infty\|_2,$$

by properties of \mathbb{P}^* , we see from Proposition 8.5 (vi) that

$$|\langle \partial_t^j Q_0 \mathbf{F}, \mathbb{P}^* \partial_t^j u_{\infty} \rangle_{\Omega}| \le C(1+t)^{-\frac{3n}{4}} M(t)^3.$$

Since $\widetilde{Q}\mathbb{P}^*\partial_t^j u_\infty \in H^1_0$ one can estimate $|\langle \partial_t^j \widetilde{Q} \boldsymbol{F}, \mathbb{P}^* \partial_t^j u_\infty \rangle_{\Omega}|$ using Proposition 8.6 (ii), (iv) to obtain

$$\sum_{2j=m} |\langle \partial_t^j \widetilde{Q} \boldsymbol{F}, \mathbb{P}^* \partial_t^j u_{\infty} \rangle_{\Omega}| \le C\{ (1+t)^{-\frac{3n}{4}} M(t)^3 + (1+t)^{\frac{n-1}{4}} M(t) D_{\infty}(t) \}.$$

Therefore, we have

$$\sum_{2j+k \le m} |I_5| \le C\{(1+t)^{-\frac{3n}{4}} M(t)^3 + (1+t)^{\frac{n-1}{4}} M(t) D_{\infty}(t)\}.$$

As for I_4 , from (8.4) we compute

$$-\langle T_{j,k}([Q_0 \mathbf{F}]_{\infty} u^{(0)}), T_{j,k} u_{\infty} \rangle_{\Omega} = \sum_{i=0}^{j} \begin{pmatrix} j \\ i \end{pmatrix} \langle [\operatorname{div}' T_{i,k}(\phi w')]_{\infty} T_{j-i,0} u^{(0)}, T_{j,k} u_{\infty} \rangle_{\Omega}.$$

Since

$$\|[\operatorname{div}' T_{i,k}(\phi w')]_{\infty} T_{j-i,0} u^{(0)}\|_{2} \le C \|T_{i,k}(\phi w')\|_{2}$$

we see using Proposition 8.5 (vi) that

$$\sum_{2j+k \le m} |I_4| \le C(1+t)^{-\frac{3n}{4}} M(t)^3.$$

As for I_1 , using (8.4) and integration by parts we obtain

$$\frac{\alpha_0}{\gamma^2}([Q_0T_{j,k}\boldsymbol{F}]_{\infty},T_{j,k}\sigma_{\infty}) = -\frac{\alpha_0}{\gamma^2}([\operatorname{div}'T_{j,k}(\phi w')]_{\infty},T_{j,k}\sigma_{\infty}) \leq C\|T_{j,k}(\phi w)\|_2\|\nabla'T_{j,k}\sigma_{\infty}\|_2.$$

and thus by Proposition 8.5 (vi) and Lemma 8.4 (ii) we get

$$\sum_{2j+k \le m} |I_1| \le C(1+t)^{-\frac{3n}{4}} M(t)^3.$$

As for I_2 , in the case $1 \leq 2j + k \leq m$ we treat it analogously to I_5 to show

$$\left|\frac{\alpha_0}{\gamma^2}([Q_0T_{j,k}(\mathbb{P}\boldsymbol{F})]_{\infty},T_{j,k}\sigma_{\infty})\right| \leq C[\![\boldsymbol{F}]\!]_{m-1}[\![\partial_{x'}\sigma_{\infty}]\!]_{m-1} + \left|([Q_0\mathbb{P}\partial_t^{\left[\frac{m}{2}\right]}\boldsymbol{F}]_{\infty},\partial_t^{\left[\frac{m}{2}\right]}\sigma_{\infty})\right|.$$

We further estimate

$$|([Q_0\mathbb{P}\partial_t^{\left[\frac{m}{2}\right]}\boldsymbol{F}]_{\infty},\partial_t^{\left[\frac{m}{2}\right]}\sigma_{\infty})| < \|\mathscr{P}(\partial_t^{\left[\frac{m}{2}\right]}\boldsymbol{F})\|_2\|\partial_t^{\left[\frac{m}{2}\right]}\sigma_{\infty}\|_2.$$

Using Plancherel theorem we have

$$\|\mathscr{P}(t)(\partial_t^{\left[\frac{m}{2}\right]} F(t))\|_2 = \|\widehat{\chi}_1 \langle \partial_t^{\left[\frac{m}{2}\right]} \widehat{F}(t), u_{\varepsilon'}^*(t) \rangle\|_2.$$

Therefore, using above relation, analogously to I_5 , we estimate

$$\|\mathscr{P}(t)(\partial_t^{\left[\frac{m}{2}\right]} F(t))\|_2 \leq \|\mathscr{P}(t)(Q_0 \partial_t^{\left[\frac{m}{2}\right]} F(t))\|_2 + \|\mathscr{P}(t)(\widetilde{Q} \partial_t^{\left[\frac{m}{2}\right]} F(t))\|_2$$

$$\leq C \{\|\partial_t^{\left[\frac{m}{2}\right]}(\phi w)\|_2 + [\![\boldsymbol{f}_0]\!]_m + \sum_{l=1}^3 \|\partial_t^{\left[\frac{m}{2}\right]} \boldsymbol{f}_l\|_{H^{-1}}.$$

