Application of Esterase and Peroxidase Zymograms to Breeding in Brassica with Reference to Nucleus Substitution

Kanazawa, Koji
Laboratory of Horticulture, Faculty of Agriculture, Kyushu University

Eguchi, Hiromi
Biotron Institute, Kyushu University

Iwasa, Shoichi
Laboratory of Horticulture, Faculty of Agriculture, Kyushu University

Uemoto, Shunpei
Laboratory of Horticulture, Faculty of Agriculture, Kyushu University

http://hdl.handle.net/2324/23717
Application of Esterase and Peroxidase Zymograms to Breeding in *Brassica* with Reference to Nucleus Substitution

Koji Kanazawa, Hiromi Eguchi*, Shoichi Iwasa† and Shunpei Uemoto

Laboratory of Horticulture, Faculty of Agriculture, Kyushu University 46-01, Fukuoka 812
* Biotron Institute, Kyushu University 12, Fukuoka 812

(Received February 4, 1980)

Zymograms of leaf esterases and peroxidases were employed for the use of genetic examination in individual selection to promote nucleus substitution for breeding of new varieties, such as oleracea-cytoplasmic *Brassica campestris*. In successive strains derived from hybridization of *B. oleracea* × *B. campestris* and backcrosses with pollen of ssp. *pekinensis*, two of the esterases and one of the peroxidases were found to be specific to c genome. The pattern of the enzyme distribution was characterized by these enzymes, and there were two types of the plants in successive backcrossed strains; one had these enzymes specific to c genome, the other had none of them. Frequencies of the plants having the c genome-specific enzymes became lower according to a decrease in the number of chromosomes of c genome, in process of backcrosses with pollen of ssp. *pekinensis*. From this result, it was estimated that the chromosomes of c genome can be minimized by selecting the plant having none of the enzymes specific to c genome, and this method is useful for breeding of nucleus-substituted strains in *Brassica*.

INTRODUCTION

Nucleus substitution is known to be effective for breeding of new varieties, such as oleracea-cytoplasmic *Brassica campestris* which is used as a cultivar of Chinese cabbage with disease resistances (Nishi *et al.*, 1970). In procedure of the nucleus substitution, an adequate method of genetic examination for individual selection in successive backcrossed strains is needed. The genetic examinations have been performed by analyses of enzymes, since it was made clear that a gene is responsible for formation of an enzyme structure, and the zymogram (Hunter and Markert, 1957) has been used as a powerful tool in genetics (Ogita, 1962; Wright, 1963) and phylogenesis (Eguchi and Matsui, 1969a, b). Present paper deals with comparative analyses of leaf esterases and peroxidases in the zymogram, aiming at developing a new method of individual selection to promote the nucleus substitution in *Brassica*.

MATERIALS AND METHODS

Species and strains used in this experiment are listed in Table 1. *Brassica*
napus used was derived from artificial synthesis by hybrid of *B. oleracea* var. *capitata* x *B. campestris* ssp. *pekinensis* and maintained in pedigree culture. Respective strains were obtained by backcrosses with pollen of ssp. *pekinensis* as described in Table 1, and their backcross generations were denoted as *B*₁, *B*₂ and *B*₃. The chromosomes in the strains were observed in pollen mother cells. The strain in *B*₁ comprised *c* genome (9 of the chromosomes derived from *B. oleracea*). In *B*₂, the number of chromosomes of *c* genome was less than 9. The plants in *B*₃ were divided into two strains according to the number of chromosomes of *c* genome. Thus, four strains having the different number of chromosomes of *c* genome were obtained by means of cytological observation, and their compositions of genome and chromosomes were denoted as *aa*, *aa+c*, *aa+β* and *aa+γ* in the respective strains, where *α* ≤ 9, *β* ≤ 5 and *γ* ≤ 1 of the chromosomes of *c* genome.

Table 1. Explanation of material plants.

<table>
<thead>
<tr>
<th>Species and strains in backcross generations</th>
<th>Crossing system</th>
<th>Genome</th>
<th>Number of plants used</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. campestris ssp. pekinensis</td>
<td></td>
<td>aa</td>
<td>10</td>
</tr>
<tr>
<td>B. oleracea var. capitata</td>
<td></td>
<td>cc</td>
<td>10</td>
</tr>
<tr>
<td>B₁</td>
<td>B. napus x B. campestris</td>
<td>aa+c</td>
<td>11</td>
</tr>
<tr>
<td>B₂</td>
<td>B₁ x B. campestris</td>
<td>aa+α</td>
<td>4</td>
</tr>
<tr>
<td>B₃</td>
<td>B₂ x B. campestris</td>
<td>aa+β</td>
<td>6</td>
</tr>
</tbody>
</table>

N.B. *Artificially synthesized by hybrid of *B. oleracea* var. *capitata* x *B. campestris* ssp. *pekinensis*.

