九州大学学術情報リポジトリ Kyushu University Institutional Repository

Linkage Studies in Rice (Oryza sativa L.) : On Some Mutants for Physiological Leaf Spots

Iwata, Nobuo Laboratory of Plant Breeding, Faculty of Agriculture, Kyushu University

Omura, Takeshi Laboratory of Plant Breeding, Faculty of Agriculture, Kyushu University

Satoh, Hikaru Laboratory of Plant Breeding, Faculty of Agriculture, Kyushu University

https://doi.org/10.5109/23671

出版情報:九州大学大学院農学研究院紀要. 22 (4), pp.243-251, 1978-07. Kyushu University バージョン:

ハーション 権利関係:

Linkage Studies in Rice (*Oryza sativa* L.) On Some Mutants for Physiological Leaf Spots

Nobuo Iwata, Takeshi Omura and Hikaru Satoh

Laboratory of Plant Breeding, Faculty of Agriculture, Kyushu University 46-01, Fukuoka 812

(Received April 21, 1978)

Nine of the physiological leaf spot mutants were described and investigated linkage relation with marker genes. All of them were governed by single recessive genes respectively and the causal genes were designated as a series of spl (spotted leaves) as $spl_1, spl_2, \dots spl_q$.

With eight of them except for spl_9 , the linkage groups were determined as follows: spl_1 —a linkage group corresponding to A type of trisomics which never corresponded to any of twelve linkage groups published by Nagao and Takahashi, @&-linkage group X, spl_3 —XI, spl_4 —I, spl_5 —IV, spl_6 —III, spl_7 and spl_8 —IX.

INTRODUCTION

Several mutants for physiological leaf spots, which is characterized by reddish or blackish brown spots and discolorations of leaves, stems and sometimes glumes were reported in rice and causal genes of them have been designated as a series of *bl* (Jones, 1952; Nagao and Takahashi, 1963; Nagao et *al.*, 1964; Takahashi *et al.*, 1968).

On the other hand, the authors reported some mutants showing physiological leaf spots and designated the causal genes as a series of spl (spotted leaves) in order to avoid the confusions of them with the bl mutants reported previously and to include any mutants for physiological leaf spots into a series of gene symbol regardless of the color of leaf spots. Namely, they are spl_1 (Iwata and Omura, 1975), spl_2 (Omura and Iwata, 1972) and spl_3 , spl_4 and spl_3 (Iwata and Omura, 1977).

This paper deals with nine mutants of the physiological leaf spots including these.

MATERIALS AND METHODS

The mutants used are shown in Table 1. All of them are governed by single recessive genes, respectively.

Two mutants, spl_1 and spl_2 , are originated from spontaneous mutation. Four, spl_3 , spl_4 , spl_5 and spl_7 , were induced in the gamma-field of Institute of Radiation Hreeding, National Institute of Agricultual Science, and spl_9 is also a induced mutant by irradiation and was introduced from Division of Genetics, National Institute of Agricultural Science. Two, spl_6 and spl_8 , were

Table 1	List	of	physiological	leaf	spot	mutants	used	and	their	causal
genes.										

Strain number	Original variety	Source	Gene symbol
HO 698	Banshinriki-byogata ¹⁾	Spontaneous	spl ₁
HO 696	Katsumonbyo ⁱ⁾	" "	spl_2
M 41	Norin 8	r-ray (chronic)	spl ₁ spl ₂ spl ₃ spl ₄ spl ₅ spl ₆ spl ₇
M 114	<i>"</i>	'n	spl_{4}
M 87	<i>"</i>	<i>"</i>	spl_5
CM 20	Kinmaze	Chemicals	spl_6
M 64	Norin 8	r-ray (chronic)	spl_{7}
CM 207	Kinmaze	Chemicals	spl_8
LT 26	Norin 8	r-ray (acute)	spi ₈ spl ₉

¹⁾ Not original variety but name of mutant line.

induced by a chemical mutagen, N-nitroso-N-methylurea, at Kyushu University. The phenotypic characteristics of the mutants are as follows.