In the case j = k = 0 we see from Lemma 6.1 (ii) and properties of $\mathbb{P}(t)$,

$$\left|\frac{\alpha_0}{\gamma^2}([Q_0(\mathbb{P}\mathbf{F})]_{\infty}, \sigma_{\infty})\right| \le C\|\partial_{x'}\sigma_{\infty}\|_2(\|\phi w'\|_2 + \|\mathbf{F}\|_2) \le (1+t)^{-\frac{3n}{4}}M(t)^3.$$

Therefore, using Propositions 8.5 (vi) and 8.6 (ii), (iv) we obtain

$$\sum_{2j+k \le m} |I_2| \le C\{(1+t)^{-\frac{3n}{4}} M(t)^3 + (1+t)^{-\frac{n-1}{4}} M(t) D_{\infty}(t)\}.$$

As for I_6 , it can be treated in a way analogous to I_5 in the case $1 \leq 2j + k$, thus we get

$$\sum_{2j+k\leq m} |\langle T_{j,k}([Q_0(\mathbb{P}\mathbf{F})]_{\infty}u^{(0)}), T_{j,k}u_{\infty}\rangle_{\Omega}| \leq C\{ [\![\mathbf{F}]\!]_{m-1}[\![u_{\infty}]\!]_{m-1} + \|\mathscr{P}(\partial_t^{\left[\frac{m}{2}\right]}\mathbf{F})\|_2 \|\partial_t^{\left[\frac{m}{2}\right]}u_{\infty}\|_2 \},$$

and

$$\sum_{2j+k \le m} |I_6| \le C\{(1+t)^{-\frac{3n}{4}} M(t)^3 + (1+t)^{\frac{n-1}{4}} M(t) D_{\infty}(t)\}.$$

We thus conclude

$$R^{(1)}(t) \le C\{(1+t)^{-\frac{3n}{4}}M(t)^3 + (1+t)^{\frac{n-1}{4}}M(t)D_{\infty}(t)\}.$$

It is straightforward to show that

$$\widetilde{R}(t) \leq C \{R^{(1)}(t) + [\![\boldsymbol{F}]\!]_{m-1}^2 + [\![Q_0(P_{\infty}^{(0)}\boldsymbol{F})]\!]_{m-1}^2 + [\![P_{\infty}\boldsymbol{F}]\!]_{m-1}^2 + [\![\phi \operatorname{div} w]\!]_m^2$$

$$+ [\![w \cdot \nabla(\sigma_*\phi^{(0)} + \phi_1)]\!]_m^2 + \sum_{2j+k \leq m} |\![[\partial_t^j \partial_x^k, w] \cdot \nabla \phi_{\infty}|\!]_2^2$$

$$+ \sum_{2j+k+l \leq m-1} \left| (\operatorname{div} \left(\frac{P'(\rho_p)}{\gamma^4 \rho_p} w \right), |T_{j,k} \partial_{x_n}^{l+1} \phi_{\infty}|^2) \right|$$

$$+ \sum_{2j+k \leq m-1} |(Q_0 T_{j,k} (P_{\infty}^{(0)} \boldsymbol{F}), T_{j,k} \sigma_{\infty})| + [\![\widetilde{Q}(P_{\infty}\boldsymbol{F})]\!]_{m-1} [\![\partial_{x'} \sigma_{\infty}]\!]_{m-1} \}.$$

From definition we have

$$P_{\infty}^{(0)}(t) = I - \mathbb{P}(t) - P_{\infty,3},$$

which together with

$$|(Q_0 P_{\infty,3} T_{i,k} \mathbf{F}, T_{i,k} \sigma_{\infty})| \le C ||T_{ik}(\phi w)||_2 ||D\sigma_{\infty}||_{m-1}.$$

gives (analogously to previous computations)

$$\sum_{2j+k \le m-1} |(Q_0 T_{j,k}(P_{\infty}^{(0)} \mathbf{F}), T_{j,k} \sigma_{\infty})| \le C(1+t)^{-\frac{3n}{4}} M(t)^3.$$

Since

$$[\![P_{\infty}^{(0)}\mathbf{F}]\!]_{m-1} + [\![P_{\infty}\mathbf{F}]\!]_{m-1} \le C[\![\mathbf{F}]\!]_{m-1},$$

using Propositions 8.5, 8.6 and Lemma 8.4 we obtain the desired estimate (ii) in Proposition 8.1. This completes the proof.

9 Asymptotic behavior of $\sigma_1(t)$

In this section we show the asymptotic behavior of solutions of (4.1). In the case n = 2 we prove that it is described by a solution of a 1-dimensional viscous Burgers equation. In the case $n \geq 3$ we show that the asymptotic behavior is described by a linear heat equation, in fact, asymptotic leading term is the same as for the linearized problem.

