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Various constitutive models for the description of the elastoplastic deformation
with an anisotropic hardening and also a transition from the elastic to the dis-
tinct-yield (fully-plastic) state have been proposed in the past. Among them the
two- or multi-surface theory with plural stratified yield surfaces which has been
extended from the kinematic hardening model would be one of the most available
models, and many constitutive equations have been presented using that theory.
None of them have been formulated, however, in mathematically rational forms
applicable to the generalized materials with not only hardening but also softening
behaviours .  In  th i s  paper ,  a  reasonable  formula t ion  of  the  two-  and  the  multi-
surface theories will be given by deriving the mathematical condition which must
be satisfied in order that the surfaces do not intersect each other at their relative
translation and which will be called a “non- in te rsec t ion  condi t ion”  and  by  assu-
ming a reasonable measure to represent the degree of distance from the distinct-
yield state in the two-surface theory. Among them the  two-surface  theory  may
be simple enough to be adopted in numerical analyses of practical problems in en-
gineering.

INTRODUCTION

An extension of the kinematic hardening model advocated by Ishlinski
(1954) and Prager (1956) so as to be able to describe even an elastoplastic
deformation proceeding in the transition from the elastic to the distinct-yield
(fully-plastic) state, which would obey Masing rule (1926),  has been attempted
by Iwan (1967) and Mroz (1967, 1969). The extended models by them are,
however, of complex form assuming multiple subyield  (nesting yield) surfaces
encircled by a distinct-yield (bounding or limiting) surface, which have been
called a multi-surface theory. Thereafter, based on them, simplified models
employing a distinct-yield surface and only one subyield  (inner-yield) surface
have been formulated by many workers (Dafalias and Popov (1975, 1976),  Kri-
eg (1975),  Mroz et al. (1979),  Hashiguchi (1981)),  which have been called a
two-surface theory.

None of the models in the framework of the multi- or the two-surface th-
eory have been formulated rationally on the basis of mathematical verifica-
tions. Especially, little consideration has been given to formulating the ma-
thematical condition which regulates an inner surface so as not to protrude
from an outer surface, i.e., which keeps the surfaces from their intersection
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at the relative translation. Therefore, even though the foregoing models co-
uld analyze the deformation of specialized materials exhibiting only a har-
dening behavior, they would be confronted with the mathematical contradition
on the translation of assumed surfaces in the deformation analyses of genera-
lized materials with not only hardening but also softening behaviours.

In this paper, the two- and the multi-surface theories are to be formu-
lated in mathematically rational forms, especially deriving the nonintersection
condition of the surfaces and assuming the reasonable measure of distance
from the distinct-yield state in the two-surface theory.

BASIC CONSTITUTIVE EQUATIONS IN THE DISTINCT-YIELD STATE

A typical stress/strain curve of elastoplastic materials is schematically
illustrated in Figure 1. First, we assume that the distinct-yield surface, whi-
ch represents stresses in the distinct-yield state shown by the envelope cur-
ve of reloading curves, is described by the following equation.

f(ct) -F(K) = 0,

where we set
h

&= u-a. (2)

The second-order tensor G is a stress, and the scalar K and the second-or-

der tensor A are parameters to describe, respectively, the expansion/contrac-
tion and the translation of the surface. For simplicity, we assume that the
distinct-yield surface retains a similarity in a stress space. Therefore, the
function f is to be a homogeneous function of its arguments. Then, let the

stress f(b) = F

strain
Fig. 1. The distinict-yield state illustrated as an envelope curve of reloa-
ding curves.
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degree of f be donoted  by n.
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Let I? where a superposed dot designates a material time derivative be a
function of stress, plastic strain and plastic strain rate dP in degree one,
which satisfies the condition i=O when $=O.

Further, let i be given as

in accordance with Hashiguchi (1981),  where

;P z tr ;P”

A and B are scalar functions of K and 2 and the notation
represent the magnitude.

