九州大学学術情報リポジトリ Kyushu University Institutional Repository

Effect of Deletion of Calcium Supplement from Purified Diet on Growth and Bone Mineralization in Red Sea Bream

Hossain, M. Amzad Fishery Research Laboratory, Faculty of Agriculture, Kyushu University

Furuichi, Masayuki Fishery Research Laboratory, Faculty of Agriculture, Kyushu University

https://doi.org/10.5109/24310

出版情報:九州大学大学院農学研究院紀要. 44 (1/2), pp.91-97, 1999-11. Kyushu University

バージョン: 権利関係:

Effect of Deletion of Calcium Supplement from Purified Diet on Growth and Bone Mineralization in Red Sea Bream

M. Amzad Hossain*1 and Masayuki Furuichi

Fishery Research Laboratory, Faculty of Agriculture, Kyushu University, Tsuyazaki,
Fukuoka 811–3304, Japan
(Received June 16, 1999 and accepted August 24, 1999)

Young red sea bream (av. body wt. 11.5 g) were fed the purified casein based diets with or without calcium (Ca) supplement for 12 weeks at a water temperature of 20.0–24.0 °C. After the feeding trials, growth performances, blood characteristics and compositions of liver and bone were examined. Average final body weight, condition factor and hepatosomatic index were not affected by the unsupplementation of dietary Ca. A lacking of Ca supplement to the diet did not affect the haematological characteristics including plasma Ca and phosphorus (P) contents. Bone Ca content was independent of dietary Ca supplement. It appeared that young red sea bream adequately absorbed Ca from sea water and that Ca supplement to a purified diet might not be necessary.

INTRODUCTION

An appreciable amount of dissolved calcium (Ca) exists in aquatic environment, especially in sea water, which may be absorbed by fish to meet specific metabolic requirements. Therefore, limited attention has been paid to the studies on Ca nutrition of marine fish. However, our previous studies demonstrated a need for supplementation of dietary Ca in tiger puffer (Furuichi et al., 1997a, b; Hossain and Furuichi, 1998) and redlip mullet.*2 On the other hand, black sea bream appeared to satisfy their Ca requirements through absorption from surrounding sea water (Hossain and Furuichi, unpubl. data). Therefore, the present study was designed to evaluate the effect of deletion of Ca on growth and bone mineralization of red sea bream Pagrus major, one of the commercially important fish in Japan and adjacent areas.

MATERIALS AND METHODS

Experimental Diets and Feeding Regime

Two purified diets with or without Ca supplement were formulated (Table 1). Vitamin–free milk casein, dextrin and α –starch (gelatinized starch), and pollack liver oil were used as protein, digestible carbohydrate and lipid sources, respectively. A mixture of vitamins (Halver, 1957) was added to the diets. Ca (0.2%) was supplied only to the control diet through Ca–lactate. The ingredients were mixed thoroughly and an aliquot of water (20%) was added. Pellets were prepared with a laboratory pellet mill and cut into an appropriate size. The diets were then dried in an air flow drier at 60 °C for 60 min and

^{*1} Corresponding author.

^{*2} M. A. Hossain and M. Furuichi: Abst. Metg. Japan. Soc. Fisherics Sci., September, 1997, p. 45.

stocked under -20 °C. The proximate and mineral compositions of the diets are presented in Table 2.

Young red sea bream were accustomed to a casein diet in indoor 150–l rectangular tanks for two weeks before the experiment was started. At the start of the experiment, the fish were weighed individually, selected and distributed to the tanks in such a manner that average body weight and size variation in two tanks were almost similar. The number of fish for a tank was 30 (average body weight 11.5 g). The fish were reared for 12 weeks, during which the experimental diets were fed 2 times a day at 0900 and 1530 h. Diets

Diet	cont.	no Ca
Ingredient (%)		
Casein	50	50
Amino acid mix.*1	4	4
α-Potato starch	7	7
Dextrin	10	10
Pollack liver oil	10	10
Vitamin mix.*2	3	3
Mineral mix.*3	5	5
Ca-lactate	1.54	=
Carboxymethylcellulose	4	4
α –Cellulose	5.46	7

 $\textbf{Table 1.} \ \ \textbf{Composition of the experimental diets for red sea bream}$

Table 2. Proximate and mineral compositions of the experimental diets for red sea bream

Diet	cont,	no Ca
Proximate composition (% dm)*	
Moisture	20.9	21.5
Crude protein	51.3	52.0
Crude lipid	9.1	9.3
Crude ash	5.1	5.0
Mineral composition (dn	ı)*	
Ca (%)	0.24	0.03
P (%)	1.00	1.05
K (%)	0.19	0.18
Mg (μg/g)	420	370
Fe (μg/g)	280	270
Zn (µg/g)	48	52
Mn (µg/g)	16	16
Cu (µg/g)	11	12

^{*} dm, dry matter.