In this section we assume that $\nu \geq \nu_0$ and $\gamma^2/(\nu+\widetilde{\nu}) \geq \gamma_0^2$. Let us note that $\sigma_1(t)$ is given by

$$\sigma_1(t) = \mathscr{P}(t)u(t), \ t \ge 0,$$

where u(t) is a global in time solution of (4.1). Existence of u(t) was proved in Sections 3–8. First let us treat the case n=2.

Lemma 9.1 Let n = 2 and $\sigma(t)$ is a solution of

$$\partial_t \sigma - \kappa_1 \partial_{x_1}^2 \sigma + \kappa_0 \partial_{x_1} \sigma + \omega_0 \partial_{x_1} (\sigma^2) = 0,$$

$$\sigma|_{t=0} = \sigma_0,$$
(9.1)

where $\kappa_0 \in \mathbb{R}$, $\kappa_1 > 0$ are the numbers given in (4.6) and $\omega_0 = \frac{1}{T} \int_0^T [\phi^{(0)} w^{(0),1}(z)] - \langle \mathbf{F}_1(z), u^{*(1)}(z) \rangle dz$ and $\sigma_0 = [Q_0 u_0] = [\phi_0]$. Then we can write

$$\sigma(t) = \mathcal{H}(t)\sigma_0 - \omega_0 \int_0^t \mathcal{H}(t-z)\partial_{x_1}(\sigma^2(z))dz. \tag{9.2}$$

Theorem 9.2 Let n=2. For any $\delta>0$ there exists $\varepsilon_7>0$ such that if $||u_0||_{H^m\cap L^1}\leq \varepsilon_7$, then

$$\|\sigma_1(t) - \sigma(t)\|_2 \le C(1+t)^{-\frac{3}{4}+\delta} \|u_0\|_{H^m \cap L^1},$$

for $t \geq 0$.

(3.7) now follows from (5.13) and Theorem 9.2. To prove Theorem 9.2, we employ the following well-known decay properties of $\sigma(t)$.

Lemma 9.3 Let n=2 and $\sigma(t)$ is a solution of (9.1) with $\|\sigma_0\|_{H^1\cap L^1} \ll 1$. Then

$$\|\partial_{x_1}^k \sigma(t)\|_2 \le C(1+t)^{-\frac{1}{4}-\frac{k}{2}} \|\sigma_0\|_{H^1 \cap L^1} \quad (k=0,1),$$

$$\|\sigma(t)\|_{\infty} \le C(1+t)^{-\frac{1}{2}} \|\sigma_0\|_{H^1 \cap L^1}.$$

We introduce a quantity. Let $\sigma_1(t)$ and $\sigma(t)$ be solutions of (5.1) for s=0 and (9.1), respectively. We define N(t) by

$$N(t) = \sup_{0 \le z \le t} (1+z)^{\frac{3}{4}-\delta} \|\sigma_1(z) - \sigma(z)\|_{H^1}.$$

Theorem 9.2 would then follow if we could show that $N(t) \leq C \|u_0\|_{H^m \cap L^1}$.

Proof of Theorem 9.2. It is obvious that estimate holds for $0 \le t < 1$. Let us show that it holds for $t \ge 1$. Assume $t \geq 1$. From (5.1) we have that for s = 0

$$\sigma_1(t) = e^{t\Lambda} \mathscr{P}(0)u_0 + \int_0^t e^{(t-z)\Lambda} \mathscr{P}(z) \mathbf{F}(z) dz. \tag{9.3}$$

We next rewrite $e^{(t-z)\Lambda} \mathscr{P}(z) F(z)$. By Lemma 6.1 (ii), we have

$$\mathscr{P}(z)\boldsymbol{F}(z) = -\partial_{x_1}[\phi w^1]_1 + \partial_{x_1}\mathscr{P}^{(1)}(z)\boldsymbol{F}(z) + \partial_{x_1}^2\mathscr{P}^{(2)}(z)\boldsymbol{F}(z)$$

$$= -a_{11}(z)\partial_{x_1}(\sigma_1^2) - \partial_{x_1}([\phi w^1]_1 - [\phi^{(0)}w^{(0),1}\sigma_1^2]_1)$$

$$+\partial_{x_1}\mathscr{P}^{(1)}(z)(\sigma_1^2 F_1(z) + F_2(z)) + \partial_{x_1}^2 \mathscr{P}^{(2)}(z)F(z).$$

Here $a_{11}(z) = [\phi^{(0)}w^{(0),1}(z)]$. Since

$$\mathscr{F}\{\mathscr{P}^{(1)}(z)(\sigma_1^2 F_1(z))\} = \widehat{\chi}_1 \langle \widehat{(\sigma_1^2)} F_1(z), u^{*(1)}(z) \rangle = \widehat{\chi}_1 \langle F_1(z), u^{*(1)}(z) \rangle \widehat{(\sigma_1^2)} = -a_{12}(z)\sigma_1^2,$$

where $a_{12}(z) = -\langle \boldsymbol{F}_1(z), u^{*(1)}(z) \rangle$. Using properties of $e^{(t-z)\Lambda}$, we thus arrive at

$$e^{(t-z)\Lambda} \mathscr{P}(z) \mathbf{F}(z) = -a_1(z) e^{(t-z)\Lambda} \partial_{x_1}(\sigma_1^2(z))$$

