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An exact analytical solution is added to the author’s previous work on the tran-
sient heat transfer in the packed bed of the particles of low thermal diffusivity.
The solution has a simple integral form compared with the previous complicated
series expression. The proofs of the convergence of the solution to the Schu-
mann’s at the zero Biot number are given. and a unique solution at the infinite
Biot number is introduced.

INTRODUCTION

The author (Murata, 1971) proposed an extension of Schumann’s theory
(Schumann, 1929) on the transient conduction of heat between gas and parti-
cles in packed bed. In that work the approximate analytical solutions similar
to Furnas’ solutions (Furnas, 1930),  and the computing procedure of the rigor-
ous series solution were given.

In this paper the author adds an exact solution of integral form and some
supplemental proofs.

THE LAPLACE  TRANSFORM OF EXACT SOLUTION

The basic equations have been given by the author as follows:

(1)

Eq. (2) is simply expressed by Duhamel’s theorem as follows:

where TS(r) is a surface temperature at the time e in which radiation takes
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place into a medium at temperature unity.
This KS(r)  is known, and hence its Laplace  transform can be derived

directly from

/3: BTS  a2Ts 1 BTS_~
a2 ar =F+rar  9 (4)

TS=O, r=O, Qlrla, (5)

BTS,+h’(TS-l)=O,  r=a, t20.

That is

FS= -l ah’
s plJs coth&Js  +(ah’-1)  ’

Then, by convolution theorem, we have

The Laplace  transform of Eq.(l) is

aFGmmm-=-i(FG-Fs(a)).ac
Thus, by eliminating Fs from Eqs. (8) and (9), we have

aF, 1
at

Bl/jcothp,/s-l  F
E Bll/scothBl~/s+(ahl-l) ’ ’

and the solution at the inlet gas temperature unity as follows:

(6)

(7)

(8)

(9)

(10)

FG= i exp --‘-( &v’s coth&l/; -1
E p,&cot%~,J,+(ah’-  1) >

ANALYTICAL SOLUTION

The singularities except zero of Eq. (11) all lie to the

(11)

left of the imagina-
ry axis, so that the gas temperature I, is determined by using the inversion
theorem for the Laplace  transformation as follows:

tc =2& esrFGds=ki esrFGds=Z,+z,+Zs,
BY WY3

(12)

where rl, rz, r3 are the lotuses  of integration illustrated in Fig. 1 and Z1,
I,, Z3 are the integrations along those lotuses.

The limit value of the integrand at s=O is

Then we have

1:~ s(esrFG) = 1. (13)
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Fig. 1. The locus of integratiod.

zp;. (14)

The integrand is an analytic function and has a real value at origin as
Eq. (13). Then, usihg the Image by inversion principle, we have

= Substituting Eq. (11) into Eq. (15) with putting

s=u (

the following equation is obtained.

We know

Then, Eq. (17) becomes

where

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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&f,_ _r ah'(~,~R/2)(cosh~,~2~-cos~,~2R)
E ((ah’-l)(coshb,J%-cosP1/21)+B1/1/2(sinh/3,/%+

(sinhP1v”z-sir$,v’.%)
sinP,J21))2+BfIl(sinhp,l/~-sinp,l/~)~  ’

-
M, = E (cosh@,J2 A--cosP,J2  I--P,/1/2(sinh/3,Jn+  sin&J2 A>>

E ((ah’-l)(coshfi,v%--cosP1v’2  A)+

(22)

((ah’- 1) (cosh&/%-  ~~ --cosB11/21)  +/3,JA/2(sinhB1J21+~ __ ~~___.  _- ..___ ____~ _
/3,J1/2(sinhfil/2  rl+ sin/3,/2 l))z+ /W(sinhflim

(23)

NUMERICAL CALCULATION OF EQ. (20)

Changing the right side of Eq. (20),  we have

where

(24)

S(n) = a (cos M, exp(M,))sinrrl,

C(l)=-+(sin  M, exp(M,))cosrl.

For numerical integration of the first and third terms, the following for-
mula is introduced:

D
Z =  f(l)sin(rl+u)di

Ie

=h(r.f(c)cos(rc+a)  +6($0j(rl,)sin(rl,+a)

-0.5f(c)sin(rc+a)))+R,+R,, (25)

where

,JY?@!!
e2 ’

8=2(1-cos0)
82 9

8=rh, h=divided interval of 1 for numerical integration.

This formula is derived by fitting linear equation on f(J),  and has sim-
pler form and better convergency than Filon’s method (Filon, 1929).

In this case f(J) is given by
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.fh = i cos Ml exp(MJ, (26)

(27)

and, for sufficiently large fi,/21,, R, is given by

RNsi,,  -&l,), R,,,p+&/(&,
1

and, for ah’=w

R, may be estimated in the process of repeating computation by decreasing
the value of h.