- spl_1 : Large reddish brown spots on leaves and stems, of which appearance begins in the seedling stage and continues to heading time.
- spl_2 : Partial discoloration of leaves and stems. It appears from the seedling stage, but it is not so obvious in this stage and become more distinct in the tillering stage. Somewhat poor viability,
- spl_3 , spl_5 and spl_7 : Relatively small reddish brown spots scattering over the whole surface of leaves. They appear from tillering stage to heading time. Their phenotypes are so resemble that it is difficult to distinguish each other.
- spl_4 : Relatively large reddish brown spots scattering on leaves, but not so much spots as spl_3 , spl_5 and spl_7 .

Table 2. List of marker genes and their linkage groups.

Linkage group	Gene symbol	Character	Reference
I	$\begin{array}{c} wx \\ dp_1 \end{array}$	waxy endosperm depressed palea 1	Nagamatsu and Omura (1962)
III	eg lax d A"	extra glume lax panicle tillering dwarf anthocyanin activator	Iwata and Omura (1971a) " Nagao and Takahashi (1963)
IV	d ₆ g Rc	lop-leaved dwarf long empty glumes brown pericarp	" " "
IX	$egin{aligned} al_{K-2} \ nl_1 \ ri \end{aligned}$	albino Kyushu-2 neck leaf 1 verticillate arrangement of rachis	Iwata and Omura (1978) Nagao and Takahashi (1963)
х	$\begin{matrix} d_{\scriptscriptstyle W} \\ gh_2 \end{matrix}$	"Waisei-shirasasa" dwarf gold hull 2	Iwata and Omura (1971b)
XI	dl^{bc_1}	brittle culm 1 drooping leaf	"

- spl_6 : Relatively large reddish brown spots on leaves and it is similar to spl_4 .
- spl_s : Fine striped spots of reddish brown on whole surface of leaves, it appears after tillering stage.
- *spl*₉: Small blackish brown spots on leaves and stems but not so thick, and it appears after heading time.

The mutant strains were crossed with linkage testers having marker genes shown in Table 2, and the linkage relations were tested in F_2 . In some cases, doubly recessive plants obtained from the above crosses were used for crossing. When the linkage was detected, the recombination value was estimated from the segregations in F_2 and in some cases in F_3 progenies by the method of maximum likelihood. The weighted mean was calculated when the recombination values were estimated from F_2 in both phase and F_3 .

RESULTS AND DISCUSSION

 spl_1 : As shown in Table 3, the spl_1 exhibited trisomic segregation in a cross with A type of trisomics (Iwata and Omura, 1975). Namely, a observed ratio of normal to spl_1 in F_2 derived from trisomic F_1 plants was about 13: 1 that fitted well to a theoretical ratio of trisomic segregation being between 44: 1 and 3: 1. On the other hand, a segregation of F_2 derived from disomic F_1 plants of the same cross fitted well to 3: 1 ratio. So, it is concluded that the spl_1 composes a linkage group with three genes, rl_1 , d_B and nal_2 , reported previously, though the group does not correspond to any of the groups published by Nagao and Takahashi (1963).

Table 3. Trisomic	and	disomic	segregations	of	spl_1 in F_2	of	cross	with	Α
type of trisomics.									

F mlamta	Obs	erved numb	er	χ² for 3 1	Ratio of domi.: rece.			
F ₁ plants	Dominant	Recessive	Total	3 1	Theoretical Observed			
Trisomic Disomic	440 365	33 118	473 483	81. 946*** 0.084	8: 1-44: 1 13.3: 1 3: 1			

^{***} Significant at 0.1% level.

 spl_2 : A linkage relation was observed between spl_2 and gh_2 . From F_2 data shown in Table 4, the recombination values of spl_2 – gh_2 were estimated at 17.5% from coupling phase, 15.2% from repulsion phase and thus weighted mean of 16.8% was obtained from them. It has been proved that gh_2 locates on the chromosome 8 corresponding to the linkage group X by the translocation method and that gh_2 links with d_W with intensity of 31.2% (Iwata and Omura, 1971 b). However, a clear linkage relation was not observed between spl_2 and d_W , showing the recombination value of 47.8%. Therefore, the sequence of the three genes at the map of the linkage group X may be spl_2 – gh_2 - d_W (Fig. 1).

