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Abstract

The linearized problem around a time-periodic parallel flow of the compressible Navier-Stokes equation
in an infinite layer is investigated. By using the Floquet theory, spectral properties of the evolution
operator associated with the linearized problem are studied in detail. The Floquet representation of low
frequency part of the evolution operator, which plays an important role in the study of the nonlinear
problem, is obtained.
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1 Introduction

In this paper we study spectral properties of the linearized operator around a time-periodic solution to the
compressible Navier-Stokes equation with time-periodic external force and time-periodic boundary conditions.

We consider the system of equations
∂t̃ρ̃+ div (ρ̃ṽ) = 0, (1.1)

ρ̃(∂t̃ṽ + ṽ · ∇ṽ)− µ∆ṽ − (µ+ µ′)∇div ṽ +∇P̃ (ρ̃) = ρ̃g̃, (1.2)

in an n dimensional infinite layer Ωℓ = Rn−1 × (0, ℓ):

Ωℓ = {x̃ = T (x̃′, x̃n) ;

x̃′ = T (x̃1, . . . , x̃n−1) ∈ Rn−1, 0 < x̃n < ℓ}.

Here n ≥ 2; ρ̃ = ρ̃(x̃, t̃) and ṽ = T (ṽ1(x̃, t̃), . . . , ṽn(x̃, t̃)) denote the unknown density and velocity at time

t̃ ≥ 0 and position x̃ ∈ Ωℓ, respectively; P̃ is the pressure, smooth function of ρ̃, where for given ρ∗ > 0 we
assume P̃ ′(ρ∗) > 0; µ and µ′ are the viscosity coefficients that are assumed to be constants satisfying µ > 0,
2
nµ+ µ′ ≥ 0; div ,∇ and ∆ denote the usual divergence, gradient and Laplacian with respect to x̃. Here and
in what follows T · denotes the transposition.

In (1.2) g̃ is assumed to have the form

g̃ = T (g̃1(x̃n, t̃), 0, . . . , 0, g̃
n(x̃n)),

with g̃1 being a τ -periodic function in time, where τ > 0.
The system (1.1)–(1.2) is considered under boundary condition

ṽ|x̃n=0 = Ṽ 1(t)e1, ṽ|x̃n=ℓ = 0, (1.3)

and initial condition
(ρ̃, ṽ)|t̃=0 = (ρ̃0, ṽ0), (1.4)

where Ṽ 1 is a τ -periodic function of time and e1 = T (1, 0, . . . , 0) ∈ Rn.

Under suitable conditions on g̃ and Ṽ 1, problem (1.1)–(1.3) has smooth time-periodic solution up =
T (ρp, vp) satisfying

ρp = ρp(x̃n) ≥ ρ̃1,
1

ℓ

∫ ℓ

0

ρp(x̃n) dx̃n = ρ∗,
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vp = T (v1p(x̃n, t̃), 0, . . . , 0), v1p(x̃n, t̃+ τ) = v1p(x̃n, t̃),

for a positive constant ρ̃1.
Our main concern is asymptotic description of large time behavior of perturbations from up when Reynolds

and Mach numbers are sufficiently small. For this purpose we consider the linearized problem in this paper.
To formulate the problem for perturbations, we introduce the following dimensionless variables:

x̃ = ℓx, t̃ =
ℓ

V
t, ṽ = V v, ρ̃ = ρ∗ρ, P̃ = ρ∗V

2P,

with

w̃ = V w, ϕ̃ = ρ∗γ
−2ϕ, Ṽ 1 = V V 1, g̃ =

µV

ρ∗ℓ2
g,

where

γ =

√
P̃ ′(ρ∗)

V
, V =

ρ∗ℓ
2

µ

{
|∂tṼ 1|C0(R) + |g̃1|C0(R×[0,ℓ])

}
+ |Ṽ 1|C0(R).

In this paper we assume V > 0. Under this change of variables the domain Ωℓ is transformed into Ω =
Rn−1 × (0, 1) and g1(xn, t), V

1(t) are periodic in t with period T > 0 defined by

T =
V

ℓ
τ.

The time-periodic solution up is transformed into up = T (ρp, vp) satisfying

ρp = ρp(xn) > 0,

∫ 1

0

ρp(xn) dxn = 1,

vp = T (v1p(xn, t), 0, . . . , 0), v1p(xn, t+ T ) = v1p(xn, t).

It then follows that the perturbation u(t) = T (ϕ(t), w(t)) ≡ T (γ2(ρ(t) − ρp), v(t) − vp(t)) is governed by
the following system of equations

∂tϕ+ v1p∂x1ϕ+ γ2div (ρpw) = f0, (1.5)

∂tw − ν
ρp
∆w − ν̃

ρp
∇divw + v1p∂x1w + (∂xnv

1
p)w

n e1

+ ν
γ2ρ2

p
(∂2

xn
v1p)ϕe1 +∇

(
P ′(ρp)
γ2ρp

ϕ
)
= f ,

(1.6)

w|xn=0 = w|xn=1 = 0, (1.7)

(ϕ,w)|t=0 = (ϕ0, w0), (1.8)

where f0 and f = T (f1, · · · , fn) denote nonlinearities. Here div ,∇ and ∆ denote the usual divergence,
gradient and Laplacian with respect to x; ν, ν′ and ν̃ are the non-dimensional parameters:

ν =
µ

ρ∗ℓV
, ν′ =

µ′

ρ∗ℓV
, ν̃ = ν + ν′.

We note that the Reynolds number Re and Mach number Ma are given by Re = ν−1 and Ma = γ−1,
respectively. Since our concern in this paper is analysis of solutions to the linearized problem, i.e. problem
(1.5)–(1.8) with (f0,f) = (0, 0), we do not write down the exact form of (f0,f). See [1] for the derivation
of (1.5)–(1.8) and the exact form of (f0,f).

In case g1 and V 1 do not depend on t, problem (1.1)–(1.3) has a stationary parallel flow. The stability of
stationary parallel flows were studied in [3, 4, 5]. It was shown in [3] and [4] that the stationary parallel flow
is asymptotically stable under sufficiently small initial perturbations in Hm(Ω) ∩ L1(Ω) with m ≥ [n/2] + 1,
provided that Re ≪ 1, Ma ≪ 1 and density of the parallel flow is sufficiently close to a positive constant.
Furthermore, the asymptotic behavior is described by n − 1 dimensional linear heat equation in the case
n ≥ 3 ([3]) and by one-dimensional viscous Burgers equation in the case n = 2 ([4]).

The case of time-periodic parallel flows was considered in [1]. We investigated the linearized problem, i.e.
(1.5)–(1.8) with (f0,f) = (0, 0), which is written as

∂tu+ L(t)u = 0, w|xn=0,1 = 0, u|t=s = u0. (1.9)
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Here u = T (ϕ,w) and L(t) is operator of the form

L(t) =

 v1p(t)∂x1 γ2div (ρp · )

∇
(

P ′(ρp)
γ2ρp

·
)

− ν
ρp
∆In − ν̃

ρp
∇div


+

(
0 0

ν
γ2ρ2

p
∂2
xn
v1p(t)e1 v1p(t)∂x1In + (∂xnv

1
p(t))e1

Ten

)
.

(1.10)

Note that L(t) satisfies L(t) = L(t+ T ).
It was shown in [1] that if Re ≪ 1 and Ma ≪ 1, then the solution operator U(t, s) for (1.9) satisfies

∥∂k
x′∂l

xn
U(t, s)u0∥L2 ≤ C{(t− s)−

n−1
4 − k

2 ∥u0∥L1(Rn−1;H1(0,1)×L2(0,1))

+e−d(t−s)(∥u0∥H1×L2 + ∥∂x′w0∥L2)},
(1.11)

and

∥∂k
x′∂l

xn
(U(t, s)u0 − σt,s[u0]u

(0)(t))∥L2 ≤ C{(t− s)−
n−1
4 − 1

2−
k
2 ∥u0∥L1(Rn−1;H1(0,1)×L2(0,1))

+e−d(t−s)(∥u0∥H1×L2 + ∥∂x′w0∥L2)},
(1.12)

for t − s ≥ 4T, s ≥ 0, k, l = 0, 1, where u(0)(t) = u(0)(xn, t) is a function T -periodic in t and σt,s[u0] =
σt,s(x

′)[u0] is a function whose Fourier transform in x′ is given by

F (σt,s[u0]) = e−(iκ0ξ1+κ1ξ
2
1+κ′′|ξ′′|2)(t−s)[ϕ̂0(ξ

′)],

where ξ′ = (ξ1, . . . , ξn−1) and ξ′′ = (ξ2, . . . , ξn−1). Here [ϕ̂0(ξ
′)] is a quantity given by

[ϕ̂0(ξ
′)] =

∫ 1

0

ϕ̂0(ξ
′, xn) dxn,

with ϕ̂0 being the Fourier transform of ϕ0 in x′ and κ0 ∈ R, κ1 > 0, κ′′ > 0 are positive constants depending
on ρ∗, l, V, µ, µ

′ and P̃ ′(ρ∗).
These results suggest that the asymptotic behavior of solutions of the nonlinear problem (1.5)–(1.8) is

expected to be similar to that in the case of stationary parallel flows.
The purpose of this paper is to study more detailed spectral properties of U(t, s), which will be useful to

analyze the asymptotic behavior of solutions of the nonlinear problem.
To study spectral properties of U(t, s), we consider Fourier transform of (1.9) that can be written in the

form:

d

dt
û+ L̂ξ′(t)û = 0, t > s, û|t=s = û0, (1.13)

where û denotes the Fourier transform of u in x′ and ξ′ is dual variable to x′. For each ξ′ ∈ Rn−1 and for all
t ≥ s there exists a unique evolution operator Ûξ′(t, s) for (1.13).

Since L̂ξ′(t) is T -time periodic, the spectrum of Ûξ′(T, 0) plays an important role to the study of large

time behavior. It was shown in [1] that the spectrum of Ûξ′(T, 0) satisfies the following inclusion

σ(Ûξ′(T, 0)) ⊆

{
{eλξ′T } ∪ {|λ| < q1} (|ξ′| < r),

{|λ| < q1} (|ξ′| ≥ r),

for a constant 0 < q1 < 1 and 0 < r ≪ 1. Here eλξ′T is the simple eigenvalue of Ûξ′(T, 0) and λξ′ =
−iκ0ξ1−κ1ξ

2
1 −κ′′|ξ′′|2+O(|ξ′|3) with κ0 ∈ R, κ1 > 0, κ′′ > 0 and ξ′ = T (ξ1, ξ

′′). As a result one can obtain
(1.11) and (1.12).

In this paper more detailed analysis is made for the spectral properties of Ûξ′(T, 0) (|ξ′| < r). We
develop a Floquet analysis for L(t) and construct a family of time-periodic projections associated with the
eigenspaces for the eigenvalues eλξ′T . The main results of this paper are summarized as follows. We assume

that g1 ∈
∩[m2 ]

j=0 C
j(R;Hm−2j(0, 1)), gn ∈ Cm[0, 1] and V 1 ∈ C[m+1

2 ](R) for a given integer m ≥ 2. Note that

under these assumptions we have vp ∈
∩[m+2

2 ]
j=0 Cj(R;Hm+2−2j(0, 1)) and ρp ∈ Cm+1[0, 1].

Then for the Reynolds and Mach numbers small one can construct a family {P (t)}t∈R of bounded pro-
jections on L2(Ω) along the Floquet theory; and by P (t) we represent P (t)U(t, s) as
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P (t)U(t, s) = Q (t)e(t−s)ΛP (s). (1.14)

Here, etΛ = F−1
χ̂1e

λξ′ tF with frequency cut off function χ̂1 : χ̂1(ξ
′) = 1 (|ξ′| < r1), χ̂1(ξ

′) = 0 (|ξ′| ≥ r1),

and Q (t) = F−1
χ̂1Q̂ ξ′(t)F and P (t) = F−1

χ̂1P̂ ξ′(t)F with

Q̂ ξ′(t) : C → L2(0, 1) and P̂ ξ′(t) : L
2(0, 1) → C,

expanded as

Q̂ ξ′(t) = Q (0)
(t) + ξ′ ·Q (1)

(t) +O(|ξ′|2),

P̂ ξ′(t) = P (0)
+ ξ′ ·P (1)

(t) +O(|ξ′|2),

for |ξ′| ≤ r1, where Q (0)
(t)σ = σu(0)(·, t) (σ ∈ C), P (0)

u = [ϕ] (u = T (ϕ,w) ∈ L2(0, 1)). We study
boundedness properties of Q (t) and P (t). One consequence of (1.14) is that we improve (1.11) and (1.12)
as

∥∂k
x′∂l

xn
P (t)U(t, s)u0∥L2(Ω) ≤ C(t− s)−

n−1
4 − k

2 ∥u0∥L1(Ω),

∥(I − P (t))U(t, s)u0∥H1(Ω) ≤ e−d(t−s)(∥u0∥H1×L2 + ∥∂x′w0∥L2),

∥∂k
x′∂l

xn
(P (t)U(t, s)u0 − σt,s[u0]u

(0)(t))∥L2(Ω) ≤ C(t− s)−
n−1
4 − 1

2−
k
2 ∥u0∥L1(Ω).

Another consequence of (1.14) is that if u(t) is a solution of

∂tu+ L(t)u = f, u|t=0 = u0,

then P (t)u(t) is represented as

P (t)u(t) = Q (t)

(
etΛP (0)u0 +

∫ t

0

e(t−z)ΛP (z)f(z)dz

)
.

This formula is useful for the analysis of nonlinear interaction of solutions of (1.5) –(1.8); and, in particular,
it plays an important role in studying the 2-dimensional nonlinear problem.

Structure of this paper is following. In Section 2 we introduce basic notations that are used throughout
the paper. In Section 3 we state the main results. In Section 4 we establish existence and regularity of
solutions of inhomogeneous problem (1.13) for fixed ξ′ ∈ Rn−1. In Sections 5 and 6 we study spectral
properties associated with (1.13). In Section 7 we present the proofs of main results. Section 8 is Appendix.
It contains proofs of some proclaims from Sections 5 and 6.

2 Notation

In this section we introduce some notations which are used throughout the paper. For a domain E we denote
by L2(E) the usual Lebesgue space on E and its norm is denoted by ∥ · ∥L2(E). Let m be a nonnegative
integer. Hm(E) denotes the m-th order L2 Sobolev space on E with norm ∥ · ∥Hm(E). C

m
0 (E) stands for the

set of all Cm functions which have compact support in E. We denote by H1
0 (E) the completion of C1

0 (E) in
H1(E).

We simply denote by L2(E) (resp., Hm(E)) the set of all vector fields w = T (w1, . . . , wn) on E with
wj ∈ L2(E) (resp., Hm(E)), j = 1, . . . , n, and its norm is also denoted by ∥·∥L2(E) (resp., ∥·∥Hm(E)). For u =
T (ϕ,w) with ϕ ∈ Hk(E) and w = T (w1, . . . , wn) ∈ Hm(E), we define ∥u∥Hk(E)×Hm(E) by ∥u∥Hk(E)×Hm(E) =
∥ϕ∥Hk(E) + ∥w∥Hm(E). When k = m, we simply write ∥u∥Hk(E)×Hk(E) = ∥u∥Hk(E).

In the case E = Ω we denote the norm ∥ · ∥L2(Ω) (resp., ∥ · ∥L1(Ω)) by ∥ · ∥2 (resp., ∥ · ∥1).
In the case E = (0, 1) we abbreviate L2(0, 1) (resp., L1(0, 1), Hm(0, 1)) as L2 (resp., L1, Hm). In

particular, we denote the norm of L2 (resp., Hm) by | · |2 (resp., | · |Hm). The inner product of L2 is denoted
by

(f, g) =

∫ 1

0

f(xn)g(xn) dxn, f, g ∈ L2.
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Here g denotes the complex conjugate of g. For uj =
T (ϕj , wj) ∈ L2 with wj =

T (w1
j , . . . , w

n
j ) (j = 1, 2), we

also define a weighted inner product ⟨u1, u2⟩ by

⟨u1, u2⟩ =
∫ 1

0

ϕ1ϕ2

P ′(ρp)

γ4ρp
dxn +

∫ 1

0

w1w2ρp dxn.

Furthermore, for f ∈ L1 we denote the mean value of f in (0, 1) by [f ]:

[f ] = (f, 1) =

∫ 1

0

f(xn) dxn.

For u = T (ϕ,w) ∈ L1 with w = T (w1, . . . , wn) we define [u] by

[u] = [ϕ] + [w1] + · · ·+ [wn].

We often write x ∈ Ω as

x = T (x′, xn), x′ = T (x1, . . . , xn−1) ∈ Rn−1.

Partial derivatives of function u in x, x′, xn and t are denoted by ∂xu, ∂x′u, ∂xnu and ∂tu, respectively. We
also write higher order partial derivatives of u in x as ∂k

xu = (∂α
x u; |α| = k).

We denote k × k identity matrix by Ik. In particular, when k = n + 1, we simply write I for In+1. We

define (n+ 1)× (n+ 1) diagonal matrices Qj , Q
′ and Q̃ by

Qj = diag (0, . . . , 0, 1︸︷︷︸
j-th

, 0, . . . , 0), j = 0, 1, . . . , n,

and
Q′ = diag (0, 1, . . . , 1, 0), Q̃ = diag (0, 1, . . . , 1).

We then have for u = T (ϕ,w) ∈ Rn+1, w = T (w1, . . . , wn) = T (w′, wn),

Q0u =

(
ϕ
0

)
, Qju =

 0
wj

0

 , Qnu =

 0
0
wn

 , Q′u =

 0
w′

0

 , Q̃u =

(
0
w

)
.

We denote e′1 = T (1, 0, . . . , 0) ∈ Rn−1. We note that

[Q0u] = [ϕ] for u = T (ϕ,w).

For a function f = f(x′) (x′ ∈ Rn−1), we denote its Fourier transform by f̂ or F f :

f̂(ξ′) = (F f)(ξ′) =

∫
Rn−1

f(x′)e−iξ′·x′
dx′.

The inverse Fourier transform is denoted by F−1
:

(F−1
f)(x′) = (2π)−(n−1)

∫
Rn−1

f(ξ′)eiξ
′·x′

dξ′.

For closed linear operator A in X we denote resolvent set of A by ρ(A). We denote the spectrum of A by
σ(A). For λ ∈ ρ(A) we denote the resolvent operator by R(λ;A):

R(λ;A) = (λI −A)−1.

For bounded linear operator A we denote the spectral radius of A by r(A). We denote the set of all bounded
linear operators from X1 to X2 by L(X1, X2), and if X1 = X2, we simply write L(X1) instead of L(X1, X1).
The operator norm is denoted by | · |L(X1,X2).

For operators A,B we denote [A,B] the commutator, i.e. [A,B] = AB −BA.
For time interval [a, b] ⊂ R, we denote the usual Bochner spaces by L2(a, b;X), Hm(a, b;X), etc., where

X denotes a Banach space.
In this paper we frequently work with T -time-periodic functions. Instead of T -time-periodic functions on

R we work with their restrictions on interval [0, T ]. We denote the fundamental interval [0, T ] by JT , i.e.:

JT = [0, T ].

For any Bochner space W (JT ;X) we denote by Wper(JT ;X) the space of restrictions of T -periodic
functions, e.g. H1

per(JT ;X) consists of functions from H1(JT ;X) that are restrictions of T -periodic functions.

5



Definition 2.1 We define the following function spaces:

X0 = H1 × L2, Hj
∗ =


H−1 = (H1

0 )
∗ for j = −1,

L2 for j = 0,

Hj ∩H1
0 for j ≥ 1.

Definition 2.2 Let 1 ≤ k ≤ m. Let us define spaces Y k
per as

Y 1
per ≡ Yper = L2

per(JT ;X0),

Y k
per =

[ k2 ]∩
j=0

Hj
per(JT ;H

k−2j ×Hk−1−2j), for 2 ≤ k ≤ m.

