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Enzymatic system which can realize the two-factor model was investigated by com-
puter simulation. In two-factor model, the output of the system is controlled
only by the difference in magnitude of excitatory and inhibitory factors, independ-
ently of their absolute magnitudes.

The present study revealed that the two-factor model could be realized by either
a multi-feedback-system or a conjugate system.

INTRODUCTION

It has been believed that a dynamic behavior of physiological or biochemi-
cal system in various hierarchical levels is fundamentally regulated by a
combinatory action of an excitatory (activatory) and an inhibitory factor.
For an enzymatic system, in general, the enzymatic activity, hence the out-
put of the system, is thought to be continuously regulated by the action of an
activator or an inhibitor; i.e., the enzymatic activity changes continuously in
propotion to the concentration of the activator or the inhibitor.

On the other hand, it has been well known that some physiological sys-
tems respond to the net magnitude of competing excitatory and inhibitory fac-
tors. For instance, neuron is firing only when the excitatory input exceeds
the inhibitory input, as represented by F(x,y) = {l1;x2=y, 0; x <y}, where
F(x,y) indicates the output of the system, and x and y are the magnitudes or
amounts of the excitatory and inhibitory inputs, respectively.

Rosen (1967, 1968, 1970) has introduced an idea similar to above into bio-
chemical systems and called it two-factor model. In his basic model, an en-
zymatic system produces opposing two-factors, an activator (x) and an in-
hibitor (y), and the output is controlled by the function F(x, y). Although
such the discrete input may offer a new type of energy or material produc-
tion, the significance of two-factor model will be emphasized if the output
carries an information as to control the other biochemical systems.

Thus, the participation of two-factor model in the regulation of enzymatic
reaction system can produce specific output that may not be produced by con-
tinuous systems. However in his approach, Rosen has simply and a priori

* Notations in Roman indicate the chemical species and those in italic the molar con-
centration of corresponding species.
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assumed the function F(x,y) as for the analysis of general physiological sys-
tem.

The practical significance of two-factor model in enzymatic reaction sys-
tems strongly depend upon the circumstance whether the enzymatic system
which realizes the function F(x,y) can be found under reasonable assumptions
or not. The present paper deals mainly with the study on the F(x,y)-
realizing enzymatic system by means of the computer simulation.

COMPUTATION

Feedback and conjugate reactions are thought to be fundamental systems
for the regulation of complicated enzymatic reaction. In the present study,
simulations were conducted under the assumption that enzymatic reaction sys-
tem which can realize a threshold function F(x,y) is essentially composed of
either a feedback-system or a conjugate reaction system.

Feedback-system

A Dynamic analysis

A typical example of analysed schemes is shown in Fig. 1. Two factors,
the activator (x) and the inhibitor (y) are assumed to act on feedback loop
and X, is taken as the output to be regulated by the fuction F(x,y). The
activator (x) enhances the feedback input (for example X, in the first loop)
and the inhibitor (y) reduces the feedback input. Thus, the feedback input X;
in the first feedback loop is modified to (x/y)X, by the two factors. This
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Fig. 1. Three-feedback model. Dotted line indicates the transmission of
information only.
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modified feedback input changes rate constant k%, at X,—X, step to &/(Xx/
) =Fky/xX,. Thus, two factors act on the feedback with their ratio, f=y/x.
In mathematical sence, it is easily presumed that, for realizing the function
F(x,y), the mathematical model must contain a term of (f)” with large 7~
value, i.e., f must act simultaneously on several feedback loops. For simpli-
fy the computation, the simulations were performed on the schemes with #-
value less than 4.

The mathematical model (rate equation) for the scheme in Fig. 1 may be
written as,

X, =S— (b f/X)X,— (B.X./ )X,
Xz= (kl f/Xz)Xl—‘ (kz f/Xs)Xz
Xo= (k. [/ X)X — (ks f/ X)X,
X4= (ks f/Xa)Xs—k4X4

@

where S is the constant input, and dot indicates the operator d/df and X,=
X,(t). f is taken as parameter in simulation. The sign (+) and (=) in
Fig. 1 indicate positive and negative effects, respectively, and dotted lines
show the flow of information but not flow of material.

