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Among the existing methods to measure a force, the strain gauge method would
provide the highest accuracy and the most economical way. In this paper, the
simple and reasonable measurements of not only a magnitude and a direction but
a position of the line of action of the resultant force by the strain gauge method
are presented as to the case that forces applied to a body can be composed
to a single resultant force.

INTRODUCTION

A measurement  of  force with high degree of  accuracy is  of  great  impor-
tance in the mechanical analysis of the engineering problem. In  part icular ,
the measurement of soil resistance to various working machinery such as
plow and rotary is indispensable for our field of the agricultural machinery.

Among the existing approaches to this aim, the strain gauge method may
provide the highest accuracy and the most economical and practical way.
Then various measurements of the force by the strain gauge method have
been utilized, but most of them use a roller bearing so that the measured
values involve the some errors due to the frictional resistance (e. g. Blight
and Carlow,  1968; Scholte, 1964). Against these, a special load ring which
enables to measure the force in two-dimensional state without a bearing has
been recently developed (Kitani et al., 1971; Dean and Yoerger, 1974). This
method, however, is rather complicated and does not enable to measure a
position of the line of action of the force.

In this paper, a general measurement of the force in one to three dimen-
sional states is elucidated, which enables to measure not only a magnitude
and a direction of the force but also a position of the line of action.

A KNOWN CASE OF A LINE OF ACTION

We first consider the measurement of force in the case that a line of ac-
tion is known. In this case, there exist following three kinds of measurement
for

I)

the magnitude of force.

Tension or Compression

Simple tensional  or  compressional  s tate  occurs  in  the axis  when the l ine
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of action coincides with the axis for measurement as shown in Fig. la Max-
imum principal strains are given by

(1)

where

f_E!, E, -normal strains at 8=0 and F ,

ff: =normal stress at B=O,
0 =angle measured from the center line of the axis to the direc-

tion of the normal strain E in a counter-clockwise direction,
F =applied  force,
A =cross section area of the axis,
E =Young’s modulus,
fl =Poisson’s ratio.

Besides r in Fig. lb designates a shear strain.
Throughout this paper, the superscript and the subscript are added to

stresses and strains to indicate the directions of them and the conditions of
acting force respectively.

(a>

compression

(b)

Fig. 1. State of strain in tension or compression.

Further refering to Fig. lb, the normal strain
is represented by

H A

E, ,_+kg!Z  cos  20,&if&”
2

Substitution of Eqs. (1) and (2) to Eq. (3) leads to

F
E, =~~{(1-~)+(1+~)COS2B)  .

for an arbitrary angle 6

(3)

2 )  Bending

A bending state occurs in the axis when the line of action is perpendi-
cular to the axis and intersects its center as shown in Fig. 2a. Maximum and
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F

Tensional side Compressional side

(a) (b)
Fig. 2. State of strain in bending.

minimum strains in a position apart from the line of action with the distance
L, are given by

where

(5)

*
Ei*, &ai*=normal  strains at 0=0 and mi- respectively, while the subscript +

and - stands for a maximum tensional side and a maximum compressional side
respectively.

Further, M (=FL,) is an applied moment and 2, is a section modulus
given by

2 =?Ib d ’

where
I = second moment of area,
d = radius of the axis.

Refering to Fig. 2b, normal strain for an arbitrary angle 0 is represented
by

E**_Ey-.qf ‘*E;+--E2
cb - ~ + dc0s2e.2 2 (7)

Substitution of Eqs. (5) and (6) to Eq. (7) leads to

E:=I~~~~((l-P)+(1+~)COS2~).

3 )  Tmsion

(8)

A torsional state occurs in the axis when the line of action does notin-
tersect the axis and the scalar product of direction vectors of the line and
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Lt

F F

-.t 4/\e_ -

(a>
Fig. 3. State of strain in torsion.

(bl

that of the axis is zero as shown in Fig. 3a. Maximum and minimum princial
strains are given by

where

of-, ~!+=normal strains at 0=n/4 and -n/4 respectively,

f~F=normal  stress at 8=x/4,
G = shearing modulus of elasticity,
T,=torque applying to the axis,
L,=distance  between the line of action and the axis,
Z,=polar moment of inertia of area.

Further, refering to Fig. 3b, a strain for an arbitrary angle 6 is represented
by

FL, .Ed = G7,sin28. (II)

A KNOWN CASE OF A DIRECTION OF LINE OF
ACTION AND ONE OF PLANES INVOLVING IT.

We consider the measurement of force in the case that a direction of the
line of action and one of planes involving it are known. In this case there
are two measurements for a magnitude of force as follows.

1) Bending
Let the line of action be perpendicular to the axis as shown in Fig. 4,

and let the axis also be involved in the known plane involving the line of
action. The magnitude of force and the position of a line of action can be
known by measuring the difference of strain values at two positions of the
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Fig. 4. Bending.

guages 1 and 2 (see Fig. 4). The relation of the applied force and the differ-
ence of bending moment at these positions are given as follows:

M,=F(a+x),
M, = Fx, (12)

from which

F = Ml-M,___  9a (13)

where
MI, M,=bending  moment in the position of the gauge 1 and 2 respec-

tively,
a =distance between the gauges 1 and 2.
x =distance between the gauge 1 and the line of action.