Remark 2.3 Note that for k ≥ 3 we have:

[ k2 ]∩
j=0

Hj(JT ;H
k−2j ×Hk−1−2j) ↪→

[ k2 ]∩
j=1

Cj−1(JT ;H
k+1−2j ×Hk−2j).

3 Main Results

In this section we state the main results of this paper.
In the whole article we assume the following regularity for g̃ and Ṽ 1.

Assumptions 3.1 For a given integer m ≥ 2, g̃ = T (g̃1(x̃n, t̃), 0, . . . , 0, g̃
n(x̃n)) and Ṽ 1(t̃) belong to the

following spaces:
g̃n ∈ Cm[0, ℓ],

and

g̃1 ∈
[m2 ]∩
j=0

Cj
per([0, τ ];H

m−2j(0, ℓ)),

Ṽ 1 ∈ C
[m+1

2 ]
per ([0, τ ]).

Furthermore, we assume

P̃ (·) ∈ Cm+1(R).

It is straightforward that g and V 1 belong to similar spaces as g̃ and Ṽ 1.
Under Assumptions 3.1 one can see that flow up has the following properties (see [1]).

Proposition 3.2 Let

ν|gn|Cm([0,1]) ≤ C, |P |Cm+1 ≤ C,

for a suitable constant C > 0 (see [1]). Then flow up = T (ρp(xn), vp(xn, t)) exists and under Assumptions
3.1, it satisfies

vp ∈
[m+2

2 ]∩
j=0

Cj
per(JT ;H

m+2−2j(0, 1)), ρp ∈ Cm+1[0, 1],

and

0 < ρ1 ≤ ρp(xn) ≤ ρ2,

∫ 1

0

ρp(xn)dxn = 1, vp(xn, t) =
T (v1p(xn, t), 0),

with
P ′(ρ) > 0 for ρ1 ≤ ρ ≤ ρ2,

|1− ρp|Cm+1([0,1]) ≤
C

γ2
ν(|P ′′|Cm−1(ρ1,ρ2) + |gn|Cm([0,1])), |P ′(ρp)− γ2|C0([0,1]) ≤

C

γ2
ν|gn|C0([0,1]),

and
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ρpP
′(ρp)

γ2
≥ a0, (3.1)

with some constants 0 < ρ1 < 1 < ρ2 and a0 > 0.

Let us consider homogeneous problem

∂tu+ L(t)u = 0, t > s, w|xn=0,1 = 0, u|t=s = u0. (3.2)

Here, L(t) is the operator given in (1.10). We introduce the space Zs defined by

Zs = {u = T (ϕ,w);ϕ ∈ Cloc([s,∞);H1), ∂α′

x′ w ∈ Cloc([s,∞);L2)∩L2
loc([s,∞);H1

0 ) (|α′| ≤ 1), w ∈ Cloc((s,∞);H1
0 )}.

In [1] we showed that for any initial data u0 = T (ϕ0, w0) satisfying u0 ∈ (H1 ∩ L2)(Ω) with ∂x′w0 ∈ L2(Ω)
there exists a unique solution u(t) of linear problem (3.2) in Zs. We denote U(t, s) the evolution operator
for (3.2) given by

u(t) = U(t, s)u0.

To investigate problem (3.2) we consider the Fourier transform of (3.2). We then obtain

d

dt
û+ L̂ξ′(t)û = 0, t > s, û|t=s = û0. (3.3)

Here ϕ̂ = ϕ̂(ξ′, xn, t) and ŵ = ŵ(ξ′, xn, t) are the Fourier transforms of ϕ = ϕ(x′, xn, t) and w = w(x′, xn, t)

in x′ ∈ Rn−1 with ξ′ ∈ Rn−1 being the dual variable; L̂ξ′(t) is an operator on X0 with domain D(L̂ξ′(t)) =
H1 ×H2

∗ , which takes the form

L̂ξ′(t) =


iξ1v

1
p(t) iγ2ρp

T ξ′ γ2∂xn(ρp · )

iξ′
P ′(ρp)
γ2ρp

ν
ρp
(|ξ′|2 − ∂2

xn
)In−1 +

ν̃
ρp
ξ′T ξ′ −i ν̃

ρp
ξ′∂xn

∂xn

(
P ′(ρp)
γ2ρp

·
)

−i ν̃
ρp

T ξ′∂xn

ν
ρp
(|ξ′|2 − ∂2

xn
)− ν̃

ρp
∂2
xn



+


0 0 0

ν
γ2ρ2

p
(∂2

xn
v1p(t))e

′
1 iξ1v

1
p(t)In−1 ∂xn(v

1
p(t))e

′
1

0 0 iξ1v
1
p(t)

 .

For each t ∈ R and ξ′ ∈ Rn−1, L̂ξ′(t) is sectorial on X0. As for the evolution operator Ûξ′(t, s) for (3.3) we
have the following results.

Lemma 3.3 For each ξ′ ∈ Rn−1 and for all t ≥ s there exists unique evolution operator Ûξ′(t, s) for (3.3)
that satisfies

|L̂ξ′(t)Ûξ′(t, s)|L(X0) ≤ Ct1t2 , t1 ≤ s < t ≤ t2.

Furthermore, for u0 ∈ X0, f ∈ Cα([s,∞);X0), α ∈ (0, 1] there exists unique classical solution u of
inhomogeneous problem

d

dt
u+ L̂ξ′(t)u = f, t > s, u|t=s = u0, (3.4)

satisfying u ∈ Cloc([s,∞);X0) ∩ C1(s,∞;X0) ∩ C(s,∞;H1 ×H2
∗ ); and the solution u is given by

u(t) = (ϕ(t), w(t)) = Ûξ′(t, s)u0 +

∫ t

s

Ûξ′(t, z)f(z)dz.

Since L̂ξ′(t) is sectorial uniformly with respect to t ∈ R for each ξ′ ∈ Rn−1, Lemma 3.3 can be shown by
standard theory (see, e.g. [7, 9]).

Let us introduce adjoint problem to

∂tu+ L̂ξ′(t)u = 0, t > s, u|t=s = u0.
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Lemma 3.4 For each ξ′ ∈ Rn−1 and for all s ≤ t there exists unique evolution operator Û∗
ξ′(s, t) for adjoint

problem

−∂su+ L̂∗
ξ′(s)u = 0, s < t, u|s=t = u0,

on X0. Here, L̂∗
ξ′(s) is an operator on X0 with domain D(L̂∗

ξ′(s)) = H1 ×H2
∗ , which takes the form

L̂∗
ξ′(s) =


−iξ1v

1
p(s) −iγ2ρp

T ξ′ −γ2∂xn(ρp · )

−iξ′
P ′(ρp)
γ2ρp

ν
ρp
(|ξ′|2 − ∂2

xn
)In−1 +

ν̃
ρp
ξ′T ξ′ i ν̃

ρp
ξ′∂xn

−∂xn

(
P ′(ρp)
γ2ρp

·
)

i ν̃
ρp

T ξ′∂xn

ν
ρp
(|ξ′|2 − ∂2

xn
)− ν̃

ρp
∂2
xn



+


0 νγ2

P ′(ρp)
(∂2

xn
v1p(s))

Te′1 0

0 −iξ1v
1
p(s)In−1 0

0 ∂xn(v
1
p(s))

Te′1 −iξ1v
1
p(s)

 .

Moreover, L̂∗
ξ′(s) satisfies ⟨L̂ξ′(s)u, v⟩ = ⟨u, L̂∗

ξ′(s)v⟩ for s ∈ R and u, v ∈ H1 ×H2
∗ and

|L̂∗
ξ′(s)Û

∗
ξ′(s, t)|L(X0) ≤ Ct1t2 , t1 ≤ s < t ≤ t2.

Furthermore, for u0 ∈ X0, f ∈ Cα((−∞, t];X0), α ∈ (0, 1] there exists unique classical solution u of
inhomogeneous problem

− d

ds
u+ L̂∗

ξ′(s)u = f, s < t, u|s=t = u0, (3.5)

satisfying u ∈ Cloc((−∞, t];X0) ∩ C1(−∞, t;X0) ∩ C(−∞, t;H1 ×H2
∗ ); and the solution u is given by

u(s) = (ϕ(s), w(s)) = Û∗
ξ′(s, t)u0 +

∫ t

s

Û∗
ξ′(s, z)f(z)dz.

Since L̂∗
ξ′(s) is sectorial uniformly in s on X0, Lemma 3.4 is obtained in the same way as Lemma 3.3.

Note that Ûξ′(t, s) and Û∗
ξ′(s, t) are defined for all t ≥ s and

Ûξ′(t+ T, s+ T ) = Ûξ′(t, s), Û∗
ξ′(s+ T, t+ T ) = Û∗

ξ′(s, t).

The results of the following proposition were established in [1] on space X0.

Proposition 3.5 There exist positive numbers ν0 and γ0 such that if ν ≥ ν0 and γ2/(ν+ ν̃) ≥ γ2
0 then there

exists r0 > 0 such that for each ξ′ with |ξ′| ≤ r0 there hold the following statements.

(i) The spectrum of operator Ûξ′(T, 0) on H1 ×H1
0 satisfies

σ(Ûξ′(T, 0)) ⊂ {µξ′} ∪ {µ : |µ| ≤ q0}, (3.6)

with constant q0 < Reµξ′ < 1. Here, µξ′ = eλξ′T is simple eigenvalue of Ûξ′(T, 0) and λξ′ has an
expansion

λξ′ = −iκ0ξ1 − κ1ξ
2
1 − κ′′|ξ′′|2 +O(|ξ′|3), (3.7)

where κ0 ∈ R and κ1 > 0, κ′′ > 0.

Moreover, let Π̂ξ′ denote the eigenprojection associated with µξ′ . There holds

|Ûξ′(t, s)(I − Π̂ξ′)u|H1 ≤ Ce−d(t−s)|(I − Π̂ξ′)u|X0 ,

for u ∈ X0 and T ≤ t− s. Here, d is a positive constant depending on r0.
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(ii) The spectrum of operator Û∗
ξ′(0, T ) on H1 ×H1

0 satisfies

σ(Û∗
ξ′(0, T )) ⊂ {µξ′} ∪ {µ : |µ| ≤ q0}.

Here, µξ′ is simple eigenvalue of Û∗
ξ′(0, T ).

Furthermore, let Π̂∗
ξ′ denote the eigenprojection associated with µξ′ . There holds

⟨Π̂ξ′u, v⟩ = ⟨u, Π̂∗
ξ′v⟩,

for u, v ∈ X0.

Next we introduce Floquet theory.

Definition 3.6 We define operator Bξ′ on space Yper with domain

D(Bξ′) = H1
per(JT ;X0) ∩ L2

per(JT ;H
1 ×H2

∗ ),

in the following way

Bξ′v = ∂tv + L̂ξ′(·)v,

for v ∈ D(Bξ′). Moreover, we define formal adjoint operator B∗
ξ′ with respect to inner product 1

T

∫ T

0
⟨·, ·⟩dt

as

B∗
ξ′v = −∂tv + L̂∗

ξ′(·)v,

for v ∈ D(B∗
ξ′) = D(Bξ′).

Remark 3.7 Operators Bξ′ and B∗
ξ′ are closed, densely defined on Yper for each fixed ξ′ ∈ Rn−1.

Definition 3.8 Let k ≥ 1. We say that u = T (ϕ,w) is k-regular function on time interval [a, b] whenever

u ∈
[ k2 ]∩
j=0

Cj([a, b]; (Hk−2j ×Hk−2j
∗ )(Ω)),

ϕ ∈
[ k2 ]∩
j=0

Hj+1(a, b;Hk−2j(Ω)), w ∈
[ k+1

2 ]∩
j=0

Hj(a, b;Hk+1−2j
∗ (Ω)).

Proposition 3.9 There exist positive numbers ν0 and γ0 such that if ν ≥ ν0 and γ2/(ν+ ν̃) ≥ γ2
0 then there

exists 0 < r1 ≤ 1 such that for each |ξ′| ≤ r1 there hold the following statements.

(i) Let 1 ≤ k ≤ m. There exists q1 > 0 such that spectrum of operator Bξ′ on Y k
per satisfies

σ(Bξ′) ⊂ {−λξ′} ∪ {λ : Reλ ≥ q1},

with 0 ≤ −Reλξ′ ≤ 1
2q1 uniform for all k. Here, −λξ′ is the simple eigenvalue of Bξ′ .

(ii) Let 1 ≤ k ≤ m. Spectrum of operator B∗
ξ′ on Y k

per satisfies

σ(B∗
ξ′) ⊂ {−λξ′} ∪ {λ : Reλ ≥ q1}.

Here, −λξ′ is the simple eigenvalue of B∗
ξ′ .

(iii) There exist uξ′ and u∗
ξ′ eigenfunctions associated with −λξ′ and −λξ′ , respectively, with the following

properties:

⟨uξ′(t), u
∗
ξ′(t)⟩ = 1,

uξ′(t) = u(0)(t) + iξ′ · u(1)(t) + |ξ′|2u(2)(ξ′, t),
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u∗
ξ′(t) = u∗(0) + iξ′ · u∗(1)(t) + |ξ′|2u∗(2)(ξ′, t),

for t ∈ JT . Here, all functions

uξ′ , u
∗
ξ′ , u

(0), u(0)∗, u(1), u(1)∗, u(2)(ξ′), u(2)∗(ξ′),

are m-regular on JT and we have estimate

sup
z∈JT

[m2 ]∑
j=0

|∂j
zu(z)|2Hm−2j +

∫ T

0

[m−1
2 ]∑

j=0

|∂j+1
z u|2Hm−2j×Hm−1−2j + |∂[

m+2
2 ]

z Q0u|22 + |u|2Hm×Hm+1dz ≤ C,

for u ∈ {uξ′ , u
∗
ξ′ , u

(2)(ξ′), u(2)∗(ξ′)} and a constant C > 0 depending on r1.

Let ν0, γ0 and r1 are given by Proposition 3.9. In the rest of this section we assume that ν ≥ ν0 and
γ2/(ν + ν̃) ≥ γ2

0 .

Definition 3.10 We define χ̂1 by

χ̂1(ξ
′) =

{
1, |ξ′| < r1,

0, |ξ′| ≥ r1,

for ξ′ ∈ Rn−1.

Now, we introduce time-periodic projection based on uξ′ and u∗
ξ′ .

Definition 3.11 We define operators P (t) : L2(Ω) → L2(Rn−1) by

P (t)u = F−1{P̂ ξ′(t)û},

P̂ ξ′(t)û = χ̂1⟨û, u∗
ξ′(t)⟩,

for u ∈ L2(Ω) and t ∈ [0,∞).
We define operators Q (t) : L2(Rn−1) → L2(Ω) by

Q (t)σ = F−1{χ̂1Q̂ ξ′(t)σ̂},

Q̂ ξ′(t)σ̂ = uξ′(·, t)σ̂,

for t ∈ [0,∞) and multiplier Λ : L2(Rn−1) → L2(Rn−1) by

Λσ = F−1{χ̂1λξ′ σ̂},

for σ ∈ L2(Rn−1).
Moreover, we define projection P (t) on L2(Ω) as

P (t)u = Q (t)P (t)u = F−1{χ̂1⟨û, u∗
ξ′(t)⟩uξ′(·, t)},

for t ∈ [0,∞) and u ∈ L2(Ω).

One can see that P (t)2 = P (t) and by Proposition 3.9 the following estimates hold uniformly in t,
t ∈ [0,∞);

∥P (t)u∥H2(Rn−1) ≤ C∥u∥L2(Ω),

∥P (t)u∥H2(Ω) ≤ C∥u∥L2(Ω),

for u ∈ L2(Ω).
As for Q (t), one can see from Proposition 3.9 that

∥Q (t)σ∥H2(Ω) ≤ C∥σ∥L2(Rn−1),

uniformly in t ∈ [0,∞).
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Clearly, Λ is bounded linear operator on L2(Rn−1). It then folllows that Λ generates uniformly continuous
group {etΛ}t∈R. Furthermore, if σ ∈ (L1 ∩ L2)(Ω), then

∥∂k
x′etΛσ∥L2(Rn−1) ≤ C(1 + t)−

n−1
2 ( 1

p−
1
2 )−

k
2 ∥σ∥Lp(Rn−1), 1 ≤ p ≤ 2.

In terms of P (t) we have the following decomposition of U(t, s).

Theorem 3.12 P (t) satisfies the following:

(i)
P (t)(∂t + L(t))u(t) = (∂t + L(t))P (t)u(t) = Q (t)[(∂t − Λ)P (t)u(t)],

for u ∈ L2(JT ; (H
1 ×H2

∗ )(Ω)) ∩H1(JT ;L
2(Ω)).

(ii)
P (t)U(t, s) = U(t, s)P (s) = Q (t)e(t−s)ΛP (s).

If u ∈ L1(Ω), then

∥∂j
t ∂

k
x′∂l

xn
P (t)U(t, s)u∥L2(Ω) ≤ C(1 + t− s)−

n−1
4 − k

2 ∥u∥L1(Ω),

for 0 ≤ 2j + l ≤ m, k = 0, . . . ,m.

(iii) (I − P (t))U(t, s) = U(t, s)(I − P (s)) satisfies

∥(I − P (t))U(t, s)u∥H1(Ω) ≤ Ce−d(t−s)(∥u∥(H1×L2)(Ω) + ∥∂x′w∥L2(Ω)),

for t− s ≥ T . Here d is a positive constant.

Let us consider the following inhomogeneous problem:

∂tu+ L(t)u = f(t), t > 0, u|t=0 = u0. (3.8)

One can show that if u0 ∈ (H1 × H1
0 )(Ω) and f ∈ L2

loc([0,∞); (H1 × L2)(Ω)), then there exists unique
u(t) = T (ϕ(t), w(t)),

u ∈ Cloc([0,∞); (H1 ×H1
0 )(Ω)), ϕ ∈ H1

loc([0,∞);L2(Ω)), w ∈
1∩

j=0

Hj
loc([0,∞);H2−2j

∗ (Ω)), (3.9)

that satisfies (3.8).

Theorem 3.13 Let u0 ∈ (H1×H1
0 )(Ω), f ∈ L2

loc([0,∞); (H1×L2)(Ω)) and let u(t) = T (ϕ(t), w(t)) is unique
solution of (3.8) in the class (3.9). Then

(i) P (t)u(t) satisfies

P (t)u(t) = etΛP (0)u0 +

∫ t

0

e(t−z)ΛP (z)f(z)dz, t ∈ [0,∞).

(ii) u∞(t) = T (ϕ∞(t), w∞(t)) = (I − P (t))u(t) belongs to class (3.9) and satisfies

∂tu∞ + L(t)u∞ = (I − P (t))f, t > 0, u∞|t=0 = (I − P (0))u0.

Moreover, let 1 ≤ k ≤ m and u(t) is k-regular function locally on [0,∞). Then P (t)u(t) = Q (t)P (t)u(t)
satisfies

P (t)u(t) ∈
[ k2 ]∩
j=0

Cj
loc([0,∞); (Hm−2j ×Hm−2j

∗ )(Ω)),

Q0P (t)u(t) ∈
[ k2 ]∩
j=0

Hj+1
loc ([0,∞);Hm−2j(Ω)), Q̃P (t)u(t) ∈

[ k+1
2 ]∩

j=0

Hj
loc([0,∞);Hm+1−2j

∗ (Ω)).
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Remark 3.14 Let 1 ≤ k ≤ m and u0 ∈ Hk(Ω), f ∈
[ k2 ]∩
j=0

Hj
loc([0,∞); (Hk−2j×Hk−1−2j)(Ω)). If u0 and f sat-

isfy a suitable compatibility condition, then one can show that (3.8) has unique solution u(t) = T (ϕ(t), w(t)),
which is k-regular locally on [0,∞). Due to Theorem 3.13 one can see that u∞(t) = T (ϕ∞(t), w∞(t)) =
(I − P (t))u(t) is also k-regular locally on [0,∞).

To complete our main results we show some asymptotic properties of U(t, s). First let us define a
semigroup H (t) on L2(Rn−1) associated with a linear heat equation with a convective term:

∂tσ − κ1∂
2
x1
σ − κ′′∆′′σ + κ0∂x1σ = 0.