^{*1} Amino acid: arginine · HCl, alanine, glycine, and aspartate · Na (25% each).

^{*3} Halver's vitamin mixture (1957).

^{*}¹ Mineral mixture (in 100 g): Major element in g: KCl 7.68, MgSO₄·5H₂O 8.16, NaH₂PO₄·2H₂O 68.52, Fe—citrate 2.40 and cellulose 12.69; Minor element in mg: AlCl₃·6H₂O 90.0, ZnSO₄·7H₂O 264.0, MnSO₄·5H₂O 175.3, CuCl 15.7; Kl 3.7 and CoCl₂·6H₂O 1.3.

were offered as long as the fish continued to feed. Each tank was provided with adequate air and continuous sea water (3–4 l/min) supplies. Water temperature ranged from 20.0 to 24.0 °C during the experiment. Ca in the rearing water was around 400 mg/l. Tanks were cleaned daily by siphoning before the mourning feeding. Biweekly body weight of the fish was recorded after anesthetizing with MS–222. After every weighing, each tank was treated with sodium nifurstyrenate (sodium salt of 5–nitro–2–(p–carboxy styryl)–furan) to prevent any bacterial attack that may be caused due to handling (Sugimoto et al., 1976).

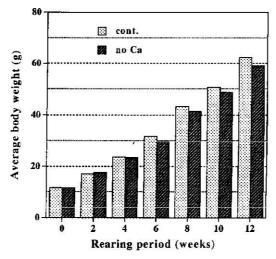
Sampling and Analysis

At the end of the experiment, the body weight and body length of the fish were measured individually to calculate the condition factor. Blood samples were collected from the cuvierian duct with a 1 ml heparinized syringe. Each liver was weighed to calculate the hepatosomatic index. Pooled samples of all the liver and fish of each treatment were stored at $-20\,^{\circ}\mathrm{C}$ for chemical analysis and bone collection, respectively.

Hematocrit, plasma protein and hemoglobin were measured with a Kubota Hematocrit Reader (Hesser, 1960), an ATAGO Serum-Protein Refractometer and a spectrophotometer (Hitachi, U-2000) by the cyanmethemoglobin method (Wintrobe, 1956), respectively. Plasma Ca, P, Mg, Fe and triglyceride were measured using a Rapid Blood Analyzer (RaBA Super, Chugai Pharmaceutical Co.).

Bone was separated from the whole body after steaming on a boiling water bath for a few minutes, then cleaned, washed with distilled water and dried in an oven. The dried bone samples were ground in small particles and subjected to digestion with nitric acid and perchloric acid. Mineral contents, except P, in the digested samples were determined by an atomic absorption spectrometer (Perkin–Elmer 3300) using flame absorption techniques. P in the digested bone samples was determined spectrophotometrically by the molybdate method (Taussky and Shorr, 1953).

Student's T-test was applied to determine the significance in difference between the treatment means $(p \le 0.05)$.


RESULTS

Growth performances and feed utilization of red sea bream fed the experimental diets are shown in Fig. 1 and Table 3. The survival rates at the end of the experiment were 93.3% and 100% in the fish fed the control diet and Ca unsupplemented diet, respectively. No significant difference was observed in the average final body weight between the two treatment groups. Daily feed consumption was similar in both groups. A deletion of Ca supplement from the diet showed slightly lower feed efficiency in the fish compared to the fish fed the control diet. However, condition factor was not affected by dietary Ca.

Hematocrit values, and hemoglobin and plasma protein contents were similar in both groups fed the control and Ca unsupplemented diets (Table 4). A deletion of Ca supplement from the diet slightly increased the plasma triglyceride. Plasma P, Ca and Fe were not affected by the lacking of Ca supplement to the diet. However, slightly lower plasma Mg content was detected in the fish fed the control diet with Ca supplement.