Table 4. Linkage	relations	between	spl_2	and	genes	belonging	to	the
linkage group X.					_			

Gene pair	Phase	No. of		Segregati	on mod	de in F ₂		Recombination	2.2
Gene pan	I nase	cross	AB	Ab	aВ	ab	Total	value (%)	χ ² [3]
spl ₂ -gh ₂	coup.	2	246 (244.6	28 6) (29. 2	30) (29. 2)	61 (62 ₄ 1)	365	17.5±2.2	0.098
	Rep.	5	446 (421.8)	198 (203.7)	186	(4. 8)	834	15.2 \pm 3.4	3.218
	Weighte	d mean						16.8±1.9	
spl_2-d_W	coup.	4	391 (387. 0)	120 (123. 8)	125	45 (46. 5)	681	47.8±2.8	0.216
	Rep.	2	206 (198. 4)	58	74	18 (20, 4)	356	47.8 \pm 4.1	2.636
	Weighte	d mean						47.8±2.3	
	- -	pp1 ₂					a di	<u>,</u>	

Fig. 1. Linkage map of the group X.

 spl_3 : The linkage relations were found in F_2 of crosses between spl_3 and such two genes as dl and bc, belonging to the linkage group XI. From F_2 data shown in Table 5, the recombination values of spl_3 -dl were estimated at 15.8 % in coupling phase, 19.1% in repulsion phase and thus their weighted mean of 16.5%. The recombination value of spl_3 - bc_1 was estimated at

Table 5. Linkage relations between \mathfrak{spl}_3 and genes belonging to the linkage group XI.

Cana	pair Phase ^N	o, of	. ;	Segregat	Recombination	A/ 2			
Gene	pair Phase	Cross	AB	Ab	aB	ab	Total	value (%)	$\chi^2_{(3)}$
spl ₃ -dl	coup.	7	941 (914.1)	103 (98.4)	88 (98, 4)	- 218 (239. 18 ¹)	1,350	15.8±1.1	3.968
	Rep.	10	1,183 (1, 139. 0)	506 (539.5)	531 (539.5)	(20. 0)	2,238	19.1 \pm 2.0	3.058
	Weighted	mea	n					16.5±1.0	_
spl ₃ -bc ₁	Rep.	1	101 (99.4	28) (3 7. 1	45) (37. 1)	8 (8.4)	182	43.0±6.0	3.960

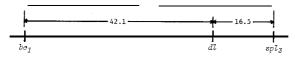


Fig. 2. Linkage map of the group XI.

43.0 % from the data of repulsion phase. Because the linkage intensity between dl and bc, is about 40 % (Iwata and Omura, 1971 b), the sequence of the three genes at the map of the linkage group XI is probably $bc_1-dl-spl_3$ (Fig. 2).

 spl_4 : Intimate linkage relations were observed between spl_4 and such two genes as dp_1 and wx belonging to the linkage group I. As shown in Table 6, linkage intensities of spl_4-dp_1 were estimated from F_2 in coupling phase and two kinds of F_3 lines from F_2 plants in repulsion phase showing such phenotypes as spl_4+dp_1 and spl_4dp_1+a at 3.0 %, 0.8 % and 3.4 %, respectively. The weighted mean was calculated at 2.5 % from these values. The linkage intensity of spl_4-wx was also estimated from F_2 in repulsion phase at 2. 3 %. The linkage relation between dp_1 and wx with intensity of 2.2 % have been recognized previously (Nagamatsu and Omura, 1962). Therefore, it is obvious that the three genes, spl_4 , dp_1 and wx, are nearly located each other at the map of the linkage group I, notwithstanding the sequence of them is not yet confirmed.

Table 6. Linkage relations between spl, and genes belonging to the linkage group I.

G .		Iten	ıs		Segr	egation	mode			Recombinatio	n 0,2
Gene pair	Phas	e	No. of	++	$+dp_{1}$	$spl_{4} + 11$	$spl_{4}dp_{3}$	T	otal	value (%)	$\chi^2_{(3)}$
spl_4 - dp_1	F ₂ Co	up.	8	961 (950.5)	(19.	(19.	(304		,293	3.0±0.5	3.606
	Re	p.	2	205 (214.5)	102 (107.3	122) (107.3	(0		429	≑ 0	2.706
	F ₃ from	n F ₂	plants	Seg	Ţ.	Non-s	eg.	Т	otal		
	$(spl_4^+ ds)$			1 5		59 71			60 76	0.8f0.8 3.4±1.5	
	Weigh	ted	mean							2.5 ± 0.4	
	Phas	. N	No. of	wx+ u) x +	wx+ wx	wx	wx	Tota	.1	
	Phas	e	cross	+ .	spl.	$+$ spl_4	+	spl_4	100	aı	
spl_4 - wx	F ₂ R	ер.	5		76 44 98.6) (40	1 9 7.0) (9.5	198) (208. :	1 5) (0.1	833	2.3±0.5	6.234

 spl_5 : The linkage relationships between the spl_5 and such three genes as d, g and Rc belonging to the linkage group IV were observed. From F_2