Definition 3.15 We define operator H (t) as

H (t)σ = F−1
[e−(iκ0ξ1+κ1ξ

2
1+κ′′|ξ′′|2)tσ̂],

for σ ∈ L2(Rn−1). Here, κ0, κ1 and κ′′ are given by (3.7).

Theorem 3.16 There hold the following estimates for 1 ≤ p ≤ 2.

(i)

∥∂k
x′(H (t)σ)∥L2(Rn−1) ≤ Ct−

n−1
2 ( 1

p−
1
2 )−

k
2 ∥σ∥Lp(Rn−1),

for σ ∈ Lp(Rn−1).

(ii) It holds the relation,

P (t)U(t, s) = e(t−s)ΛP (s).

Set σ = [Q0u]. Then

∥∂k
x′(e(t−s)ΛP (s)u−H (t− s)σ)∥L2(Rn−1) ≤ C(t− s)−

n−1
2 ( 1

p−
1
2 )−

k+1
2 ∥u∥Lp(Ω),

for u ∈ Lp(Ω). Furhermore, for any σ ∈ Lp(Rn−1) there holds

∥(e(t−s)Λ −H (t− s))∂k
x′σ∥L2(Rn−1) ≤ C(t− s)−

n−1
2 ( 1

p−
1
2 )−

k+1
2 ∥σ∥Lp(Rn−1),

for k = 0, 1, . . . .

(iii) It holds the relation,

P (t)U(t, s) = Q (t)e(t−s)ΛP (s).

Furthermore,

∥∂k
x′(Q (t)e(t−s)ΛP (s)u−Q (0)

(t)H (t− s)σ)∥L2(Ω) ≤ C(t− s)−
n−1
2 ( 1

p−
1
2 )−

k+1
2 ∥u∥Lp(Ω),

for u ∈ Lp(Ω).

Remark 3.17 Combining Theorems 3.12 (iii) and 3.16 (iii) we see that asymptotic leading part of U(t, s)u

is represented by Q (0)
(t)H (t− s)σ, where σ = [Q0u].

Theorems 3.12, 3.13 and 3.16 follow from the properties of Q (t) and P (t) introduced below. Proofs are
given in Section 7. In the rest of this section we introduce properties of Q (t) and P (t).

Theorem 3.18 Q (t) has the following properties:

(i)
Q (t+ T ) = Q (t), ∂k

x′Q (t) = Q (t)∂k
x′ .

12



(ii)

Q (t)σ ∈
[m2 ]∩
j=0

Cj
per(JT ; (H

m−2j ×Hm−2j
∗ )(Ω)),

Q̃Q (t)σ ∈
[m+1

2 ]∩
j=0

Hj
per(JT ;H

m+1−2j
∗ (Ω)),

and

∥∂j
t ∂

k
x′∂l

xn
(Q (t)σ)∥L2(Ω) ≤ C∥σ∥L2(Rn−1), 0 ≤ 2j + l ≤ m, k = 0, 1, . . . ,

for σ ∈ L2(Rn−1).

(iii)
(∂t + L(t))(Q (t)σ(t)) = Q (t)(∂t − Λ)σ(t),

for σ ∈ H1
loc([0,∞);L2(Rn−1)).

(iv) Q (t) is decomposed as

Q (t) = Q (0)
(t) + div ′Q (1)

(t) + ∆′Q (2)
(t).

Here, Q (0)
(t)σ = (F−1{χ̂1σ̂})u(0)(·, t), Q (1)

(t) and Q (2)
(t) share the same properties given in (i)

and (ii) for Q (t).

Theorem 3.19 P (t) has the following properties:

(i)
P (t+ T ) = P (t), ∂k

x′P (t) = P (t)∂k
x′ , ∂xnP (t) = 0.

(ii)

P (t)u ∈
[m2 ]∩
j=0

Cj
per(JT ;H

k(Rn−1)), for all k = 0, 1, . . . ,

and
∥∂j

t ∂
k
x′(P (t)u)∥L2(Rn−1) ≤ C∥u∥L2(Ω), 0 ≤ 2j ≤ m, k = 0, 1, . . . ,

for u ∈ L2(Ω).

Moreover,

∥P (t)u∥L2(Rn−1) ≤ C∥u∥Lp(Ω),

for u ∈ Lp(Ω) and 1 ≤ p ≤ 2.

(iii)
P (t)(∂t + L(t))u(t) = (∂t − Λ)(P (t)u(t)),

for u ∈ L2
loc([0,∞); (H1 ×H2

∗ )(Ω)) ∩H1
loc([0,∞);L2(Ω)).

(iv) P (t) is decomposed as

P (t) = P (0)
+ div ′P (1)

(t) + ∆′P (2)
(t).

Here, P (0)
u = F−1{χ̂1[Q0û]}, P (1)

(t) and P (2)
(t) share the same properties given in (i) and (ii)

for P (t).

(v) There holds

∥∂k
x′e(t−s)ΛP (q)

(s)u∥L2(Rn−1) ≤ C(t− s)−
n−1
2 ( 1

p−
1
2 )−

k
2 ∥u∥Lp(Ω), q = 0, 1, 2,

∥∂k
x′((Q (t)−Q (0)

(t))e(t−s)ΛP (s)u)∥L2(Ω) ≤ C(1 + t− s)−
n−1
2 ( 1

p−
1
2 )−

k+1
2 ∥u∥Lp(Ω),

for u ∈ Lp(Ω) and 1 ≤ p ≤ 2.

Proofs of Theorem 3.18 and Theorem 3.19 are given in Section 7.
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4 Regularity of solutions

In this section we study regularity of solutions of (3.4) for bounded frequencies.

First, we show relation between Ûξ′(t, s) and Û∗
ξ′(s, t).

Proposition 4.1 There holds

⟨Ûξ′(t, s)u0, u
∗
0⟩ = ⟨u0, Û

∗
ξ′(s, t)u

∗
0⟩, (4.1)

for all s ≤ t, ξ′ ∈ Rn−1 and u0, u
∗
0 ∈ X0.

Proof. We have relations

∂tÛξ′(t, s)u0 = −L̂ξ′(t)Ûξ′(t, s)u0, t > s, u0 ∈ X0,

and

∂sÛ
∗
ξ′(s, t)u

∗
0 = L̂∗

ξ′(s)Û
∗
ξ′(s, t)u

∗
0, s < t, u∗

0 ∈ X0.

Let us take s < τ < t. Then for all u0, u
∗
0 ∈ X0 we have

∂τ ⟨Ûξ′(τ, s)u0, Û
∗
ξ′(τ, t)u

∗
0⟩ = ⟨∂τ Ûξ′(τ, s)u0, Û

∗
ξ′(τ, t)u

∗
0⟩+ ⟨Ûξ′(τ, s)u0, ∂τ Û

∗
ξ′(τ, t)u

∗
0⟩

= −⟨L̂ξ′(τ)Ûξ′(τ, s)u0, Û
∗
ξ′(τ, t)u

∗
0⟩+ ⟨Ûξ′(τ, s)u0, L̂

∗
ξ′(τ)Û

∗
ξ′(τ, t)u

∗
0⟩ = 0.

Therefore, ⟨Ûξ′(τ, s)u0, Û
∗
ξ′(τ, t)u

∗
0⟩ is independent of τ ∈ (s, t), i.e.

⟨Ûξ′(τ1, s)u0, Û
∗
ξ′(τ1, t)u

∗
0⟩ = ⟨Ûξ′(τ2, s)u0, Û

∗
ξ′(τ2, t)u

∗
0⟩,

for s < τ2 ≤ τ1 < t and u0, u
∗
0 ∈ X0. Taking τ1 → t and τ2 → s we get from strong continuity of evolution

operators that

⟨Ûξ′(t, s)u0, u
∗
0⟩ = ⟨Ûξ′(t, s)u0, Û

∗
ξ′(t, t)u

∗
0⟩ = ⟨Ûξ′(s, s)u0, Û

∗
ξ′(s, t)u

∗
0⟩ = ⟨u0, Û

∗
ξ′(s, t)u

∗
0⟩,

for s ≤ t and u0, u
∗
0 ∈ X0. □

Now, let us study regularity of solutions of (3.4). To do so, it is convenient to write (3.4) in the following
form

∂tϕ+ iξ1v
1
pϕ+ iξ′γ2(ρpw

′) + γ2∂xn(ρpw
n) = f0, (4.2)

∂tw
′ + ν

ρp
(|ξ′|2 − ∂2

xn
)w′ − i ν̃

ρp
ξ′(iξ′w′ + ∂xnw

n)

+iξ′
P̃ ′(ρp)
γ2ρp

ϕ+ iξ1v
1
pw

′ + (∂xnv
1
p)w

n + ν
γ2ρ2

p
(∂2

xn
v1p)ϕ = f ′,

(4.3)

∂tw
n +

ν

ρp
(|ξ′|2 − ∂2

xn
)wn − ν̃

ρp
∂xn(iξ

′w′ + ∂xnw
n) + ∂xn

(
P ′(ρp)

γ2ρp
ϕ

)
+ iξ1v

1
pw

n = fn, (4.4)

for t > s, s ∈ R and
u|t=s = u0 = T (ϕ0, w0).

Here, u(·) ∈ H1 ∩H2
∗ , u0 ∈ X0 and f = T (f0, f ′, fn) ∈ X0.

In the rest of this section we always assume |ξ′| ≤ M for some arbitrary, fixed M < ∞.

Definition 4.2 Let −∞ < s < b , f ∈ L2(s, b;X0) and u0 ∈ H1×H1
0 . We call a function u ∈ C([s, b];H1×

H1
0 ) ∩ L2(s, b;H1 ×H2

∗ ) ∩H1(s, b;X0) solution of (3.4) if u(s) = u0 and equation (3.4) is satisfied for a.a.
t ∈ (s, b].

Let us study inhomogeneous problem (3.4) with regard to solutions introduced above.
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Theorem 4.3 Let −∞ < s < b < ∞, f ∈ L2(s, b;X0) and u0 ∈ H1 ×H1
0 . There exists u = T (ϕ,w) unique

solution of (3.4). Moreover, solution u can be written as

u(t) = Ûξ′(t, s)u0 +

∫ t

s

Ûξ′(t, z)f(z)dz, (4.5)

and ϕ satisfies

∂t∂xnϕ+ ∂t(P (xn, t, s))∂xnϕ = h−H[u], (4.6)

∂xnϕ(xn, t) = e−P (xn,t,s)∂xnϕ0(xn) +

∫ t

s

e−P (xn,t,z){h(xn, z)−H[u](xn, z)}dz, (4.7)

where

P (xn, t, s) =

∫ t

s

{iξ1v1p(xn, z) +
γ2

ν + ν̃

(
ρpP

′(ρp)

γ2

)
(xn)}dz;

and ReP (xn, t, s) ≥ a0
γ2

ν+ν̃ (t− s) thanks to (3.1);

h = ∂xnf
0 +

γ2ρ2p
ν + ν̃

fn,

H[u] = iγ2∂xnρpξ
′ · w′ + iγ2 ν

ν + ν̃
ρpξ

′ · ∂xnw
′ + iξ1∂xnv

1
pϕ+ γ2[∂2

xn
, ρp]w

n

+
γ2ρ2p
ν + ν̃

{∂zwn +
ν

ρp
|ξ′|2wn + ∂xn

(
P ′(ρp)

γ2ρp

)
ϕ+ iξ1v

1
pw

n}.

Furthermore, there exists a1 > 0 s.t. solution u satisfies

|u(t)|2H1 +

∫ t

s

e−a(t−z)(|u|2H1×H2 + |∂zu|2X0
)dz

≤ C{e−a(t−s)|u0|2H1 +

∫ t

s

e−a(t−z)|f |2X0
dz +

∫ t

s

e−a(t−z)|u|22dz},
(4.8)

for t ∈ [s, b] and 0 ≤ a ≤ a1. Here, C = C(M) is independent of t.

We have an immediate corollary of (4.8).

Corollary 4.4 Let f ∈ L2(s, b;X0) and u0 ∈ H1 ×H1
0 . Solution u of (3.4) satisfies an estimate

|u(t)|2H1 +

∫ t

s

|u(z)|2H1×H2 + |∂zu(z)|2X0
dz ≤ C(|u0|2H1 + |f |2L2(s,b:X0)

), (4.9)

for all t ∈ [s, b]. Here C depends on b− s ∈ (0,∞) and M .

Proof of Theorem 4.3. Let us first show the existence of solution. Set

Eξ′(t) =

 ν
ρp
(|ξ′|2 − ∂2

xn
) + ν̃

ρp
ξ′T ξ′ + iξ1v

1
p(t)In−1 −i ν̃

ρp
ξ′∂xn + (∂xnv

1
p(t))e

′
1

−i ν̃
ρp

T ξ′∂xn

ν
ρp
(|ξ′|2 − ∂2

xn
)− ν̃

ρp
∂2
xn

+ iξ1v
1
p(t)

 ,

Fξ′(t) =

 iξ′
P ′(ρp)
γ2ρp

+
ν∂2

xn
v1
p(t)

γ2ρ2
p

e′1

∂xn

(
P ′(ρp)
γ2ρp

·
)

 .

Lemma 4.5 The following statements hold true.
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(i) Let ϕ ∈ C([s, b];H1), w0 ∈ H1
0 and f̃ ∈ L2(s, b;L2) then there exists unique

w ∈ C([s, b];H1
0 ) ∩ L2(s, b;H2

∗ ) ∩H1(s, b;L2),

that satisfies

∂tw + Eξ′(t)w = f̃ − Fξ′(t)ϕ, w|t=s = w0,

and

|w(t)|2H1 +

∫ t

s

(|w|2H2 + |∂zw|22)dz

≤ Cb{|w0|2H1 +

∫ t

s

|f̃ |22dz +
∫ t

s

|ϕ|2H1dz},

for t ∈ [s, b].

(ii) Let w ∈ L2(s, b;H2), ϕ0 ∈ H1 and f0 ∈ L2(s, b;H1). Then there exists unique

ϕ ∈ C([s, b];H1) ∩H1(s, b;H1),

that satisfies

∂tϕ+ iξ1v
1
p(t)ϕ = f0 − γ2(iξ′ · ρpw′ + ∂xn

(ρpw
n)), ϕ|t=s = ϕ0,

and

|ϕ(t)|2H1 +

∫ t

s

|∂zϕ|2H1dz ≤ Cb{|ϕ0|2H1 +

∫ t

s

|f0|2H1dz +

∫ t

s

|w|2H2dz},

for t ∈ [s, b].

Proof. (i) is proved by standard parabolic theory .
As for (ii), ϕ(t) is given by

ϕ(t) = e−iξ1V
1
p (t,s)ϕ0 +

∫ t

s

e−iξ1V
1
p (t,z)(f0 − γ2(iξ′ · ρpw′ + ∂xn(ρpw

n)))(z)dz,

where V 1
p (t, s) =

∫ t

s
v1p(z)dz. This gives us an estimate

|ϕ(t)|2H1 ≤ Cb{|ϕ0|2H1 +

∫ t

s

|f0|2H1dz +

∫ t

s

|w|2H2dz}, (4.10)

for t ∈ [s, b]. We also have

∂tϕ = −iξ1v
1
p(t)ϕ+ f0 − γ2(iξ′ · ρpw′ + ∂xn(ρpw

n)).

This, together with (4.10), gives the desired estimate on
∫ t

s
|∂zϕ|2H1dz.

□

We continue the proof of Theorem 4.3. By Lemma 4.5 we can define

u(n) = (ϕ(n), w(n)) ∈ C([s, b] : H1 ×H1
0 ) ∩ L2(s, b;H1 ×H2

∗ ) ∩H1(s, b;X0),

n = 0, 1, . . . as follows:

•
w(0) = 0, ϕ(0) is solution of

∂tϕ(0) + iξ1v
1
p(t)ϕ(0) = f0, ϕ(0)|t=s = ϕ0.
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• For n ≥ 1, w(n) is solution of

∂tw(n) + Eξ′(t)w(n) = f̃ − Fξ′(t)ϕ(n−1), w(n)|t=s = w0,

and ϕ(n) is solution of

∂tϕ(n) + iξ1v
1
p(t)ϕ(n) = f0 − γ2(iξ′ · ρpw′

(n) + ∂xn(ρpw
n
(n))), ϕ(n)|t=s = ϕ0.

By using Lemma 4.5 one can obtain

|(u(n+1) − u(n))(t)|2H1 +

∫ t

s

(|(w(n+1) − w(n))(z)|2H2 + |∂z(u(n+1) − u(n))(z)|2X0
)dz

≤ C0
(Cbt)

n

n!
, n = 1, 2, . . . .

It then follows that {u(n)} converges to function u in space

[C([s, b];H1) ∩H1(s, b;H1)]× [C([s, b];H1
0 ) ∩ L2(s, b;H2) ∩H1(s, b;L2)];

and the function u is solution of (3.4).
Next, we show that there holds estimate (4.8). First, we introduce some notations

E0[u] =
1

γ2

∣∣∣∣∣
√

P ′(ρp)

γ2ρp
ϕ

∣∣∣∣∣
2

2

+ |√ρpw|22,

Dξ′ [w] = |ξ′|2|w|22 + |∂xnw|22, D̃ξ′ [w] = νDξ′ [w] + ν̃|iξ′w′ + ∂xnw
n|22.

In the following calculations we use |ξ′| ≤ M and Poincaré inequality

|w|2 ≤ |∂xn
w|2,

whenever it is convenient and without pointing it out. Moreover, C denotes generic constant that may depend
on ν and γ. Constants Cj (j = 1, . . . , 5) are independent of ν and γ.

First, we take ⟨·, ·⟩-inner product of (3.4) with u, after integrating by parts we take the real part to get

1

2
∂tE0[u] + D̃ξ′ [w] = Re {⟨f, u⟩ − ((∂xnv

1
p)ρpŵ

n, w1)− (
ν

γ2ρ2p
(∂2

xn
v1p)ρpϕ̂, w

1)}.

Using Hölder inequality we get

1

2
∂tE0[u] +

1

2
D̃ξ′ [w] ≤ C(E0[u] + |f |22). (4.11)

Second, we take ⟨·, ·⟩-inner product of (3.4) with Q̃∂tu, after integrating by parts we take the real part
to get

|√ρp∂tw|22 + 1
2∂tD̃ξ′ [w] = Re {(Q̃f, ρp∂tw)− i(ξ′

P ′(ρp)
γ2ρp

ϕ, ρp∂tw
′)− (∂xn

(
P ′(ρp)
γ2ρp

ϕ
)
, ρp∂tw

n)

−i(ξ1v
1
pw, ρp∂tw) + ((∂xnv

1
p)w

n, ρp∂tw
1)− ( ν

γ2ρ2
p
(∂2

xn
v1p)ϕ, ρp∂tw

1)}.
(4.12)

We treat the third item on the righthand side of (4.12) to get

−(∂xn

(
P ′(ρp)

γ2ρp
ϕ

)
, ρp∂tw

n) = −(∂xn

(
P ′(ρp)

γ2ρp

)
ϕ, ρp∂tw

n)− (
P ′(ρp)

γ2ρp
∂xnϕ, ρp∂tw

n) (4.13)

= −(∂xn

(
P ′(ρp)

γ2ρp

)
ϕ, ρp∂tw

n) + (ϕ, ∂xn

(
P ′(ρp)

γ2

)
∂tw

n) + (ϕ,
P ′(ρp)

γ2
∂xn∂tw

n).

Next, we rewrite (ϕ,
P ′(ρp)

γ2 ∂xn∂tw
n) as

(ϕ,
P ′(ρp)

γ2
∂xn∂tw

n) =
∂

∂t
(ϕ,

P ′(ρp)

γ2
∂xnw

n)− (∂tϕ,
P ′(ρp)

γ2
∂xnw

n).