$$-e^{(t-z)\Lambda}\partial_{x_1}\{[\phi w^1]_1(z)-[\phi^{(0)}w^{(0),1}(z)]\sigma_1^2(z)\}$$

$$+e^{(t-z)\Lambda}h_5(z)+e^{(t-z)\Lambda}h_6(z),$$

where $a_1(z) = a_{11}(z) + a_{12}(z)$, $\sup_{z \in J_T} |a_1(z)| \le C$ and

$$h_5(z) = \partial_{x_1} \mathscr{P}^{(1)}(z) \boldsymbol{F}_2(z) + \partial_{x_1}^2 \mathscr{P}^{(2)}(z) \boldsymbol{F}_2(z),$$

$$h_6(z) = \partial_{x_1}^2 \mathscr{P}^{(2)}(z) (\sigma_1^2 \mathbf{F}_1(z)).$$

It then follows from (9.2) and (9.3) that

$$\sigma_1(t) - \sigma(t) = \sum_{j=0}^{6} I_j(t),$$

where

$$I_{0}(t) = e^{t\Lambda} \mathscr{P}(0)u_{0} - \mathscr{H}(t)\sigma_{0},$$

$$I_{1}(t) = -\int_{0}^{t} \omega_{0} \mathscr{H}(t-z)\partial_{x_{1}}(\sigma_{1}^{2}(z) - \sigma^{2}(z))dz,$$

$$I_{2}(t) = -\int_{0}^{t} \omega_{0}(e^{(t-z)\Lambda} - \mathscr{H}(t-z))\partial_{x_{1}}(\sigma_{1}^{2})dz,$$

$$I_{3}(t) = -\int_{0}^{t} (a_{1}(z) - \omega_{0})e^{(t-z)\Lambda}\partial_{x_{1}}(\sigma_{1}^{2})dz,$$

$$I_{4}(t) = -\int_{0}^{t} \partial_{x_{1}}e^{(t-z)\Lambda}([\phi w^{1}]_{1}(z) - [\phi^{(0)}w^{(0),1}(z)]\sigma_{1}^{2}(z))dz,$$

$$I_{j}(t) = \int_{0}^{t} e^{(t-z)\Lambda}h_{j}(z)dz, \quad j = 5, 6.$$

Let us show estimates on I_j , j = 0, ..., 6.

As for I_0 , from (4.10) we see

$$||I_0(t)||_{H^1} \le Ct^{-\frac{3}{4}}||u_0||_{L^1}.$$

Let us consider $I_1(t)$. By Lemma 9.3, (5.12) and the definition of M(t) and N(t), we have

$$\|(\sigma_1^2 - \sigma^2)(z)\|_1 \le \|(\sigma_1 + \sigma)(z)\|_2 \|(\sigma_1 - \sigma)(z)\|_2 \le C(1+z)^{-1+\delta} N(t) \|u_0\|_{H^m \cap L^1},$$

for $||u_0||_{H^m \cap L^1} \le \varepsilon_3$. Furthermore, by Lemma 8.2 (iii) we have $||(\sigma_1 - \sigma)(z)||_{\infty} \le C(1+z)^{-\frac{3}{4}+\delta}N(t)$, and hence,

$$\|\partial_{x_1}(\sigma_1^2 - \sigma^2)(z)\|_2 \le C\{\|(\sigma_1 + \sigma)(z)\|_{\infty}\|\partial_{x_1}(\sigma_1 - \sigma)(z)\|_2 + \|(\sigma_1 - \sigma)(z)\|_{\infty}\|\partial_{x_1}(\sigma_1 + \sigma)(z)\|_2\}$$

$$\leq C(1+z)^{-\frac{5}{4}+\delta} ||u_0||_{H^m \cap L^1} N(t).$$

It then follows from (4.8) that for k = 0, 1,

$$\|\partial_{x_1}^k I_1(t)\|_2 \le C \left\{ \int_0^{\frac{t-1}{2}} (t-z)^{-\frac{3}{4}-\frac{k}{2}} (1+z)^{-1+\delta} dz + \int_{\frac{t-1}{2}}^{t-\frac{1}{2}} (t-z)^{-\frac{3}{4}-\frac{k}{2}} (1+z)^{-1+\delta} dz + \int_{t-\frac{1}{2}}^t (t-z)^{-\frac{k}{2}} (1+z)^{-\frac{5}{4}+\delta} dz \right\} \|u_0\|_{H^m \cap L^1} N(t) \le C (1+t)^{-\frac{3}{4}+\delta} \|u_0\|_{H^m \cap L^1} N(t).$$

As for $I_2(t)$, we see from (4.11) that for k = 0, 1,

$$\|\partial_{x_1}^k I_2(t)\|_2 \leq C\{\int_0^{\frac{t-1}{2}} (t-z)^{-\frac{5}{4}-\frac{k}{2}} \|\sigma_1^2(z)\|_1 dz + \int_{\frac{t-1}{2}}^{t-\frac{1}{2}} (t-z)^{-\frac{3}{4}-\frac{k}{2}} \|\partial_{x_1}(\sigma_1^2(z))\|_1 dz + \int_{t-\frac{1}{2}}^t (t-z)^{-\frac{k}{2}} \|\partial_{x_1}(\sigma_1^2(z))\|_2 dz\}.$$