From Eq. (8), a relation of the normal strain and bending moment are
given by

(14)

and

Then

2 )  Tmsion
Let the axis be perpendicular to the plane involving the line of action

provided that there is an enough long distance between the line of action
and the axis. Refering to Fig. 5, we can write

M=Fa, (17)
T=Fx, (13)

Fig. 5. Torsion.
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from which
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F=F,

Ta
x=-

M ’

(19)

where
x =normal distance between the axis and the line of action,
a =normal distance between the gauge 1 and the known plane

involving the line of action.
Further, according to Eq. (ll), the relationship of the torque and the normal
strain is expressed by following equation:

d%‘I’=-.sin 28 (21)

AN UNKNOWN CASE OF A LINE OF ACTION

We consider the measurement of force in the case that a direction of the
line of action and its position are unknown. The measurement is explained
separately in two and three-dimensional states as follows.

A) Two-dimensional state
1) Bending

In this case, the magnitude of force and the position of the line of action
can be known by measuring moments at the positions of two gauges as shown
in Fig. 6. The relations between the applied force and the moments are
given by the following equations:

a,

Fig. 6. Two dimension.

Mn-Mz,=Fa, sir-m,
Mzl-Mzz=FaZcosa,
Mll=FR,

(22)
(23)

(24)

where
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a,, a,=distances  between two gauges attached parallely to two axes
which are perpendicular to each other,

a =angle between the direction of force F and the axis shown in
Fig. 6,

R =distance between the line of action and the gauge 1.
From Eqs. (22),  (23) and (24))  we have

F = ,/(&;".~+(M~-ij'.,
(25)

a=sin-’ c M,l-M,z  =sin-l1 I 1
a,F

1/ (
1+ a,.M,,-M,,  ’ I . (26)

a2 %-&1
and

(27)

Differences of moments MI1-MI2  and M,,--M,,  are determined by the meth-
od explained in the known case of a line of action. Therefore, the magni-
tude of force F and its line of action can be determined easily by Eqs. (25),
(26) and (27).

2) Bending and Torsion

By combining the bending and torsion methods as shown in Fig. 7, we
can measure the magnitude of force and the position of the line of action.
This method has been reported by Matsuo (1961). Let bending moments pro-
duced by the components of force in the direction of x and y which are per-
pendicular to each other be denoted by Mx and My respectively. Further,
let an angle measured from the x-direction to the direction of force in anti-
clockwise direction be denoted by B, and the distance between the axis and
the line of action by a. Then we can write

a x
M

-_-g~-_____&F-xt y R
I

F I

P’m
F

from which

Fig. 7. Torsion and bending.

Mx=a  F sina,
My=a F cosg,
T=FR. (28)

(29)F = ;/MY + My2  ,
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R zz -aT__.
v”Mx~+M~~  ’ (30)

(31)

B) Three-dimensional state
The magnitude of force and the position of the line of action can be

measured by the distributed gauges as shown in Fig. 8. LetShe  forze vector
and the position vector of the line of action be denoted by F and R respec-
tively, which are perpendicular to each other.

Fig. 8. Three demension.

Therefore, 3 .%=O

or FxRx+  FyRy + FzRz=  0, (32)

where Fx, Fy, Fz and Rx, Ry, Rz are components of 2 and g in direction of
the co-ordinate axis x, y and z respectively.
From Eq. (32),  the component Rx is given by

Rx = _ FxRx + FYRY
Fz ’ (33)

By the similar way to that in Eqs. (22) and (23),  we have

Fx= M,x--Mzx
a ’ (34)
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Fy = NY -MZY
_ --aa (35)

where M, x, M,x and Mly, M2y are the bending moments produced in the
positions 1 and 2 by the force components Fx and Fy respectively.
Further, it holds that

M,x=FxRz

= -g(FxRx+FyRy), (36)

P=Fz, (37)
T- -FxRx+FyRy , (38)

where P is a mean normal stress applied in a cross
is a torsional moment occuring  in the axis.

From Eqs. (36),  (37),  (38),  components of ?! are

section of the axis and T

given by

M,x  Fy Fz + T Fx*Ry = - ---.(FzFyzYr

Rz = T Fy-M,xFz
FxZ+Fy2  ’ (3%

The measurement of a force described in the above enables to measure
not only a magnitude and a direction of force but a position of the line of
action in a general and rational way without an error due to frictional resist-
ance. When distributed loads act on a body in one or two-dimensional state,
they can be composed to a single resultant force which can be measured by
the method elucidated in this paper. In the three-dimensional state, however,
they cannot be composed to a single resultant force, andt here fore it is nec-
essary to measure not only three components of a force but those of a moment.
A more general measurement of the force and the moment in the three-
dimensional application of the distributed loads will be reported in another
paper.
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