Substituting relation (4.2) for ∂tϕ we get
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(ϕ,
P ′(ρp)

γ2
∂xn∂tw

n) =
∂

∂t
(ϕ,

P ′(ρp)

γ2
∂xnw

n) + (iξ1v
1
pϕ,

P ′(ρp)

γ2
∂xnw

n) + (iξ′γ2ρpw
′,
P ′(ρp)

γ2
∂xnw

n) (4.14)

+(γ2∂xn(ρpw
n),

P ′(ρp)

γ2
∂xnw

n)− (f0,
P ′(ρp)

γ2
∂xnw

n).

Substituting (4.13) and (4.14) into (4.12) and using Hölder inequality on the resulting equation we get

1

2
|√ρp∂tw|22 +

1

2
∂tD̃ξ′ [w]−

∂

∂t
Re (ϕ,

P ′(ρp)

γ2
∂xnw

n) ≤ C1
γ2

ν
D̃ξ′ [w] + C{E0[u] + |f |22}. (4.15)

We see that
D̃ξ′ [w]− 2Re (ϕ,

P ′(ρp)
γ2 ∂xnw

n)

≥ ν|∂xnw|22 − (ν2 |∂xnw|22 + b0
ν |
√

P ′(ρp)
γ2ρp

ϕ|22) = ν
2 |∂xnw|22 − b0

ν |
√

P ′(ρp)
γ2ρp

ϕ|22.
(4.16)

Now adding 2(1 + b1γ
2

ν )×(4.11) to 2×(4.15) with b1 > max{4C1, 2b0} suitably large we get

(1 + b1γ
2

ν )∂tE0[u] + ∂tD̃ξ′ [w]− ∂
∂t2Re (ϕ,

P ′(ρp)
γ2 ∂xnw

n) + (1 + b1γ
2

2ν )D̃ξ′ [w] + |√ρp∂tw|22

≤ C{E0[u] + |f |22}.
(4.17)

Third, we differentiate (4.2) with respect to xn to get

∂t∂xnϕ+ iξ1∂xn(v
1
pϕ) + iξ′ · γ2∂xn(ρpw

′) + γ2∂2
xn
(ρpw

n) = ∂xnf
0. (4.18)

Now, we multiply (4.4) by
γ2ρ2

p

ν+ν̃ and add together with (4.18), this gives us (4.6). Next, we multiply (4.6) by

eP (xn,t,s) and by integrating the resulting equation in time we obtain (4.7).

We take (·, ·)-inner product of (4.6) with P ′(ρp)
γ4ρp

∂xnϕ and take the real part to get

∂

∂t

1

2γ2
|

√
P ′(ρp)

γ2ρp
∂xnϕ|22 +

1

ν + ν̃
|P

′(ρp)

γ2
∂xnϕ|22 = Re (h−H[u],

P ′(ρp)

γ4ρp
∂xnϕ).

Using Hölder inequality we get

∂

∂t

1

2γ2
|

√
P ′(ρp)

γ2ρp
∂xnϕ|22 +

1

ν + ν̃

3

4
|P

′(ρp)

γ2
∂xnϕ|22 ≤ C

ν + ν̃

γ4
| 1
ρp

(h−H[u])|22. (4.19)

Here

C
ν + ν̃

γ4
| 1
ρp

(h−H[u])|22 ≤ C{E0[u] + |f |X0}+ C2{
1

ν + ν̃
|√ρp∂tw|22 + (1 +

ν + ν̃

ν
|∂xnρp|22)D̃ξ′ [w]}.

Fourth, estimating ∂2
xn
w in L2-norm from (4.3) and (4.4) we get

|∂2
xn
w|22 ≤ C{E0[u] + |f |22}+ C3{

1

ν2
|√ρp∂tw|22 +

1

(ν + ν̃)2
|P

′(ρp)

γ2
∂xn

ϕ|22 +
1 + ν̃

ν2
D̃ξ′ [w]}. (4.20)

Fifth, we take L2-norm of (4.2) and by using Hölders inequality we get

|∂tϕ|22 ≤ C{E0[u] + |f |22}+ C4
γ4

ν
D̃ξ′ [w]. (4.21)

Sixth, we take L2-norm of (4.18) and by using Hölders inequality we get

|∂t∂xnϕ|22 ≤ C{E0[u] + |f |2X0
}+ C5{|

P ′(ρp)

γ2
∂xnϕ|22 +

γ4

ν
D̃ξ′ [w] + γ4|∂2

xn
w|22}. (4.22)

By a suitable linear combination of (4.11), (4.17), (4.19)–(4.22) it is possible to find constant a1 > 0 such
that after adding a1 × E0[u] on both sides of the suitable linear combination we get
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∂

∂t
E1[u] + a1E1[u] + C̃(|u|H1×H2 + |∂tu|2X0

) ≤ C(E0[u] + |f |2X0
),

where C̃ > 0 and

c1|u|H1 ≤ E1[u] ≤ c2|u|H1 , c1, c2 > 0,

using (4.16).
Finally, multiplying by ea1t and integrating with respect to t we get

E1[u](t) +

∫ t

s

e−a1(t−z)(|u|H1×H2 + |∂zu|2X0
)dz

≤ e−a1(t−s)E1[u0] + C

∫ t

s

e−a1(t−z)(|f |2X0
+ E0[u])dz, for t ≥ s.

(4.23)

This concludes the proof of (4.8).
Using Gronwall inequality on (4.8) we obtain (4.9) and consequently the uniqueness of solution u. Next,

we prove the variation of constants formula (4.5).

Lemma 4.6 Let u = (ϕ,w) is solution of (3.4).

(i) If, in addition, w0 ∈ H2
∗ and Q̃f ∈

∩1
j=0 H

j(s, b;H1−2j), then

w ∈
1∩

j=0

Cj([s, b];H2−2j
∗ ) ∩H1(s, b;H1

0 ),

and we have an estimate

|∂2
xn
w(t)|22 + |∂tw(t)|22 +

∫ t

s

e−a(t−z)|∂zw|2H1dz (4.24)

≤ C{e−a(t−s)(|Q̃f(0)|22 + |u0|2H1×H2) +

∫ t

s

e−a(t−z)(|Q̃f |22 + |∂zQ̃f |2H−1 + |ϕ|2H1 + |∂zϕ|22)dz},

for t ∈ [s, b] and every a ≥ 0.

(ii) If, in addition to the assumptions in (i), it holds f0 ∈ C([s, b];H1), then

ϕ ∈ C1([s, b];H1).

Proof. As for (i), we give an outline of a proof.

∂tw + Ãξ′(t)w = F, w|t=s = w0, F = Q̃f − B̃ξ′(t)ϕ. (4.25)

Since B̃ξ′(t)ϕ ∈ C([s, b];L2), we have F ∈ C([s, b];L2). Furthermore,

∂t(B̃ξ′(t)ϕ) = ∂tB̃ξ′(t)ϕ+ B̃ξ′(t)∂tϕ ∈ L2(s, b;L2),

thus we have ∂tF ∈ L2(s, b;H−1). Considering ∂t(4.25) one can show that

∂tw ∈ C([s, b];L2) ∩ L2(s, b;H1
0 ) ∩H1(s, b;H−1).

It then follows from (4.25) that

w ∈ C([s, b];H2
∗ ) ∩ L2(s, b;H3

∗ ) ∩H1(s, b;H1
0 ).

Estimate (4.24) follows in a standard manner.
As for (ii),

∂tϕ = −iξ1v
1
p(t)ϕ+ f0 − γ2(iξ′ρpw

′ + ∂xn(ρpw
n)) ∈ C([s, b];H1).

This completes the proof of Lemma 4.6. □
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Let us continue the proof of (4.5). Let u0 ∈ H1 ×H1
0 and f ∈ L2(s, b;X0). Take {u0,n} and {fn} such

that

u0,n ∈ H1 ×H2
∗ , fn ∈ C1([s, b];X0),

and

u0,n → u0 in H1 ×H1
0 , fn → f in L2(s, b;X0).

Then the existence part of Theorem 4.3 and Lemma 4.6 gives us unique functions

un = (ϕn, wn) ∈ C1([s, b];X0), wn ∈ C([s, b];H2
∗ ),

satisfying

∂tun + L̂ξ′(t)un = fn, s < t, un|t=s = u0,n,

and from (4.9) we get

un → u in C([s, b];H1 ×H1
0 ),

ϕn → ϕ in H1(s, b;H1),

wn → w in L2(s, b;H2) ∩H1(s, b;L2).

On the other hand, each un is represented as

un(t) = Ûξ′(t, s)u0,n +

∫ t

s

Ûξ′(t, z)fn(z)dz,

(see, e.g. [7, 8, 9]). Taking limit n → ∞ we get

u(t) = Ûξ′(t, s)u0 +

∫ t

s

Ûξ′(t, z)f(z)dz.

This concludes the proof of Theorem 4.3.
□

Next, we show results on higher regularity of solutions.

Lemma 4.7 Let 1 ≤ k ≤ m and −∞ < s < b < ∞. The following statements hold true.

(i) Let ϕ0 ∈ Hk+1, f ∈ L2(s, b;Hk+1 ×Hk). Moreover, let u be solution of (3.4). If u satisfies

u ∈ L2(s, b;Hk ×Hk+1), w ∈ H1(s, b;Hk),

then

ϕ ∈ C([s, b];Hk+1).

Furthermore, we have an estimate

|∂k+1
xn

ϕ(t)|22 ≤ C{e−a(t−s)|ϕ0|2Hk+1 +

∫ t

s

e−a(t−z)|f(z)|2Hk+1×Hkdz

+

∫ t

s

e−a(t−z)(|u(z)|2Hk×Hk+1 + |∂zw(z)|2Hk)dz},

for t ∈ [s, b] and 0 ≤ a < a0
γ2

ν+ν̃ .

(ii) Let f ∈ L2(s, b;Hk+1 ×Hk). Moreover, let u be solution of (3.4). If u satisfies

u ∈ L2(s, b;Hk+1), ∂tw ∈ L2(s, b;Hk),

then

∂tϕ ∈ L2(s, b;Hk+1),
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and we have an estimate

∫ t

s

e−a(t−z)|∂k+1
xn

∂zϕ|22dz ≤ C

∫ t

s

e−a(t−z){|f |2Hk+1×Hk + |u|2Hk+1 + |∂zw|2Hk}dz,

for t ∈ [s, b] and every a ≥ 0.

(iii) Let f ∈ L2(s, b;Hk). Moreover, let u be solution of (3.4). If u satisfies

u ∈ L2(s, b;Hk+1), ∂tw ∈ L2(s, b;Hk),

then

w ∈ L2(s, b;Hk+2),

and we have an estimate

∫ t

s

e−a(t−z)|∂k+2
xn

w|22dz ≤ C

∫ t

s

e−a(t−z){|∂k
xn
Q̃f |22 + |u|2Hk+1 + |∂z∂k

xn
w|22}dz,

for t ∈ [s, b] and every a ≥ 0.

In particular, if f ∈ C([s, b];Hk), u ∈ C([s, b];Hk+1) and ∂tw ∈ C([s, b];Hk) then

w ∈ C([s, b];Hk+2).

(iv) Let w0 ∈ Hk
∗ . Moreover, let w ∈ L2(s, b;Hk+1

∗ ) ∩H1(s, b;Hk−1
∗ ) be a function satisfying

w(s) = w0,

then

|∂k
xn
w(t)|22 ≤ C{e−a(t−s)|w0|2Hk +

∫ t

s

e−a(t−z)(|w|2Hk+1 + |∂zw|2Hk−1)dz},

for t ∈ [s, b] and every a ≥ 0.

Proof. (i) follows from taking L2-norm of ∂k
xn
(4.7) and using Hölder inequality.

As for (ii), take (·, ·) inner product of ∂k
xn
(4.6) with ∂k+1

xn
∂tϕ to get

|∂k+1
xn

∂tϕ|22 ≤ C{|ϕ|2Hk+1 + |f |2Hk+1×Hk + |u|2Hk×Hk+1 + |∂tw|2Hk}.

Finally, as for (iii), ∂k
xn
(4.3) and ∂k

xn
(4.4) read as follows:

∂k+2
xn

w′ =
ρp
ν
{−[∂k

xn
,
ν

ρp
]∂2

xn
w′ + ∂k

xn
(
ν

ρp
|ξ′|2w′) + ∂t∂

k
xn
w′ − ∂k

xn
(
ν̃

ρp
iξ′(iξ′ · w′ + ∂xnw

n))

+iξ′∂k
xn
(
P ′(ρp)

γ2ρp
ϕ) + ∂k

xn
(iξ1v

1
pw

′) + ∂k
xn
(
ν∂2

xn
v1p

γ2ρ2p
ϕ)e′1 + ∂k

xn
(∂xnv

1
pw

n)e′1 − ∂k
xn
f ′},

and

∂k+2
xn

wn =
ρp

ν̃ + ν
{−[∂k

xn
,
ν̃ + ν

ρp
]∂2

xn
wn + ∂k

xn
(
ν

ρp
|ξ′|2wn) + ∂t∂

k
xn
wn − ∂k

xn
(
ν̃

ρp
iξ′ · ∂xnw

′)

+∂k+1
xn

(
P ′(ρp)

γ2ρp
ϕ) + ∂k

xn
(iξ1v

1
pw

n)− ∂k
xn
fn}.

Desired estimate in (iii) now easily follows.
As for (iv), there exists an extension operator E = Ek+1, such that E[v] = v a.e. on (0, 1) and E[v] ∈

Hk+1(R) for v ∈ Hk+1
∗ (0, 1). Moreover, there holds

|E[v]|Hl(R) ≤ C|v|Hl(0,1), 0 ≤ l ≤ k + 1,

where C > 0 is independent of v ∈ Hk+1(0, 1). Thus for any a ≥ 0 we have
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ea(t−s)|∂k
xn
w(t)|2L2(0,1) ≤ ea(t−s)|∂k

xn
Ew(t)|2L2(R)

≤ C{|∂k
xn
E[w0]|2L2(R) +

∫ t

s

eaz(a|∂k
xn
E[w](z)|2L2(R) + |∂k+1

xn
E[w](z)|2L2(R) + |∂k−1

xn
∂zE[w](z)|2L2(R))dz},

≤ C{|w0|2Hk(0,1) +

∫ t

s

eaz(|w(z)|Hk+1(0,1) + |∂zw(z)|Hk−1(0,1))dz}.

□

Theorem 4.8 Let −∞ < s < b < ∞, u0 ∈ H2 × H2
∗ and f ∈

1∩
j=0

Hj(s, b;H2−2j × H1−2j). There exists

solution u of (3.4) and u satisfies

u ∈
1∩

j=0

Cj([s, b];H2−2j ×H2−2j
∗ ),

ϕ ∈
1∩

j=0

Hj+1(s, b;H2−2j), w ∈
1∩

j=0

Hj(s, b;H3−2j
∗ ).

Furthermore, there exists a2 > 0 and the following estimate holds

1∑
j=0

|∂j
t u(t)|2H2−2j +

∫ t

s

e−a(t−z)(|∂zu|2H2×H1 + |∂2
zϕ|22 + |u|2H2×H3)dz

≤ C{e−a(t−s)(|u0|2H2 + |f(0)|22) +
∫ t

s

e−a(t−z)
1∑

j=0

|∂j
zf |2H2−2j×H1−2jdz +

∫ t

s

e−a(t−z)|u|22dz},

(4.26)

for t ∈ [s, b] and 0 ≤ a < a2; C is uniform for a ∈ [0, (a2 − δ)](δ > 0).

Proof. From Theorem 4.3 and Lemma 4.6 (i) we get that there exists unique solution u and it satisfies (4.8)
and (4.24). Since by (4.2)

∂tϕ = −iξ1v
1
pϕ− iξ′γ2ρpw

′ − γ2∂xn(ρpw
n) + f0,

we have

|∂tϕ(t)|22 ≤ C{|u(t)|2L2×H1 + e−a(t−s)|f0(0)|22 +
∫ t

s

e−a(t−z)(|f0|22 + |∂0
zf |22)dz},

and ∫ t

s

e−a(t−z)|∂2
zϕ|22dz ≤ C

∫ t

s

e−a(t−z){|ϕ|22 + |∂zu|2L2×H1 + |∂zf0|22}dz,

for every a ≥ 0. Combining these two estimates with (4.8), (4.24) and estimates from Lemma 4.7 (i)–(iii)

with k = 1 we obtain (4.26) for a2 = min{a0 γ2

ν+ν̃ , a1}. □

In the same way as we obtained Theorems 4.3 and 4.8 one can obtain the following result for solutions of
adjoint problem (3.5).

Theorem 4.9 Let −∞ < b < t < ∞ and 1 ≤ k ≤ 2. Let u0 ∈ Hk × Hk
∗ and f ∈

[ k2 ]∩
j=0

Hj(b, t;Hk−2j ×

Hk−1−2j). There exists u(s) = T (ϕ(s), w(s)) that satisfies (3.5) for a.a. s ∈ [b, t), u(t) = u0 and

u ∈
[ k2 ]∩
j=0

Cj([b, t];Hk−2j ×Hk−2j
∗ ),
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ϕ ∈
[ k2 ]∩
j=0

Hj+1(b, t;Hk−2j), w ∈
[ k+1

2 ]∩
j=0

Hj(b, t;Hk+1−2j
∗ ).

Furthermore, the following estimate holds

[ k2 ]∑
j=0

|∂j
su(s)|2Hk−2j +

∫ t

s

ea(s−z)(

[ k−1
2 ]∑

j=0

|∂j+1
z u|2Hk−2j×Hk−1−2j + |∂[

k+2
2 ]

z ϕ|2
H

k−2[ k2 ]
+ |u|2Hk×Hk+1)dz

≤ C{ea(s−t)(|u0|2Hk +

[ k2 ]−1∑
j=0

|∂j
sf(0)|2Hk−2(j+1)) +

∫ t

s

ea(s−z)

[ k2 ]∑
j=0

|∂j
zf |2Hk−2j×Hk−1−2jdz +

∫ t

0

ea(s−z)|u|22dz},

for s ∈ [b, t] and 0 ≤ a < a2; C is uniform for a ∈ [0, (ã − δ)], δ > 0. Here,
∑[ k2 ]−1

j=0 |∂j
sf(0)|2Hk−2(j+1) = 0

when k = 1.
Moreover, u can be written as

u(s) = Û∗
ξ′(s, t)u0 +

∫ t

s

Û∗
ξ′(s, z)f(z)dz.

5 Spectral theory for Ûξ′(T, 0) and Û ∗
ξ′(0, T )

In this section we study spectral properties of operators Ûξ′(T, 0) and Û∗
ξ′(0, T ). At the end of this section

we give a proof of Proposition 3.5.

Lemma 5.1 Following assertions hold true.

(i) Let u(0)(t) be defined as

u(0)(xn, t) =
T (ϕ(0)(xn),

1

γ2
w(0),1(xn, t), 0).

Here

ϕ(0)(xn) = α0
γ2ρp(xn)

P ′(ρp(xn))
, α0 =

[
γ2ρp
P ′(ρp)

]−1

,

w(0),1(xn, t) = −
∫ t

−∞
e−(t−z)νAν

α0γ
2

P ′(ρp)ρp
(∂2

xn
v1p(z)) dz,

where A denotes the uniformly elliptic operator on L2(0, 1) with domain D(A) = H2
∗ (0, 1) and

Av = − 1

ρp(xn)
∂2
xn
v, (5.1)

for v ∈ D(A).

Function u(0)(t) satisfies ∂tu
(0) + L̂0(t)u

(0) = 0 and u(0)(t) = u(0)(t+ T ) for all t ∈ R.

(ii) Let u(0)∗ be defined as

u(0)∗(xn) =
T (

γ2

α0
ϕ(0)(xn), 0, 0).

Function u(0)∗ satisfies −∂su
(0)∗ + L̂∗

0(s)u
(0)∗ = 0 for all s ∈ R. Moreover, there holds

⟨u(0)(t), u(0)∗⟩ = 1,

for t ∈ R.

