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This study of basic growth analysis suggests that the analytic description of agricultural
phenomenon of growth is related to the mathematical phenomenon of symmetry on the
exponential function with base e.

INTRODUCTION

The basic growth analysis was born in English studies of plant production in the
1910s, as shown in many scientific publications, for example the review by Watson
(1952), the paper by Radford (1967) and the book by Hunt (1990). This method was also
applied to the growth analysis of farm animals (Brody, 1945). Methods for analyzing
growth have been developed from the basic one into those using devised functions or
mathematical modeling in order to predict growth curves more precisely by introducing
factors affecting growth (for example, Milthorpe and Moorby, 1979; Parks, 1982; France
and Thornley, 1984). This is one of the reasons why the basic growth analysis has not
been used so frequently of late. However, without knowing why, this method, due to its
simple beauty, still attracts some people who are engaged in agricultural sciences.

The present study was designed to investigate some aspects of basic growth analysis
in relation to symmetric properties of the exponential function with base e.

BASIC GROWTH ANALYSIS

Basic growth function formed using the exponential function with base e
In basic growth analysis, absolute growth rate (AGR) and relative growth rate (RGR)
are considered basic tools. RGR is, however, considered preferable to AGR when compar-
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isons are made between weights that are different each other. Our previous reports also
showed that RGR played an important role when ruminant growth analysis and forage
growth analysis were related (Shimojo et al., 1998a, b, 1999a, b, 2000).
RGR is given by
1 daw

RGR= A €y
where W=weight, ¢t= time, RGR is some constant.

The basic growth function is derived from equation (1) accerding to the following
procedure:

aw
[ ®RGR) dt=] =7,
(RGR)“t+Ci=log. W+C, ,
log.W=C+ (RGR)t

W=(expC)-exp{(RGR) ¢}, @

where C(=C, - C,) is the constant of integration.

When W=W, at t=0 in equation (2), expC=W, because exp{(RGR)-0}=1. In case of C=0
(C,=C,), Wy=exp(0)=1 and W will show relative values when Wy,=1. Therefore, C#+0 (C,
+#+(C,) is required in order that W, and W take values of actual weight. This is considered
an agricultural significance of integration constant on the basic growth function. Thus,

W=W,*exp{(RGR) -t} G)

where W, is the value at t=0.
Equation (3) has a form of multiplication. Transforming this into a form of addition
using natural logarithms is given by

log. W=log.[W,-exp{(RGR)-t}]

=log, W,+ (RGR) ¢ ,
therefore,
log"’W; log. We_par. @

This is considered the original of the following equation (5) that is used for calculating
mean RGR over a certain period of time (from ¢, to t,),

log. W, log.W,
to~ty

=mean RGR. 6))

AGR
AGR is given by differentiating equation (3) with respect to t. Thus,
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S d
AGR=-—"-
.7 W)
=%{Wo-exp{(RGR) “t}]

=(RGR) - W, exp{(RGR) ¢} . (6)
Differentiating exp{(RGR) -t} with respect to t gives (RGR)-exp{(RGR) -t}, where the
form of exp{(RGR) - ¢} itself has not been changed.

Increase in weight
The increase in weight from W, to W is given by the definite integral of AGR from 0 to
t. Thus,

W-W= 0 (AGR)dt

= 0’ [(RGR) * W,-exp{(RGR) - t}]dt
[exp{(RGR) -1}]%
~ RGR
=W, exp{(RGR) t}-W, . N

The integral of exp{(RGR) -t} gives the primitive function, exp{(RGR)-t}/(RGR),
without changes in the form of exp{(RGR) -t} itself.

=W, (RGR) -

Maclaurin’s series of exp{(RGR)-t}

The use of Maclaurin’s series (infinite power series) might be expected to show how
the form of exp{(RGR) -t} itself is kept invariant when differentiated or integrated with
respect to t. Maclaurin’s series of exp{(RGR) -t} is given by

= {(RGR)-1}"

exp{(RGR)-t})=1+ Z E—

(RGR) -t n (RGR)?-¢* n

=1t = ol !

Like exp{(RGR)-t}, its Maclaurin’s series is kept invariant when differentiated or
integrated with respect to t, and in addition it shows invariance with respect to the
interchange between RGR and .

Deriving AGR by differentiating Maclaurin’s series of exp{(RGR)-t}
Using (8) the following differentiation is taken up,

=2 1w, .
Pz [Wo exp{(RGR) -#}]

. 24,42 Nefn
= d [Wo.[1+ RGR)-¢ | (RGRY** . (RGRY™t* | ”
dt 1! 2! n!
2. g 3.2 ntl . pn
= ()IRGR+ (RGII?) 14 + (RG;) 13 4 eeeees +£B'q§,% ‘‘‘‘‘‘‘ .Ew ...... } (9)
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There are two discrepancies when infinite power series in the braces of equation (9) is
compared with Maclaurin’s series of exp{(RGR)-t}; the exponent of RGR is greater than
that of ¢ by one and there is a disappearance of 1. These two discrepancies must be
corrected. In order to recover Maclaruin’s series of exp{(RGR)‘t}, an extra RGR in each
term is required to move to the outside of the braces. Thus,

(RGR) -t (RGR)?-¢? n (RGR)" t

P=(RGR)-Wy-| 1+ == + o T s

=(RGR) : W, exp{(RGR) -t}

=AGR. (10)

This shows that AGR results from the event that is required to occur in order to keep the
form of exp{(RGR) -t} itself invariant when W is differentiated with respect to ¢. In brief,
AGR is related to symmetric properties of exp{(RGR) -t} with respect to its differentiation.

