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An enzymatic reaction model, in which the enzymes are fixed at respective spatial
positions and the moving reactants drived by free diffusion react with the fixed
enzymes, was built to simulate a metabolism in cellular conditions. Fur the r ,  i t
was assumed in the model that the final product inhibits the first enzyme by the
negative feedback. The dynamical behavior of the model was surveyed by com-
puter simulation to evaluate its capability of the constant-value control or homeo-
static control.
It was found as a result that the model system exhibited a weak controllability on
the homeostasis of the metabolites against the external perturbation added to the
system. Some discussions were also made on the mechanism of homeostatic con-
trol of metabolites under cellular conditions.

INTRODUCTION

The principal mode responsible to homeostasis of the enzymatic or meta-
bolic pathways under cellular conditions has been believed to be feedback
control generated automatically by the enzymatic reaction system itself. Ac-
cording to the biochemical findings, an enzymatic feedback system is classified
to a type of parametric control in which an activity of the regulatory enzyme
is negatively and directly controlled by an intermediate or the product of the
system through the feedback loop, and most regulatory enzymes, often called
key enzyme, belong to the class of allosteric enzyme. The regulatory behav-
ior of several allosteric enzymes in closed system (in vitro or in test-tube)
has been well studied, and from the experimental results, especially from the
sigmidoial curve between the activity and substrate concentration, it  was
speculated that allosteric enzyme would display an excellent capability of auto-
matic and homeostatic control on the metabolites under cellular condition
against an external perturbation.

On the other hand, it has been well recognized that the dynamic behavior
of certain enzymatic reactions in an open system deviates frequently and
profoundly from that observed in a closed system. Thus, it has been needed
to follow the controllability of an allosteric enzyme in an open system. Because
of the experimental difficulties, first the behavior of the allosteric enzyme
in the open system was mainely followed by computer simulation technique
using an appropriate model system.
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Morales and McKay et al. (1967) and Higgins et al. (1973) studied the behav-
ior of enzymatic feedback system including an allosteric enzyme as the regu-
latory element, and found that the activity of allosteric enzymes in the pres-
ence of negative effector can be represented by a type of the Hill equation.
The computer simulation of such systems revealed that certain feedback sys-
tems can originate the oscillation of intermediates in enzymatic reaction
system. Sakamoto et al. (personal communication) formulated the all trans-
formations among the states of the allosteric enzyme, the processes of effector
binding and the reaction of substrate by differential equation. They solved
numerically the differential equations and found that the time courses of en-
zyme-states exhibited the sustained oscillations. Furthermore, they analyzed
the feedback system consisted sequentially of allosteric enzyme and Michaelis-
Menten  enzyme, and revealed that this type of feedback system did not show
any controllability on automatic and homeostatic control of the product.

Okamoto et al. (1977, 1978) investigated the controllability of various struc-
tures of enzymatic feedback system in a homogeneous medium. As a result,
it was found that feedback structures which provide a large pool of the input
substrate or a branched pathway above the regulatory enzyme were able to
reject to some extent the effect of external perturbation, but did not exhibit
the full of homeostasis.

The control theory insists that in the optimal regulator the feedback
element should be time-dependent and that the deviation of the real state of
the system from the desired one should be stored (integrated with time)
within the system. In essential, these basic features should also be realized
in the enzymatic feedback system, and it is clear that this is not the case for
the enzymatic feedback system postulated based upon the biochemeical  fin-
dings. In this connection, Okamoto et al. (1980, 1983) have attempted to sup-
pose the structure of the ideal or faultless enzyme able to realize the perfect
homeostasis in homogeneous medium, and clarified that a hysteretic enzyme
and a twofactor realizing enzyme are the strong candidates for such the fault-
less enzyme.

In a living cell, enzymes seem to localize at the respective sites. For the
practical discussion on the enzymatic feedback system, therefore, it is neces-
sary to build first the model of the feedback system in an inhomogeneous
medium corresponding to the cellular conditions, in which the enzymes are
fixed at the respective sites and the reactants move in the space by free or
facilitated diffusion.