By differentiating equation (1)  and substituting equation (3)
tion

a_f nF h~- -rn
auh - tr(na)

we have the consistency condition
h h

lhA __o-4l- ’nF

Here, we assume the associated flow rule

&=<i>72,

(3)

(4)

1 1 is used to

and the rela-

(5)

(7)

(8)

where i is a proportionality factor, and the symbol < > is MacCauley’s  brac-
ket, that is, the operation <i>=i when f(i)=F and i> 0, otherwise <I>=
0. By substituting equation (8) into equation (7) the plastic strain rate is given
as follows :

EP’ <_-___ tr(Ai)
A ->G,

1
n

tr(Ai)$z+A  tr2~+Btr2

where

F’sdF
dK ’

(9)

(10)

and L is a scalar function of stress, plastic strain and k in degree one given
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: E k/X. (11)

TWO-SURFACE MODEL

We introduce the subyield  surface (see Figure 2) which is similar to the
distinct-yield surface and translates within the distinct-yield surface. Here,
assume that the current stress exists on or within the subyield  surface and
that the elastoplastic deformation can proceed when it exists on the subyield
surface, but only the elastic deformation can proceed when it exists within
the surface. Then, let the subyield  surface be descibed  by

f(G) -r”F(K)  =o,

where we set

(12)

;=a-a, (13)

r (OS&l)  is a material constant and the second-order tensor a is a parame-
ter to describe a translation of the surface.

Now, consider the subyield  state f(G)<F.  Let the conjugate point on the
distinct-yield surface having the same outer-normal direction as that of the
subyield  surface at the current stress u be denoted by u,.. Namely, it holds
that

A
uy = (ly-;,

A
n,=i,

where

(14)

(15)

h l-
0,=--ur ’ (16)

(17)

(18)

Here, assume that the translation rule (3) of the distinct-yield surface hol-
ds in the subyield  state, provided that the stress is replaced by the conjugate
stress uY. Hence, noting the relation (16),  we have
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Now, we consider the formulation of i.
Since the subyield  surface must exist within the distinct-yield surface, it

must hold that

f&>  5 F, (20)

CY

Fig. 2. The distinct-yield and the subyield sur faces ;

A”

Fig. 3. The distinct-yield and the subyield surfaces in contact.
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where

h h

a, - a,-a, (21)

letting gC denote the intersecting point of the subyield  surface and the half
line starting from the point a” and passing through the point a in the stress
space (Figure 2).

Equation (20) can be written as

in a differential form. Let the condition which must be satisfied in order
that the surfaces do not intersect but may contact with each other, such as
equations (20) and (22),  be called a “non-intersection condition”.

In the state that the subyield  surface contacts with the distinct-yield sur-
face (Figure 3) it holds that

(23)

where

a%&:,
UC = a,-a.

By the relation (23),  equation (22) can be expressed as

c(l--r)“k  when f(u)  = (l--r)” F.

Further, noting the relation

(24)

(25)

(26)

~_af__  = n(l-4°F
aa tr(n,a)-  ncl

where

the non-intersection condition (26) is written as

& &$z))< 0 when f(a)=(l-r)n F.

(27)

For equation (29) to be satisfied, we assume the following relation (Fi-
gure 3).
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(30)

where i (>0) is a proportionality factor, and

/93Uy-U

which is equated as

/g =1,_;
r

by equations (13),  (14) and (16).
From equation (30) we have

(31)

(32)

(33)

where L is given as

. tr(n(j- 1 Pi))
4fJ= nF (34)

tr($)

by substituting equation (33) into the consistency condition

=o (35)

which is derived by differentiating equation (12) and substituting the relation

af nr”F --=.pn
a(r tr(na)

(36)

In equation (34) G is given by equation (2), letting a mean a current stress.
Finally, extending equation (9) to the subyield  state CP’=CT~, we assume

for the plastic strain rate to be given as follows:

;p =< tr(&A)
h >&

:tr(nh,GY)$&.+A  tr2A,+Btr2  (A, +)+H
IOYl

where H is monotonically increasing function of the scalar parameter

b= tr(&.&),

(37)

(33)

satisfying the condition

b=O: H=O. (3%

i, stands for a function given by replacing the argument 4 by 72,.  in the fu-
nction n”.
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Equation (37) means that the magnitude of a plastic strain rate produced
in the subyield  state depends on the parameter b, that is, the projection of
the vector $/F ‘jn to the outer-normal direction of the subyield  surface at a.

By substituting equations (15) and (16) into equations (37) and (38) we
obtain

b= &- tr(r$), (41)

where i stands for a function given by replacing the argument A by n in the
function ,^. It is matter of course that equation (40) coincides with equation
(9) when u=G,..

