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The associated flow rule in the traditional theory of plasticity has been recently
adopted even in the plastic constitutive equations with the elastic-plastic transi-
tion. The proofs of this rule in the past, however, are confined to the classical
idealization of elastoplastic continuum to ignore the elastic-plastic transition and
the  a l te ra t ion  in  an  e las t ic  response .  In  th i s  paper ,  based  on  two phys ica l ly
plausible assumptions, the  assoc ia ted  f low ru le  i s  ana ly t ica l ly  der ived  for  the
generalized elastoplastic continuum with the elastic-plastic transition, the harden-
ing ,  the  per fec t ly-p las t ic  and  the  sof ten ing  behaviors  and  the  a l te ra t ion  in  an
elastic response.

INTRODUCTION

Various constitutive equations describing a gradual transition from the
elastic to the fully-plastic (yield) state (abbreviated as an elastic-plastic transi-
tion) have been proposed along the line of the traditional theory of plasticity
whose constitutive equation involves inherently a yield function (e.g. Mr6z,
1967; Phillips and Sierakowski, 1965; Eisenberg and Phillips, 1971; Krieg, 1975 ;
Dafalias and Popov, 1975; Hashiguchi, 1978, 1979 a, b). All these equations
are premised on the so-called associated flow rule. Nothing, however, was men-
tioned as to whether or not this rule is applicable to such a material behavior
without a physical contradiction. Formerly, Drucker (1951) advocated the ap-
plicability of this rule to hardening materials on the basis of the hypothesis
concerning the net work done by an external agency during a closed stress
cycle. And later Palmer, et al. (1967) persisted that this rule holds for wide
classes of materials exhibiting not only the hardening but the perfectly-plastic
and the softening behaviors, provided that the postulate of stability in the
large (cf. Drucker, 1964) can reduce to the principle of maximum plastic work.
This principle, however, holds only in the classical idealization of elastoplas-
tic continuum to ignore the elastic-plastic transition and the alteration in an
elastic response. On the other hand, based on the hypothesis concerning
the work done during a closed strain cycle which is less restrictive than the
Drucker’s hypothesis, Il’ushin (1961) has concluded that this rule holds but
for the alteration in an elastic response, while a linear relation between
the stress and the elastic strain is assumed in his analysis. Recently, Naghdi
and Trapp  (1975a,  b),  adopting the finite deformation theory by Green and
Naghdi (1965), have elaborated the Il’ushin’s approach and have obtained the
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similar conclusion for the case of a linear relation between the stress rate
and the elastic strain rate. The elastic-plastic transition, however, is ignored
in these analyses. Against the above approaches, referring to the earlier
alternate approach by Prager (1949) in which any closed cycle of stress or
strain is not explicitly introduced, Phillips and Sierakowski (1965) have as-
serted the applicability of the associated flow rule even to an intermediate
loading surface assumed by themselves. But the Prager’s approach is confined
to hardening materials satisfying the uniqueness condition (cf. Prager, 1949)
which may correspond to the postulate of stability in the small by Drucker
(1964). In this paper, based on physically plausible assumptions which can be
regarded as extensions of the Prager’s conditions of uniqueness and continuity,
the associated flow rule is derived for the generalized elastoplastic continuum
with the elastic-plastic transition and the hardening, the perfectly-plastic and
the softening behaviors.

A DERIVATION OF THE ASSOCIATED FLOW RULE

Preliminarily consider the uniaxial loading of a bar. Observing the stress-
strain curves schematically illustrated in Fig. 1, we could assume that in a
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Fig. 1. Signs of i,, do, and d&f; in the uniaxial loading,
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loading state
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(1)

and

do, +O  as dcf; -+ 0, (2)

where
h

6, :z oa-a,. (3)

u,, cr, a n d  E$ are the normal components of the stress, the translation of load-
ing surface and the strain along the axis respectively.

By extending the above notions to the general loading state, we introduce
the following assumptions 1 and 2 from (1) and (2) respectively, in which
the nine-dimensional stress space with superposed coordinates of stress
components  uij  and plastic strain increment components d$, is introduced.

Assumption 1. When, accompanying a plastic deformation (loading state), the state
of stress moves to the exterior, the tangency and the interior of the existing loading SUY-
face in a stress @ace, the plastic work done by the stress increment is positive, zero and
negative respectively.

Assumption 2. As the filastic strain increment vanishes, the normal component
of stress increment to the loading surface also vanishes.

Assumption 1 can be written in analytical forms as follows.

tr > 0: tr(dud&) > 0,

= 0: tr(dgde$) = 0,

< 0: tr(dgd&) < 0

(4)

in the loading state, from which we obtain

tr(dud&) = Str $~CJ
( >

(S > 0), (5)

w h e r e  t h e  s e c o n d - o r d e r  t e n s o r s  CT, de0 and a are  the  s t ress ,  the  plast ic
strain increment and the parameter describing the translation of loading sur-
face respectively. And we set

; zz a-*. (6)

f is a yield function to describe the yield condition, which is a function of i
and some parameters representing the effect of a history of plastic deforma-
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tion to the yield condition. S is a scalar function of stress and some internal
variables. Assumption 1 can be regarded as the generalization of Prager’s
uniqueness condition for hardening materials (tr(dyde*)  >O).

Assumption 2 can be expressed as

which is the inverse relation of Prager’s continuity condition (de*-4  as tr(ajJ/
aada)  --f 0) that does not hold in the loading state satisfying tr (af/ao-dq)  = 0.
In addition to assumption 2, we assume that there exists a linear relation
between de0 and da. Thus it can be written that

d&=tr Fgdo Q  (Q+O),
( )

where the second-order tensor Q is a function of stress and some internal
variables. The relation (8) means that the direction of plastic strain incre-
ment is independent of the stress increment.

Substitution of (8) into (5) leads to

tr(Qdn)  = S(>O). (9)

Then, noting that the stress increment can have any direction, it must hold
that

with the condition

where G is a scalar function of stress and some internal variables. Thus,
the plastic strain increment is given from (8)-(11) as follows:

where

dl = Gtr g:dn (>O).
( >

The equation (12) is to be the associated flow rule, while the restriction for
dA  to take the form (13) is imposed by assumption 2 and the linearity of the
constitutive equation. Here, note that the convexity of the loading surface is
not imposed in this approach.
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DISCUSSION

In this paper the associated flow rule which is the most fundamental rule
in the traditional theory of plasticity was analytically derived on the basis of
assumptions 1 and 2. The above approach leads to the fact that this rule is
applicable to the elastoplastic continuum with the elastic-plastic transition and
the hardening, the perfectly-plastic and the softening behaviors independently
of the elastic response. It refers to a more general elastoplastic continuum
than those assumed in the past approaches. Here, remind that it is based on
two assumptions which are generalization of distinct characteristics of the
plastic deformation in the uniaxial loading. While these assumptions seem
physically plausible, still it would be desirable to verify rationalities of them
by any other fundamental principles on the plastic deformation.
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