From Lemma 6.3 we have

$$\leq C \left\{ \int_{0}^{\frac{t-1}{2}} (t-z)^{-\frac{5}{4} - \frac{k}{2}} (1+z)^{-\frac{1}{2}} dz + \int_{\frac{t-1}{2}}^{t-\frac{1}{2}} (t-z)^{-\frac{3}{4} - \frac{k}{2}} (1+z)^{-1} dz + \int_{t-\frac{1}{2}}^{t} (t-z)^{-\frac{k}{2}} (1+z)^{-\frac{5}{4}} dz \right\} M(t)^{2} \\ \leq C (1+t)^{-\frac{3}{4}} \|u_{0}\|_{H^{m} \cap L^{1}}^{2}.$$

As for $I_3(t)$, let us define $b(t) = \int_0^t a_1(z) - \omega_0 dz$. Then $\partial_t b(t) = a_1(t) - \omega_0$ and b(0) = b(T) = 0. Since $a_1(t+T) = a_1(t)$ we have $\partial_t b(t+T) = \partial_t b(t)$ and thus b(t+T) = b(t). We arrive at $\sup_{z \in J_T} |b(z)| \le C$. We write

$$I_3(t) = -\int_0^t \partial_z b(z) e^{(t-z)\Lambda} \partial_{x_1}(\sigma_1^2) dz = -\left[b(z) e^{(t-z)\Lambda} \partial_{x_1}(\sigma_1^2(z))\right]_0^t + \int_0^t b(z) \partial_z \left(e^{(t-z)\Lambda} \partial_{x_1}(\sigma_1^2(z))\right) dz$$

$$= -b(t)\partial_{x_1}(\sigma_1^2(t)) - \int_0^t b(z)e^{(t-z)\Lambda} \Lambda \partial_{x_1}(\sigma_1^2(z))dz + \int_0^t b(z)\partial_{x_1}e^{(t-z)\Lambda} \partial_z(\sigma_1^2(z))dz \equiv J_1(t) + J_2(t) + J_3(t).$$

From Lemma 6.3 (vii) we have for k = 0, 1.

$$\|\partial_{x_1}^k J_1(t)\|_2 \le C(1+t)^{-\frac{5}{4}} M(t)^2$$

We see from (4.9) and Lemma 6.3 that

$$||J_2(t)||_2 \le C\{\int_0^{\frac{t}{2}} (1+t-z)^{-\frac{5}{4}} ||\sigma_1^2(z)||_1 dz + \int_{\frac{t}{2}}^t (1+t-z)^{-\frac{3}{4}} ||\partial_{x_1}(\sigma_1^2(z))||_1 dz\}$$

$$\le C(1+t)^{-\frac{3}{4}} ||u_0||_{H^m \cap L^1}^2.$$

As for J_3 , using (6.3) we calculate

$$J_3(t) = 2 \int_0^t b(z) \partial_{x_1} e^{(t-z)\Lambda} \sigma_1(z) \Lambda \sigma_1(z) dz + 2 \int_0^t b(z) \partial_{x_1} e^{(t-z)\Lambda} \sigma_1(z) \mathscr{P}(z) F(z) dz \equiv J_{31} + J_{32}.$$

Using (4.9) and Lemma 6.3 we calculate

$$||J_{31}||_{2} \leq C \int_{0}^{t} (1+t-z)^{-\frac{3}{4}} ||\sigma_{1}(z)\Lambda\sigma_{1}(z)||_{1} dz \leq C \int_{0}^{t} (1+t-z)^{-\frac{3}{4}} ||\sigma_{1}(z)||_{2} ||\Lambda\sigma_{1}(z)||_{2} dz$$
$$\leq C M(t)^{2} \int_{0}^{t} (1+t-z)^{-\frac{3}{4}} (1+z)^{-1} dz \leq C (1+t)^{-\frac{3}{4}} \log(1+t) ||u_{0}||_{H^{m} \cap L^{1}}^{2}.$$

Analogously we obtain for J_{32} that

$$||J_{32}||_2 \le C \int_0^t (1+t-z)^{-\frac{3}{4}} ||\sigma_1(z)||_2 ||\mathbf{F}(z)||_2 dz \le C(1+t)^{-\frac{3}{4}} \log(1+t) ||u_0||_{H^m \cap L^1}^3.$$

As for $I_4(t)$, we have

$$\|[\phi w^1]_1(z) - [\phi^{(0)} w^{(0),1}(z)]\sigma_1^2(z)\|_1 \le C\{\|\sigma_1(z)\|_2 \|u(z) - \sigma_1(z)u^{(0)}(z)\|_2 + \|u(z) - \sigma_1(z)u^{(0)}(z)\|_2^2\}$$

$$< C(1+z)^{-1}M(z)^2.$$

Thus, (4.9) gives us

$$\|\partial_{x_1}^k I_4(t)\|_2 \le CM(t)^2 \int_0^t (1+t-z)^{-\frac{3}{4}-\frac{k}{2}} (1+z)^{-1} dz \le C(1+t)^{-\frac{3}{4}} \log(1+t) \|u_0\|_{H^m \cap L^1}^2.$$