Proof. (i) and (ii) are obtained by straightforward computation (see also [1]). □

Next, let us introduce result proved in [1, Theorem 5.11 and Theorem 5.16 (ii)].
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Proposition 5.2 There exist positive numbers ν0 and γ0 such that if ν ≥ ν0 and γ2/(ν+ ν̃) ≥ γ2
0 then there

exists r0 > 0 such that for each ξ′ with |ξ′| ≤ r0 there hold the following statements.

The spectrum of operator Ûξ′(T, 0) on X0 satisfies

σ(Ûξ′(T, 0)) ⊂ {µξ′} ∪ {µ : |µ| ≤ q0},

for a constant q0 with 3
2q0 ≤ Reµξ′ ≤ 1. Here, µξ′ = eλξ′T is simple eigenvalue of Ûξ′(T, 0) on X0 with

associated eigenvector u
(0)
ξ′ ∈ X0; u

(0)
ξ′ |ξ′=0 = u(0)(0). Moreover, λξ′ has the expansion (3.7).

Next lemma shows exponential decay of solution operator Ûξ′(t, 0) on X0.

Lemma 5.3 There exist positive numbers ν0 and γ0 such that if ν ≥ ν0 and γ2/(ν + ν̃) ≥ γ2
0 then there

exists r0 > 0 such that following statements hold for each ξ′ with |ξ′| ≤ r0.

Let Π̂ξ′ denote the eigenprojections associated with µξ′ . There exists constant d > 0 such that u(t) satisfies

|Ûξ′(t, s)u0|2H1 ≤ Ce−a(t−s)|u0|2X0
, T ≤ t− s, (5.2)

for u0 ∈ (I − Π̂ξ′)X0 and 0 ≤ a ≤ d. Here, d depends on r0.

Proof. Let the assumptions of Proposition 5.2 be satisfied. Therefore, there holds

σ(Ûξ′(T, 0)) ⊂ {µ : |µ| ≤ q0},

on (I − Π̂ξ′)X0 for q0 < Reµξ′ < 1.

This means that the spectral radius of Ûξ′(T, 0) on (I − Π̂ξ′)X0 satisfies

r(Ûξ′(T, 0)|X0) ≤ q0 < 1.

From general theory there holds

r(Ûξ′(T, 0)|(I−Π̂ξ′ )X0
) = lim

n→∞
|[Ûξ′(T, 0)(I − Π̂ξ′)]

n|
1
n

L(X0)
.

Thus there exist ε > 0 and N0 ∈ N such that for all n ≥ N0 there holds

|[Ûξ′(T, 0)(I − Π̂ξ′)]
n|

1
n

L(X0)
≤ q0 + ε < 1.

Let d
2 = 1

T log 1
q0+ε . Since q0 + ε < 1 we have d > 0 and

|[Ûξ′(T, 0)(I − Π̂ξ′)]
n|

1
n

L(X0)
≤ e−

d
2T ,

for n ≥ N0.
Taking γ0 suitably smaller and |ξ′| < 1, we get from [1, Lemma 5.17] that

|Ûξ′(τ, ζ)u0|X0 ≤ C|u0|X0 ,

|∂xnQ̃Ûξ′(τ, ζ)u0|2 ≤ C(τ − ζ)−
1
2 |u0|X0 ,

(5.3)

for 0 < τ − ζ ≤ 2T .
For t− s > 0 let N =

[
t−s
T

]
− 1 and for u0 ∈ (I − Π̂ξ′)X0 we write

Ûξ′(t, s)u0 = Ûξ′(t, s+NT )[Ûξ′(T, 0)(I − Π̂ξ′)]
Nu0.

From (5.3) we see that |Ûξ′(t, s+NT )v|2H1 ≤ C

T
1
2
|v|2X0

and thus we get an estimate

|Ûξ′(t, s)u0|2H1 ≤ |Ûξ′(t, s+NT )|2L(X0,H1)|[Ûξ′(T, 0)(I − Π̂ξ′)]
Nu0|2X0

≤ Ce−dNT |u0|2X0
≤ Ce−d(t−s)|u0|2X0

,

for t− s ≥ (N0 + 1)T and u0 ∈ (I − Π̂ξ′)X0.
We use (5.3) for T ≤ t− s < (N0 + 1)T repeatedly to get

|Ûξ′(t, s)u0|2H1 ≤ C

T
1
2

|u0|2X0
≤ Ce−d(t−s)|u0|2X0

.

Taking constant C > 0 suitably large we obtain (5.2) for all t− s ≥ T .
□
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Next let us treat spectral properties of Û∗
ξ′(0, T ).

Lemma 5.4 There exists constant γ0 > 0 such that if γ ≥ γ0 then spectrum of operator Û∗
0 (0, T ) on H1×H1

0

satisfies

σ(Û∗
0 (0, T )) ⊂ {1} ∪ {|µ| < q̃0 < 1}. (5.4)

Here, 1 is the simple eigenvalue of Û∗
0 (0, T ) with associated eigenvector u(0)∗ ∈ H1 ×H1

0 .

Lemma 5.5 There exist positive numbers ν0 and γ0 such that if ν ≥ ν0 and γ2/(ν + ν̃) ≥ γ2
0 then there

exists r0 > 0 such that following statements hold for each ξ′ with |ξ′| ≤ r0.

The spectrum of operator Û∗
ξ′(0, T ) on H1 ×H1

0 satisfies

σ(Û∗
ξ′(0, T )) ⊂ {µξ′} ∪ {|µ| < q0}, (5.5)

for a constant q0 with 3
2q0 ≤ Reµξ′ ≤ 1. Here, µξ′ is the simple eigenvalue of Û∗

ξ′(0, T ) with associated

eigenvector u
(0)∗
ξ′ ∈ H1 ×H1

0 ; u
(0)∗
ξ′ |ξ′=0 = u(0)∗.

Proofs of Lemmas 5.4 and 5.5 are given in Appendix.
The following lemma is direct consequence of estimates in Lemmas 3.3 and 3.4.

Lemma 5.6 Let ξ′ ∈ Rn−1. Operators Ûξ′(T, 0) and Û∗
ξ′(0, T ) are bounded from X0 to H1 ×H2

∗ , i.e.

|Ûξ′(T, 0)v|H1×H2 ≤ C|v|X0 ,

|Û∗
ξ′(0, T )v|H1×H2 ≤ C|v|X0 ,

for all v ∈ X0 and a constant C is bounded for ξ′ bounded.

Now, we are ready to prove Proposition 3.5.

Proof of Proposition 3.5 Let the assumptions of Proposition 5.2, Lemmas 5.3 and 5.5 are satisfied.
As for (i), we showed (3.6) on X0 in Proposition 5.2 together with (3.7). Let µ ∈ {µ : |µ| > q0}\{µξ′}.

Then for u, v ∈ X0 we have:

(µ− Ûξ′(T, 0))
−1u = v ⇔ u = (µ− Ûξ′(T, 0))v ⇔ µv = u+ Ûξ′(T, 0)v.

By (5.3) we have

|Ûξ′(T, 0)v|H1 ≤ C|v|X0 .

Boundedness of the inverse operator on X0 reads as

|v|X0 ≤ C|u|X0 .

Therefore

|µ(µ− Ûξ′(T, 0))
−1u|H1 ≤ |u|H1 + |Ûξ′(T, 0)v|H1 ≤ C(|u|H1 + |u|X0).

We see that Ûξ′(T, 0)v ∈ H1 ×H2
∗ for v ∈ X0 which together with u ∈ H1 ×H1

0 gives us v ∈ H1 ×H1
0 . Thus

we proved (3.6) on H1 ×H1
0 . Moreover, u

(0)
ξ′ ∈ H1 ×H2

∗ . The rest of (i) follows from Proposition 5.2 and
Lemma 5.3.

As for (ii), it was proved in Lemma 5.5. Relation of Π̂ξ′ and Π̂∗
ξ′ comes from Proposition 4.1 and definition

of eigenprojection.
□

25



6 Spectral properties of Bξ′ and B∗
ξ′

In this section we study spectral properties of operators Bξ′ and B∗
ξ′ . At the end of this section we give a

proof of Proposition 3.9.
Unless stated otherwise ν ≥ ν0, γ

2/(ν+ν̃) ≥ γ2
0 and |ξ′| ≤ r0, where ν0, γ0 and r0 are given by Proposition

3.5. Based on Proposition 3.5 we introduce the following definition. We remind notation JT = [0, T ].

Definition 6.1 We define function v
(0)
ξ′ (t) as

v
(0)
ξ′ (t) = e−λξ′ tu

(0)
ξ′ (t),

where u
(0)
ξ′ (t) = Ûξ′(t, 0)u

(0)
ξ′ .

Lemma 6.2 Function v
(0)
ξ′ ∈ Cper(JT ;H

1 × H1
0 ) ∩ L2

per(JT ;H
1 × H2

∗ ) ∩ H1
per(JT ;X0) and it satisfies the

following equation

∂tv + L̂ξ′(t)v = −λξ′v,

for a.a. t ∈ JT .

Proof. Proof is obtained by simple computation from properties of operator Ûξ′(t, s) and Theorem 4.3 since

u
(0)
ξ′ ∈ H1 ×H2

∗ .
□

In next theorem we show regularity results for (λ−Bξ′)
−1 on Y k

per.

Theorem 6.3 There exists 0 < r1 ≤ r0 and q1 > 0 such that for each |ξ′| ≤ r1 there hold 0 ≤ −Reλξ′ ≤ q1
2

and the following statements.
Let 1 ≤ k ≤ m and λ ∈ {λ : Reλ < q1}\{−λξ′}. For every f ∈ Y k

per it holds

(λ−Bξ′)
−1f ∈

[ k2 ]∩
j=0

Cj
per(JT ;H

k−2j ×Hk−2j
∗ ),

ϕ ∈
[ k2 ]∩
j=0

Hj+1
per (JT ;H

k−2j), w ∈
[ k+1

2 ]∩
j=0

Hj
per(JT ;H

k+1−2j
∗ ).

Furthermore, there holds an estimate

[ k2 ]∑
j=0

|∂j
t u(t)|2Hk−2j +

∫ t

0

[ k−1
2 ]∑

j=0

|∂j+1
z u|2Hk−2j×Hk−1−2j + |∂[

k+2
2 ]

z ϕ|2
H

k−2[ k2 ]
+ |u|2Hk×Hk+1dz

≤ C{
[ k2 ]−1∑
j=0

|∂j
t f(0)|2Hk−2(j+1) +

∫ T

0

[ k2 ]∑
j=0

|∂j
zf |2Hk−2j×Hk−1−2jdz},

(6.1)

for t ∈ JT uniformly in λ ∈ {λ : |λ| = 3
4q1}. Here, u = T (ϕ,w) = (λ−Bξ′)

−1f and
∑[ k2 ]−1

j=0 |∂j
t f(0)|2Hk−2(j+1) =

0 when k = 1.

Proof. Let λ ∈ C. Let us first motivate our proof. We want to find u which satisfies

(λ−Bξ′)
−1f = u.

In other words, we want to find function u which is solution to

λu− ∂tu− L̂ξ′(t)u = f, for a.a. t ∈ JT , (6.2)

u(0) = u(T ).

Multiplying both sides of (6.2) by −e−λt we obtain

∂t(e
−λtu) + L̂ξ′(t)(e

−λtu) = −e−λtf, for a.a. t ∈ JT .
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Therefore, we formally write u as

u(t) = eλtÛξ′(t, 0)u(0)−
∫ t

0

Ûξ′(t, z)e
λ(t−z)f(z)dz, for t ∈ JT .

Condition u(0) = u(T ) gives us that relation

(e−λT − Ûξ′(T, 0))u(0) = −
∫ T

0

Ûξ′(T, z)e
−λzf(z)dz,

has to be satisfied. Such relation is satisfied if it holds

u(0) = −(e−λT − Ûξ′(T, 0))
−1

∫ T

0

Ûξ′(T, z)e
−λzf(z)dz. (6.3)

Therefore, we see that u = (λ−Bξ′)
−1f is a solution of (6.2) with the initial condition (6.3).

Let us first show the case k = 1. Let f ∈ Yper. From Theorem 4.3 we see that function v defined as

v(t) = −
∫ t

0

Ûξ′(t, z)e
−λzf(z)dz,

satisfies

v ∈ C(JT ;H
1 ×H1

0 ).

In particular, we have

v(T ) ∈ H1 ×H1
0 ,

and thus for e−λT ̸∈ {µξ′} ∪ {µ : |µ| ≤ q0} we get by Proposition 3.5 (i) that

u0 = (e−λT − Ûξ′(T, 0))
−1v(T ) ∈ H1 ×H1

0 .

Finally, by using Theorem 4.3 we see that function u defined as

u(t) = eλtÛξ′(t, 0)u0 −
∫ t

0

Ûξ′(t, z)e
λ(t−z)f(z)dz,

satisfies (6.2) and u(0) = u(T ). Moreover, estimate (6.1) comes from estimate (4.8) applied to u and v(T ).
Thus u has desired regularity which concludes the proof for k = 1.

For the rest of the proof of Theorem 6.3 let us suppose that

λ ∈ {λ : Reλ <
− ln q0

T
}\{−λξ′},

unless further restricted.
Let us now show the case k = 2. Let f ∈ Y 2

per then by the previous case k = 1 we have that u =
(λ−Bξ′)

−1f exists and u(0) ∈ H1 ×H1
0 . We know that u(0) satisfies

(e−λT − Ûξ′(T, 0))u(0) = −
∫ T

0

Ûξ′(T, z)e
−λzf(z)dz.

From Theorem 4.8 we get that

−
∫ T

0

Ûξ′(T, z)e
−λzf(z)dz ∈ H2 ×H2

∗ .

By Lemma 5.6 we have Ûξ′(T, 0)u(0) ∈ H1 ×H2
∗ and therefore we obtain

u(0) ∈ H1 ×H2
∗ ,

and

|u(0)|2H2 ≤ |eλT Ûξ′(T, 0))u(0)|2H2 + |
∫ T

0

Ûξ′(T, z)e
λ(T−z)f(z)dz|2H2

≤ C|u(0)|2X0
+ C{|f(0)|22 +

∫ T

0

1∑
j=0

|∂j
zf |2H2−2j×H1−2jdz} ≤ C{|f(0)|22 +

∫ T

0

1∑
j=0

|∂j
zf |2H2−2j×H1−2jdz}.
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Next let us show that also

Q0u(0) = ϕ(0) ∈ H2.

In a similar way to obtaining (4.7) we obtain from (6.2) the following formula

∂xnϕ(xn, t) = e−Pλ(xn,t,0)∂xnϕ(xn, 0)+

∫ t

0

e−Pλ(xn,t,z){−h(xn, z)−H[u](xn, z)+λ
γ2ρ2p
ν + ν̃

wn(xn, z)}dz, (6.4)

where

Pλ(xn, t, z) = P (xn, t, z)− λ(t− z).

P (xn, t, z), h and H[u] were defined in the statement of Theorem 4.3. Let us take 0 < q1 such that

Tq1 < min{− ln q0, inf
xn

ReP (xn, T, 0)}.

Thanks to (3.1) we see that ReP (xn, t, z) ≥ γ2

ν+ν̃ a0(t− z) and thus q1 > 0. Let us take 0 < r1 ≤ r0 suitably
small so that |λξ′ | ≤ q1

2 . For the rest of the proof of Theorem 6.3 let us suppose that

λ ∈ {λ : Reλ < q1}\{−λξ′},

and |ξ′| ≤ r1.
Since ϕ(0) = ϕ(T ) and 1− e−Pλ(xn,T,0) ̸= 0 we have

∂xnϕ(xn, 0) = (1− e−Pλ(xn,T,0))−1

∫ T

0

e−Pλ(xn,T,z){−h(xn, z)−H[u](xn, z) + λ
γ2ρ2p
ν + ν̃

wn(xn, z)}dz. (6.5)

Integrating by parts the term containing ∂zw
n in H[u](xn, z) on the righthand side of (6.5) we obtain

|ϕ(0)|2H2 ≤ C{|w(0)|2H1 + |w(T )|2H1 +

∫ T

0

|f |2H2×H1 + |u|2H1×H2dz} ≤ C

∫ T

0

|f |2H2×H1dz.

Therefore, we showed that

u(0) ∈ H2 ×H2
∗ ,

which together with f ∈ Y 2
per allows us to use Theorem 4.8 to finish the proof of the case k = 2.

Let 3 ≤ k ≤ m. Let us assume that for k − 1 Theorem 6.3 holds and we show that it holds for k. By the
assumption of induction we have

u = (λ−Bξ′)
−1f ∈

[ k−1
2 ]∩

j=0

Cj
per(JT ;H

k−1−2j ×Hk−1−2j
∗ ),

ϕ ∈
[ k−1

2 ]∩
j=0

Hj+1
per (JT ;H

k−1−2j), w ∈
[ k2 ]∩
j=0

Hj
per(JT ;H

k−2j
∗ ).

Next, let us consider smoothness of ∂tu. To do so, we use the following lemma.

Lemma 6.4 Let f ∈ Y 3
per and u = (λ−Bξ′)

−1f . Then function ũ defined as

ũ = (λ−Bξ′)
−1(∂tf + (∂tL̂ξ′(t))u),

satisfies

ũ(t) = ∂tu(t),

for a.a. t ∈ JT .
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Proof of Lemma 6.4 is given in Appendix. Let us continue the proof of Theorem 6.3.
Set

g(t) = ∂tf + (∂tL̂ξ′(t))u.

Since k ≥ 3 we see that it always holds f ∈ Y 3
per and thus by Lemma 6.4 we have that ũ defined as

ũ = (λ−Bξ′)
−1g,

satisfies

ũ = ∂tu.

Moreover, we have
g ∈ Y k−2

per .

Therefore, by the assumption of induction we get

∂tu ∈
[ k−2

2 ]∩
j=0

Cj
per(JT ;H

k−2−2j ×Hk−2−2j
∗ ),

∂tϕ ∈
[ k−2

2 ]∩
j=0

Hj+1
per (JT ;H

k−2−2j), ∂tw ∈
[ k−1

2 ]∩
j=0

Hj
per(JT ;H

k−1−2j
∗ ).

Thus

u ∈
[ k2 ]∩
j=1

Cj
per(JT ;H

k−2j ×Hk−2j
∗ ),

ϕ ∈
[ k2 ]∩
j=1

Hj+1
per (JT ;H

k−2j), w ∈
[ k+1

2 ]∩
j=1

Hj
per(JT ;H

k+1−2j
∗ ),

and by the assumption of induction for k − 1 we already know that

u ∈ Cper(JT ;H
k−1 ×Hk−1

∗ ), ϕ ∈ H1
per(JT ;H

k−1), w ∈ L2
per(JT ;H

k
∗ ).

Moreover, we have an estimate

|u(t)|2Hk−1 +

[ k2 ]∑
j=1

|∂j
t u(t)|2Hk−2j +

∫ t

0

|∂zu|2Hk−1×Hk−1 +

[ k−1
2 ]∑

j=1

|∂j+1
z u|2Hk−2j×Hk−1−2j

+|∂[
k+2
2 ]

z ϕ|2
H

k−2[ k2 ]
+ |u|2Hk−1×Hkdz

≤ C{
[ k2 ]−1∑
j=0

|∂j
t f(0)|2Hk−2(j+1) +

∫ T

0

[ k2 ]∑
j=0

|∂j
zf(z)|2Hk−2j×Hk−1−2jdz},

for t ∈ JT .
To conclude the proof it remains to show

u ∈ C(JT ;H
k ×Hk

∗ ),

and

ϕ ∈ H1(JT ;H
k), w ∈ L2(JT ;H

k+1
∗ ),

together with (6.1).
First, since

f ∈ L2(JT ;H
k ×Hk−1), u ∈ L2(JT ;H

k−1 ×Hk), ∂tw ∈ L2(JT ;H
k−1),

29



we see from (6.5) that
∂xnϕ(0) ∈ Hk−1,

and

|ϕ(0)|2Hk ≤ C{
∫ T

0

|f |2Hk×Hk−1 + |u|2Hk−1×Hk + |∂zw|2Hk−1dz}.

