九州大学学術情報リポジトリ Kyushu University Institutional Repository

Cloning and Nucleotide Sequence of γ -Polyglutamate Production Stimulating Factor on Bacillus subtilis (natto) Plasmid, pUH1

Hara, Toshio

Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University

Nagatomo, Shinichiro

Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University

Iwamoto, Nobuhide

Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University

Tadokoro, Yuko

Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University

他

https://doi.org/10.5109/24066

出版情報:九州大学大学院農学研究院紀要. 39 (1/2), pp.43-51, 1994-12. Kyushu University

バージョン: 権利関係:

Cloning and Nucleotide Sequence of γ -Polyglutamate Production Stimulating Factor on *Bacillus subtilis* (natto) Plasmid, pUH1

Toshio Hara⁺, Shinichiro Nagatomo, Nobuhide Iwamoto, Yuko Tadokoro, Shinji Kaneko, Masahito Orima and Seiya Ogata

Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 812, Japan (Received July 29, 1994)

The gene coding for γ -polyglutamate production stimulating factor (psf) from Bacillus subtilis (natto) plasmid pUH1 was cloned and sequenced in Bacillus subtilis host. The activity of y-glutamyltranspeptidase (γ -GTP) in B. subtilis host, which was introduced the psf gene was relatively high level, while its activity in E. coli host could not be detected. The nucleotide sequence of psf gene was determined and an open reading frame encoding a polypeptide composed of 420 amino acid residues (Mr, 49, 356) was identified. The putative -35 and -10 sequences, TTCAAA and TATTAT, were observed as the consensus sequence for the promoter recognized by the σ^{43} RNA polymerase of B. subtilis, and the ribosome binding site, whose sequence was AACGAG, was complementary to the binding sequence of B. subtilis 16SrRNA except for one base. The amino acid sequence of psf with the segment of putative protein C403 of staphylococcal plasmid pE194 indicates homology, whereas that with E. coli and mammalian γ -GTPs does not show any similarity at all.

INTRODUCTION

"Natto" is a Japanese traditional fermented food, manufactured by growing *Bacillus subtilis* (*natto*) on steamed soybeans. It is an adhesive, and consists of polysaccharide (levan-form fructan) and y-polyglutamate (γ -PGA). The adhesive material is mainly composed of γ -PGA containing D-and L-glutamate in varying proportions (Fujii, 1963). A plausible mechanism of the biosynthetic pathway of γ -PGA has been proposed by Thorne et al. (1955) for one of the γ -PGA-producing strains (*B. licheniformis* ATCC9945A). However, since it is known that various strains differ a great deal in the basic requirements for γ -PGA synthesis as a capsule, it is to be assumed that there is more than one biosynthetic pathway. We reported that a 5.8-kb plasmid designated pUH1, which is responsible for y-PGA synthesis, is distributed widely in *B. subtilis* (*natto*) strains isolated from a non-salty fermented soybean food, natto (Hara et al., 1983; 1993; unpublished results).

y-Glutamyltranspeptidase (γ -GTP, EC2.3.2.2) catalyzes the transfer of the γ -glutamyl residue from y-glutamyl compounds, such as glutathione, to amino acids and peptides, and the hydrolysis of y-glutamyl compounds (Tate and Meister, 1981), but its physiological role still remains controversial. The cDNAs of rat renal (Laperche *et al.*, 1986) and human hepatic (Sakamuro et *al.*,1988) γ -GTPs were cloned, and the nucleotide sequences were determined. Recently, Suzuki et *al.* (1989) reported the

⁺ To whom all correspondence should be addressed.

nucleotide sequence of *Escheyichia coli K-12* y-GTP. However, the homology percent of amino acid sequence between the *E. coli* and mammalian γ -GTPs was quite low.

We have succeeded in expressing γ -GTP activity in *B. subtilis* host strains, which were introduced a γ -PGA production stimulating factor (psf) gene. The psf gene might be responsible for γ -PGA synthesis in B. *subtilis* (natto). In the present work, we have sequenced the psf gene and compared with the $E.\ coli$ and mammalian γ -GTPs.