To estimate $I_5(t)$, we write $h_5(z)$ as

$$h_5(z) = \partial_{x_1} \left(\mathscr{P}^{(1)}(z) \boldsymbol{F}_2(z) + \partial_{x_1} \mathscr{P}^{(2)}(z) \boldsymbol{F}_2(z) \right).$$

Using (4.14) and Lemma 6.3 (v), we have

$$\|\partial_{x_1}^k I_5(t)\|_2 \le CM(t)^2 \int_0^t (1+t-z)^{-\frac{3}{4}-\frac{k}{2}} (1+z)^{-1} dz \le C(1+t)^{-\frac{3}{4}} \log(1+t) \|u_0\|_{H^m \cap L^1}^2.$$

As for $I_6(t)$, we write $h_6(z)$ as

$$h_6(z) = \begin{cases} \partial_{x_1}^2 \mathscr{P}^{(2)}(z) (\sigma_1^2 \mathbf{F}_1)(z) & \text{for } z \in [0, \frac{t}{2}], \\ \partial_{x_1} \mathscr{P}^{(2)}(z) (\partial_{x_1}(\sigma_1^2) \mathbf{F}_1)(z) & \text{for } z \in [\frac{t}{2}, t]. \end{cases}$$

We see from (4.14) and Lemma 6.3 that

$$\|\partial_{x_1}^k I_6(t)\|_2 \le C \{ \int_0^{\frac{t}{2}} (1+t-z)^{-\frac{5}{4}-\frac{k}{2}} \|\sigma_1^2(z)\|_1 dz + \int_{\frac{t}{2}}^t (1+t-z)^{-\frac{3}{4}-\frac{k}{2}} \|\partial_{x_1}(\sigma_1)^2\|_1 dz \} M(t)^2 \|\sigma_2^2\|_1 dz + \int_0^t (1+t-z)^{-\frac{5}{4}-\frac{k}{2}} \|\sigma_2^2\|_1 dz + \int_0^t (1+t-z)^{-\frac{3}{4}-\frac{k}{2}} \|\partial_{x_1}(\sigma_1)^2\|_1 dz +$$

$$\leq C\{\int_0^{\frac{t}{2}}(1+t-z)^{-\frac{5}{4}-\frac{k}{2}}(1+z)^{-\frac{1}{2}}dz+\int_{\frac{t}{2}}^t(1+t-z)^{-\frac{3}{4}-\frac{k}{2}}(1+z)^{-1}dz\}M(t)^2\leq C(1+t)^{-\frac{3}{4}}\|u_0\|_{H^m\cap L^1}^2.$$

We thus obtain

$$\|(\sigma_1 - \sigma)(t)\|_{H^1} \le C(1+t)^{-\frac{3}{4} + \delta} \|u_0\|_{H^m \cap L^1} \{1 + \|u_0\|_{H^m \cap L^1} + \|u_0\|_{H^m \cap L^1}^2 + N(t)\},$$

which yields

$$N(t) \le \|u_0\|_{H^m \cap L^1} \{1 + \|u_0\|_{H^m \cap L^1} + \|u_0\|_{H^m \cap L^1}^2 + N(t) \}.$$

The desired result now follows by taking $||u_0||_{H^m \cap L^1}$ suitably small. This completes the proof.

Now let us show the asymptotic behavior in cases $n \geq 3$.

Theorem 9.4 Let $n \geq 3$. There exists $\varepsilon_8 > 0$ such that if $||u_0||_{H^m \cap L^1} \leq \varepsilon_8$, then

$$\|\sigma_1(t) - \mathcal{H}(t)\sigma_0\|_2 \le C(1+t)^{-\frac{n+1}{4}}\eta_n(t)\|u_0\|_{H^m \cap L^1},$$

where $\eta_n(t) = \log(1+t)$ when n = 3 and $\eta_n(t) = 1$ when $n \ge 4$ and $t \ge 0$.

Proof. From (9.3) we see that

$$\sigma_1(t) - \mathcal{H}(t)\sigma_0 = e^{t\Lambda} \mathcal{P}(0)u_0 - \mathcal{H}(t)\sigma_0 + \int_0^t e^{(t-z)\Lambda} \mathcal{P}(z) \boldsymbol{F}(z) dz.$$

Estimate (4.10) then implies

$$||e^{t\Lambda} \mathscr{P}(0)u_0 - \mathscr{H}(t)\sigma_0||_2 \le Ct^{-\frac{n-1}{4}-\frac{1}{2}}||u_0||_{L^1(\Omega)}.$$