It is straightforward to see from (6.4) that ∂xnϕ ∈ C(JT ;H
k−1), which gives us

ϕ ∈ C(JT ;H
k),

and from (6.4)

|∂k
xn
ϕ(t)|22 ≤ C{

∫ T

0

|f |2Hk×Hk−1 + |u|2Hk−1×Hk + |∂zw|2Hk−1dz}.

Second, since
∂tw ∈ L2(JT ;H

k−1), u ∈ L2(JT ;H
k), f ∈ L2(JT ;H

k−1),

we obtain by Lemma 4.7 (iii) that

w ∈ L2(JT ;H
k+1),

and ∫ t

0

|∂k+1
xn

w|22dz ≤ C

∫ t

0

|∂k−1
xn

Q̃f |22 + |u|2Hk + |∂z∂k−1
xn

w|22dz.

Third, since
∂tw ∈ C(JT ;H

k−2), u ∈ C(JT ;H
k−1), f ∈ C(JT ;H

k−2),

we obtain by Lemma 4.7 (iii) that

w ∈ C(JT ;H
k).

Moreover, since u ∈ C1
per(JT ;L

2)∩Cper(JT ;H
1×H2

∗ ) we know that (6.2) is satisfied even for t = 0 and thus
from (6.2) we obtain

|∂k
xn
w(0)|22 ≤ C{|u(0)|2Hk−1 + |∂t∂k−2

xn
w(0)|22 + |∂k−2

xn
f̃(0)|22}.

This together with estimate from Lemma 4.7 (iv)

|∂k
xn
w(t)|22 ≤ C{|w(0)|2Hk +

∫ t

0

(|w|2Hk+1 + |∂zw|2Hk−1)dz},

gives us

|∂k
xn
w(t)|22 ≤ C{|u(0)|2Hk−1 + |∂t∂k−2

xn
w(0)|22 + |∂k−2

xn
f̃(0)|22 +

∫ t

0

(|w|2Hk+1 + |∂zw|2Hk−1)dz}.

Fourth, since

f ∈ L2(JT ;H
k ×Hk−1), u ∈ L2(JT ;H

k), ∂tw ∈ L2(JT ;H
k−1),

we obtain by Lemma 4.7 (ii) that

∂tϕ ∈ L2(JT ;H
k),

and ∫ t

0

|∂k
xn
∂zϕ|22dz ≤ C

∫ t

0

|f |2Hk×Hk−1 + |u|2Hk + |∂zw|2Hk−1dz.

This completes the proof of Theorem 6.3. □

Next lemma shows that −λξ′ is simple eigenvalue of Bξ′ .

Lemma 6.5 −λξ′ is a simple eigenvalue of Bξ′ on Yper.
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Proof. From Lemma 6.2 it is straightforward that −λξ′ is an eigenvalue of Bξ′ on Yper.
To show that −λξ′ is simple we first need to show that if u ∈ D(Bξ′) satisfies u ̸= 0 and Bξ′u+ λξ′u = 0

then there exists a constant C(ξ′) ∈ R such that u(t) = C(ξ′)v
(0)
ξ′ (t). Since u ∈ D(Bξ′) we have u(0) = u(T ),

i.e. eλξ′Tu(0) = eλξ′Tu(T ). From Bξ′u+ λξ′u = 0 we have that

eλξ′ tu(t) = Ûξ′(t, 0)u(0)

and thus

eλξ′Tu(0) = eλξ′Tu(T ) = Ûξ′(T, 0)u(0).

Since eλξ′T is a simple eigenvalue of Ûξ′(T, 0) by Proposition 3.5, we conclude that such C ∈ R exists thanks
to uniqueness of the solutions.

Second we need to show that there does not exist u ∈ D(Bξ′) such that (Bξ′ + λξ′)u = −v
(0)
ξ′ . This can

be rewritten in a form

Bξ′(e
λξ′ tu) = −eλξ′ tv

(0)
ξ′ .

Thus we have

eλξ′ tu(t) = Ûξ′(t, 0)u(0)−
∫ t

0

Ûξ′(t, s)e
λξ′sv

(0)
ξ′ (s)ds.

Since Ûξ′(t, s)e
λξ′sv

(0)
ξ′ (s) = u

(0)
ξ′ (t) we have for t = T that

eλξ′Tu(T ) = Ûξ′(T, 0)u(0)− Tu
(0)
ξ′ (T ).

Once again u(0) = u(T ) gives us

(eλξ′T − Ûξ′(T, 0))u(0) = −Tu
(0)
ξ′ (0) = −Tu

(0)
ξ′ .

Since eλξ′T is simple there does not exist u(0) ∈ X0 that would satisfy the equation above. Therefore we
showed that −λξ′ is a simple eigenvalue of Bξ′ on Yper.

□

In the previous lemma we showed that Bξ′ has simple eigenvalue −λξ′ on Yper. Next theorem says that
−λξ′ is a simple eigenvalue of Bξ′ on Y m

per.

Theorem 6.6 For each ξ′ with |ξ′| ≤ r1 there hold the following statements.
For any eigenfunction ue =

T (ϕe, we) of Bξ′ associated with −λξ′ there holds

ue ∈
[ k2 ]∩
j=0

Cj
per(JT ;H

k−2j ×Hk−2j
∗ ),

ϕe ∈
[ k2 ]∩
j=0

Hj+1
per (JT ;H

k−2j), we ∈
[ k+1

2 ]∩
j=0

Hj
per(JT ;H

k+1−2j),

(6.6)

for all 1 ≤ k ≤ m and we have an estimate

[ k2 ]∑
j=0

|∂j
t ue(t)|2Hk−2j +

∫ t

0

[ k−1
2 ]∑

j=0

|∂j+1
z ue|2Hk−2j×Hk−1−2j + |∂[

k+2
2 ]

z ϕe|22 + |ue|2Hk×Hk+1dz ≤ Ck, (6.7)

for t ∈ JT .

Proof. Let |ξ′| ≤ r1 where r1 was given in Theorem 6.3. From Lemma 6.2 we see that there exists ue ∈
D(Bξ′) eigenfunction of Bξ′ associated with −λξ′ . From Lemma 6.5 we know that −λξ′ is the simple

eigenvalue and therefore there exists constant C(ξ′) ̸= 0 such that ue = Cv
(0)
ξ′ . Now, we see from Lemma 6.2

that ue satisfies (6.6) for k = 1.
Since ue is an eigenfunction it satisfies

∂tue + L̂ξ′(t)ue = −λξ′ue,

ue(0) = ue(T ).
(6.8)
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For λ ∈ {λ : |λ| = 3
4q1} we can rewrite (6.8) in equivalent form as

(λ−Bξ′)
−1f = ue, (6.9)

where f = (λ+ λξ′)ue. Now, estimate (6.7) is easily obtained by Gronwall’s inequality from (6.1) in the case
k = 1. Therefore, we proved Theorem 6.6 in the case k = 1.

Let 2 ≤ k ≤ m. Let us assume that for k− 1 Theorem 6.6 holds and we show that it also holds for k. By
induction assumption we have

ue ∈
[ k−1

2 ]∩
j=0

Cj
per(JT ;H

k−1−2j ×Hk−1−2j
∗ ),

ϕe ∈
[ k−1

2 ]∩
j=0

Hj+1
per (JT ;H

k−1−2j), we ∈
[ k2 ]∩
j=0

Hj
per(JT ;H

k−2j).

In a similar manner as we got (4.7) we get from (6.8) that

∂xnϕe(xn, t) = e
−Pλ

ξ′
(xn,t,0)∂xnϕe(xn, 0)−

∫ t

0

e
−Pλ

ξ′
(xn,t,z){λξ′

γ2ρ2p(xn)

ν + ν̃
wn

e (xn, z)+H[ue](xn, z)}dz, (6.10)

where

Pλξ′ (xn, t, z) = P (xn, t, z) + λξ′(t− z).

P (xn, t, z) and H[u] were defined in the statement of Theorem 4.3.
At t = T we read (6.10) as

∂xnϕe(xn, T ) = e
−Pλ

ξ′
(xn,T,0)

∂xnϕe(xn, 0)−
∫ T

0

e
−Pλ

ξ′
(xn,T,z){λξ′

γ2ρ2p(xn)

ν + ν̃
wn

e (xn, z) +H[ue](xn, z)}dz,

and from ϕe(0) = ϕe(T ) we get

∂xnϕe(xn, 0) = −(1− e
−Pλ

ξ′
(xn,T,0)

)−1

∫ T

0

e
−Pλ

ξ′
(xn,T,z){λξ′

γ2ρ2p(xn)

ν + ν̃
wn

e (xn, z) +H[ue](xn, z)}dz, (6.11)

since 1− e
−Pλ

ξ′
(xn,T,0) ̸= 0.

After integrating by parts the term containing ∂zwe in H[ue](xn, z) on the right hand side of (6.11) we
get the following estimate

|ϕe(0)|2Hk ≤ C{|we|L2(JT ;Hk) + |ϕe|L2(JT ;Hk−1) + |we(0)|Hk−1}.

Since we ∈ Cper(JT ;H
k−1
∗ ) we see from (6.10) that we have

ϕe(0) ∈ Hk, ϕe ∈ Cper(JT ;H
k).

We thus showed that

ue ∈ Y k
per.

Since ue ∈ Y k
per we have

f = (λ+ λξ′)ue ∈ Y k
per,

and from (6.9) it is obvious that we can use Theorem 6.3 and Gronwall’s inequality to conclude the proof of
Theorem 6.6 for k. □

We have an immediate corollary of Theorem 6.3 for ξ′ = 0.

Corollary 6.7 For every f ∈ Yper there holds

sup
t∈JT

|(λ−B0)
−1f(t)|H1 + |(λ−B0)

−1f |L2(JT ;H1×H2) + |∂t(λ−B0)
−1f |L2(JT ;X0) ≤ C|f |2L2(JT ;X0)

,

uniformly in λ ∈ {λ : |λ| = 3
4q1}.
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Let Bξ′ be denoted by

Bξ′ = B0 +

n−1∑
j=1

ξjB
(1)
j +

n−1∑
j,k=1

ξjξkB
(2)
jk .

Here

B̂0(t) = ∂tIn+1 +


0 0 γ2∂xn(ρp · )

ν
γ2ρ2

p
(∂2

xn
v1p(t))e

′
1 − ν

ρp
∂2
xn
In−1 (∂xnv

1
p(t))e

′
1

∂xn

(
P ′(ρp)
γ2ρp

·
)

0 −ν+ν̃
ρp

∂2
xn

 ,

and

B
(1)
j (t) = i


v1p(t)δ1j γ2ρp

Te′j 0

P ′(ρp)
γ2ρp

e′j v1p(t)δ1jIn−1 − ν̃
ρp
∂xne

′
j

0 − ν̃
ρp
∂xn

Te′j v1p(t)δ1j

 , B
(2)
jk =


0 0 0

0 ν
ρp
δjkIn−1 +

ν̃
ρp
e′j

Te′k 0

0 0 ν
ρp
δjk

 ,

for j, k = 1, . . . , n− 1. Here and it what follows, δjk denotes Kronecker’s delta.

Lemma 6.8 There exists 0 < r1 such that for each |ξ′| ≤ r1 there hold the following statements.
Let λ ∈ {λ : |λ| = 3

4q1}. Then (λ−Bξ′)
−1 is expanded as

(λ−Bξ′)
−1 = (λ−B0)

−1
∞∑

N=0

{(
n−1∑
j=1

ξjB
(1)
j +

n−1∑
j,k=1

ξjξkB
(2)
jk )(λ−B0)

−1}N ,

in L(Yper).

Proof. Let |ξ′| ≤ r1 where r1 was given in Theorem 6.3. Let us rewrite (λ−Bξ′) as

(λ−Bξ′) =

I − (

n−1∑
j=1

ξjB
(1)
j +

n−1∑
j,k=1

ξjξkB
(2)
jk )(λ−B0)

−1

 (λ−B0).

For f ∈ Yper there hold

|B(1)
j (t)(λ−B0(t))

−1f(t)|X0 ≤ C|(λ−B0(t))
−1f(t)|H1 ,

|B(2)
jk (λ−B0(t))

−1f(t)|X0 ≤ C|Q̃(λ−B0(t))
−1f(t)|2,

(6.12)

for a.a. t ∈ JT . Using Corollary 6.7, we take r1 suitably smaller so that for |ξ′| ≤ r1 there exists the Neumann
series expansion of (λ−Bξ′)

−1 on Yper. □

Now, let us consider the adjoint problem.

Definition 6.9 We define function v
(0)∗
ξ′ (s) as

v
(0)∗
ξ′ (s) = e−λξ′ (T−s)Û∗

ξ′(s, T )u
(0)∗
ξ′ .

Analogously to Lemma 6.2 we see that function v
(0)∗
ξ′ ∈ Cper(JT ;H

1 × H1
0 ) ∩ L2

per(JT ;H
1 × H2

∗ ) ∩
H1

per(JT ;X0) and it satisfies

−∂sv + L̂∗
ξ′(s)v = −λξ′v,

for a.a. s ∈ JT .
We have the analogue of Theorem 6.3 for (λ−B∗

ξ′)
−1.

Theorem 6.10 There exists 0 < r1 ≤ r0 and q1 > 0 such that for each |ξ′| ≤ r1 there hold 0 ≤ −Reλξ′ <
q1
2

and the following statements.
Let 1 ≤ k ≤ m and λ ∈ {λ : Reλ < q1}\{−λξ′}. For every f ∈ Y k

per it holds
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(λ−B∗
ξ′)

−1f ∈
[ k2 ]∩
j=0

Cj
per(JT ;H

k−2j ×Hk−2j
∗ ),

ϕ ∈
[ k2 ]∩
j=0

Hj+1
per (JT ;H

k−2j), w ∈
[ k+1

2 ]∩
j=0

Hj
per(JT ;H

k+1−2j
∗ ).

Furthermore, there holds an estimate

[ k2 ]∑
j=0

|∂j
su(s)|2Hk−2j +

∫ T

s

[ k−1
2 ]∑

j=0

|∂j+1
z u|2Hk−2j×Hk−1−2j + |∂[

k+2
2 ]

z ϕ|2
H

k−2[ k2 ]
+ |u|2Hk×Hk+1dz

≤ C{
[ k2 ]−1∑
j=0

|∂j
sf(T )|2Hk−2(j+1) +

∫ T

0

[ k2 ]∑
j=0

|∂j
zf |2Hk−2j×Hk−1−2jdz},

for s ∈ JT uniformly in λ ∈ {λ : |λ| = 3
4q1}. Here u = T (ϕ,w) = (λ−B∗

ξ′)
−1f and

∑[ k2 ]−1

j=0 |∂j
t f(T )|2Hk−2(j+1) =

0 when k = 1.

Proof. Proof follows the same steps as the proof of Theorem 6.3. In the case k = 1 we use Theorem 4.9
(k = 1) and Proposition 3.5 (ii). In the case k = 2 we use Theorem 4.9 (k = 2) and Lemma 5.6. The rest of
the proof is analogous to the proof of Theorem 6.3. □

Using Proposition 3.5 (ii) and Theorem 6.10 we can show the following analogues of Lemma 6.5 and
Theorem 6.6 for the adjoint problem.

Theorem 6.11 For each ξ′ with |ξ′| ≤ r1 there hold the following statements.
−λξ′ is the simple eigenvalue of B∗

ξ′ on Y m
per and for any eigenfunction ue = T (ϕe, we) of Bξ′ associated

with −λξ′ there holds

ue ∈
[ k2 ]∩
j=0

Cj
per(JT ;H

k−2j ×Hk−2j
∗ ),

ϕe ∈
[ k2 ]∩
j=0

Hj+1
per (JT ;H

k−2j), we ∈
[ k+1

2 ]∩
j=0

Hj
per(JT ;H

k+1−2j),

for all 1 ≤ k ≤ m and we have an estimate

[ k2 ]∑
j=0

|∂j
sue(s)|2Hk−2j +

∫ T

s

[ k−1
2 ]∑

j=0

|∂j+1
z ue|2Hk−2j×Hk−1−2j + |∂[

k+2
2 ]

z ϕe|22 + |ue|2Hk×Hk+1dz ≤ Ck,

for t ∈ JT .

Proof of Proposition 3.9 (i), (ii). As for (i), Lemma 6.5 and Theorem 6.6 show that −λξ′ is simple
eigenvalue of Bξ′ on Y m

per. Let f ∈ Y k
per and λ ∈ {λ : Reλ < q1}\{−λξ′}. Then by Theorem 6.3

(λ−Bξ′)
−1f ∈ Y k

per.

This concludes the proof of (i).
As for (ii), Theorem 6.11 shows that −λξ′ is the simple eigenvalue of B∗

ξ′ on Y m
per. Let f ∈ Y k

per and

λ ∈ {λ : Reλ < q1}\{−λξ′}. Then by Theorem 6.10

(λ−Bξ′)
−1f ∈ Y k

per.

This concludes the proof of (ii). □

34



Let B∗
ξ′ be denoted by

B∗
ξ′ = B∗

0 +
n−1∑
j=1

ξjB
(1)∗
j +

n−1∑
j,k=1

ξjξkB
(2)∗
jk .

Here

B̂∗
0(s) = −∂sIn+1 +


0 νγ2

P ′(ρp)
(∂2

xn
v1p(s))

Te′1 −γ2∂xn(ρp · )

0 − ν
ρp
∂2
xn
In−1 0

−∂xn

(
P ′(ρp)
γ2ρp

·
)

∂xnv
1
p(s)

Te′1 −ν+ν̃
ρp

∂2
xn

 ,

and

B
(1)∗
j (s) = −i


v1p(s)δ1j γ2ρp

Te′j 0

P ′(ρp)
γ2ρp

e′j v1p(s)δ1jIn−1
ν̃
ρp
∂xne

′
j

0 ν̃
ρp
∂xn

Te′j v1p(s)δ1j

 , B
(2)∗
jk = B

(2)
jk , j, k = 1, . . . , n− 1.

There holds following result analogous to Lemma 6.8.

Lemma 6.12 There exists 0 < r1 such that for each |ξ′| ≤ r1 there hold the following statements.
Let λ ∈ {λ : |λ| = 3

4q1}. Then (λ−B∗
ξ′)

−1 is expanded as

(λ−B∗
ξ′)

−1 = (λ−B∗
0)

−1
∞∑

N=0

{(
n−1∑
j=1

ξjB
(1)∗
j +

n−1∑
j,k=1

ξjξkB
(2)∗
jk )(λ−B∗

0)
−1}N ,

in L(Yper).

In the rest of this section let |ξ′| ≤ r1 where r1 > 0 is such that all previous results in this section hold
true. We introduce eigenprojections for Bξ′ and B∗

ξ′ .

Definition 6.13 The eigenprojections for Bξ′ and B∗
ξ′ associated with −λξ′ and −λξ′ , respectively, are

defined as follows

Π(ξ′) =
1

2πi

∫
Γ

(λ−Bξ′)
−1dλ,

Π∗(ξ′) =
1

2πi

∫
Γ

(λ−B∗
ξ′)

−1dλ,

where Γ = {λ : |λ| = 3
4q1} and Γ is positively oriented.

Definition 6.14 We define functions ũξ′ and ũ∗
ξ′ in the following way:

ũξ′ = Π(ξ′)u(0) and ũ∗
ξ′ = Π(ξ′)u(0)∗.

Proposition 6.15 The following statements holds true.

(i) ũξ′ and ũ∗
ξ′ are eigenfunctions of Bξ′ and B∗

ξ′ for eigenvalues −λξ′ and −λξ′ , respectively.