No prominent differences were detected in liver moisture, protein, lipid, glycogen and ash contents among the fish fed the control or Ca unsupplemented diets (Table 5). Hepatosomatic index appeared to be independent of dietary Ca supplement.

The results of bone analyses are presented in Table 6. Bone lipid and ash contents were similar in both groups. Ca and P contents of the bone appeared to be independent of dietary Ca supplement. A deletion of supplemental Ca from the diet did not affect the bone Mg, K, Fe, Zn and Mn contents. Cu content of the bone was markedly increased by the deletion of Ca supplement from the diet.

Fig. 1. Fortnightly growth of red sea bream fed the experimental diets with or without Ca supplement.

•	experimental diets with or without Ca	supplement
Diet	cont.	no Ca

Diet	cont.	no Ca
No. of fish at initial	30	30
Survival rate (%)	93.3	100
Av. body wt. (g)		
Initial	11.6 ± 0.9	11.5 ± 0.8
Final*1	62.3 ± 8.9	$59.0 \pm 7.7*3$
Weight gain(%)	437	413
Daily feed consumption (% of body wt.)	2.28	2.27
Feed efficiency (%)	91.8	84.8
Condition factor*3	3.61 ± 0.18	$3.61 \pm 0.17^{*2}$

^{*1} Calculated from all the fish of each tanks.

^{*2} No significant difference (P > 0.05).

^{*5} Condition factor: Body weight (g) \times 100/(body length in cm)³, (n=15).

diets with or without Ca supplement				t Ca supplement			
Diet	A A	cont.	no Ca	•••			
Hematocrit	(%)	28.9 ± 3.5	28.6±3.0*				
Hemoglobin	(g/100 ml)	4.7 ± 1.1	$4.9 \pm 1.1 *$				
Plasma protein	(g/100 ml)	4.3 ± 0.6	$4.4 \pm 0.4 *$				
Plasma triglyceride	(mg/100 ml)	448	512				

11.7

13.8

4.5

86

10.6

13.6

6.1

79

(mg/100 ml)

(mg/100 ml)

(mg/100 ml)

(mg/100 ml)

Table 4. Blood characteristics of red sea bream fed the experimental diets with or without Ca supplement

Table 5. Proximate composition of liver and hepatosomatic index of red sea bream fed the diets with or without Ca supplement

Diet		cont.	по Са
Moisture	(%)	65.0	65.4
Crude protei	n (% dm)*1	30.3	30.1
Crude lipid	(% dm)	39.4	40.5
Glycogen	(% dm)	18.9	23.1
Crude ash	(% dm)	3.1	3.2
HSI*2		2.33 ± 0.40	2.32 ± 0.37

^{*1} dm, dry matter.

Plasma P

Plasma Ca

Plasma Mg

Plasma Fe

Table 6. Lipid, ash, and mineral composition of bone of red sea bream fed the experimental diets with or without Ca supplement*

Diet			cont.	no Ca	
Crude lipid		tipid (%) 20.6	oid (%)	20.6	19.1
Crud	e ash	(%)	54.3	55.5	
Ca	(%)		27.5	26.9	
P	(%)		11.4	10.5	
Mg	(%)		0.23	0.24	
K	$(\mu g/g)$		122	125	
Fe	$(\mu g/g)$		50.2	54.6	
Zn	$(\mu g/g)$		66.7	64.4	
Mn	(µg/g)		25.4	27.7	
Cu	$(\mu g/g)$		1.8	2.5	

^{*} Dry matter basis. Analytical values of composite sample of bones from all the fish of each tank.

^{*} No significant difference (p > 0.05; n=10).

^{**} Hepatosomatic index: Liver wt. (g) \times 100/body wt. (g). No significant difference (p > 0.05; n=10).