By Lemma 6.1 (ii) we have

$$\mathscr{P}(z)\mathbf{F}(z) = -\operatorname{div}'[\phi(z)w'(z)]_1 + \operatorname{div}'\mathscr{P}^{(1)}(z)\mathbf{F}(z) + \Delta'\mathscr{P}^{(2)}(z)\mathbf{F}(z),$$

and thus by using (4.14) and Lemma 6.3 we obtain

$$\| \int_0^t e^{(t-z)\Lambda} \mathscr{P}(z) \boldsymbol{F}(z) dz \|_2 \le C \int_0^t (1+t-z)^{-\frac{n-1}{4}-\frac{1}{2}} (\| [\phi w'](z) \|_1 + \| \boldsymbol{F}(z) \|_1) dz$$

$$\leq CM(t)^{2} \int_{0}^{t} (1+t-z)^{-\frac{n-1}{4}-\frac{1}{2}} (1+z)^{-\frac{n-1}{2}} dz \leq C(1+t)^{-\frac{n-1}{4}-\frac{1}{2}} \eta_{n}(t) \|u_{0}\|_{H^{m} \cap L^{1}}.$$

This concludes the proof.

(3.9) now follows from (5.13) and Theorem 9.4.

References

- [1] Brezina, J., Kagei, Y. (2012). Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow. *Mathematical Models and Methods in Applied Sciences*, Vol. 22, No. 7, pp.1250007-1-1250007-53.
- [2] Brezina, J., Kagei, Y. (2012). Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow. MI Preprint Series 2012-9, Kyushu University.
- [3] Galdi, G. P. (1994). An Introdction to the Mathematical Theory of the Navier-Stokes Equations. Vol. 1, Springer-Verlag New York
- [4] Kagei, Y. (2008). Large time behavior of solutions to the compressible Navier-Stokes eqution in an infinite layer. *Hiroshima Math. J.* **38**, pp.95–124.
- [5] Kagei, Y. (2011). Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow. *J. Math. Fluid Mech.* Vol.13, pp.1–31.

- [6] Kagei, Y. (2011). Global existence of solutions to the compressible Navier-Stokes equation around parallel flows. J. Differential Equations. 251, pp.3248–3295.
- [7] Kagei, Y. (2012). Asymptotic behavior of the solutions to the compressible Navier-Stokes equation around a parallel flow. *Arch. Rational Mech. Anal.* Vol. 205, pp.585–650.
- [8] Kagei, Y., Kawashima, S. (2006). Local solvability of initial boundary value problem for a quasilinear hyperbolic-parabolic system. J. Hyperbolic Differential Equations, 3, pp.195–232.
- [9] Kagei, Y., Kawashima, S. (2006). Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space. *Comm. Math. Phys.*, **266**, pp.401–430.
- [10] Kagei, Y., Kobayashi, T. (2005). Asymptotic behavior of solutions to the compressible Navier-Stokes equations on the half space. *Arch. Rational Mech. Anal.*, **177**, pp.213–330.
- [11] Kagei, Y., Nagafuchi, Y., Sudou, T. (2010). Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow. *J. Math-for-Ind.* 2A, pp.39-56. Correction to "Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow" in *J. Math-for-Ind.* 2A (2010), pp.39-56 *J. Math-for-Ind.* 2B (2010), pp.235.
- [12] Matsumura, A., Nishida, T. (1983). Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. *Commun. Math. Phys.* **89**, pp.445–464.

List of MI Preprint Series, Kyushu University

The Global COE Program Math-for-Industry Education & Research Hub

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA

The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO

On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU

Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI

Torsion points of abelian varieties with values in nfinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA

Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI

The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA

Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA

A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA

Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

- MI2008-14 Takashi NAKAMURA
 Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality
- MI2008-15 Takashi NAKAMURA
 Some topics related to Hurwitz-Lerch zeta functions
- MI2009-1 Yasuhide FUKUMOTO
 Global time evolution of viscous vortex rings
- MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI

 Regularized functional regression modeling for functional response and predictors
- MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI Variable selection for functional regression model via the L_1 regularization
- MI2009-4 Shuichi KAWANO & Sadanori KONISHI Nonlinear logistic discrimination via regularized Gaussian basis expansions
- MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII Flat modules and Groebner bases over truncated discrete valuation rings
- MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations
- MI2009-7 Yoshiyuki KAGEI Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow
- MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI Nonlinear regression modeling via the lasso-type regularization
- MI2009-9 Takeshi TAKAISHI & Masato KIMURA

 Phase field model for mode III crack growth in two dimensional elasticity
- MI2009-10 Shingo SAITO

 Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption
- MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve
- MI2009-12 Tetsu MASUDA Hypergeometric -functions of the q-Painlevé system of type $E_8^{(1)}$
- MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination
- MI2009-14 Yasunori MAEKAWA

 On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

- MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
 - Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain
- MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring
- MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO

 Non-linear algebraic differential equations satisfied by certain family of elliptic functions
- MI2009-18 Me Me NAING & Yasuhide FUKUMOTO Local Instability of an Elliptical Flow Subjected to a Coriolis Force
- MI2009-19 Mitsunori KAYANO & Sadanori KONISHI Sparse functional principal component analysis via regularized basis expansions and its application
- MI2009-20 Shuichi KAWANO & Sadanori KONISHI Semi-supervised logistic discrimination via regularized Gaussian basis expansions
- MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations
- MI2009-22 Eiji ONODERA