(ii) ũξ′ and ũ∗
ξ′ can be expanded as

ũξ′ = u(0) + iξ′ · ũ(1) + |ξ′|2ũ(2)(ξ′),

ũ∗
ξ′ = u∗(0) + iξ′ · ũ∗(1) + |ξ′|2ũ∗(2)(ξ′),

and

ũξ′ , ũ
∗
ξ′ , u

(0), u(0)∗, ũ(1), ũ(1)∗, ũ(2)(ξ′), ũ(2)∗(ξ′),

have the regularity (6.6) with k = m. Moreover, we have estimate
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sup
z∈JT

[m2 ]∑
j=0

|∂j
zu(z)|2Hm−2j +

∫ T

0

[m−1
2 ]∑

j=0

|∂j+1
z u|2Hm−2j×Hm−1−2j + |∂[

m+2
2 ]

z Q0u|22 + |u|2Hm×Hm+1dz ≤ C,

for a constant C > 0 depending on r1 and u ∈ {ũξ′ , ũ
∗
ξ′ , ũ

(2)(ξ′), ũ(2)∗(ξ′)}.

(iii)

⟨ũξ′(t), ũ
∗
ξ′(t)⟩ = C(ξ′) ≥ 1

2
,

for t ∈ JT , where C(ξ′) does not depend on t.

Proof. (i) is obvious from definition.
As for (ii), from Lemma 6.8 and definition of Π(ξ′) we see that ũξ′ can be expanded as

ũξ′ = u(0) + iξ′ · ũ(1) + |ξ′|2ũ(2)(ξ′),

where

u(0) =
1

2πi

∫
Γ

(λ−B0)
−1u(0)dλ, ũ

(1)
j =

1

2πi

∫
Γ

(λ−B0)
−1(−i)B

(1)
j (λ−B0)

−1u(0)dλ,

and

ũ(2)(ξ′) =
1

2πi

∫
Γ

(λ−B0)
−1R(2)(λ, ξ′)dλ,

with

|ξ′|2R(2)(λ, ξ′) =
n−1∑
j,k=1

ξjξkB
(2)
jk (λ−B0)

−1u(0) +
∞∑

N=2

{(
n−1∑
j=1

ξjB
(1)
j +

n−1∑
j,k=1

ξjξkB
(2)
jk )(λ−B0)

−1}Nu(0). (6.13)

Regularity (6.6) with k = m for ũξ′ , ũ
∗
ξ′ follows from (i) and Theorem 6.6. Since ũξ′ |ξ′=0 = u(0), we obtain

by Theorem 6.6 that u(0) and u(0)∗ has the regularity (6.6) with k = m. Next, we show the regularity for

functions ũ(1) = (ũ
(1)
1 , . . . , ũ

(1)
n−1) and ũ(2)(ξ′). From Theorem 6.6 we have

u(0) ∈
[m2 ]∩
j=0

Cj
per(JT ;H

m−2j ×Hm−2j
∗ ).

Since (λ−B(0))−1u(0) = 1
λu

(0), we see that

B
(1)
j (λ−B(0))−1u(0) =

1

λ
B

(1)
j u(0) ∈ Y m

per.

So Theorem 6.3 gives us the desired regularity of ũ(1). Regularity of ũ(2)(ξ′) simply follows from the regularity
of ũξ′ , u

(0) and ũ(1). Estimates uniform in |ξ′| ≤ r1 follow from Theorem 6.6 and (6.12), (6.13). Results for
ũ∗
ξ′ and its expansion holds analogously from Lemma 6.12 and Theorem 6.10. This concludes (ii).
As for (iii), we calculate

−⟨λξ′ ũξ′ , ũ
∗
ξ′⟩ = ⟨∂tũξ′ + L̂ξ′(t)ũξ′ , ũ

∗
ξ′⟩ = ⟨∂tũξ′ , ũ

∗
ξ′⟩+ ⟨ũξ′ , L̂

∗
ξ′(t)ũ

∗
ξ′⟩

= ∂t⟨ũξ′ , ũ
∗
ξ′⟩ − ⟨ũξ′ , ∂tũ

∗
ξ′⟩+ ⟨ũξ′ , L̂

∗
ξ′(t)ũ

∗
ξ′v⟩ = ∂t⟨ũξ′ , ũξ′⟩ − ⟨ũξ′ , λξ′ ũ

∗
ξ′⟩.

Therefore
∂t⟨ũξ′(t), ũ

∗
ξ′(t)⟩ = 0,

for t ∈ JT and the inner product is independent of time. From expansions, estimates in (ii) and Lemma 5.1
we see that

⟨ũξ′(t), ũ
∗
ξ′(t)⟩ = ⟨u(0)(t), u∗(0)⟩+O(ξ′) = 1 +O(ξ′),

uniformly for t ∈ JT . (iii) is proved by taking r1 > 0 smaller if necessary.
□
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Proof of Proposition 3.9 (iii). Thanks to Proposition 6.15 (iii) we can define functions uξ′ and u∗
ξ′ as

follows

uξ′ = ũξ′ , u∗
ξ′ =

1

⟨ũξ′ , ũ∗
ξ′⟩

ũ∗
ξ′ .

Properties of uξ′ and u∗
ξ′ follow from Proposition 6.15. This concludes the proof.

□

7 Proofs of main theorems

In this section we give proofs of Theorems 3.12 - 3.16. First let us deduce properties of Q (t) and P (t) in
Theorems 3.18 and 3.19.

Proof of Theorem 3.18 All properties of Q (t) are obtained by straightforward calculations from proper-
ties of uξ′(·, t) stated in Proposition 3.9 (iii). Expansion of Q (t) follows from the one of uξ′(·, t) as

Q (1)
(t)σ = (F−1{χ̂1σ̂})u(1)(·, t),

Q (2)
(t)σ = F−1{−χ̂1σ̂u

(2)(ξ′, ·, t)}.

□

Proof of Theorem 3.19 All properties of P (t) are obtained by straightforward calculations from proper-
ties of u∗

ξ′(·, t) stated in Proposition 3.9 (iii). Expansion of P (t) follows from the one of u∗
ξ′(·, t) as

P (0)
u = F−1{χ̂1⟨û, u∗(0)⟩} = F−1{χ̂1[Q0û]},

P (1)
(t)u = F−1{χ̂1⟨û, u∗(1)(t)⟩},

P (2)
(t)u = F−1{−χ̂1⟨û, u∗(2)(ξ′, t)⟩}.

As for (v), since λξ′ = −iκ0ξ1 − κ1ξ
2
1 − κ′′|ξ′′|2 + O(|ξ′|3), we see from properties of Fourier transform

and P (t) that for q = 0, 1, 2 we can calculate

∥e(t−s)ΛP (q)
(s)∂k

x′u∥22 ≤ C

∫
Rn−1

χ̂1(ξ
′)2|ξ′|2ke−(κ1|ξ1|2+κ′′|ξ′′|2)(t−s)|⟨û, u∗(q)(s)⟩|2dξ′.

Let 1 ≤ p ≤ 2, then

|⟨û, u∗(q)(s)⟩|2 ≤ C|û(ξ′)|2p.

Furthermore, let 2 ≤ s ≤ ∞ and 1
p + 1

s = 1, then∫
Rn−1

χ̂1(ξ
′)2|ξ′|2ke−(κ1|ξ1|2+κ′′|ξ′′|2)(t−s)|û(ξ′)|2pdξ′

≤ C∥χ̂1(ξ
′)2|ξ′|2ke−(κ1|ξ1|2+κ′′|ξ′′|2)(t−s)∥

L
s

s−2 (Rn−1)
∥|û|p∥2Ls(Rn−1)

≤ C

 ∥u∥2p,

(t− s)−(n−1)( 1
p−

1
2 )−k∥u∥2p,

≤ C(1 + t− s)−(n−1)( 1
p−

1
2 )−k∥u∥2p,

(7.1)

for 1 ≤ p ≤ 2. The second estimate in (v) is obtained in the same way as (7.1).
□

Proof of Theorem 3.12 As for (i), it follows from computation below:

F {P (t)(∂t + L(t))u(t)} = χ̂1⟨(∂t + L̂ξ′(t))u(t), u
∗
ξ′(t)⟩uξ′ = χ̂1∂t(⟨u(t), u∗

ξ′(t)⟩uξ′)

−χ̂1⟨u(t), ∂tu∗
ξ′(t)⟩uξ′ + χ̂1⟨u(t), L̂∗

ξ′(t)u
∗
ξ′(t)⟩uξ′ − χ̂1⟨u(t), u∗

ξ′(t)⟩∂tuξ′

= χ̂1∂t(⟨u(t), u∗
ξ′(t)⟩uξ′) + χ̂1⟨u(t), u∗

ξ′(t)⟩(−∂t − λξ′)uξ′
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= χ̂1(∂t + L̂ξ′(t))(⟨u(t), u∗
ξ′(t)⟩uξ′) = F {(∂t + L(t))P (t)u(t)},

and

F {P (t)(∂t + L(t))u(t)} = χ̂1⟨(∂t + L̂ξ′(t))u(t), u
∗
ξ′(t)⟩uξ′ = χ̂1∂t⟨u(t), u∗

ξ′(t)⟩uξ′

−χ̂1⟨u(t), ∂tu∗
ξ′(t)⟩uξ′ + χ̂1⟨u(t), L̂∗

ξ′(t)u
∗
ξ′(t)⟩uξ′

= χ̂1(∂t⟨u(t), u∗
ξ′(t)⟩ − λξ′⟨u(t), u∗

ξ′(t)⟩)uξ′ = F {Q (t)(∂t − Λ)P (t)u(t)}.

As for (ii), since U(t, s) satisfies ∂tU(t, s) + L(t)U(t, s) = 0, we have from (i) that

0 = (∂t + L(t))P (t)U(t, s) = Q (t)[(∂t − Λ)P (t)U(t, s)].

Therefore,
P (t)U(t, s) = e(t−s)ΛP (s)U(s, s) = e(t−s)ΛP (s).

We proved the equation in (ii).
Next, let us show the estimate in (ii). Using Theorem 3.18 we see that

∥∂j
t ∂

k
x′∂l

xn
P (t)U(t, s)u∥2 ≤ C

j∑
p=0

∥(∂j−p
t ∂l

xn
Q (t))∂j

t e
(t−s)ΛP (s)∂k

x′u∥2 ≤ C∥e(t−s)ΛP (s)∂k
x′u∥2.

Theorem 3.19 (v) concludes the proof of (ii).
As for (iii), let τ ∈ [0, T ) is such that s+ τ is integer multiple of T . Using (ii) we get

(I − P (t))U(t, s)u = U(t, s)(I − P (s))u = U(t, s+ τ)U(s+ τ, s)(I − P (s))u

= U(t, s+ τ)(I − P (s+ τ))U(s+ τ, s)u.

Since P (t) = P (t+ T ) we get

U(t, s)(I − P (s))u = U(t, s+ τ)(I − P (0))U(s+ τ, s)u. (7.2)

From definition we have relation P (0)v = F−1{χ̂1⟨v̂, u∗
ξ′(0)⟩uξ′(0)}.

Since uξ′(t) is eigenfunction for simple eigenvalue −λξ′ there holds true that uξ′(0) is eigenfunction of

Ûξ′(T, 0) for µξ′ = eλξ′T (see the proof of Lemma 6.5). Analogous result holds true for u∗
ξ′(0).

Therefore, there holds

Π̂ξ′uξ′(0) = uξ′(0), Π̂∗
ξ′u

∗
ξ′(0) = u∗

ξ′(0).

Since the eigenspace is one-dimensional there exists C(ξ′, ·) ∈ C such that

Π̂ξ′v = C(ξ′, v)uξ′(0), v ∈ X0.

Taking inner product with u∗
ξ′(0) we express C(ξ′, ·) as

C(ξ′, v) = ⟨Π̂ξ′v, u
∗
ξ′(0)⟩ = ⟨v, Π̂∗

ξ′u
∗
ξ′(0)⟩ = ⟨v, u∗

ξ′(0)⟩.

Thus we arrive at relation

χ̂1Π̂ξ′v = χ̂1⟨v, u∗
ξ′(0)⟩uξ′(0) = P̂ (0)v.

Let us decompose U(t, s+ τ)(I − P (0)) as follows

U(t, s+ τ)(I − P (0))v = F−1
(χ̂1Ûξ′(t, s+ τ)(I − Π̂ξ′)v̂ + (1− χ̂1)Ûξ′(t, s+ τ)v̂),

where v = U(s+ τ, s)u.
Using estimate in Proposition 3.5 (i) we obtain

∥F−1
(χ̂1Ûξ′(t, s+ τ)(I − Π̂ξ′)v̂)∥H1(Ω) ≤ e−d(t−s−τ)∥v∥H1(Ω)×L2(Ω), (7.3)

for a positive constant d > 0 and t− s− τ > T .
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Moreover, we obtain from [1, Propositions 4.1, 4.2 and Theorem 3.1]

∥F−1
((1− χ̂1)Ûξ′(t, s+ τ)v̂)∥H1(Ω) ≤ Ce−d(t−s−τ){∥v∥H1(Ω)×L2(Ω) + ∥∂x′Q̃v∥L2(Ω)}, (7.4)

for t− s− τ ≥ T and a positive constant d.
Now we are ready to show the exponential decay estimate. Using (7.2), (7.3), (7.4) and [1, Theorem 3.1]

we have

∥U(t, s)(I − P (s))u∥H1(Ω) = ∥U(t, s+ τ)(I − P (0))U(s+ τ, s)u∥H1(Ω)

≤ Ced(t−s−τ)(∥U(s+ τ, s)u∥H1(Ω)×L2(Ω) + ∥∂x′Q̃U(s+ τ, s)u∥L2(Ω))

≤ Ced(t−s)(∥u∥H1(Ω)×L2(Ω) + ∥∂x′w∥L2(Ω)),

for t− s ≥ T + τ . Using [1, Theorem 3.1] one can obtain

∥U(t, s)(I − P (s))u∥H1(Ω) ≤ C(∥u∥H1(Ω)×L2(Ω) + ∥∂x′w∥L2(Ω)),

for T ≤ t− s ≤ T + τ . This completes the proof.
□

Proof of Theorem 3.13 Equations in (i) and (ii) can be obtain analogously as in the proof of Theorem
3.12. Regularity follows from Theorems 3.18 and 3.19.

□

Proof of Theorem 3.16 (i) is well-known so we omit the proof. As for (ii), from Theorem 3.19 we have a
relation

e(t−s)ΛP (s) = e(t−s)ΛP (0)
+

n−1∑
j=1

∂xje
(t−s)ΛP (1)

j (s) + ∆′e(t−s)ΛP (2)
(s),

and e(t−s)ΛP (0)
u = e(t−s)ΛF−1{[χ̂1Q0û]}.

We see that

F {e(t−s)ΛP (0)
u−H (t− s)σ} = (χ̂1 − 1)e−(iκ0ξ1+κ1ξ

2
1+κ′′|ξ′′|2)(t−s)σ̂

+χ̂1(e
λξ′ (t−s) − e−(iκ0ξ1+κ1ξ

2
1+κ′′|ξ′′|2)(t−s))σ̂.

Since λξ′ + (iκ0ξ1 + κ1ξ
2
1 + κ′′|ξ′′|2) = O(|ξ′|3), we have

|eλξ′ (t−s) − e−(iκ0ξ1+κ1ξ
2
1+κ′′|ξ′′|2)(t−s)| = |e−(iκ0ξ1+κ1ξ

2
1+κ′′|ξ′′|2)(t−s)(e(λξ′+iκ0ξ1+κ1ξ

2
1+κ′′|ξ′′|2)(t−s) − 1)|

≤ C|ξ′|3(t− s)e−
min{κ1,κ′′}

4 |ξ′|2(t−s).

Using above estimate we obtain

∥∂k
x′(e(t−s)ΛP (0)

u−H (t− s)σ)∥2 ≤ C(t− s)−
n−1
2 ( 1

p−
1
2 )−

k+1
2 ∥σ∥p,

1 ≤ p ≤ 2, cf. (7.1). Combining this with estimates from Theorem 3.19 (v) we conclude the first estimate in
(ii). The second estimate in (ii) follows analogously.

As for (iii), since

Q (t)e(t−s)ΛP (s)u−Q 0
(t)H (t− s)σ

= (Q (t)−Q 0
(t))e(t−s)ΛP (s)u+Q 0

(t)(e(t−s)ΛP (s)u−H (t− s)σ),

the estimate follows from (ii) and Theorem 3.19 (v).
□
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8 Appendix

Proof of Lemma 5.4. Since u(0)∗(xn) ∈ H1 × H2
∗ is T -time periodic solution of (3.5), we see that 1 is

eigenvalue of monodromy operator Û∗
0 (0, T ). As the next step we show some decay estimates for Û∗

0 (s, 0).

We decompose L̂∗
0(s) as

L̂∗
0(s) = L̂∗

1 + Ĉ∗(s),

L̂∗
1 = L̂∗

0(s)− Ĉ∗(s), Ĉ∗(s) =


0 νγ2

P ′(ρp)
(∂2

xn
v1p(s))

Te′1 0

0 0 0

0 ∂xnv
1
p(s)

Te′1 0

 .

Here, note that ⟨L̂1u, v⟩ = ⟨u, L̂∗
1v⟩, u, v ∈ H1 × H2

∗ (see [1]). By properties of solutions of L̂1u = 0,

Q̃u|xn=0,1 = 0 and L̂∗
1u = 0, Q̃u|xn=0,1 = 0 it is easy to show that function T (ϕ(0), 0, 0) is an eigenfunction

for simple eigenvalue 0 of both L̂1 and L̂∗
1. Moreover, one can show that there exists constant γ0 > 0 such

that if γ ≥ γ0 then
σ(−L̂1) ∪ σ(−L̂∗

1) ⊂ {µ ∈ C : π ≥ |arg(µ+ η0)| > θ0},

for η0 > 0 and θ ∈ (π2 , π) and there hold the same decay estimates for semigroups generated by L̂1 and L̂∗
1,

e.g.

|e(s−t)L̂∗
1f |X0 ≤ Ced0(s−t)|f |X0 ,

|∂xnQ̃e(s−t)L̂∗
1f |2 ≤ C

(t−s)
1
2
ed0(s−t)|f |X0 ,

(8.1)

for a positive constant d0, s < t and functions f ∈ {g ∈ X0 : [Q0g] = 0}. (See [1, Lemma 5.6, (5.5), (5.6)])

Operator Π̂∗
0 defined as

Π̂∗
0u = ⟨u, u(0)(0)⟩u(0)∗,

satisfies by Propositions 4.1 and 5.2

Û∗
0 (0, T )Π̂

∗
0 = Π̂∗

0Û
∗
0 (0, T ) = Π̂∗

0.

Next let us show that

|Û∗
0 (s, 0)u0|X0 ≤ Ceds|u0|X0 , (8.2)

and
|s| 12 |∂xnQ̃Û∗

0 (s, 0)u0|2 ≤ Ceds|u0|X0 , (8.3)

for u0 ∈ X0 satisfying Π̂∗
0u0 = 0 and a positive constant d.

To do so we first introduce operator Π̂∗
0(s),

Π̂∗
0(s)u = ⟨u, u(0)(s)⟩u(0)∗, s ∈ R.

Let u(s) = T (ϕ(s), w(s)) = Û∗
0 (s, 0)u0 and Π̂∗

0u0 = 0. Since

∂s(Π̂
∗
0(s)u(s)) = ∂s⟨Û∗

0 (s, 0)u0, u
(0)(s)⟩u(0)∗

= (⟨L̂∗
ξ′(s)Û

∗
0 (s, 0)u0, u

(0)(s)⟩+ ⟨Û∗
0 (s, 0)u0,−L̂ξ′(s)u

(0)(s)⟩)u(0)∗ = 0,

we have that

Π̂∗
0(s)u(s) = 0, (8.4)

for all s ≤ 0. Condition (8.4) is equivalent to

[ϕ(s)] = −(w1(s),
1

α0
w(0),1(s)ρp). (8.5)

From (8.5) we obtain by differentiation in s that

∂s[ϕ(s)] = −(∂sw
1(s),

1

α0
w(0),1(s)ρp)− (w1(s),

1

α0
∂sw

(0),1(s)ρp).
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Using equation for u and w(0),1 we get

∂s[ϕ(s)] = (w1(s),
νγ2

P ′(ρp)
∂2
xn
v1p(s)).