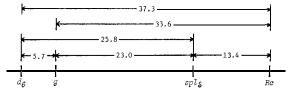


Fig. 3. Linkage map of the group IV.

Gene	pair Phase	No	of S	Segregati	on mod	e in F		Recombination	$\chi^2_{(3)}$
Gene	pan Thase	cr	oss _{AB}	Ab	aВ	ab	Total	value (%)	A(3)
spl_5-d_6	coup.	4	447 (434.8	92) <u>53</u> 8. 2)	60 (78. 2)	85 (92 8)	684	26.3 ± 2.0	7.670
	Rep.	1	100 (100.9)	(47. 6)	(47. ₆₎	(1.9)	198	19.8 \pm 6.8	0.692
	Weighted	mean		09	E9	00		25.8±1.9	
spl ₅ -g	coup.	4	456 (442.9)	83 (70. 1)	- 53 (70. 1)	92 — (100. 9)	684	23. 2±1.9	7.720
	Rep.	1	101 (101.0)	51 (47. 5)	44 (47. 5)	2 (2. 0)	198	20.1 ± 6.8	0.516
	Weighted	mean		17	- 8 -	— 3 8 -		23.0±1.8	
spl ₅ -Rc	coup.	1	135 (136.1)	(12. 4)		(37. 1)	198	13.4±2.6	3.299

C		tems		Segre	egation	mode		Recombination	2
Gene pa	Phase	No. of	++	+ eg 26	$\frac{spl_6}{31} + $	<i>spl</i> ₆ eg - 155 —	Total	value (%)	$\chi^2_{(3)}$
spl_6 - eg	F ₂ Coup.	4	560 (550.0)	(29. 0)	(29,	(164. 0 0)	772	7.8 ± 1.0	1.124
	Rep.	2	225 (220)	110 (110)	105 (110)	(0)	440	≑ 0	0.341
	F ₃ from	F ₂ plants	Seg		Non-seg	g.	Total		
	(spl_6^+) (spl_6^+) e_8		18 16		66 89		84 105	12.0 ± 2.8 8.3t2.1	
	Weighte	d mean						8.3±0.9	
	Phase	No. of cross	++	+ lax	$spl_6 + spl_6$	bl ₆ lax	Total		
spl ₆ -lax	F ₂ Coup.	1	125 (130.8)	(1.9)	(1.9)	(42. 3) 2	177	2.2 ± 1.1	2.070
	Rep.	6	552 (556.0)	264 (275.0)	290 (275.0)	(2.0)	1,108	8.4 ± 3.0	1.286
	F ₃ from	F ₂ plants	Seg. 21	•	Non-seg	ζ.	Total		
	(spl ₆ + s ₆ a (spl ₆ l	ılax) ıx+)	23		173 113		194 136	5.7±1.9.2±1.92	
	Weighte	d mean						4.9 ± 0.7	
	Phase	No. of cross	AB	Ab	aВ	ab	Total		
spl_6-d_{10}	F ₂ Rep.	3	283 (279.0)	130 (138.0)	142 (138.0)	(1. 38 m	556	8.7 ± 4.2	0.635
spl_6 - A	F ₂ Coup.	3	287 (309.3)	126 (107.7)	105 (107.7)	(31.3)	5 5 6	52.6f3.3	6.220

data shown in Table 7, the recombination values of spl_3-d_6 , spl_3-g and spl_5-Rc were estimated at 25.8 %, 23.0 % and 13.4 %, respectively. The recombination values of d_6-g , g-Rc and d_6 -Rc have previously been calculated at 5.7 %, 33.6 % and 37.3 %, respectively (Iwata and Omura, 1971 b). Thus, the sequence of the four genes at the map may be d_6-g - spl_5 -Rc (Fig 3).