Equation (40) has the form

dp=<l>G. (42)

As was assumed earlier, only an elastic deformation occurs in the state of
stress within the subyield  surface. Further, assume that an elastic property
of materials is not affected by the plastic deformation. On these assumptions
the so-called postulate of maximum plastic work and thereby the associated
flow rule and the convexity condition hold also for the subyield  surface as
was verified by Drucker (1951) for the conventional yield surface. Thus, the
loading criterion for the subyield  state is given as follows:

?, when f (G)=PF  and I>O,

0 when f (G)<r”F  or 12 0.
(43)

MULTI-SURFACE MODEL

First, assume a set of nesting surfaces which are similar to each other
(Figure 4), i.e.,

fi(a,)  -r; F(K) =0: i=O, l,..., m. (44)

The surfaces for i=O and m correspond to the innermost surface enclosing
the elastic domain and the distict-yield surface, respectively. The constant
ri is a ratio of the size of the i-th surface to the distinct-yield surface, pro-
vided that

O<r,<l for i=O ,..., m-l; r-,=1. (45)

Now, let the current stress u exist on the I-th surface. In the way
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similar to that decribed  in the formulation of two-surface theory, we obtain
the non-intersection condition

))i 0 when J(&)=(l-  %)“F,

where

(46)

(47)

i? E d-aI I, (48)

al =al-al+l, (4%

letting a: denote the intersecting point of the I-th  surface and the half line
stemming from point al+l and passing through the point a,.

Fig. 4. Multi-surface model.

From equation (46) &, is assumed to be given by

(50)

(51)

where

p* = Ol,l --a=I,,,a-,--
rl

ui+1, (52)
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(53)

(54)

letting u,+~ denote the conjugate point with the same outer-normal vector n,
on the Ifl-th surface.

By the similarity of the surfaces, a, for the surfaces within the I-th
surface are given by

a,= 1-s g+2ar for i=O ,,.., Z-l.
( > (55)

On the other hand, the outer surfaces (i=Z+l,..., m) should be assumed to re-
tain their relative cofigurations,  i.e.,

.
a, =G+ -J$ (a,-2)  for i=I+l,..., m,

.
while i is given by (19) with the replacement of G//I; 1 to aL/l& I, specifying
a,,, by 4.

The plastic strain rate is given by defining piecewise hardening moduli in
the interporation rule, that is,

>= < ~~_tr(G,C) --r >n,
H, + (H,-H,)(s)

H,= & tr(n, a,) gs,+A t&,+B tr2 &_!!_ ,I ( -1Ia,1

(57)

(58)

where H, and r are material parameters, and it stands for a function given
by replacing the argument A to n, in the function t?

Further, assume the field of an infinite number of nesting surfaces the
sizes of which range from the point (vanishing yield domain) to that of the
distinct-yield surface. It was named an “infinite-surface model” by Mroz et al.
(1979). In this model, hardening modulus could be given by

H=H,+(H:-Hy)  (l-(G)‘), (59)

where Hi and Y are material parameters. A salient feature of this model is
the assumption of the “stress-reversal surface”. New active loading surface
expands contacting with the stress-reversal surface at the stress reversal
point. Thereby, the translation rule is simplified considerably. Further, it
needs to memorize only the active loading, the distinct-yield and the stress-
reversal surfaces. In case of cyclic loading with decreasing amplitudes, many
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stress-reversal surfaces need, however, to be memorized.

COMMENTS ON PAST FORMULATIONS

Main differences of the formulations of this paper from the past ones are
as follows :
1) Translation rule of surfaces

In the multi-surface model by Mroz (1967),  it was assumed a firiori  that
.
a=;, B&>O>,

However, the other equation

(60)

a=i2 BGZ>O) (61)

has been used after Mroz et al. (1978). Further, in the two-surface model,
Defalias and Popov (1975) proposed the equation

. .
ci=G+;3  /9(/&>0). (‘32)

These equations do not satisfy generally the non-intersection condition
(29). According to them, the inner surface would protrude from the outer

one in a softening state ti<O.
2) Measure for a distance from the distinct-yield state in the two-surface

model
Dafalias and Popov (1975) and Mroz et al. (1979) adopted l,Bl  as the measure

to represent the degree of distance from the disinct-yeild state (Figure 5).
On the other hand, the measure b prescribed in equation (41) is not the

tr(@)n (E @inn)
\

Fig. 5. Measures of the degree of distance from the distinct-yield state.
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magnitude of ,8 itself but its projection to the outer-normal direction of the
subyield  surface at the current stress (Figure 5). The latter would be more
reasonable as that measure.
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