**Chromosomes of *c* genome: *α* ≤ 9, *β* ≤ 5 and *γ* ≤ 1.

Five grams of the 7th to 13th leaves of each plant was homogenized with 2.5 ml of M/30 potassium phosphate buffer of pH 7.0, and the homogenate was centrifuged at 150,000 × g for 2 hr to remove cell debris and particles. The supernatant was used as an enzyme solution for zymograms of esterases and peroxidases in agar-gel zone electrophoresis. The gel medium was prepared with 0.7 gm of agar and 4.0 gm of polyvinyl-pyrrolidone in 100 ml of M/30 potassium phosphate buffer of pH 7.0. The gel plate was made 1 mm thick and supported by a glass plate. A strip of filter paper (2 x 12.5 mm) was saturated with the enzyme solution and was placed on the gel plate; the enzyme solution diffused from the filter paper into the agar gel at 2°C, and the filter paper was removed after 40 min. A gel plate was exposed to stabilized voltage of 17 V/cm for 140 min for esterase separation, and another plate was exposed to 18 V/cm for 240 min for peroxidase separation. For histochemical detection of esterases, 1% solution of β-naphthyl acetate was sprayed on the surface of the agar gel as a substrate. After incubating the gel plate at 38°C for 40 min, naphthyl diazo blue B was sprayed on the plate as a dye coupler. For histochemical detection of peroxidases, the gel plate was soaked at 25°C for 30 min in a solution containing 1% hydrogen peroxide and 0.05% o-dianisidine, which were used as substrate and as dye coupler, respectively. In respective zymograms, esterases and peroxidases were separated enough to examine ge-
RESULTS AND DISCUSSION

Esterase pattern

Figure 1 shows a zymogram of esterases in each of the plants of respective species and strains. In *B. oleracea*, 8 bands of esterases were found, which were designated as **EI**, **EII**, **EIII**, **EIV**, **Ec1**, **Ec2**, **Ec3** and **Ec4**, corresponding to an array of the bands from cathode to anode. In *B. campestris*, 8 bands designated as **EI**, **EII**, **EIII**, **EIV**, **Ea1**, **Ea2**, **Ea3** and **Ea4** were found. The esterase bands of **EI**, **EII**, **EIII** and **EIV** were very slight and were found to be non-specific to species. The other bands of **Ecs** in *B. oleracea* were different in migration rate from the bands of **Eas** in *B. campestris*, and the bands of **Ecs** and **Eas** were clearly specific to respective species. In the plants in *B.* (ccc genomes), esterases of **EI**, **EII**, **EIII**, **EIV**, **Ec1**, **Ec2**, **Ea2**, **Ea3** and **Ec4** were found as listed in Table 2. Thus, in the digenomic plants having ccc genomes, the esterase pattern consisted of the bands found in respective ancestor species of *B. oleracea* and *B. campestris*. In backcrossed strains in *B.* and *B.* there were two types of the plants; one had **Ec1** and/or **Ec4**, the other had none of these bands specific to c genome. Thus, genetic variation in the esterase
Table 2. Enzyme compositions in mono- and digenomic species.

<table>
<thead>
<tr>
<th>Plants</th>
<th>Genome</th>
<th>Enzyme</th>
<th>Designated bands in zymogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. campestris ssp. pekinensis</td>
<td>aa</td>
<td>Esterase</td>
<td>EZ EZZ EZZZ EZV Ea1 Ea2 Ea3 Ea4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peroxidase</td>
<td>Pal Pa2 Pa3 P1 PII PZZZ Pa4</td>
</tr>
<tr>
<td>B1</td>
<td>aac</td>
<td>Esterase</td>
<td>EZ EZZ EZZZ EZV Ea1 Ea2 Ea3 Ea4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peroxidase</td>
<td>Pal Pa2 Pa3 P1 PII PZZZ</td>
</tr>
<tr>
<td>B. oleracea var. capitata</td>
<td>cc</td>
<td>Esterase</td>
<td>EI EZZ EZZZ EZV Ec1 Ec2 Ec3 Ec4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peroxidase</td>
<td>Pc1 Pc2 Pc3 P1 PII PIII Pc4</td>
</tr>
</tbody>
</table>

Fig. 2. Frequencies of plants having Ec1 and/or Ec4 on backcross generations.