 spl_6 : Regarding spl_6 , the linkage relations were observed with four genes of eg, lax, d_{10} and A belonging to the linkage group III (Table 8). The recombination values of spl_6 -eg were estimated from F_2 in coupling phase and two kinds of F_3 lines from F_2 in repulsion phase at 7.8 %, 12.0 % and 8.3 %, respectively, and resulted in the weighted mean of 8.3 %. The recombination values of spl_6 -lax were estimated at 2.2 % and 8.4 % from F_2 in both coupling and repulsion phase and at 5.7 % and 9.2 % from two kinds of F_3 's from F_2 in repulsion phase. respectively, and thus their weighted mean of 4.9% was obtained. The recombination values of spl_6 - d_{10} and spl_6 -A were also estimated from F_2 at 8.7 % and 52.6 %, respectively. The arrangement of eg-lax- d_{10} -A on the group and linkage intensities between them have previously been confirmed (Iwata and Omura, 1971 a). Thus, the sequence of the five genes at the map of linkage group III would be eg- spl_6 -lax- d_{10} -A (Fig. 4).

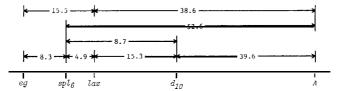


Fig. 4. Linkage map of the group III.

Table 9. Linkage relations between spl_7 and genes belonging to the linkage group IX.

	Items	_	gation mode		Recombination value (%) $\chi^2_{\zeta_3}$
Gene	pair Phase	No. $ \rho f + al_{K-2} s $	$pl_7 + spl_7 al_{K-2}$	Total	value $(\%)^{\zeta(3)}$
spl_7-al_{K-2}	F ₂ Rep. 1	125 lethal	68 lethal	193	10. 779***1)
	F ₃ from F ₂ pla	nts al seg.	al non-seg.	Total	
	$\frac{(spl_{7}^{+} al_{K-2}^{+})}{(spl_{7} al_{K-2}^{+})}$	107 14	52	124 66	15.0 ± 3.8 11.9 ± 3.1
	Weighted mean	1			13.1 ± 2.4
	Phase No. of cross	AB Ab	aB ab	Total	
spl_7-nl_1	F ₂ Rep. 2	194 102 (194) (97)	92 0 (97) (0)	388	≑ 0 0.515
spl ₇ -ri	F ₂ Rep. 2	198 98 (195.0) (98	91 1 6.0) (96.0) (1.0)	388	10. 4 ± 5.0 0.346

 $^{^{1)}\}chi^{2}$ in this cross was for 3: 1. and then begree of freedom was 1.

^{***} Significant at 0.1% level.

 spl_{7} : The linkage relations were observed between spl_{7} and such three genes as al_{i} , nl_{i} and ni belonging to the linkage group IX (Table 9). Since homozygous plants for the $al_{\kappa-2}$ gene are lethal at the seedling stage (Iwata and Omura, 1978), only two of phenotypes survived in F2 of the cross between spl_7 and al_{r-2} were examined for segregation mode of spl_7 . The mode deviated remarkably from 3: 1 ratio, suggesting a existence of linkage relation between them. The recombination values of 15.0 % and 11.9 % were estimated from the progeny test of F2 plants having the phenotypes of $spl_7^+al_{K-2}^+$ and $spl_7al_{K-2}^+$, respectively, and their weighted mean of 13.1% was obtained. Between spl_7 and nl_1 , a very close linkage relation was assumed from the fact that non of the doubly recessive plant had been observed in F₂ in the cross of repulsion phase, though the recombination value could not be given. In the cross between spl_{τ} and ri, only one of doubly recessive plant had been observed in F₂ in repulsion phase and thus a linkage intensity was estimated at 10.4 %. Although it needs additional data for confirming a accurate sequence of the four genes, the order of $al_{1,2}-nl_1-spl_7-ri$ at the map of linkage group IX was adopted tentatively.

 spl_{s} : Phenotypic characteristics of spl_{s} having fine striped spots of reddish brown on leaves is different clearly from that of any other spl genes described in this paper, and the linkage relation was observed between spl_{s} and spl_{τ} with the intensity of 13.6 % from F_{2} in the cross of repulsion phase (Table 10). Consequently, it is considered that spl_{s} also belongs to the linkage group IX.

Table 10. Linkage relation between spl_8 and spl_7 .