Deriving the increase in weight by the definite integral of Maclaurin’s series of
exp{(RGR) 't} from O tot
Using (8) the following integration is taken up,

Q=] I(RGR) W, exp((RGR) 1]}t

2.p2 . . fn
=(RGR)-W,-[ { (RGR) Ly (RG;%) L . (RG;%? o, }dt
=(RGR) - Wy- |- + LRGR) £ 4o (RGRY- ] an
1! 21 7! °

Two discrepancies have occurred when infinite power series in the square brackets of
equation (11) is compared with Maclaurin’s series of exp{(RGR) -¢}; the exponent of RGR
is less than that of t by one and there is a disappearance of 1. These two discrepancies
must be corrected. In order to recover Maclaruin’s series of exp{(RGR)-t}, the following
two events are required to occur. (i) An RGR is required to get back into the square
brackets from the outside. (il) 1 is required to appear according to the equality,
0=1+(~1), a pair appearance of 1 and -1 from 0. Thus,

| (RGR)-¢t | (RGR)*-#2 (RGR)™-t* .
Q=W," + T + o1 doeeenee +_._n~!m_ +} _1]0
=W, [exp{(RGR) -1} -1]. 12

If -1 is regarded as one of the integration constants for exp{(RGR)-t}, then

Q=Wo-[{exp{(RGR) -t} -1} - {exp{(RGR) -0} -1}]
=W, [exp{(RGR) -1} - exp{(RGR)-0}]
~W,- [exp{(RGR)-#} ~1]
—W-W,, L 13)
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where -1 has disappeared, the property of integration constants that do not affect at all
the calculation of definite integrals.

Equations (11)~ (13) show that after the pair appearance of 1 and -1 from 0, 1 has been
taken in, together with an RGR, by infinite power series of (11) in order to get back to
exp{(RGR)-t}, but, in contrast, -1 has disappeared on the way to (13). This suggests a
case, where the pair appearance of 1 and -1 from 0, the remaining of 1 and the disappear-
ing of -1 are a series of events related to symmetric properties of exp{(RGR) ¢} with
respect to its definite integral from 0 to . These show that the increase in weight results
from the events that are required to occur in order to keep the form of exp{(RGR) -t} itself
invariant on the definite integral of AGR from 0 to ¢. In brief, the increase in weight is relat-
ed to symmetric properties of exp{(RGR) -t} with respect to its definite integral from 0 to ¢.

W, AGR and growth acceleration

The exponential function with base e is infinitely differentiable, and the existence of
the second derivative causes the change in AGR, which is tentatively called growth
acceleration. Thus,

eW

- d -
Growth acceleration= ' (AGR)= i

(RGR)?- W, exp{(RGR) - t}. (14)
From equations (3), (6) and (14) the relationship among W, AGR and growth
acceleration is given by

AGR _ Growth acceleration
W AGR

=RGR, (15)
where it is shown that RGR connects W, AGR and growth acceleration.
Then, this gives

W+ (Growth acceleration)=(AGR)? (16)
showing that each term is described using the other two. Thus,

~ (AGR)?
~ Growth acceleration ’

(AGR)*
-

amn
(18)

Growth acceleration=
Relationships (15)~(18) result from symmetric properties of exp{(RGR)-t} itself with
respect to its differentiation, where W [=W¥,-exp{(RGR)‘t}] is included in both AGR and
growth acceleration.

Since AGR takes the form of (AGR)? in (16)~ (18), there is a possibility that AGR
takes not only positive values but also negative values, the decrease in weight when
AGR< 0. The negative AGR (-AGR) causes the negative RGR (-RGR). If this is
described using the method of basic growth analysis, then

~AGR=(-RGR) - W, exp{(-RGR) -}, (19)

where W, -exp{(-RGR) -t} < W,.
The replacements (-RGR—RGR, t—-t) in W, exp{(-RGR) -t} do not change its value,
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because both equations are equal to W,-exp[-{(RGR)-t}]. Thus,
Wy exp{(-RGR) - t}=W,-exp{(RGR) - (-1)}. 20)

The relation (20) suggests that the negative RGR moving forward in time (left-hand side)
might look like the positive RGR moving backward in time (right-hand side), provided
that the attention is given to the decrease in weight and physiological aging is not consid-
ered. This may be regarded as the waste of time in such agricultural production as people
pursue its efficiency only. It is also suggested that a kind of agricultural significance is
given to the reverse direction of time resulting from symmetric properties of the expo-
nential function with base e.

CONCLUSIONS

It is concluded in basic growth analysis that AGR and the increase in weight are
derived from the events that are required to occur in order to keep the form of
exp{(RGR) -t} itself invariant when differentiated and integrated with respect to ¢. This
suggests that the analytic description of agricultural phenomenon of growth is related to
the mathematical phenomenon of symmetry on the exponential function with base e.
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