MATERIALS AND METHODS

Bacterial strains and plasmids

Escheyichia coli JMIO1 (supE44, thi, Δ (lac-proAB) [F', proAB, lacIq $Z\Delta$ M15, traD36], mcrA⁺) and Bacillus subtilis MI112 (ayg-15, leuB8, thy-5, recE4) were used as hosts for cloning and nucleotide sequencing. Plasmid pUH1 has been previously described (Hara et al., 1983). Plasmid pUB110 was used as a vector for B. subtilis host, and plasmids pATE1 (Hara et al., 1991) was for E. coli.

Media

LB broth and Panassary broth (Difco) for both *B. subtilis* and *E. coli*, Spizizen minimal medium for *B. subtilis*, and M9 minimal medium for *E. coli* were the same as described previously (Hara *et al.*, 1991). The cells carrying Km' plasmids were grown in AA medium (Tanaka and Sakaguchi, 1978) containing kanamycin (50 μ g/ml).

DNA manipulations

The plasmid pUH1 from *B. subtilis* (*natto*) strain Asahikawa and its derived plasmids from Km' transformants were prepared and purified as previously described (Hara *et al.*, 1983) was digested with *Bst*EII, and then the ends were filled in with Klenow fragment to generate blunt ends. The DNA fragments were ligated with *Bam*HI liker, inserted at the *Bam*HI site of pUB110 with T4 ligase and then added to *B. subtilis* MI112 protoplasts. Restriction enzymes, T4 DNA ligase and bacterial alkaline phosphatase were purchased from Takara Shuzo Co., Ltd. (Kyoto, Japan), and used as recommended by the manufacture. Degradation of DNA with exonuclease Ba131 (Takara Shuzo Co., Ltd.) followed by procedure of Legerski *et al.* (1978).

Transformation procedure

E. coli JM101 was transformed by the method of Morrison (1977), and *B. subtilis MI112* was transformed by using protoplasted cells (Hara *et al.*, 1991).

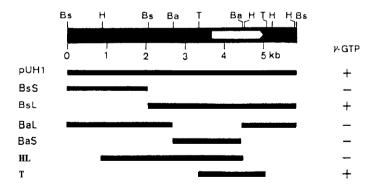
Assessment of y-glutamyltranspeptidase assay

After cultivation at time indicated in the medium described by Fujii (1963), cells were harvested, suspended in 0.9% NaCl, and disrupted with a sonic oscillator (Branson Sonifer 185). The sonicated cells were centrifuged and the supernatant solution was used as intracellular enzyme preparation. The extracellular enzyme activity was measured in the culture fluid removed the cells by centrifugation. γ -GTP activity was assayed as previously described (Aumayr *et al.*, 1981). One unit of γ -GTP activity is defined as the amount of enzyme which liberates 1μ mol of a-naphthylamine per min at 37°C.

DNA sequencing

DNA fragments were subcloned into plasmids pUC18 and pUC19, and then, if need,

the Bal31-deleted derivatives were obtained by the stepwise deletion method of McCutchan et **al.** (1984). DNA sequencing was carried out by means of the dideoxy chain termination method (Sanger et **al.**, 1977) with Sequenase Version 2.0 DNA Sequencing Kit (United States Biochemical Corporation, Cleveland, Ohio). Nucleotide and amino acid sequences were analyzed by the Hitachi DNASIS system.


Chemicals

Restriction enzymes, **T4 DNA** ligase and bacterial alkaline phosphatase were purchased from Takara Shuzo Co., Ltd., and used as recommended by the manufacture. Degradation of DNA with exonuclease Ba131 (Takara Shuzo Co., Ltd.) followed by procedure of Legerski et **al.** (1978).

RESULTS AND DISCUSSION

Cloning of psf gene in B. subtilis

As reported previously (Hara et **al.**, 1981), the *psf* gene is encoded on an endogenous plasmid, pUH1 from *B. subtilis* (*natto*). We constructed a set of derived plasmids using pUB110 as a vector, in which a series of pUH1 fragments were inserted. Figure 1 shows the subclones of *B. subtilis* (*natto*) plasmid pUH1 and their expression of *psf* in *B. subtilis* MI112. The *psf* activity was detected in several Km' transformants, which carried plasmid pPB1 (column BsL in Fig. 1) with molecular size of 8.2 kb, including 3.7-kb BstEII fragment of pUH1. To define the boundaries of a functional unit of inserted DNA, a 3.7-kb BstEII fragment of pUH1 was digested with selected restriction endonucleases to obtain a set of overlapping DNA fragments. The plasmid DNA preparations containing each generated fragments were tested for the enzyme activity in *B. subtilis*. The deletion experiments revealed that a 1.7-kb

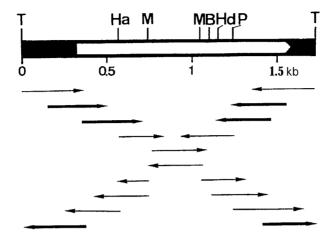
Fig. 1. Subclones of *B. subtilis* (natto) plasmid pUH1 and their expression of γ-GTP in *B. subtilis M1112*.

The open arrow in the BstEII fragment indicates an open reading frame found in the sequence data (see Fig. 3). The activity of γ -GTP expressed was assayed as previously described (Aumayr et~al., 1981). Abbreviations for restriction sites are : Ba, $Bam\,HI$; Bs, BstEII; **H**, Hind111; T, TaqI.

	Strain	psf	γ-GTP activity"	
			Intracellular	Extracellular
B. subtilis	Asahikawa	+	91.8	423
B. subtilis	MI112		10.1	22.5
	MI112 (pBS)	+	93.5	91.5
E. coli	JMlOl		8.3	10.6
	JMIOI (pHN-1)	+	8.0	10.5

Table 1. γ -GTP activities in *B. subtilis* and *E. coli* strains carrying *psf* gene.

TaqI fragment (column T in Fig. 1) is necessary for the expression of psf gene in B. subtilis MI112.


Expression of **psf** gene in B. **subtilis** and E. coli

The presence of psf gene on plasmid pUH1 was confirmed by measuring the γ -GTP activity in strains carrying the psf. These results are summarized in Table 1, which includes the enzyme productivity of B. subtilis (natto) strain Asahikawa. The B. subtilis MI112 (pBS) carrying recombinant plasmid pBS expressed very high γ -GTP activity intracellularly at 93.5 mU/ml in the PY culture medium growth at 37°C for 24 hr, while the strain MI112 (pBS) accumulated extracellularly γ -GTP at level of 91.5 mU/ml for 5 days. In order to compare the productivity of γ -GTP in E. coli with that in B. subtilis, we subcloned the 1.7-kb TaqI fragment of pUH1 into pATE1 constructed from pTL12 (Tanaka and Sakaguchi, 1982) (the recombinant plasmid obtained was designated pHN1). However, E. coli JMIOI carrying pHN1 did not express intracellularly the γ -GTP activity in LB broth grown at 30°C for 24hr. Also, γ -GTP activity could not detect extracellularly after even 5-days cultivation.

Nucleotide sequence of pUH1 psf gene

Figure 2 shows the physical map and sequencing strategy of 1.7-kb TaqI fragment including the psf gene of B. subtilis (natto) plasmid pUH1. The nucleotide sequences of both strands of the 1.7-kb TaqI fragment were determined by the dideoxynucleotide chaintermination method (Sanger et al., 1977) after successive Ba131 exonuclease deletions (Davis et al., 1986). The nucleotide sequence was determined for both strands by using numerous restriction fragments to give enough overlapping regions. Figure 3 shows the nucleotide sequence of the 1.7-kb TaqI fragment. By examination of possible open reading frames (ORFs), we found only one large frame, which consists of 1,260 bp and encodes a protein molecule with 420 amino acids and an Mr of 49,356. The psf ORF was found to be preceded by a putative σ^{43} RNA polymerase promoter of B. subtilis. The 5' upstream region of psf gene contains a 5'-AACGAG-3' sequence (indicated as SD in Fig. 3) complementary to the 3' end of 16SrRNA (3'-OH-UCUUUC-CUCCAGUAG-5') of B. subtilis (McLaughlin et al., 1981) at nucleotides 295 to 300 for translation initiation. There is a 5'-TATTAT-3' sequence (-10 in Fig. 3) resembling a Pribnow box (Moran et al., 1982) at nucleotides 257 to 262, and at a site of 23 bp upstream of this -10 sequence, there is a 5'-TTCAAA-3' sequence resembling the -35 sequence (Moran et al., 1982) of B. subtilis gene. The observed distance (17 bp)

^a Enzyme activities were measured under the conditions described in Materials and Methods.

Fig. 2. Restriction map and sequencing strategy for the *psf* gene of *B. subtilis(natto)* plasmidpUH1.

The open arrow in the restriction map indicates an open reading frame found in the sequence data (see Fig. 3). Below the map, arrows indicate the direction and extent of sequencing either of subcloned restriction fragments (thin arrows) or of a series of deletion fragments prepared by Ba131 (thick arrows). Abbreviations for restriction sites are: B, BamHI; Ha, HaeIII; Hd, HindIII; M, MspI; P, PvuII; T, TaqI.

between the -10 and -35 sequences accords well with that observed generally in B. subtilis genes (17–18 bp) (Moran et al., 1982).

Homology of PSF to other y-GTP genes

The amino acid sequence of the predicted protein PSF encodes on pUH1 was compared with a number of protein sequences registered in GenBank with used of the homology search system of GENAS (Kuhara et al., 1984). As shown in Fig. 4, sequence homologous to the pUH1 PSF were found to in putative protein C403 (420 residues; Horinouchi and Weisblum, 1982) with 48,300 daltons encoded in staphylococcal plasmid pE194. Approximately, 51.2% amino acid homologies with pUH1 PSF was observed in a segment of 86 residues of C403, but percent match of both proteins, in its entirety, was quite low value such as 11.9%. The cDNAs of rat renal (Laperche et al., 1986) and human hepatic (Sakamuro et al. 1988), hepatoma (Goodspeed et al., 1989), and placental (Meyts et al., 1988) γ-GTPs were cloned, and the nucleotide sequences were determined. The mammalian γ -GTPs, whose amino acid sequences were essentially the same, are synthesized as single polypeptides and then processed into the large and small subunits (Matsuda and Katsunuma, 1984), but did not show any similarity at all with pUH1 PSF from B. subtilis (natto). Percent match of amino acid sequence of pUH1 PSF for human hepatic y-GTP was 8.4%. Recently, Suzuki et al. (1989) performed DNA sequencing of E. coli y-GTP, and they suggested that the E. coli y-GTP might be also processed posttranslationally. The homology of amino acid

TaqI TCGATGCGACAGCGAGAATGAGAGACGCACCAGCACCGCAGGTCGCACGTCCAAATTT GCCATGCATAATTTGGTGTAGTGCGTTACACCAAAGATAAACTTTGTGTTACCATAACCCCTATACAGTGGTCTGAATCGGGGGTTTTT 200 (SD) ATGAAAAATTGAGGGTCGGGTCAAACGGAAGGTCCGAGCGGATGCGTGTTTTGGTCAGCGAATTTTTGATCACGGCAAGTCCTGACTAT ${\tt MetLysLysLeuArgValGlySerAsnGlyArgSerGluArgMetArgValLeuValSerGluPheLeuIleThrAlaSerProAspTyring} \\$ <u>ATGAAAGGGCTGAGTGATGAGGAGCAGCGGCGCTATTTTGAAACAGCGGTTGATCATTTGAAAGAGAAATACAGCGCTGAAAACATGCTT</u> ${\tt MetLysGlyLeuSerAspGluGluGlnArgArgTyrPheGluThrAlaValAspHisLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysGluLysTyrSerAlaGluAsnMetLeuLysGluLysGluLysTyrSerAlaGluAsnMetLeuLysGluL$ 550 TATGCCACAGTCCATATGGATGAAGCGACTCCCCATATGCATGTTGGTATTGTACCGATCACGGAGGACGGCCGACTCTCTGCGAAAGAT TyralaThrvalHisMetAspGluAlaThrProHisMetHisValGlyIleValProIleThrGluAspGlyArgLeuSerAlaLysAsp 650 TTTTTTAATGGCAAATTGAAGATGAAAGCCATTCAAGATGATTTTCATCGGCACATGGTTGAAAACGGTTTTGACCTGGTGCGCGGCGAA PhePheAsnGlyLysLeuLysMetLysAlaIleGlnAspAspPheHisArgHisMetValGluAsnGlyPheAspLeuValArgGlyGlu 700 750 ProSerGluLysLysHisGluAsnValHisGlnTyrLysIleAsnGlnArgGlnAlaGluLeuGluArgLeuAsnAlaGluIleAlaLeu 800 900 GAAGAGTTGAAAATGCCGACTATTGAACATGAAAAAGCGTGGCTCAAAAAGGATAAAGTCATTGTGCCGGAGCGGGAACTCCATGCTTTG GluGluLeuLysMetProThrIleGluHisGluLysAlaTrpLeuLysLysAspLysValIleValProGluArgGluLeuHisAlaLeu 1000 TACGCCTATGCGGAGCAGAAAACTAAAACGACAGCCGAGCTGGCGGGCAATTGAAGTCAGAAACGCAGGAAAAGGAGCGCTGGCAGTCT TyralaTyralaGluGlnLysThrLysThrSeralaGluLeualaGlyGlnLeuLysSerGluThrGlnGluLysGluArgTrpGlnSer ATCGCCCGGCAGAAGCAGATCGGGCAGATGAAAAAAGACCAACGGCTTCAGGAACTGCAGAGTAAGATCCATTCAGAAGTTGAAGCGTCCA IleAlaArgGlnLysGlnTleGlyGlnMetLysLysThrAsnGlyPheArgAsnCysArgValArgSerIleGlnLysLeuLysArgPro 1150 1200 ANAAGGAAATGCGGCGCAAGCTTGCAAAGGAATTTACGGAAGAGCAAGCGTGAGGATCTTCGGCAGGAAGTGAAAGAGGAGCTGACGGCT LysArgLysCysGlyAlaSerLeuGlnArgAsnLeuArgLysSerLysArgGluAspLeuArgGlnGluValLysGluGluLeuThrAla 1250 TTACGAACGGAAAATAAGGAACTGCTAGCTGAAAATAAAGTCTTGATCATTGAGGAGGAATCGTGAAGCTGAGGAAAACTTAAAACTAAAAA LeuArgThrGluAsnLysGluLeuLeuAlaGluAsnLysValLeuIleIleGluArgAsnArgGluAlaGluGluAsnLeuLysLeuLys 1350 CAGGAACTTGATAAGAGAGACGGGCAGTATGCTGAGGTTTTGAGTTTCGCCCAGAAGCAGAACCAAACACTTGAAAAAAGTGGCTGGAGAA GlnGluLeuAspLysArgAspGlyGlnTyrAlaGluValLeuSerPheAlaGlnLysGlnAsnGlnThrLeuGluLysValAlaGlyGlu 1450 AsnLysAlaLeuLysLysGluAsnLysThrLeuLysGluArgValAlaValLeuGluGluTrpLysAspLysMetValGlnTrpAlaLys ${\tt GluArgLeuProLysMetArgLysLeuAlaAlaSerPhePheAsnThrAlaGlyIleValGluLysLeuLeuAsnIleArgThrMetAsn}$ 1600 1650 TrpSerAspLysTrpPheSer*** 1700 TagT AATCATTTTTTGTGTCTCCAGTGATTCTCGTAAAGCTTCGA

Fig. 3. Nucleotide sequence and the deduced amino acid sequence of *psf* gene of *B. subtilis* (*natto*) plasmid pUH1.

The putative -35, -10 and SD sequences were indicated by underlines and the possible terminator sequences are shown by arrows. Nucleotides are numbered from the 5' end of TaqI site of the 1.7-kb DNA strand with the same polarity as mRNA. Amino acid sequences are shown below the coding frame.

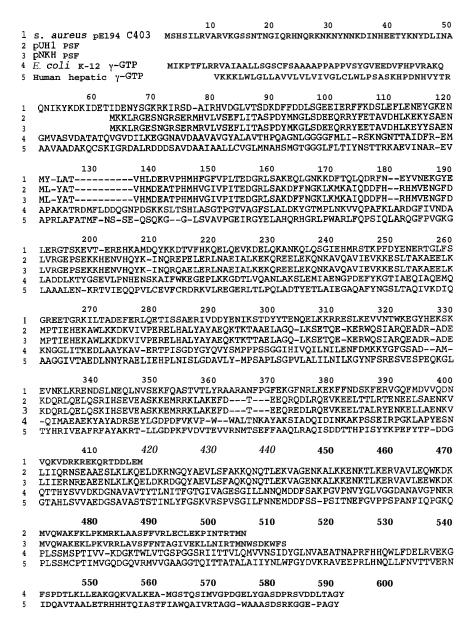


Fig. 4. Comparison of the amino acid sequences of the pUH1 and pNKHPSFs, the putative protein C403 of pE194 and the *E. coli* and human hepatic γ -GTPs.

The putative C403 encodes on staphylococcal plasmid pE194 is from Horinouchi and Weisblum (1982). The pNKH PSF is from Hara *et al.* (1994). The *E. coli* y-GTP is from Suzuki et al., (1989). The human hepatic y-GTP sequence is from Sakamuro *et al.*, (1988). Gaps have been inserted to gain maximum matching. The one-letter amino acid code has been used. Percent match of amino acid sequence of pUH1 PSF for C403 on plasmid pE194 was 11.9%, and for *E. coli* and human hepatic γ-GTPs were 7.8% and 8.4%, respectively.

sequences between the E.coli y-GTP and pUH1 PSF is relatively low, and percent match was only 7.8%. Furthermore, the percent match of amino acid sequence among mammalian and E.coli y-GTPs was not so high (ca. 30%). Though mammalian γ -GTPs are connected with metabolism of glutathione-related compounds, but the organisms cannot procedure γ -PGA, like B. subtilis (natto) strains. It is, therefore, to be assumed that there are more than one enzyme catalyzes the transfer of the y-glutamyl residue from γ -glutamyl compounds, and that one of them plays a important role in y-PGA synthesis in B. subtilis (natto).

Recently, the B. *subtilis* y-GTP was cloned and sequenced by 'Katsumata et al. (1991). The sequence contains a single open reading frame encoding the signal peptide and large and small subunits, in that order, as is the case with *E.coli* y-GTP (Suzuki *et al.*, 1989), but should be concerned with y-PGA production in *B. subtilis* (*natto*).

REFERENCES

- Aumayr, A., T. Hara and S. Ueda 1981 Transformation of *Bacillus subtilis* in polyglutamate production by deoxyribonucleic acid from *B. natto. J. Gen. Appl. Microbiol.*, 27:115-123
- Fujii, H. 1963 On the formation of mucilage by Bacillus natto. Part III. Chemical constituents of mucilage in natto. Nippon Nogeikagaku Kaishi, 37: 407-411
- Goodspeed, D. C., T. J. Dunn, C. D. Miller and H. C. Pitot 1989 Human γ-glutamyl transpeptidase cDNA: comparison of hepatoma and kidney mRNA in the human and rat. Gene, 76: 1-9
- Hara, T., A. Aumayr and S. Ueda 1981 Characterization of plasmid deoxyribonucleic acid in Bacillus natto: Evidence for plasmid-linked PGA production. J. Gen. Appl. Microbial., 29: 299 -305
- Hara, T., J. T. Lee, T. K. Prana, T. Akamatsu, Y. Fujio and S. Ogata 1991 Successive protoplast transformation of *Bacillus subtilis* by plasmid DNA under low concentration of lysozyme. *J. Fac. Agr., Kyushu Univ., 36*:23-28
- Hara, T., S. Nagatomo, S. Ogata and S. Ueda 1991 Molecular structure of the replication origin of a *Bacillus subtilis* (natto)plasmid,pUH1. Appl. Environ. Microbiol., 57: 1838-1841
- Hara, T., S. Ogata and S. Ueda 1993 Plasmid distribution in y-polyglutamate-producing *Bacillus* strains isolated from "dan-douchi", a "natto'-like non-salty fermented soybean food in China. *J. Gen. Appl. Microbiol.*, 39:75-82
- Hara, T., H. Saito, N. Iwamoto and S. Kaneko 1994 Plasmid analysis in γ -polyglutamate-producing *Bacillus* strains isolated from non-salty fermented soybean food, "kinema" in Nepal. *J. Gen. Appl. Microbiol.*, in press.
- Hara, T., J. R. Zhang and S. Ueda 1983 Identification of plasmids linked with polyglutamate production in *Bacillus subtilis* (natto). J. Gen. Appl. Microbiol., 29: 345-354
- Horinouchi, S. and B. Weisblum 1982 Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. *J. Bacteriol.*, 150: 804-814
- Katsumata, R., T. Minakami, K. Ohta, M. Satoh and K. Yamaguchi
 1991 Japan Patent 3-232486
 Kuhara, S., F. Matsuo, S. Futamura, A. Fujita, T. Shinohara, T. Takagi and Y. Sakaki
 1984 GENAS: a database system for nucleic acid sequence analysis. Nucleic Acids Res., 12: 89-99
- Kyte, J. and R. F. Doolittle 1982 A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157:105-132
- Laperche, Y., F. Bulle, T. Aissani, M. N. Chobert, M. Aggerbeck, J. Hanoune and G. Guellaen 1986 Molecular cloning of rat kidney gamma-glutamyl transpeptidase cDNA. Proc. Natl. Acad. Sci., USA, 83:937-941
- Legerski, R. J., J. L. Hodnett and H. B. Jr. Gray 1978 Extracellular nucleases of *Pseudomonas* Ba131. III. Use of the double-strand deoxyribonuclease activity as the basis of a convenient

- method for the mapping of fragments of DNA produced by cleavage with restriction enzymes. Nucleic Acids Res. 5: 1445-1464
- Matsuda, Y. and N. Katsunuma 1984 Biosynthesis and processing of γ -glutamyl transpeptidase. Seikagaku, 56: 1389-1403
- McCutchan, T. F., J. L. Hansen, J. B. Dame and J. A. Mullins 1984 Mung bean nuclease cleaves *Plasmodium* genomic DNA at sites before and after genes. *Science*, 225: 625-628
- McLaughlin, J. R., C. L. Murray and J. C. Rabinowitz 1981 Unique features in the ribosome binding site sequence of the Gram-positive *Staphylococcus aureus* β-lactamase gene. *J. Biol. Chem., 256*: 11283-11291
- Meyts, E. R. D., N. Heisterkamp and J. Groffen 1988 Cloning and nucleotide sequence of human γ-glutamyl transpeptidase. *Proc. Natl. Acad. Sci., USA, 85*: 8840-8844
- Moran, C. P. Jr., N. Lang, S. F. J. LeGrice, G. Lee, M. Stephans, A. L. Sonenshein, J. Pero and R. Losick 1982 Nucleotide sequence that signal the initiation of transcription and translation in *Bacillus* subtilis. Mol. Gen. Genet., 202;169-171
- Morrison D. A. (1977) Transformation in Escherichia coli: cryogenic preservation of competent cells. J. Bacteriol., 132:349-351
- Sakamuro, D., M. Yamazoe, Y. Matsuda, K. Kangawa, N. Taniguchi, H. Matsuo, H. Yoshikawa and N. Ogasawara 1988 The primary structure of human gamma-glutamyl transpeptidase. Gene, 73: 1-9
- Sanger, F., S. Nicklen and A. R. Coulson 1977 DNA sequencing with chainterminating inhibitors. *Proc. Natl. Acad. Sci., USA, 74*:5463-5467
- Suzuki, H., H. Kumagai, T. Echigo and T. Tochikura 1989 DNA sequence of the Escherichia coli K-12 y-glutamyltranspeptidase gene, ggt. J. Bacteriol., 171: 5169-5172
- Tanaka, T. and K. Sakaguchi 1978 Construction of a recombinant of B. subtilis leucine genes and a B. subtilis (natto) plasmid: its use as cloning vehicle in B. subtilis. Mol. Gen. Genet., 165: 269 -276
- Tate, S. S. and A. Meister 1981 γ -Glutamyl transpeptidase: catalytic structural and functional aspects. *Mol. Cell. Biochem.*, 39: 357-368
- Thorne, C. B., C. G. Gomez and R. D. Housewright 1955 Further studies on the biosynthesis of γ-glutamyl peptides by transfer reactions. *J. Biol. Chem.*, 212: 427 438