Phase	No. of cross	Segregation mode in F ₂					Recombination	$\chi^2_{\scriptscriptstyle (3)}$
		++			$spl_8 spl_7$	Total	value (%)	A(3)
Rep.	1	107 (107.5)	49 (52. 3)	56 - (52.3)	(0. 9)	213	13.6 \pm 6.7	0.473

Table 11. Segregations for normal vs. physiological leaf spots (spl_9) in F_2 lines between linkage testers and a mutant strain (LT 26) showing physiological leaf spots.

+	spl_9	Total	χ^2 for 3: 1
151	49 49	195	 0, 617
146		195	0.002
147	47	191	0.393
141	40	188	0.000
148		188	1.390
150	45	194	0 . 55 7
146	39	191	0.211
152		191	2.138
1,181	352	1,533	3.397

 spl_9 : Blackish brown spots of this mutant is unique in feature. Segregation modes of normal to this character in F_2 were accordant with a ratio

of 3: l, indicating that the character was controlled by a single recessive gene, spl_9 (Table 11). However, the linkage group to which spl_9 belongs is so far unknown.

As described above, the linkage studies with nine of spl genes expressing spotted leaf were made in this paper, and with eight of them the linkage groups to which they belonged were proved. Three genes, spl_3 , spl_5 and spl_7 were so similar that they could not be distinguished by their phenotypic feature, nevertheless they were controlled by different genes and belonged to different linkage groups. The same was observed between spl_4 and spl_6 . Therefore, it is well considerable that there are many mutants even if they have similar phenotype. A hundred and one of spotted leaf mutants have been collected in our laboratory, so the identification of genes and the linkage analysis are carrying on.

REFERENCES

- Iwata, N. and T. Omura 1971 a Linkage analysis by reciprocal translocation method in rice plants (*Oryza sativa L.*) I. Linkage groups corresponding to the chromosome 1. 2, 3 and 4. *Japan. J. Breed.*, 21: 19-28 (in Japanese with English summary)
- Iwata, N. and T. Omura 1971 b Linkage analysis by reciprocal translocation method in rice plants (Oryza sativa L.) II. Linkage groups corresponding to the chromosome 5, 6, 8, 9, 10 and 11. Sci. Bull. Fac. Agr., Kyushu Univ., 25: 137-153 (in Japanese with English summary)
- Iwata, N. and T. Omura 1975 Studies on the trisomics in rice plants (Oryza sativa L.) III. Relation between trisomics and genetic linkage groups. *Japan. J. Breed.*, 25: 363-368
- Iwata, N. and T. Omura 1977 Linkage studies in rice (Oryza sativa L.). On some mutants derived from chronic gamma irradiation. J. Fac. Agr., Kyushu Univ., 21: 117-127
- Iwata. N. and T. Omura 1978 Linkage studies in rice (Oryza sativa L.). Some albino genes and their linkage relation between marker genes. Sci. Bull. Fac. Agr., Kyushu Univ., 33 (in press) (in Japanese with English summary)
- Jones, J. W. 1952 Inheritance of natural and induced mutations in Caloro rice and observations on sterile Caloro types. *J. Hered.*, 43: 81-85
- Nagamatsu, T. and T. Omura 1962 Linkage study of the genes belonging to the first chromosome in rice. Japan. J. Breed.. 12: 231-236
- Nagao, S. and M. Takahashi 1963 Trial construction of twelve linkage groups in Japanese rice. (Genetical studies on rice plant. XXVII). J. Fac. Agr., Hokkaido Univ., 53: 72-130
- Nagao, S., M. Takahashi and K. Morimura 1964 Genetical studies on rice plant, XXVIII. Causal genes and their linkage relationships of some morphological characters, introduced from foreign rice varieties. Mem. Fac. Agr., Hokkaido Univ., 5: 89-96 (in Japanese with English summary)
- Omura, T. and N. Iwata 1972 Linkage studies in rice. On the linkage groups 8, 10 and 11. Japan. J. Breed., 22 (Supl. 1): 43-44 (in Japanese)
- Takahashi, M., T. Kinoshita and K. Takeda 1968 Character expressions and causal genes of some mutants in rice plant. (Genetical studies on rice plant, XXXIII). J. Fac. Agr., Hokkaido Univ., 55: 496-512