Pattern was characterized by Ec1 and Ec4, and these bands were used as an index for the examination of genetic variation. Figure 2 shows frequencies of the plants having Ec1 and/or Ec4 on generations. These esterase bands

Fig. 3. Frequencies of plants having Ec1(---) and Ec4(----) on the number of chromosomes of c genome, where \(a, \beta\), and \(r\) are the number of chromosomes of c genome: \(a \leq 9, \beta \leq 5\), and \(r \leq 1\).
were found in all plants in B1. These bands were found in 55% of the plants in B2, and 30% in B3. Thus, the frequency of the plants having these esterases decreased in backcrosses with pollen of ssp. pekinensis.

Figure 3 shows frequencies of the plants having Ec1 and those having Ec4 in respective strains on the number of chromosomes derived from c genome. As mentioned above, in digenomic strain (aac) having 9 chromosomes of c genome, Ec1 and Ec4 were found in all plants. In the strain (aa + a) in which the number of chromosomes of c genome was less than 9, Ec1 was found in 46%, and Ec4 was found in 36% of the plants. In the strain (aa + b) having 5 chromosomes of c genome at its maximum, the percentage of the plants having Ec1 was 75%, and that of the plants having Ec4 became 0%. In the strain (aa + r) having one or none of the chromosomes of c genome, these esterases were not found. Thus, the frequency of the plants having Ec1 and/or Ec4 became lower according to the decrease in the number of chromosomes of c genome derived from B. oleracea.

Peroxidase pattern

Figure 4 shows a zymogram of peroxidases in each of the plants. Peroxidase pattern in B. oleracea was composed of 7 bands which were designated as Pcl, Pc2, Pc3, P1, PII, PIII and Pc4, corresponding to an array of the bands

![Peroxidase pattern diagram](image_url)

Fig. 4. Photograph of a zymogram of leaf peroxidases in respective monogenomic species of aa and cc, and successive strains derived from inter-specific hybridization and backcrosses with pollen of ssp. pekinensis.
from cathode to anode. In *B. campestris*, 7 bands designated as *Pal, Pa2, Pa3, PI, PII, PIII* and *Pa4* were found. The intensities of *PI, PII, and PIII* were very slight and not species-specific. There were distinct differences in migration rate between *Pc* bands and *Pa* bands. The plants in *B*, comprised the peroxidases of *Pal, Pc2, Pa2, Pc3, PI* and *PIII* bands, as listed in Table 2. Thus, in the digenomic plants (*aac*) in *B₁*, peroxidase pattern consisted of the bands found in respective ancestor species of *B. oleracea* and *B. campestris*. However, the migration rates of *Pc₁, Pal* and *Pc₂* were close to each other, and it was difficult to use those bands as an index for the examination of genetic variation. In *B₂* and *B₃*, some of the plants had *Pc₃*, and others had not this enzyme. The genetic variation in peroxidase pattern was characterized clearly by *Pc₃*. So, *Pc₃* was used as an index for the examination of genetic variation. Figure 5 shows frequencies of the plants having *Pc₃* on generations. The *Pc₃* was found in all plants in *B₁* as mentioned above and found in 55% of the plants in *B₂*. However, *Pc₃* was not found in *B₃*. Thus, the frequency of the plants having *Pc₃* decreased in the process of backcrosses with pollen of ssp. *pekinesis*.

![Graph](image)

Fig. 5. Frequencies of plants having *Pc₃* on backcross generations.

Figure 6 shows frequencies of the plants having *Pc₃* in respective strains on the number of chromosomes derived from *c* genome. In digenomic strain (*aac*), *Pc₃* was found in all plants as mentioned above. On the other hand, *Pc₃* was found in 55% of the plants of strain (*aa+α*) having less than 9 chromosomes of *c* genome. In the strain (*aa+β*) having less than 5 chromosomes of *c* genome and the strain (*aa+γ*) having one or none of the chromosomes of *c* genome, *Pc₃* was not found. Thus, the frequency of the plants having *Pc₃* became lower according to the decrease in the number of chromosomes of *c* genome in the process of backcrosses with pollen of ssp. *pekinesis*, as well as the genetic variation examinkd in esterases.

Conclusion

In the successive strains derived from hybridization of *B. oleracea* var. capitata × *B. campestris* ssp. *pekinesis* and backcrosses with pollen of ssp. *pekinesis*, the number of chromosomes of *c* genome derived from *B. oleracea* varied.
Application of Zymograms to Breeding in Brassica

with the respective generations (Iwasa, 1963). For promoting nucleus substitution, these chromosomes of c genome should be removed by individual selection in successive strains. Variations in enzyme pattern in the backcrossed strains related to the number of chromosomes of c genome, and the frequency of the plants having the enzymes specific to c genome became lower in proportion to the decrease in the number of these chromosomes. From this result, it was estimated that the chromosomes of c genome can be minimized by selecting the plant having none of the enzymes specific to c genome, and this method is useful for breeding of nucleus-substituted strains in Brassica.

REFERENCES