The second and fourth terms of Eq. (24) are computed by Simpson’s
method. The value of csin and ccos are 1.92645/r and 0.617072/r which are
determined as the smallest root of

si(csin)=O,  ci(ccos)=O. (30)

Then whole computing error of Eq. (20) becomes

R wmte=  (Rm + RN ,,, + R,,,,  + R,,,, + R,,,, + Rccos)/n. (31)

DIRECT NUMERICAL INVERSION OF EQ. (11)

Bellman et al. (1966) have shown the numerical inversion of the Laplace
transform as follows :

tc(~,=-glnw,)=(~a,jF(~/~))/~, (32)

w h e r e  -In w,=O.693147,  a,,=1.857,  a,,= -52 .5 ,  a13=288.75,  a,,=236.25  in the
case of N=5 and i=3.

Then, taking N=5 and i=3, we have

1
r,(r)  = (0.693147/r) $ a,,F(O. 693147/r). (33)

THE VALUES OF THE VARIABLES AND FUNCTION AT ah’=0

The minimum root of

Pcot@-1-O (34)

‘is given as

&=O. (35)
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Then, in neighbourhood of ah’=O, we have

B,(y)  +ah’-l=O. (36)

From this, we have

Then, we have

lim Pf/ah’  = 3 .
ail’-.0

li~or=~C.iyo  (rc/31/a2)0’

=~~o((h/c~pd(Pl/ah’)/a)B’

= ((h/c,o,)(Va))B

= ((h/cd  (A/VW

=((h/c,ps)a,/(l--F,))B’,

/3:+ah’(ah’-1)

=2xlxW
3 - l

=l,

=$?I f exp (
(&~@/3

-c/T;)2/3+ah’ >

=lim l-exp  _  _s_(Z($‘))/3
crL’-.O  s ( s@V(ah’))/3+1 )

1 s= s exp -s+l .( )

(37)

(36)

(39)

(40)

The last result is identical with the Laplace  transform of the Furnas’ so-
lution.

THE VALUES OF THE VARIABLES AND FUNCTION
AS ah’ APPROACHES INFINITY

In a similar way as in the above mentioned procedure, we get the limits
as ah’ approaches infinity in finite thermal diffusivity or finite heat transfer
coefficient.

The conditions for ah’ to approach infinity are
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$_& =r,

lii>ah’,(~) -1,

lii_(ah’)e=2,

CIn_r=K f
( >

‘81,

~~~(2Kav)Z/(aC,p,F,u),

li_i_FG=: + exp( +s/s)coth(nl/E))  ,

lii_Ml= -of nr/~(sinhkJ2~-sinnJZR)/(cosh~~~~-cos*~~),

Iii-M2  = - f(nJB  (sinhnr/~++imr/2~)/(coshln/2R-cosnJ2R)  -2).
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(41)

(42)

(43)

(44)

(45)

(46)

(47)

(4%

In this case the surface temperature coincides with the gas temperature
of particles.

We get also similar results by means of convolution theorem as follows:

(ah’)sinh(P,l/s(r/a))
Fs(r)=FG  (fl,l/$)coshfi,r/s+  (ah’-l)sinh&//s  F *

Br : Bromwich integral

NOMENCLATURE

E, : Exponential integral
FC : Laplace  transform of tc
F,(r) : Laplace  transform of ts(r)
FS : Laplace  transform of T S
Z,, Zz,  Z3:  Integral defined by Eq. (12)
M : Defined by Eq. (21)
Ml : Defined by Eq. (22)
MZ : Defined by Eq. (23)
s : Parameter of Laplace  transformation
si : Sine integral
TS : Defined by Eq. (4), Eq. (5) and Eq. (6) [“Cl
rl, rz, r3: Lotuses  of integration in Eq. (12)
it : Variable of integrvtion

1 For the others, refer to the author’s previous paper (Murata, 1971).

(491



158 S. Murata

REFERJZNCES

Bellmann, R., R. K. Kalaba and J. A. Locket 1966 Inversion of Laplace  Transform. Elsevier ,
New York

Filon, L. N. G. 1929 On a quadrature for trigonometric integrals. Proc. Sot.  Edinburgh,  49:
38-47

Furnas, C. C. 1930 Heat transfer from gas stream to a bed of broken solid. Ind. Eng.
Chem.,  22: 721-731

Mura ta ,  S. 1971 Extension of Schumann’s theory to the case of low thermal diffusivity
of solid particles. J. Chm. Eng. Japan,  4:  140-146

Schumann, T. E. W. 1929 Heat transfer--A liquid flowing through a porous prism-. J .
Franklin Inst.. 208 : 405-416