DISCUSSION

The similar growth in the fish fed the control and Ca unsupplemented diet revealed that red sea bream might absorb adequate Ca from sea water for its normal growth and feed utilization. It is well known that fish have a capability to absorb Ca from surrounding water (Lovelace and Podoliak, 1952; Ichikawa and Oguri, 1961; Templeton and Brown, 1963; Andrews et al., 1973; Lall, 1979; Love, 1980; Cowey, 1992). However, it is important to find out whether Ca absorption from sea water is adequate for fish or not. Sakamoto and Yone (1976) reported that Ca supplement was dispensable in a purified diet for red sea bream. Black sea bream, a member of same family sparidae as red sea bream, appeared to absorb adequate Ca from sea water for growth and bone mineralization (Hossain and Furuichi, unpubl. data). Environmental Ca was found not to be sufficiently available in tiger puffer (Furuichi et al., 1997a, b; Hossain and Furuichi, 1998) and redlip mullet.*2 On the other hand, from the growth, hematological, and liver and bone mineralization data in the present study, it appeared that Ca absorption from sea water may be adequate for red sea bream.

In the study with radio isotope, we observed that red sea bream of average body weight 1.0g had increased the absorption of ⁴⁵Ca from sea water when Ca was deleted from a purified diet (Hossain and Furuichi, unpubl. data). Sakamoto (1981) also reported that absorption of radioactive Ca in red sea bream increased with the decrease of dietary Ca levels. Therefore, the present investigation suggests that a dietary Ca supplement may not be necessary for young red sea bream.

ACKNOWLEDGEMENTS

We want to express our sincere thanks to Drs. Seiichi Matsui and Takao Yoshimatsu of our laboratory for their kind help in conducting this research. This is the contribution no. 239 from Fishery Research Laboratory, Kyushu University.

REFERENCES

Andrews, J. W., T. Murai and C. Campbell 1973 Effect of dietary calcium and phosphorus on growth, food conversion, bone ash and hematocrit level of catfish. J. Nutr., 103: 766–771

Cowey, C. B. 1992 Nutrition: estimating requirements of rainbow trout. Aquaculture, 100: 177-189

Furuichi, M., Y. Furusho, S. Matsui and C. Kitajima 1997a Essentiality of mineral mixture supplement to white fish meal diet for tiger puffer. J. Fac. Agr., Kyushu Univ., 42: 69-76

Furuichi, M., Y. Furusho, M. A. Hossain, S. Matsui and R. Azuma 1997b Essentiality of Ca supplement to white fish meal diet for tiger puffer. J. Fac. Agr., Kyushu Univ., 42: 77–85

Halver, J. E. 1957 Nutrition of salmonid fishes. III. Water-soluble vitamin requirements of chinook salmon. J. Nutr., 62: 225-243

Hesser, E. E. 1960 Methods for routine fish hematology. Prog. Fish-Cult., 22: 164-171

Hossain, M. A. and M. Furuichi 1998 Availability of environmental and dietary calcium in tiger puffer. Aquacult. International, 6: 121–132

Ichikawa, R. and M. Oguri 1961 Metabolism of radionucleotides in fish. I. Strontium-calcium discrimination in gill absorption. Nippon Suisan Gakkaishi, 27: 351–357

Lall, S. P. 1979 Minerals in finfish nutrition. In "Finfish Nutrition and Fish Feed Technology", Vol. 1, ed. by J. E. Halver and K. Tiews, H. Heeneman, Berlin, pp. 75–87

Love, R. M. 1980 The Chemical Biology of Fishes, Vol. 2. Academic Press, New York.

- Lovelace, F. E. and H. A. Podoliak 1952 Absorption of radioactive calcium by brook trout. *Prog. Fish–Cult*, **14**: 154–158
- Sakamoto, S. 1981 Requirements and deficiency symptoms of dietary minerals in red sea bream. Rep. Fish. Res. Lab., Kyushu Univ., 5: 1-99
- Sakamoto, S. and Y. Yone 1976 Requirement of red sea bream for dietary Ca. Rep. Fish. Res. Lab., Kyushu Univ., 3: 59-64
- Sugimoto, N., S. Ishibashi and Y. Yone 1976 On the effectiveness and safety of sodium nifurstyrenate as a chemotheraputic agent for pseudotuberculosis of yellowtail. *Rep. Fish. Res. Lab, Kyushu Univ.*, **3**: 33–43
- Taussky, H. and E. Shorr 1953 A microcolorimetric method for the determination of inorganic phosphorus. J. Biol. Chem., 202: 675–685
- Templeton, W. L. and V. M. Brown 1963 Accumulation of calcium and strontium by brown trout from waters in the United Kingdom. *Nature*, **198**: 198–200
- Wintrobe, M. M. 1956 Clinical Hematology, Lea and Febiger, Philadelphia