The simultaneous nonlinear differential equation (1) was numerically solved
by the modified Runge-Kutta-Gill method (MRKGM) using a FACOM 230-75
(Okamoto et al. 1975).
B Steady-state approximation.

When the system had attained to the steady-state, the following algebra-
ic equations are obtained from Eqg. (1),

S— (klf/XZ)Xl_(kle/f)Xl =0
(kl f/Xz)Xl”‘“<kz fIX,> X.=o0

(ks [/ X)Xy — (I f/X,) X;=0
(ks f/ X)X~k X, =0

)

The solutions on X, are,

Xo= (If ¥ S—k 1/ 1) X1 Rikesk sk,

Xo= /1) (S—k: (1)) X05)* ko, )
Xo=Q/F)S—k:(1/f )X ke,

X=S—k /XD /R,

With assuming that S=k =k, =k,=Fk;=1,
Xl—(1/f)3(1_k5(1/f>X12)4=0 (4)

is obtained. For the system with n-feedback loops, following general equa-
tion is obtained on X,

X— (/N A=k (/DX =0 ©)
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This equation was numerically solved by JARATD subprogram of FACOM SSL
and the relation between the output X, and I/f value was visualized for each
n-value.

Conjugate reaction system

Typical enzymatic conjugate reaction scheme subjected to the simulation
is shown in Fig. 2. System shown at the bottom has switching function for
active (E,) and inactive (E,) enzymes. Top is a conjugate reaction system in
which the active enzyme participates as a catalyzer in production of outputs.
The outputs of whole system are X, and X,.
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Fig. 2. Conjugate reaction model. Dotted line indicates the transmission
of information only. E, acts on step of X,—X, in the upper scheme.

The excitatory factor x and inhibitory factor y produce practical activator
Y. and inhibitor Y,, respectively, from external pools. It is assumed that x
and y are sort of catalyzer and are not consumed by the reactions, remaining
at their constant concentrations. E, is an enzyme catalyzing X,—X, reaction
and assumed to have a constant total concentration.

The mathematical model of this scheme may be written as,

X, = bEX, X, — bk E X, X,
X, = hE,X. X, — R E X, X,
X, =bX,~EEXX,
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X, =kE, X, X, — kX,

X, = kX — b, E X, X

X, = BEX,X,— kX, (6)
E,=k,EY,—kE.Y,

E,=k,EY,—k,EY,

YV,=ky—hkE,Y,

YV,—=kx—kEY,

Y,=kEY,—kY,

where X, and Y, are concentrations of reactants, & is rate constant at a
specific step and X,=X,(®, E.,=E.(), E,;=E.(®),Y,=Y,(#). This simultaneous
differential equation was also numerically solved by MRKGM program.

RESULTS AND DISCUSSION

Feedback system (dynamic analysis)

Equation (1) was solved with the initial conditions of X;=X,=X,=X;=
1.0, and the values of parameters are assumed to be & =k=k=Fk,=1.0,k=
0.0025 for simplicity of numerical solution. The values of S and y were
fixed to 1.0 and 20.0, respectively. Value of x was changed to yield various
f-values. As a control, the similar computation was performed with assum-
ing that &=0. Without an outlet bypass, the output X, increases monoto-
neously with increase in value of 1/f=x/y. With supplement of the bypass, X,
tends to have saturation profile. In the case of one feedback loop (two loops
from the bottom in the scheme in Fig. 1 are omitted), no clear saturation
was observed as represented by curve 1 in Fig. 3. A sigmoidal curve with a
gentle slope was observed for the system with two feedback loops. Three
feedback loops gave a typical sigmoidal profile, though its shape is far differ-
ent from that of the function F(x, y) (schematically represented by —.—).