On the other hand, nonlinear rection-diffusion systems have been well
analyzed with respect to the travelling wave, the pattern formation, oscilla-
ting behavior and so on. For example, stemmed from the analysis of Turing
Model (Rosen, 1970)) chemical reaction such as Belousov-Zhabotinskii reaction
have been comprehensively investigated. From accumulated knowledge on
the dynamical behavior of the nonlinear reaction-diffusion system, it is expected
that the spatially irregular distribution of metabolites in the cell would be
originated from the nature of enzymatic reaction systems, If the system
satisfy some constraints to exhibit the above characteristics. Thus it is very
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important to elucidate actual aspect of the such constraints for understanding
the cellular device responsible to the spatial distribution of metabolites, which
certainly carries some physiological roles in the cellular activity. Along this
line, in the present study, the controllability of the enzymatic feedback sys-
tem was analyzed first by means of computer simulation.

NUMERICAL SOLUTION OF STATE EQUATION

Model scheme
An enzymatic reaction system consisted of four different enzymes El-E,

is assumed to be the model system as shown in Scheme 1. The substrate

K.51
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(3)
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Scheme 2

S is continuously supplied to the system and products P,, i=l, 2, 3 are the
substrate of the next enzymes, respectively. The product P4 inhibits the
activity of the enzyme E, either as a competitive inhibitor (Scheme l-(2))
or as a negative allosteric effector (Scheme l-(3)).  P5 represents the frac-
tion of product P4 that bound to E,. The enzymes El--E4  are assumed to be
fixed at L,-L,  in one-dimensional space (0, L) as shown in Scheme 2. The
enzyme-substrate complexes C,-C4, enzyme-inhibitor complex Y and P5 are
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also fixed at the corresponding postions. The substrate and the products
P,-P, move freely in the space by diffusion and permeate through the bound-
aries (0 and L) according to the given boundary conditions.

State equation
The state equations of the enzymatic feedback system in inhomogeneous

medium may be derived from Schemes 1 and 2 as

a [Gl__ = -h,[S]  [E,] +K,,[C,]  +R,3T

a[&] =
8T -h[P11  [&I +(k,,+k,,)  [C,]

a[E31aT =-k  31 [P] 2 [E.]+(k  3 3 2 +k 33 )[C,]

w  =k,[Sl [E,] -k,,[C,l --R,

%&d=kn[P,][EZ]-(k22+k23)[CJ

a$p3J  =k,,[P,l [&I -(ka+M  [C,]

?r;l =k,,[P,l L-51 -(ke+ka) [C,]

For the system without feedback inhibition (abbreviated as no.),

&=k,,[C,l
R,=R,=O

R,=k,,  [C,l

(2)

(3)
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for the competitive inhibition (abbreviated as compet.),

FAT”=  kj; [PJ [El] -kj, [ Y]

R,= -k,, [PJ [Cl +&I Yl

&=k,z[C,l  -k,,[P,l [Cl +ks,[Yl
Rl=[Yl

and for allosteric effector (abbreviated as allost),

R,=k,,[C,l/(l+a[P,l)

&= -k,,[P,l [.&I +ka[psl
&=~,3[C,l/(lf~[~51)
R,=O

(4)

(5)

The conservation equations are

[&I + [CII +~4=-fmx,,I
[&I + [C,l = &OSX.‘?l

n=2,3,4 (6)

where brackets represent the molar concentration of chemical species, D, and
n*, PZ=l,..., 4, are diffusion coefficient of substrate and products P,, n=l,...,
5, T the reaction time, X the distance from boundary (0), kij the rate con-
stant of reaction steps indicated in Scheme 1, 6 is the Kroneker’s delta and E,,,

n=l,..., 4, represent the total concentration of respective enzymes.
The initial conditions are assumed to be

[WI 0) 1 = so, [S(O,X)]=O,  O<kL
[P,,(X,O)]=O,  n=l,2;.*,5, O(X(L

[C,(X,O)]=O,  n=l,2;*.,4, 0(X(-L

[&(L, 0)] =-Co, n=l, 2, *a*, 4

[E,(X, 0)] =O, n=l, 2, ..-, 4, X+ L,

LY(X, WI =o, O(X(L

and the boundary conditions are assumed to be

[S(O,  T)] =&

(7)

a[p$~T)]  =a[P,,(O,  T) ] , n=l, ..a, 5
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“[px$$ T)l  =a[P,(L,  T)] n=l, *a*, 5

a > 0, constant (3)

These boundary conditions imply that the all reactants pass through the bound-
aries of both sides in proportion to their own concentrations, except that
the concentration of substrate at boundary (0) is held at constant value.

The new dimensionless variables and parameters are defined as follow:

] ks,P4= ,-[P4] f o r  c o m p t .
‘i 52

’ k

i
-X”[Pd] f o r  allost.

62

E,= [E,]/E,,i,, n=l, a.., 4

ps= [f’sl/E,o
I’= I J’l P-5,

x = X / L ,  t=T/B, S=LZ/D,

y’n=D,/D,, n=l, -.-, 4

~X=kJLIe, n=l, *a*, 4

0 for no.

“= kjl E,, for compt.

k,, E,, for allost.

for no. and compt.

e  f o r  allost.

(9)

(10)

(11)

(12)
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k,, 1243
k

E,,, 0 for no.
1 2

Q= 1 k,, Lk_, Ed,, 19 for compt.
.>L

k61 k4, Ed0 0 for allost.
k 62 (13)

The dimensionless state equations may be written as, using the above defini-
tions,

C,,z-k,,  t’

CA=&, 0 ’
n=l,  2, . . . . 6

g - ~~+o,(SE,+E,+R+O

(14)

(15)

ap,
at ~-~~~~~+u~(~~E~+E~-~)+EI[E~+R~-~)=O (16)

ap, -;7,~~+~,(P,E,+E~-lj+~,(E,-l]=0 (17)
at

“P3- -?~~+~~(P,E,+E,-~)+~,(E,-~)=oat
03)

(20)

“a”12 +c,,(P,E,+E,-l)+C23(EZ-1)=0 (21)

aE,
at +T,*{P,E,+E,-l}i-Eqj{E4-1)=0 (23

y +C,,(Y-P&)=0

$ +<,,(I’,-P,E,)=O (25)

o for no. and allost.
R,=

Y for compt.
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i
0 for no.

R,= a,(P,  E,- Y )

!

for compt.

05 (P4 E, - PS) for allost.

/ C,,(E,-1)
1’

for no.

R,= c,,(Y+E,-l)+r52(P~El-Y)  for c o m p t .

i C,,(E,-1)/(1+a  &, Pi) for allost.
(26)

Difference equation and numerical solution
The time interval (0, t) and the space region (0, 1) are divided into

subintervals with a small width dt=K and subregions with a small length
dx=h, respectively, and the lattice on time- and space-axis is constructed.
The notations i and j indicate the number of the points on the both axes
counted from x=0 and t=O, and pair (i, j) represents the latt ice  point .
The difference equations are derived from dimensionless state equation using
the Crank-Nicolson method (1947). The difference equations for the system
involving the allosteric inhibition may be writtern  as follow:
From equation (13,

--i-S(i-1, j+l)+(l+l+$~.,E,(i,  j+l))S(i, j+l)

-4 S(i+l, j+l)

=+{S(i-1, j)+S(i+l, j))+(l--A)S(i,  j)

-t ol{S(i,  j)E,(i, j) +2 E,(i, j) -2)

I = k/hZ, At=  k ,  dx=h.

is obtained. From equations (16)-(B),

-i?.P,,(i-1,  j+l)+(l+n+$o,,+,E,+,(i,j))pS(i,j+l)

-$- 7% P,(i+l,  j+l)

=-&y,,(P,,(i-l,j)+P,(i+l,j))+(l--d?,)P.(i,j)

k-~--utiil(Px(i,  j)E,+,(i,j)-2Es+l(i,.9-2~
2

-h(-&(i,  j> -1)

n=l,2,3

(27)

(28)
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from equation (19))

= f T4(P4(i-l, j)+P4(i+1,j))t-(1-~74)P4(i,_0

--kE,(E,(i, j) -1)

from equation (ZO),

( 1 + Ti2
Iz 2

(S(i,j+l)+l)-t2)E,(i.  j-t-1)

4 1 51,
-km+ 2

(S(i,j)+l)-;Y+(i,j)+:l:

+P,,/[l+a?” !Ps(i,j+l)+W,j))]

from equations (H-(23),

(i + i (Cp,z  P,, ,(i,j+l)+T,,,))E,.(i.j+l)

(29)

(30)

(31)

and from equation (25),

(i + ‘i’ )P,(i, j+l)

(32)

are derived. The difference equations for the system without feedback or

with beedback  involving competitive inhibition have fundamentally the same
form as above and are not shown here.

Boundary conditions at x=1 may be written as,
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a c
-ax ~ h+I+; pz+;-pa+:  g,)C(il’;-1,i)

/- 1
(33)

where  pi is bac!~warcl  difference operator, C represents the concentration of
reactants and i and x-l is denotedd  by N. When C(N,j)  are abbreviated by
C(N), ~7~ C(N+l) are written as

j7, C(N+l)=C(N+l)~~~C(N)
p,C(N+l)  =C(N+l)  -2C(N) -C(N-1)
o.;C(N+l)=C(N+l)-3C(N)+3C(N-l)-C(N-2)
~,,C(N+1)-C(N-t1)-4C(N)+6C(N-l)-4C(N-2)-tC(N-3)

(34)
With equation (34), equation (33) can be transformed to

ac~ax lr_, - f (;; C(N+1)  -4 c(Ar)

+3 C(N-1) -+C(N-2)  ++ C(N-3)) (35)

The difference equations of the state equation, equations (27)-(32),  are for-
m u l a t e d  up to i=N+l to obtain C(N+l,j).  Thus, C(N+l) in  equat ion (35)
can be obtained by numerical solution of difference equation of the state equa-
tion. The boundary conditions X/axjZ_,  is formulated by a similar form to
equation (35). All difference equations (Z-(35) were numerically solved by
the Gauss elimination method with h=dx=O.  01 cm and k=dt=O. 01 sec.

RESULTS

Time course in homogeneous medium
The reaction time course was calculated with assuming that the enzyma-

tic reaction system in Scheme 1 is operating in a homogeneous medium. It
was further assumed that the substate  was supplied to the system to main-
tain the constant concentration and that the final product was removed from
the system at the rate proportional to its concentration (kj, P,). The result
is shown in Fig. 1. The products <,-P, attained rapidly to the same stationa-
ry concentration. The accumulation of P, was due to the small rate of its
removal from the system.

Enzymatic reaction system without feedback
An instance of spatial distributions of the reactants in the system which

is laking in the feedback loop is shown in Fig. 2. The value of patameters
adopted in the calculation are shown in  the  legend of  the  f igures .  The
time courses of the reactants at x=0.9 are shown in Fig. 3. The products
PI-P, a t ta ined to  s ta t ionary  s ta te  within  t=0.2 whi le  the  substrate  took
much longer time to reach the stationary value. T h e  f a c t  t h a t  P, w a s
higher than P3 may be due to that the examining point, x=0.9, is near the
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Fig. 1. Time course of enzymatic reaction in Scheme 1 in homogeneous
m e d i u m .  V a l u e s  o f  p a r a m e t e r s  a r e  k,,-k,,=:k,,-k,,=lOOO  M-r se0, k,,-
k,,=k,,=k,z=50  set-1, k,,=k,,=k,,=k,,==30  set-1 a n d  k,,=30  set-1. P, w a s
removed by k,,P,. Substrate concentration was 0.1 M and all enzymes
1.0 M.

‘“I:
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F
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5
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0.5
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0 0.2 0.4 0.6 0.8 1.0
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Fig. 2. Spatial distribution of the products in enzymatic reaction system
without feedback in inhomogeneous medium. Parameters adopted for calcu-
lation were the same as those in Fig. 1 and L,=O. 2, L,=O.4, L,=O.G a n d
L,=O.8cm,  D,=10e5, D,-D,=DS-D4~10-4ctnz  set-r.
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0.Cj-

0.0
0.0 2 . 0 4 . 0 6 . 0 6 . 0 1 0 . 0

Relative time
Fig. 3. Time course of reactants at x=0.9  in the enzymatic system without
feedback. Conditions were the same as those in Fig. 2.

1.6 I I I I

4.0 6.0

Relative time

Fig. 4. Time course of the reactants at x=0.9  in the system without feed-
back. S was changed at time indicated by arrow from 0.1 to 0.2 M.



Reaction-difusion  system 13

location of E, (x=0.8).  After all products had attained to stationary state, the
concentration of the substrate at x=0 was increased twofold in the step
function and the calculation of itme course was proceeded. This situation
may correspond to that the system was perturbed by an external forces causing
a large supply of the substrate through bundary  (0). The calculated result
is shown in Fig. 4. The concentrations of the products at new stationary
state doubled exactry as expected, showing no capability of autocontrol against
the external perturbation.

Feedback system with competitive inhibition
The calculated spatial distributions of reactants of the feedback system in

w h i c h  E, is inhibited competitively by P, are shown in Fig. 5, and the
t i m e  c o u r s e s  a t  x=0.9 a r e  s h o w n  i n  F i g .  6 .  T h e  f u n d a m e n t a l  f e a t u r e s  o f

the distribution and time course were nearly the same as those of the system
without the beedback loop (Figs. 2 and 3). However, the concentration of sub-
state near the stationary state was considerably higher than that of the sys-
tem without feedback loop while the time courses of the products in both
systems were overlapped almost completely. The changes in the concentra-
tions of the products at stationary state caused by twofold increase in the
substrate concentration at x=0.9  are shown in Fig. 7. Twofold increase in the
substrate concentration resulted in about 1.9 times increase in the product

0.8
1.5

z 0.6
c

1.0

ul
‘ij 0.4

$
S 0.5

0.2

00
0 0.2 0.4 0.6 0.8 1.0

Distance

Fig. 5. Spatial distribution of reactants at x -0.4 in the enzymatic feedback
system with competitive inhibitor. Conditions were the same as those in
Fig. 2, except k,,=2000  and k,,=lO set-I.
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0.6
F
b
c

:
P
2
Esc 0 . 3

8

0.0
CI.0 4.0 6 .0

Relative time

8.0 10.0

Fig. 6 . Time course  o f  reac tan ts  a t  x=0.9  in  the  feedback sys tem wi th
competitive inhibitor. Reaction conditions were the same as those in Fig.
5.

1.5

F

0

5 1.0

/ / /

S

I

0.0 2.0 4 . 0 6 . 0 6 . 0 10.0

Relative time

Fig. I. Time course  a t  x -O.9  in  the  feedback  sys tem wi th  compet i t ive
inhibitor. Substrate concentration was increased twofold at time indicated
by arrow.
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Table 1. Effect of binding constant on the concentration ratio between old
and new stationary states.

Upper  tab le  i s  for  the  case  where  subs t ra te  concent ra t ion  was  in-
c r e a s e d  t w o f o l d  a n d  l o w e r  t a b l e  i s for  threefo ld  in  c rease . Values
indicate the ratio of concentration at new stationary state to that at old
stationary state.

Ratio

S PI PZ p3 P(

100 2.47 1.96 1.86 1.18 1.91
200 2.51 2.00 1.86 1.86 1.85
500 2. 79 1.91 1.85 1.82 1.81

1000 3. 11 1.86 1.71 1. 14 1. 81

Ratio

k,, /kx

100
200
500

1000

S PI PZ p3 p,

4. 26 2.92 2. 79 2. 56 2. 64
4. 46 2.89 2.67 2. 48 2. 54
4.9’2 2.74 2.72 2.48 2.50
5. 47 2.59 2. 40 2.34 2. 40

concentrations at the  new stationary state, s h o w i n g  v e r y  s l i g h t  a u t o - c o n t r o l -
lability against the external perturbation. The effectiveness of competitive
inhibitor P, to inactivate enzyme E, may depend on the rate constants of the
enzyme-inhibitor complex formation. Table  1  shows the  ef fect  of  k;,/k,.,
(binding constant) on the controllability of the system. The upper figures
show the case of twofold increase in the substrate concentration and the low-
er the case of threefold increase. As can be seen in the table, the incre-
ment of the product at a large value of binding costant  was about 80 96 of
the substate  increment. Thus, it is clear that the system containing compe-
titive inhibition is able to reject only 20 g of the effect of the external per-
turbation, and this type of feedback system may not he regarded as the basic
mechanism of homeostatic control of metabolism.

Feedback system with allosteric enzyme
The time course of the reactants at x-=0.9 in the system involving allo-

steric enzyme E, and negative effector P, is shown in Fig. 8. The concentra-
tions of the products at the stationary state were considerably lower than
those in the system with competitive inhibition (see Fig. 6). The characteris-
tic features of the time course were the appearance of overshoot on P, and
P2 concentrations. The effects of binding constant, k,,/k,, in E,-P, c o m p l e x
formation and the constant on the stationary concentration of reactants
are shown in Table 2. The binding constant (upper table) changes scarcely
the stationary concentration, while the increase in the value of N ( l o w e r
table) causes a remakable  decrease in the concentration of the products and
increase in that of the substrate. Fig. 9 shows the effect of increase in the
substrate concentration at x=0.9 on the concentrations of reactants at the
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0.0 2.0 4.0 6.0 0.0 1 1

Reletive  time

Fig. 8. Time course  o f  reac tan ts  a t  x=0.9  in  the  feedback sys tem wi th
allosteric effector. Reaction conditions were the same as those in Fig. 6
e x c e p t  k,,=lOOO,  k,,=lO  see-1 and n=30.

Table 2. Effect of binding constant between enzyme and effector  and the
value of cy on stationary concentration of reactants in enzymatic feedback
system with allosteric effector.

Concentration in Steady-State (lo-ZM)

100 0.63 0. 24 0.13 0.09 0.11
200 0.67 0.24 0.13 0.09 0.11
500 0.15 0.23 0.13 0.08 0.11

1000 0.85 0.22 0.13 0.08 0. 10

Concentration in Steady-State (lo-*M)

cy s PI PZ p.9 p,

30 0.73 0.20 0.12 0.07 0.10
100 1.03 0.16 0.09 0.06

1000 2.22 0.08 0.05 0.03 ::
5000 2.65 0.04 0.02 0.01 0: 02

stationary state. The concentrations of products increased in proportion to
the substrate concentration. As described above, the value of N affected
strongly the concentrations at the stationary state. Table 3 shows the effect
of the value of cy on the concentration-difference (denoted by ratio) between
old and new stationary states. Upper table is for the case where substrate
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Table 3.  Effect of the value of cy on the concentration ratio between old
and new stationary states.

Ratio

30 2.93 1. 67 1. 62 1.72
100 2.51 :*6”: 1.67 1. 67 1.65

1000 2.5’2 1: 51 1.51 1.51 1.49
5000 2.40 1.51 1.55 1.50 1.45

Ratio

Q S PI PZ p3 p,

30 5.10 2.39 2. 48 2, 24 2.20
100 4.68 2. 13 2. 06 2.03 2.01

1000 3.83 1.88 1.87 1.86 1. 85
5000 3.56 1.86 1.86 1.86 1.80

2.0 4 . 0 6 . 0 0 . 0 11

Relative time

Fig. 9 . Time course in the enzymatic feedback system with allosteric en-
zyme. Substrate concentration was increased twofold at the time indicated
by arrow. Other conditions were the same as those in Fig. 8.

was increased twofold and the lower is for the case of threefold increase. If
there is no auto-controllability, the values of ratio on PI-P,  would be 2.0
for upper table and 3.0 for the lower, and reversely if there is complete con-
trollability the value would be 1.0 for both cases. The increments of the
stationary concentrations of the products was about 45 % of the increment of
the substrate concentration.
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DISCUSSION

The homeostatic control of metabolism in a living cell may be realized
through the combination of various mechanisms. However, respective mech-
anism seems to have essentially the form of feedback system as depicted in
Fig. 10. Mechanisms 1, 2 and 3 control the activity of regulatory enzyme and

\I_?~~~~~~ 1;::
Fig. 10. Various modes of enzymatic feedback systems.

mechanisms 4 and 5 the quantity of the enzyme. Mechanism 6 is thought to
belong to the input regulation, while others are parametric regulation. The
mechanism 3 is direct feedback system in which X,, ,, inhibits enzyme E,,
and it is very likely that basic features of this system are common to all other
feedback systems which include complicated feedback element. Thius, the
enzymatic reaction system containing direct feedback loop has been investi-
gated in a series of the present study. First, the enzymatic systems with direct
feedback in homogeneous medium have been intensively studied on their capa-
bilities of homeostatic control. However, it was concluded that this type of
system could not realize the satisfactory control for homeostasis (Okamoto et
al, 1978).

In a living cell, the reaction conditions of enzymatic system are regarded
to be inhomogeneous and it is expected that the enzymatic system with direct
feedback in such medium would realize by some possibility the homeostatic
control of reactant against the external perturbation. Thus, the present study
was carried out to elucidate theoretically the controllability of enzymatic feed-
back system in an inhomogeneous medium which corresponds to the cellular
conditions.

In the present model, the cellular conditions were abstractly represented ;
three-dimensional space was reduced to one-dimensional space, and active
transport across the membrane, the flow of cytoplasm and the others were
neglected. Further it was assumed that the enzymatic reaction is irreversible
and the reactants can pass through the boundaries. However, such abstract
model may still represent the fundamental nature of the real system.
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The activity of allosteric enzymes in the presence of negative effector  at
stationary state in the closed and homogeneous system has been formulated
by Monod et al. (1965) and Koshland et al. (1966). The precise representation
of the rate equation of the allosteric enzyme may be given by simultaneous
differential equation without using the allosteric and substrate-binding con-
stants. Since, it was revealed that the rate equation of the allosteric enzymes
can be approximated satisfactory by a simple equation of the Hill type (Mora-
les and MacKay  (1967)),  R, in equation (5) was used for the formulation of
the activity of allosteric enzyme. The parameter a in R, may be related to
the value of allosteric constant. The values of various parameters adopted for
the numerical calculation were average of general enzymatic reactions. In an
enzymatic reaction, it is usual to use a large excess of substrate to the
enzyme. However, in the present model of the reaction-diffusion system, the
apparent activity of the enzymes becomes to be very low, because a large
fraction of substrate passes as the unreacted through the space in which the
enzymes are fixed. Consequently, a large excess of enzyme concentration
relative to that of the substrate at boundary x=0 should be applied for the
calculation.

In the present model, the boundary conditions were assumed to be
represented by equation (8). These conditions indicate that, except the
substrate at x=0, all reactants can pass through the boundaries at the rate
proportional to their concentrations. This may be not the case for the real
enzymatic reactions in living cells. Therefore, the calculation should be con-
tinued in succeeding computer simulation with revising the boundary condi-
tions.

The enzymatic reaction system without feedback (Scheme 1) gave rapidly
the stationary state in a homogeneous medium. Since the substrate is supplied
to the system at a canstant rate and the final product P, is removed at the
rate proportional to its concentration, the substrate and the products, PI-P,
did not accumulated in the system giving the same concentration at the station-
ary state. In the enzymatic reaction system without feedback inhibition in
the inhomogeneous medium, the products, PI-P,,  attained rapidly to the sta-
tionary state with different concentrations, while the substrate took a long
time because of no back-flowing of substrate through x=0. After the all
products had attained to the stationary state, the concentration of substrate
at x=0 was increased twofold in step-function and the time courses were
followed. As can be seen in Fig. 4, the concentrations of the all products
were aIso  increased exactIy  twice. The increase in the substrate concentra-
tion may be regarded logically as the addition of the external perturbation to
the system through the boundary (0). Consequently, it was concluded that
this system has no auto-controllability for the external perturbation.

In the enzymatic feedback system with the competitive inhibition, the time
courses (Fig. 6) of all products at x=0.9  were nearly the same as those
(Fig. 3) in the system without the feedback, when the same substrate concen-
tration was supplied to the system through boundary x=0. The twofold in-
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crease (perturbation) in the substrate concentration caused an uniform increase
in the concentration of the products at the new stationary state, indicating
very weak auto-controllability of the system against the perturbation. Since
the binding constant k,,/k,, seems to affect most strongly the auto-control-
lability of the system, the effect of this constant on the stationary concen-
tration of the products was surveyed. However, as shown in Table 1 it is
clear that the binding constant is not sensitive parameter. With sufficiently
large binding constant, the increment in the product concentration at the new
stationary were 1.8 for twofold increase in the substrate concentration and 2.4
for threefold increase. These values imply that only about 20 % of the effect
of external perturbation could be rejected by the feedback and this system
cannot be candidate for the autocontrol mechanism on the homeostasis of
metabolism.

In the enzymatic feedback system containing allosteric enzyme, the activity
of the system was considerably lower than that of the feedback system with
competitive inhibition; the stationary concentration of the product was lower
and that of the unreacted substrate was higher than those of the competitive
inhibition. This means that the inhibitory effect of P, as negative alloste-
ric effector on the allosteric enzyme El is stronger than that of P, that acts
as competitive inhibitor. As can be seen in Fig. 8, the time course of P, a n d
P2 exhibited an overshoot. This will be caused by fact that the appearance of
inhibitory effect of P, on El took some time-delay owing to the movement
of P4 by free diffusion ; before  P4 reached to E,, P, was formed in a large
amount without the inhibition and thereafter the formation of P, was surpre-
ssed by P4. In the allosteric inhibition, the binding constant, k,,/k,,  between
the  a l loster ic  effector and the  enzyme E, a n d  t h e  c o n s t a n t  a  m a y  b e
important factors governing the auto-controllability which relates with the
stationary concentration of the products. As shown in Table 2, the binding
constant exhibited practically no effect, while the value of LY affected sensiti-
vely the stationary concentration, suggesting a strong relation with the con-
trollability on homeostasis of the products.

As shown in Fig. 9, the stepwise  increase in the substrate concentration
caused uniform increase in the product concentrations at the new stationary
state. As stated above, the value of a appears to relate strongly to the auto-
controllability of the feedback system. It was evident from Table 3 that the
feedback system with a large value of a is able to reject about 60 % of the
effect of the external perturbation, and that this system is superior to the
feedback system with competitive inhibitor with respect to the homeostatic
control of the enzymatic products or metabolites. However, it is concluded
that the all enzymatic reaction model subjected to the present study has no
satisfactory capability of auto-control against the external perturbation. Fur-
ther, computer simulations are necessary to find out the fundamental structure
of feedback system which is available to achieve the homeostatic control of
metabolism in living cell.
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