A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

- MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions
- MI2009-24 Yu KAWAKAMI Recent progress in value distribution of the hyperbolic Gauss map
- MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO On very accurate enclosure of the optimal constant in the a priori error estimates for H_0^2 -projection
- MI2009-26 Manabu YOSHIDA Ramification of local fields and Fontaine's property (Pm)
- $\rm MI2009\text{-}27~Yu~KAWAKAMI$

Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

- MI2009-28 Masahisa TABATA
 - Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme
- MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA

Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance

- MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis
- MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI Hecke's zeros and higher depth determinants
- MI2009-32 Olivier PIRONNEAU & Masahisa TABATA Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type
- MI2009-33 Chikashi ARITA Queueing process with excluded-volume effect
- MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $(A_2 + A_1)^{(1)}$
- MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map
- MI2009-36 Reiichiro KAWAI & Hiroki MASUDA Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes
- MI2009-37 Hiroki MASUDA
 On statistical aspects in calibrating a geometric skewed stable asset price model
- MI2010-1 Hiroki MASUDA
 Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes
- MI2010-2 Reiichiro KAWAI & Hiroki MASUDA Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations
- MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI Hyper-parameter selection in Bayesian structural equation models
- MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons
- MI2010-5 Shohei TATEISHI & Sadanori KONISHI

 Nonlinear regression modeling and detecting change point via the relevance vector machine
- MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI Semi-supervised logistic discrimination via graph-based regularization
- MI2010-7 Teruhisa TSUDA UC hierarchy and monodromy preserving deformation
- MI2010-8 Takahiro ITO
 Abstract collision systems on groups

- MI
2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshi
hiro MIWA
 - An algebraic approach to underdetermined experiments
- MI2010-10 Kei HIROSE & Sadanori KONISHI
 - Variable selection via the grouped weighted lasso for factor analysis models
- MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA

 Derivation of specific conditions with Comprehensive Groebner Systems
- MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU

 Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow
- MI2010-13 Reiichiro KAWAI & Hiroki MASUDA On simulation of tempered stable random variates
- MI2010-14 Yoshiyasu OZEKI Non-existence of certain Galois representations with a uniform tame inertia weight
- MI2010-15 Me Me NAING & Yasuhide FUKUMOTO Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency
- MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO

 The value distribution of the Gauss map of improper affine spheres
- MI2010-17 Kazunori YASUTAKE
 On the classification of rank 2 almost Fano bundles on projective space
- MI2010-18 Toshimitsu TAKAESU Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field
- MI2010-19 Reiichiro KAWAI & Hiroki MASUDA Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling
- MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE Lagrangian approach to weakly nonlinear stability of an elliptical flow
- MI2010-21 Hiroki MASUDA

 Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test
- MI2010-22 Toshimitsu TAKAESU A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs
- MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups
- MI2010-24 Toshimitsu TAKAESU A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

- MI2010-25 Toshimitsu TAKAESU On the Essential Self-Adjointness of Anti-Commutative Operators
- MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
 On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling
- MI2010-27 Chikashi ARITA & Daichi YANAGISAWA Exclusive Queueing Process with Discrete Time
- MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA Motion and Bäcklund transformations of discrete plane curves
- MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE On the Number of the Pairing-friendly Curves
- MI2010-30 Chikashi ARITA & Kohei MOTEGI Spin-spin correlation functions of the q-VBS state of an integer spin model
- MI2010-31 Shohei TATEISHI & Sadanori KONISHI Nonlinear regression modeling and spike detection via Gaussian basis expansions
- MI2010-32 Nobutaka NAKAZONO Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$
- MI2010-33 Yoshiyuki KAGEI Global existence of solutions to the compressible Navier-Stokes equation around parallel flows
- MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI Milnor-Selberg zeta functions and zeta regularizations
- MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
 Laplacian energy of directed graphs and minimizing maximum outdegree algorithms
- MI2010-36 Takanori YASUDA CAP representations of inner forms of Sp(4) with respect to Klingen parabolic subgroup
- MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER

 Dynamical analysis of the exclusive queueing process
- MI2011-1 Yasuhide FUKUMOTO& Alexander B. SAMOKHIN Singular electromagnetic modes in an anisotropic medium
- MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI Asymptotic tail dependence of the normal copula
- MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
 Anderson-Darling test and the Malliavin calculus
- MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI Nonlinear regression modeling via Compressed Sensing

- MI2011-5 Hiroshi INOUE
 - Implications in Compressed Sensing and the Restricted Isometry Property
- MI2011-6 Daeju KIM & Sadanori KONISHI

Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI

Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI

Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow

Group variable selection via relevance vector machine

- MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC Recursive structures in the multispecies TASEP
- MI2011-10 Kazunori YASUTAKE

On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA

An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI

Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN

Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

- MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves
- MI2011-15 Hiroshi INOUE

A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI

A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA

Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA

Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA

Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency

MI2012-3 Hiroshi INOUE

A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE

Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI

On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA

Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA

Solutions to a q-analog of Painlevé III equation of type $D_7^{(1)}$

MI2012-8 Naoyuki KAMIYAMA

A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI

Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA

Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow