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The traditional elastoplastic constitutive equation with a single smooth yield surface
is extended so as to describe the dependency of the direction of a plastic stretching on a
stress rate or a stretching. Besides, the loading criterion for the extended constitutive
equation is formulated. Further, it is shown that a direction of plastic stretching cannot
be arbitrary but has to fulfill an inequality under the loading criterion.

INTRODUCTION

A direction of the plastic stretching does not depend on a stress rate in the
traditional elastoplastic constitutive equation with a single smooth plastic potential
surface. Also, the plastic stretching does not depend on the component tangential to the
yield surface but only on the normal component. These dependencies cannot be,
however, ignored in the plastic instability phenomenon with a localization of
deformation. In order to extend the traditional constitutive equation for the
dependency various models have been proposed as follows:
(l)lntersection  of yield sufl~es  (Koiter, 1953; Sewell, 1973, 1974): Plural intersecting

yield surfaces are introduced.
(2)PhenomenoZogicaZ  corner theory (Hill, 1966; Christoffersen and Hutchinson, 1979) :
The existence of a corner in a current stress point on the yield surface is assumed.
(3)Jz  deformation theory (Rudnicki and Rice, 1975); Storen and Rice, 1975): The plastic

stretching due to the stress rate component tangential to the yield surface is
introduced. It coincides with the deformation theory of Hencky (1924).
(1) and (2) aim at describing the dependency of the direction of a plastic stretching

on a stress rate and predicting a plastic stretching for a range wider than a half of the
stress rate space by assuming geometrically a singularity in the field of the outward-
normal of the yield surface, i.e. an existence of a corner in an elastic domain. In fact,
however, (1) cannot always describe the dependency of a direction of plastic stretching
on a stress rate except for the loading process in which a stress exists continuously on
an intersecting point of plural yield surfaces. (2) would not be applicable to the loading
process in which a stress rate has a direction of an angle more than 90” from the
outward-normal of the central axis of a corner since an evolution rule of the corner has
not been clarified for that process up to the present. The mechanical contradiction, i.e.
the decrease of a corner height leading to a softening occurs if it is assumed that a tip
of the corner follows a stress point in order to describe continuously the dependency of
a direction of plastic stretching on a stress rate. It would be difficult or impossible,
however, to extend (2) so as to be applicable to the general loading process including a
reverse loading and a reloading in various directions, though it has been attempted by
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Tomita et al. (1986) and Goya and Itoh (1991) incorporating a kinematic hardening.
(3) is limited to the application to the neighborhood of proportional loading, since it
falls within the framework of hypoelasticity relating a stress rate to a stretching
linearly although a stress rate - stretching relation has to be nonlinear for the
irreversible deformation.

In this article the traditional elastoplastic constitutive equation is extended so as to
describe the dependency of the direction of a plastic stretching on a stress rate or a
stretching, keeping a single smooth yield surface. Besides, the loading criterion for the
extended constitutive equation is formulated, which results in the one proposed a priori
by Hill (1958, 1967). Further, it is shown that a direction of plastic stretching cannot be
arbitrary but has to fulfill an inequality under the loading criterion.

LOADING CRITERION

A traditional elastoplastic constitutive equation premises on the additive
decomposition of the stretching D into the elastic stretching D” and the plastic
stretching D*, i. e.

D=D”+L)p 0)

and the elastic stretching is given by

D” zE-‘&,  &=ED~, (2)

where E is the elastic modulus, 6 is a stress and ( ’ ) denotes a proper corotational
rate. Further, it premises on the existence of the two different processes, i.e. the plastic
loading process in which a plastic deformation is induced and the plastic unloading
process in which only an elastic deformation is induced. Thus, it can be written that

plastic loading: D #O,
plastic unloading: Dp = 0. > (3)

Therefore, the judgment as to which process of them will occur is required when an
elastoplastic constitutive equation is applied to the deformation analysis. A standard
for the judgement is called a loading criterion. Let the loading criterion be formulated
in the following.

Introduce the following assumptions:
Assumption I: A stress rate always induces an elastic stretching so that the elastic modulus
E exists, which is uniquely determined for a current state of stress and plastic internal
state variables.
Then, the rigid-plastic body is excluded.
Assumption II: The yield sutice  is regular (smooth).
Therefore, the outward normal of the yield surface is uniquely determined on a point of
the yield surface. Constitutive models assuming a corner on the yield surface, e.g. the
phenomenological corner theory (Christoffersen and Hutchinson, 1979) are excluded.
Assumption III: The stretching space is divided completely into two half subspaces,  i.e. the
half subspace  for the plastic loading and the one for the plastic unloading in the state that a
yield condition is fulfilled.
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This assumption is introduced by Hill (1967). It is the generalization of the fact
observed in a uniaxial loading for instance and leads to the irreversibility 6’ + - 6 for
D’  = -D, where c? and 6 are the stress rate induced by the stretchings  D’ and D,
respectively.
Assumption IV: The stretching for the plastic unloading induces a stress rate directed
towards the inside of the yield su$ace.
Therefore, it holds that

Dp = 0: tr (NED) =tr (NED”) =tr (N&) 50. (4)

where tr ( ) stands for a trace and N is the normalized outward normal of the yield
surface, i. e.

where the yield condition is described as

f  m,m =o, (6)

Hi (i=l, 2;-*, n) denoting collectively scalar - or tensor - valued plastic internal state
variables and II II designating a magnitude.

By the assumptions I and II the stretching space is divided into two half
subspaces by the sign of the quantity tr (NED), since its sign changes for the stretching
with an opposite direction by the relation tr {NE( -D) > = - tr (NED). Eqn (4)  means
that the plastic unloading induces a negative sign of tr (NED). On account of these
facts with the assumption III, it results that the plastic loading and the plastic unloading
correspond to tr (NED) >0 and tr (NED) CO, respectively. Eventually, the following
loading criterion holds.

Dp f 0 : tr (NED) >O andf ( 0, Hi) =O,
Dp = 0: t r  (NED)(O or f (a,Hi)<O > (7)

In what follows, consider a requirement for a direction of plastic stretching under the
loading criterion (7).

Assume the generalized flow rule

D@=<0P, (8)

where A is a proportionality factor, a function of a stress, plastic internal state
variables and a stress rate or a stretching in degree one, and P is a function of a stress,
plastic internal state variables and a stress rate or a stretching in degree zero, i.e.

L = L ( Q, 6, Hi) or L ( 0, D, IS), (9)
P=P ( Q, 6, It) or P ( Q, D, Hi), (10)

The bracket ( >> designates ((a >> =a for tr (NED) >O and f ( 0, H, ) =O and ((a>> =O
for tr (NED) 50 or f ( 0, Hi) <O, where a is an arbitrary scalar variable.

As was described in the previous paper (Hashiguchi, 1993a),  the substitution of eqn
(8) into the consistency condition of yield condition leads to
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p  =.I <tr(NG) >p
D ’

D -_itr(af i / af
i=l afih) l--lau ’

(11)

(12)

where hi is a function of stress, plastic internal state variables and P in degree one,

which is related to & as

f& =<n>rZ, (13)

since & includes ( A>> in degree one. D is called the plastic modulus, a function of a
stress and plastic internal state variables and a stress rate or a stretching in degree
zero, while it is positive, zero and negative for the hardening, the perfectly-plastic and
the softening behavior, respectively, which are defined as the deformation behavior that
a plastic stretching is induced when a stress rate is directed towards the outside, the
tangent and the inside, respectively, of the yield surface, i.e.

hardening: tr (N&j  > 0,
perfectly-plastic: tr (N&J  =O,

>
(14)

softening: tr (N&j  CO.

If the associated flow rule P=N holds, eqn (14) can be rewritten as

hardening: tr ( &‘) > 0,
perfectly-plastic: tr ( &oP)  =O,

softening: tr ( tip) CO

in terms of the stability condition in the .swzuZZ  proposed by Drucker  0964).
Eqns (11, (2) and (11)  lead to

Eqn (11) is rewritten by eqns (1) and (2) as

tr (NED)
DPzQD+tr(NEP) >P

(15)

(16)

(17)

Eqns (l),  (2) and (17) lead to
tr (NED)

6 = ED -EC D + tr cNEpj >P. (18)

Obviously, eqn (18) fulfills the continuity condition in the small (Hashiguchi, 1993b) at
the boundary between the plastic loading and unloading processes at which tr (NED) =O
holds. The quantity in the bracket (( >> of eqn (17) has to be positive for the loading
process. Thus, P cannot be arbitrary but is required to fulfill the inequality

D+ tr (NEP) > 0 for tr (NED) > 0. (19)

Further, P has to fulfill the inequality

tr (PED)  >O for tr (NED) >O. (20)
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by the work rate-stz#kess  relauztion  (Hashiguchi, 1993a)

(21)

which is one of the fundamental requirements for elastoplastic constitutive equations.
The deformation process in the stability in the small tr ( &D’)  2 0 fulfills the inequality
(21) because of the relation

tr(DPED) =tr(DED”)  +tr( &DO) (22)

EXTENDED FLOW RULES

Four types of extended flow rules are proposed in this section.
a)One  may assume the following concrete equation for P.

(23)

where p;” and Pt* are material parameters, and

&=tr(Nir”)N=  &,,(trN)N,
&? -tr(Ni%*)N, 1 (26)

&-+tr8, ir,= &I,
&*-g-&. 1 (27)

( ’ > stands for a material -time derivative. Eqn (23) is the slight modification of the
one for the tungentiaZfh.sticity  proposed by the author (Hashiguchi, 1993a). F’Y is set as
p;” =O for plastically-incompressible materials.

Let the plastically-incompressible and hardening material with P;t =O,  trN = 0 and
tr (N 6) 20 be considered. It fulfills the work rate-stiffness relaxation by eqn (22) and
the relation

tr( c?Dp)  =< h>{tr (NB)  +R*tr  -II B II a) } (28)

with the inequality

tr(&?&)  =tr [{a*-tr(N$‘JN}  &] = II &*l12  {I-tl(N9*)}  20. (29)

Next consider the plastically-incompressible material with P = 0, trN=O  and the
elastic modulus of Hooke’s type

Eiikr  =L c$ ckki +2G & &, (30)

where L and G are the Lame’s constant and the elastic shear modulus, respectively, and
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dij is the Kronecker’s delta.
The work rate-stiffness relaxation is fulfilled by the relation

tr (DID)  = < L > { tr (NED) +Rtr  ( *,m >

with the inequality

tr ( &FED)  = (&T)ij  (L ~7i ~MIIM +2GDi)
=2Gtr(&?D)

=2G  [tr(&FD”)  +< L>{tr(N&?)  +E $11

=2Gtr [{ &* -tr (N&*)N}  D”]
= (2G)‘{tr(  D*D-tr(ND”*)tr(ND”)}

= (2G lID”*II  )” {l-tr’(N&)  >

20,

noting the relation tr (N&t*)  = 0 and tr (NDe *> = tr (ND”).
b)A simpler flow rule is

(31)

(32)

(33)

where G is a material parameter.
The tangential component in eqn (33) with trN=O does not bring about a plastic

volume change, i. e.

noting tr (N 61) =O.

trP=O, (34)

c)A flow rule different slightly from eqn (33) is

BP=NV+A  ,wb ,,I,
(35)

where A, is a material parameter. Needless to say, the flow rule (35) also fulfills eqn
(34).

A further consideration is required as to the fulfillment of the work rate -stiffness
relaxation for the flow rules (33) and (35).
d)A flow rule with a stretching is

P=N+Dt 6,

where Dt is a material parameter.
The flow rule (36) always fulfills the work rate-stiffness relaxation since it holds

that

tr WED) = < J_ > { tr (NED) +Ctr (DED)  / IID  II > 20, (37)

provided that the elastic modulus E is a positive-definite tensor.
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e)A special case of the flow rule (36) is given as

P=N+DI”  & I+D:  &,
(38)

where
D,=trD, D’=D-+U, I. (39)

DY and Dt are material parameters. The flow rule (38) with trN=O and D;‘=O fulfills
eqn (34). That is, it does not bring about a plastic volume change.

The flow rule (38) fulfills the work rate -stiffness relaxation for the elastic
modulus of Hooke’s type (30) because of

tr WED)  = < A>> { tr (NED) + (3L + 2G) DYD,Z/ II D /I +2GDt*  II D* II > 20 (40)

The plastic moduli D of the flow rules (36) and (38) include a stretching (degree
zero) but do not include a stress rate so that a stress rate is expressed by a stretching
but inversely a stretching cannot be expressed by a stress rate. The former expression
is convenient for the ordinary finite element programming based on the displacement
method. On the other hand, the plastic moduli of the flow rules (23),  (33) and (35)
include a stress rate (degree one) and thus a stress rate cannot be expressed by a
stretching and also a stretching cannot be expressed by a stress rate.
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