Since w1(s) = esνAw1
0 we have

|w1(s)|2 ≤ Ce
ν
2 s|w1

0|2, |∂xnw
1(s)|2 ≤ C

1

|s| 12
e

ν
2 s|w1

0|2,

where A is defined by (5.1). Therefore, we get

|[ϕ(s)]| ≤ Ce
ν
2 s|w1

0|2, |∂s[ϕ(s)]| ≤ Ce
ν
2 s|w1

0|2.

Let us decompose ϕ(s) as

ϕ(s) = [ϕ(s)] + ϕ2(s).

Thus, [ϕ2(s)] = 0 and

−∂s

 ϕ2(s)

w′(s)

wn(s)

+ L̂∗
1

 ϕ2(s)

w′(s)

wn(s)

 =

 f0(s)

0

fn(s)

 . (8.6)

Here, f(s) = T (f0(s), 0, fn(s)) and(
f0(s)

fn(s)

)
=

 −νγ2∂2
xn

v1
p(s)

P ′(ρp)
w1(s) + ∂s[ϕ(s)]

−∂xnv
1
p(s)w

1(s) + [ϕ(s)]∂xn

(
P ′(ρp)
γ2ρp

)
 .

Solution u2 = T (ϕ2, w) of (8.6) can be expressed as

u2(s) = esL̂
∗
1 ũ0 +

∫ 0

s

e(s−z)L̂∗
1f(z)dz.

Here, ũ0 = T (ϕ0 − [ϕ0], w0). From (8.6) and computations above it is straightforward to see

[Q0f ] = [f0] = 0, |f(s)|X0 ≤ C
1

|s| 12
e

ν
2 s|w1

0|2,

and thus, by (8.1),

|u2(s)|X0 ≤ Ced0s|ũ0|X0 +

∫ 0

s

ed0(s−z)|f(z)|X0dz ≤ Ceds|u0|X0 ,

with 0 ≤ d < 1
2 min{ ν

2 , d0}. Now it is easy to see that (8.2) holds true for u0 ∈ X0, Π̂
∗
0u0 = 0. (8.3) is proved

in analogous way.
Now, let us show that 1 is simple. First, we show that for any v ∈ X0, v ̸= 0 that satisfies

(Û∗
0 (0, T )− 1)v = 0, (8.7)

there exists constant C ∈ R such that v = Cu(0)∗. Let us decompose v using Π̂∗
0 as

v = Cu(0)∗ + v1, (I − Π̂∗
0)v1 = v1.

Since (8.7) is equivalent to the fact that Û∗
0 (s, T )v is time-periodic solution, Û∗

0 (s, T )v1 must also be time-
periodic solution. But since

Π̂∗
0v1 = 0,

by exponentional decay estimate (8.2) and periodicity we get v1 = 0.
Furthermore, let us suppose that there exists v ∈ X0 such that

(Û∗
0 (0, T )− 1)v = u(0)∗.

Since Q′u(0)∗ = 0 we have Q′Û∗
0 (0, T )v = Q′v. Because Q′Û∗

0 (s, t) = e−(t−s)AQ′ is not time periodic we have

Q′v = 0. Note that Q′Û∗
0 (s, T )v = 0 for all s ∈ JT . Taking [Q0·] on both sides we get
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[Q0Û
∗
0 (0, T )v]− [Q0v] =

γ2

α0
.

Since Q′v = 0 we have that ϕ = Q0Û
∗
0 (s, T )v satisfies

−∂sϕ− γ2∂xn(ρpw
n) = 0,

and therefore ∂s[ϕ] = 0. So [ϕ(T )] = [ϕ(0)], that is [Q0Û
∗
0 (0, T )v]− [Q0v] = 0. Since 0 ̸= γ2

α0
we showed that

v can not exist. This proves that 1 is simple eigenvalue.
Now, we show (5.4). Let us compute spectral radius of Û∗

0 (0, T ) on (I − Π̂∗
0)(H

1 ×H1
0 ). Using (8.2) and

(8.3) we have

r(Û∗
0 (0, T )|(I−Π̂∗

0)(H
1×H1

0 )
) = r((I − Π̂∗

0)Û
∗
0 (0, T )(I − Π̂∗

0)) = lim
n→∞

|((I − Π̂∗
0)Û

∗
0 (0, T )(I − Π̂∗

0))
n|

1
n

L(X0,H1×H1
0 )

= lim
n→∞

|(I − Π̂∗
0)Û

∗
0 (0, nT )(I − Π̂∗

0)|
1
n

L(X0,H1×H1
0 )

≤ lim
n→∞

(C(1 +
1√
nT

))
1
n e−dT = e−dT < 1.

Therefore, we showed (5.4).
□

Proof of Lemma 5.5. To investigate spectrum of Û∗
ξ′(0, T ) we follow the same steps as in [1, Proposition

5.10]. Let us denote M̂∗
ξ′(s) = L̂∗

ξ′(s)− L̂∗
1. We define

V̂ ∗
ξ′(s, t) = Û∗

ξ′(s, t)− Û∗
0 (s, t).

Since

Û∗
ξ′(s, t)u0 = e(s−t)L̂∗

1u0 −
∫ t

s

e(s−z)L̂∗
1M̂∗

ξ′(z)Û
∗
ξ′(z, t)u0dz,

it is straightforward to see that v(s) = V̂ ∗
ξ′(s, t)u0 is the solution of

−∂sv + L̂∗
0(s)v = −(M̂ξ′(s)− M̂0(s))Û

∗
ξ′(s, t)u0, v|s=t = 0. (8.8)

Let us define operator Ŝ∗
ξ′V as

(Ŝ∗
ξ′V )(s)u0 = −

∫ T

s

Û∗
0 (s, z)(M̂ξ′(z)− M̂0(z))V (z)u0dz, s ∈ JT ,

for u0 ∈ H1 ×H1
0 . Here V ∈ L(H1 ×H1

0 , C(JT ;H
1 ×H1

0 )) is defined as

V : u0 ∈ H1 ×H1
0 → V (·)u0 ∈ C(JT ;H

1 ×H1
0 ).

We first estimate Û∗
0 (s, t)u0. Observe that

|e(s−t)L̂1∗f |X0 ≤ Ced0(t−s)|f − [Q0f ]u
(0)∗|X0 + |[Q0f ]u

(0)∗|X0 . (8.9)

Here, we used (8.1) and the fact esL̂
∗
1u(0)∗ = u(0)∗. Since

Û∗
0 (s, t)u0 = e(s−t)L̂∗

1u0 −
∫ t

s

e(s−z)L̂∗
1M̂∗

0 (z)Û
∗
0 (z, t)u0dz

= e(s−t)L̂∗
1u0 −

∫ t

s

e(s−z)L̂∗
1M̂∗

0 (z)e
(z−t)νAw1

0e1dz,

we see from (8.9) that

|Û∗
0 (s, t)u0|X0 ≤ Ced0(s−t)|(u0 − [Q0u0]u

(0)∗)|X0 + |[Q0u0]e
(s−t)L̂∗

1u(0)∗|X0

+

∫ t

s

ed0(s−z)|(M̂∗
0 (z)e

(z−t)νAw1
0e1 − [Q0M̂

∗
0 (z)e

(z−t)νAw1
0e1]u

(0)∗)|X0dz

+

∫ t

s

|e(s−z)L̂∗
1u(0)∗[Q0M̂

∗
0 (z)e

(z−t)νAw1
0e1]|X0dz ≤ C{ed(s−t)|u0|X0 + |u0|2},
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for a positive constant d and u0 ∈ X0. Similarly we can obtain estimate

|Û∗
0 (s, t)u0|X0 + (t− s)

1
2 |∂xnQ̃Û∗

0 (s, t)u0|2 ≤ C|u0|X0 , (8.10)

for u0 ∈ X0.
From (8.10) we see that Ŝ∗

ξ′ : L(H
1×H1

0 , C(JT ;H
1×H1

0 )) → L(H1×H1
0 , C(JT ;H

1×H1
0 )), and Û∗

ξ′(·, T )
and V̂ ∗

ξ′(·, T ) satisfy

Û∗
ξ′(·, T ), V̂ ∗

ξ′(·, T ) ∈ L(H1 ×H1
0 , C(JT ;H

1 ×H1
0 )).

Therefore, we conclude from (8.8) that

(I − S∗
ξ′)V̂

∗
ξ′(·, T ) = Ŝ∗

ξ′Û
∗
0 (·, T ).

By using estimate in Theorem 4.9 we can show that there exists r0 > 0 such that for |ξ′| ≤ r0 there holds

|Ŝ∗
ξ′ |L(L(H1×H1

0 ,C(JT ;H1×H1
0 )))

< 1 and therefore using Neumann series expansion of Ŝ∗
ξ′ we get formula

V̂ ∗
ξ′(0, T ) =

∞∑
N=1

ŜN
ξ′ Û

∗
0 (0, T ), (8.11)

and |V ∗
ξ′(0, T )|L(H1×H1

0 )
= O(ξ′) (see the proof of [1, Proposition 5.10]).

Let q0 = 3q̃0+1
4 . We see from Lemma 5.4 that there holds resolvent estimate

|(µ− Û∗
0 (0, T ))

−1|L(H1×H1
0 )

≤ C,

with C > 0 uniform with respect to µ ∈ {|µ| > q0} ∩ {|µ− 1| ≥ 1−q̃0
4 }. We calculate

(µ− Û∗
ξ′(0, T )) = (µ− Û∗

0 (0, T ))− V̂ ∗
ξ′(0, T ) = [I − V̂ ∗

ξ′(0, T )(µ− Û∗
0 (0, T ))

−1](µ− Û∗
0 (0, T )).

Therefore, for r0 suitably smaller we see from (8.11) that there holds

(µ− Û∗
ξ′(0, T ))

−1 = (µ− Û∗
0 (0, T ))

−1
∞∑

N=0

[V̂ ∗
ξ′(0, T )(µ− Û∗

0 (0, T ))
−1]N ,

for µ ∈ {|µ| > q0} ∩ {|µ− 1| ≥ 1−q̃0
4 }. We see that {|µ− 1| = 1−q̃0

4 } belongs to resolvent set of Û∗
ξ′(0, T ) for

|ξ′| ≤ r0. In particular,

Π̂∗
ξ′ =

1

2πi

∫
{|µ−1|= 1−q̃0

4 }
(µ− Û∗

ξ′(0, T ))
−1dµ,

is the eigenprojection for the eigenvalues lying inside the circle {|µ − 1| = 1−q̃0
4 }. The continuity of (µ −

Û∗
ξ′(0, T ))

−1 in (µ, ξ′) then implies that dim Range Π̂∗
ξ′ = dim Range Π̂∗

0 = 1. Therefore, we see from Lemma

5.5 that σ(Û∗
ξ′(0, T )) ∩ {µ : |µ− 1| ≤ 1−q̃0

4 } consists of only one simple eigenvalue, say θξ′ . Thus we showed
(5.5) with θξ′ .

Let us denote u
(0)∗
ξ′ the associated eigenfunction satisfying u

(0)∗
ξ′ |ξ′=0 = u(0)∗. We show that θξ′ = µξ′ .

Since

u
(0)
ξ′ |ξ′=0 = u(0)(0) and u

(0)∗
ξ′ |ξ′=0 = u(0)∗,

and u
(0)
ξ′ , u

(0)∗
ξ′ depend continuously on ξ′ we get from Lemma 5.1 that

⟨u(0)
ξ′ , u

(0)∗
ξ′ ⟩ = 1 +O(ξ′).

Taking r0 > 0 suitably smaller we have ⟨u(0)
ξ′ , u

(0)∗
ξ′ ⟩ ̸= 0 for |ξ′| ≤ r0 and we compute

µξ′⟨u(0)
ξ′ , u

(0)∗
ξ′ ⟩ = ⟨µξ′u

(0)
ξ′ , u

(0)∗
ξ′ ⟩ = ⟨Ûξ′(T, 0)u

(0)
ξ′ , u

(0)∗
ξ′ ⟩

= ⟨u(0)
ξ′ , Û

∗
ξ′(0, T )u

(0)∗
ξ′ ⟩ = θξ′⟨u(0)

ξ′ , u
(0)∗
ξ′ ⟩,

i.e.
θξ′ = µξ′ .

This concludes the proof.
□
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Proof of Lemma 6.4. Let us denote

g(t) = ∂tf + (∂tL̂ξ′(t))u.

Since f ∈ Y 3
per it is easy to calculate that g ∈ Yper. Therefore, by Theorem 6.3 in the case k = 1 we see that

ũ = (λ−Bξ′)
−1g satisfies

ũ(t) = eλtÛξ′(t, 0)u1 −
∫ t

0

eλ(t−s)Ûξ′(t, s)g(s)ds,

where

u1 = −(e−λT − Ûξ′(T, 0))
−1

∫ T

0

e−λsÛξ′(T, s)g(s)ds,

since ũ(0) = ũ(T ).
For all v ∈ X0 we calculate

−⟨
∫ t

0

eλ(t−s)Ûξ′(t, s)g(s)ds, v⟩ = −
∫ t

0

⟨g(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩ds.

Furthermore, there holds

−⟨∂sL̂ξ′(s)u(s), e
−λ(s−t)Û∗

ξ′(s, t)v⟩

= ⟨−λu(s) + ∂su(s) + L̂ξ′(s)u(s), L̂
∗
ξ′(s)e

−λ(s−t)Û∗
ξ′(s, t)v⟩ − ∂

∂s ⟨L̂ξ′(s)u(s), e
−λ(s−t)Û∗

ξ′(s, t)v⟩,
(8.12)

and

−⟨∂sf(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩ = − ∂

∂s
⟨f(s), e−λ(s−t)Û∗

ξ′(s, t)v⟩+⟨f(s), (−λ+L̂∗
ξ′(s))e

−λ(s−t)Û∗
ξ′(s, t)v⟩, (8.13)

for a.a. 0 < s < t and for all v ∈ X0. First we show (8.12). Let us for now fix t ∈ (0, T ]. Take h ∈ C∞
0 (0, t)

such that supp h ⊂ [δ0, t− δ0], δ0 > 0. Next we define mollified functions (ρδ ∗ u) ∈ H1(0, t;H1 ×H2
∗ ) with

0 < δ < δ0. Now we can compute

−
∫ t

0

⟨∂sL̂ξ′(s)(ρδ ∗ u)(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩h(s)ds =

∫ t

0

⟨L̂ξ′(s)(ρδ ∗ ∂su)(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩h(s)ds

+

∫ t

0

⟨L̂ξ′(s)(ρδ ∗ u)(s), ∂s(e−λ(s−t)Û∗
ξ′(s, t)v)⟩h(s)ds+

∫ t

0

⟨L̂ξ′(s)(ρδ ∗ u)(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩h′(s)ds

=

∫ t

0

⟨(ρδ∗∂su)(s), L̂∗
ξ′(s)e

−λ(s−t)Û∗
ξ′(s, t)v⟩h(s)ds+

∫ t

0

⟨L̂ξ′(s)(ρδ∗u)(s), (−λ+L̂∗
ξ′(s))e

−λ(s−t)Û∗
ξ′(s, t)v⟩h(s)ds

+

∫ t

0

⟨L̂ξ′(s)(ρδ ∗ u)(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩h′(s)ds.

Since

|L̂∗
ξ′(s)Û

∗
ξ′(s, t)v|X0 ≤ C(t− s)−1|v|X0 ≤ Cδ−1

0 |v|X0 ,

for s ∈ supp h, above computation is rigorous and we can take limit in δ. Taking δ → 0 we obtain

−
∫ t

0

⟨∂sL̂ξ′(s)u(s), e
−λ(s−t)Û∗

ξ′(s, t)v⟩h(s)ds =
∫ t

0

⟨∂su(s)−λu(s)+L̂ξ′(s)u(s), L̂
∗
ξ′(s)e

−λ(s−t)Û∗
ξ′(s, t)v⟩h(s)ds

+

∫ t

0

⟨L̂ξ′(s)u(s), e
−λ(s−t)Û∗

ξ′(s, t)v⟩h′(s)ds,

for all h ∈ C∞
0 (0, t). Therefore, we see that (8.12) holds for a.a. 0 < s < t and for all v ∈ X0. Above

computation is valid for any t ∈ (0, b]. Second, we show (8.13). Let us fix t ∈ (0, b] and take h ∈ C∞
0 (0, t).

We compute
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−
∫ t

0

⟨∂sf(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩h(s)ds =

∫ t

0

⟨f(s), ∂s(e−λ(s−t)Û∗
ξ′(s, t)v)⟩h(s)ds+

∫ t

0

⟨f(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩h′(s)ds

=

∫ t

0

⟨f(s), (−λ+ L̂∗
ξ′(s))e

−λ(s−t)Û∗
ξ′(s, t)v⟩h(s)ds−

∫ t

0

∂

∂s
⟨f(s), e−λ(s−t)Û∗

ξ′(s, t)v⟩h(s)ds,

for all h ∈ C∞
0 (0, t). Therefore, we see that (8.13) holds for a.a. 0 < s < t and for all v ∈ X0. Above

computation is valid for any t ∈ (0, b].
Next, using (8.12) and (8.13) we calculate

−
∫ t

0

⟨g(s), e−λ(s−t)Û∗
ξ′(s, t)v⟩ds =

∫ t

0

⟨∂su(s)− λu(s) + L̂ξ′(s)u(s) + f(s), L̂∗
ξ′(s)e

−λ(s−t)Û∗
ξ′(s, t)v⟩ds

−
∫ t

0

∂

∂s
⟨L̂ξ′(s)u(s) + f(s), e−λ(s−t)Û∗

ξ′(s, t)v⟩ds−
∫ t

0

⟨f(s), λe−λ(s−t)Û∗
ξ′(s, t)v⟩ds

= −
∫ t

0

∂

∂s
⟨L̂ξ′(s)u(s) + f(s), e−λ(s−t)Û∗

ξ′(s, t)v⟩ds−
∫ t

0

⟨f(s), λe−λ(s−t)Û∗
ξ′(s, t)v⟩ds

= −
∫ t

0

∂

∂s
⟨eλ(t−s)Ûξ′(t, s)(L̂ξ′(s)u(s)− λu(s) + f(s)), v⟩ds

= −⟨L̂ξ′(t)u(t)− λu(t) + f(t), v⟩+ ⟨eλtÛξ′(t, 0)(L̂ξ′(0)u0 − λu0 + f(0)), v⟩,

for all v ∈ X0. Therefore, we obtained

−
∫ t

0

e−λ(s−t)Ûξ′(t, s)g(s)ds = −L̂ξ′(t)u(t) + λu(t)− f(t) + eλtÛξ′(t, 0)(L̂ξ′(0)u0 − λu0 + f(0)).

Using this relation at time t = T we get

u1 = (e−λT − Ûξ′(T, 0))
−1e−λT {−L̂ξ′(T )u(T ) + λu(T )− f(T ) + eλT Ûξ′(T, 0)(L̂ξ′(0)u0 − λu0 + f(0))}.

Using relation

(e−λT − Ûξ′(T, 0))
−1Ûξ′(T, 0) = −I + e−λT (e−λT − Ûξ′(T, 0))

−1,

we obtain

u1 = (e−λT − Ûξ′(T, 0))
−1e−λT {−L̂ξ′(T )u(T ) + λu(T )− f(T )} − (L̂ξ′(0)u0 − λu0 + f(0))

+e−λT (e−λT − Ûξ′(T, 0))
−1(L̂ξ′(0)u0 − λu0 + f(0)).

Finally, by periodicity in time we get

u1 = −f(0)− L̂ξ′(0)u0 + λu0,

and thus

ũ(t) = eλtÛξ′(t, 0)u1 + ∂tu(t)− eλtÛξ′(t, 0)u1 = ∂tu(t),

for a.a. t ∈ JT .
□
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10, pp.297-350.

[9] Tanabe, H. (1979). Equations of evolution. Translated from Japanese by N. Mugibayashi and H. Haneda,
Pitman, London, San Francisco.

46



List of MI Preprint Series, Kyushu University

The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Her-
mitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic
decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed
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