It is easily presumed from the computational results described above that,

RELATIVE
CONCENTRATION OF X,

Fig. 3. Steady-state concentration of X, as a function of f.(—) ; without
the bypass (4,=0), 1; system with one feedback loop on X;~X,,2;sys-
tern with two feedback loops on X,—X, and X,—~X, 3; system with
three feedback loops shown in Fig. 1, (—+-—); ided response of X, or
value of function F(x,y).
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if T controls equally a number of feedback loop, the curve of the output X;
us f will approach to that of F(,y). In order to see the effect of the
number of feedback loop on the curve shape and to simplify the computation,
the steady-state approximation was utilized.

Feedback system (steady-state approximation)

Equation (5) was numerically solved for »=3, 7 by JARATD subprogram.
There are two real roots; one has practical meaning and gave the same curve
as that obtained by dynamical analysis (see Fig. 4-A-b), while the other
carries no chemical meaning (Fig. 4-A-a). When n-value was taken to be 7,
the curve approached more to that of the step-function than the case of #=3.
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Fig. 4. Steady-state analysis. A; n=3, B; =7, a; calculated with one
real root which has no chemical meaning, b; calculated with other real
root which has chemical meaning.

Thus, it is logically expected that the curve with a large n-value con-
verges to the step-function. However, this model seems include several defects.
For example, the practical molecular mechanism by which the feedback input
is modified by factor f can not be surmised from knowledge on enzymology.
Furthermore, it is not realistic that the same quality, f, acts in the same
mode on several different feedback loops.

Thus, feedback-system which realize the function F(x,y) could be con-
structed in a mathematical sense. However, practically such a system appears
not to be allowable, since it seems to be too much complicated to exist in a
real biological entity.

Conjugate reaction system
Equation (6) was numerically solved under the initial conditions of

X,=X,=0.5, X,=X,=10.0,

X4:X5:0, Y1=Y2=Y3=1. O,
E,=E;=0. 5, E,=0.001
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and at the parameter values of

ky=k,=k;=1.0, k,=k,=5x 104
ko=k,=10°, k,=k,=10.0

The y-value was fixed to 20.0 and x-value was changed as to yield various
f-values.

The computed results are shown in Fig. 5. The concentrations of E, and
E, changed stepwise at x/y=1, and the concentrations of X, and X; changed
in the similar way except for appearance of a little curved corner. The
magnitude of curved part seemed to depend upon the total concentration of
Ey.
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Fig. 5. Steady-state concentrations of E, E;, X, and X, as a function of f.

When the excitatory factor EF and the inhibitory factor IF are assumed
to act directly on an enzyme according to the scheme,

EF IF

E, E, M

EF Ir

the equilibrium state is described by,

_ (ENEF)
K=& ar

1 (E)(EF)
(Ea> =K ﬁ(IFT (8)

where parentheses indicate the equilibrium concentration. This equation
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means that (E,) does not form the step-curve under any conditions on the re-
actants.

The scheme on the actions of the excitatory and the inhibitory factor
toward enzyme, which is shown in Fig. 2, has characteristic features relative
to the static equilibrium scheme depicted in Eq. (7). The scheme in Fig. 2
transformed the static nature of the action of two factors into the dynamic
one through the insertion of the activator, Y,, and the inhibitor, Y,. When
static equilibrium process is inserted to a part of dynamic flow system, its na-
ture is greatly altered. This is the reason why E,or E, behaves as a step-
function, as shown in Fig. 5.

This type of conjugate reaction system may be easily constructed in vivo,
since it does not contain any unreasonable element. Therefore, it is highly
possible that switching regulation will take place in biochemical system in
intact organism, and this may be an important proposal for considering the
mechanism of the precise regulation of biochemical system in vivo.

In dynamical analysis of physiological phenomena, usually the function
F(x,y)is a priori assumed to be realized within the interested system, without
considering the definite structure of F(x, y)-realizing system. The results of
the present study may offer one example F(x, y)-realizing system, and con-
tribute to elucidation of details of switching regulation in biological system.
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