九州大学学術情報リポジトリ Kyushu University Institutional Repository

Cytogenetical Studies on the Genus Oryza: X. Cytogenetics of Tetraploid F_1 Plant between Amphiploid punctata-eichingeri and BBCC Genome Species

Katayama, Taira Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University

Shin, Young-Bourn Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University

Onizuka, Wataru Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University

https://doi.org/10.5109/23655

出版情報:九州大学大学院農学研究院紀要. 22 (1/2), pp.99-105, 1977-10. Kyushu University バージョン:

権利関係:

Cytogenetical Studies on the Genus Oryza

X. Cytogenetics of Tetraploid F₁ Plant between Amphiploid punctata-eichingeri and BBCC Genome Species

Taira Katayama, Young-Bourn Shin and Wataru Onizuka

Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University 46-01, Fukuoka 812 (Received September 6, 1977)

In 1967. Katayama proposed that diploid *punctata* strain is the B genome donor based on the cytogenetical evidences of the diploid F, plants between diploid punctata strain and its related species. To corroborate the result, the tetraploid F_1 plants were produced from the crosses between amphiploid punctata-eichingeri and the species having the BBCC genomes. The results of the cytogentical observations of both the diploid F_1 (diploid $punctata \times C$ genome species) and tetraploid F_1 (synthesized amphiploid strain \times BBCC genome species) plants support the opinion that diploid punctata is the donor of the B genome.

INTRODUCTION

There are three different opinions to date on the genome constitution of diploid *punctata* strain. They are BB (Katayama, 1967), CC (Sampath, 1962; Gopalakrishnan and Sampath, 1966) and homologous to one of BBCC and partially homologous to AA and CC (Hu, 1970).

In our previous reports (Katayama and Ogawa, 1974; Ogawa and Katayama, 1973, 1974), the authors have also made clear that diploid **punctata** strain could be the species having B genome from the cytogenetical standpoints of the diploid F_1 plants between diploid **punctata** strain and the C genome species, 0. officinalis, 0. eichingeri, 0. collina and an intermediate punctata-eichingeri.

In our further work, the facts described above were also confirmed by the chromosome pairing at meiosis of the tetraploid F_1 plants between synthesized amphiploid and the species with the BBCC genomes (Katayama, 1977).

For further corroboration in these facts, another experiment was designed. The present paper deals with the results obtained from morphological and cytogenetical observations of the tetraploid F_1 plants of amphiploid **punctata**-eichingeri x species having the BBCC genomes.

MATERIALS AND METHODS

As shown in Table 1, amphiploid **punctata-eichingeri** was used as the female parent, while 0. **punctata (4x, BBCC, W 1145)**, 0. **minuta (4 x, BBCC, W 0016, Y22)**, 0. **malabarensis (4x, BBCC, W 021)** and 0. **malampuzhaensis (4x, BBCC, W 1159)** were used as male parents. The amphiploid **punctata-eichingeri** was artificially

Acc. no.	Species	2n	Genome constitution	
1 x - 1	amphiploid punctata-eichingeri	4 8	BBCC ¹⁾	
w1145	0. punctatā	4 8	$BBCC^{2)}$	
Y22	0. minuta	48	BBCC ¹⁾	
W 0016	0. minuta	48	BBCC"	
wo21	0. malabarensis	48	BBCC ²⁾	
W 1159	O. malampuzhaensis	48	BBCC ²⁾	

Table 1. Materials used in this experiment.

induced by Sampath (CRRI) with colchicine treatment of the sprout from the diploid F_1 plant of 0. punctata (2 x) x 0. eichingeri (2x) and introduced to Japan in 1971 by Watanabe (Watanabe and Sampath, 1972; Watanabe, 1975).

0. eichingeri has 2 n=24 chromosomes (Tateoka, 1965a) and its genomic constitution was similar to that (CC) of 0. officinalis (Hu, 1970; Ogawa and Katayama, 1973). All these strains were obtained from the genetic stocks preserved by the National Institute of Genetics, Mishima. A strain of 0. minuta (Y 22) was from the National Institute of Agricultural Sciences, Hiratsuka.

Castration was made by the clipping method. Seeds were grown in test-tubes under sterilized conditions. Heading was accelerated under the controlled day length of 8 hours.

After fixation with Farmer's solution (alcohol 3: acetic acid 1), root-tips and PMCs were stained with aceto-carmine solutione as usual.

RESULTS AND CONCLUSION

Percentage of seed setting in each cross combination was considerably high as shown in Table 2. Plants from these seeds were almost true hybrids in their appearance.

The amphiploloid punctata-eichingeri and the tetraploid F_1 plants from the cross between the amphiploid punctata-eichingeri and the species with BBCC genomes were morphologically similar to the species having the BBCC genomes, i. e., 0. punctata (4 x), 0. minuta, 0. malabarensis and 0, malampurhaensis (Fig.

c. no.	Cross combination	No. of flowers crossed	No. of seeds obtained	% of seeds setting	No. of seeds sown	% of true F, plant
(4x-1)	amphi. punctata- eichingeri	27	10	37		
ant	4x-1 × W1145 4x-1 x Y 22	48 44	26 24	54 54. 5	19 24	100.0 88. 0
	4x-1 × W0016 4x-1 x wo21 4x-1 × W1159	53 43	40 35	75.5 81	11 12 11	87. 5 100.0 100.0

Table 2. Cross-combinations and the results.

¹⁾ National Institute of Agricultural Sciences, Hiratsuka.

²⁾ National Institute of Genetics, Mishima.

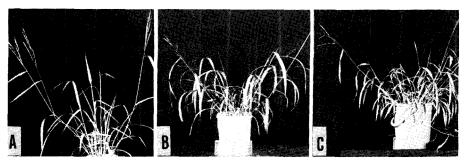


Fig. 1. Adult plants of BBCC genome species and F_1 plant between amphiploid punctata-eichingeri and BBCC genome species.

A: 0. punctata (4x, W1145).

B: F_1 plant (D) of amphiploid punctata-eichingeri \times 0. minuta (Y22).

C: 0. minuta (Y22),

l-A, -B, -C), except grain size of the F_1 plants and anthocyanin colorations of node, internode and leaf-sheath in some F_1 plants, as shown in Table 3.

The ears of the amphiploid *punctata-eichingeri* and the tetraploid F_1 plants, D, E, G and H, are of spreading type with the spikelets being large and deciduous, consisting of long and double awns (Table 3).

Seed fertilities of the amphiploid *punctata-eichingeri* (plant A) and the tetraploid F_1 plants (E, D, H and G) were very high as compared to those of the diploid F_1 *punctata* (2x)-*eichingeri* (2x) which are completely sterile (Table 4).

In all plants used in the present experiment, 48 chromosomes were counted (Fig. $\mathbf{Z}-\mathbf{A}$).

Chromosome configurations were examined at MI of PMCs in the amphiploid punctata-eichingeri, and the results were given in Table 4. This table shows that almost all chromosomes observed at MI were bivalents.

All of the tetraploid F_1 plants (D, E, F, G and H) which were produced from the crosses between amphiploid *punctata-eichingeri* and the species with the BBCC genomes, showed similar patterns of chromosome pairing at MI of PMCs (Table 4). Number of bivalents per cell at MI of PMCs ranged from 18 to 24 with a mean of about 22–24. These chromosome configurations show that the genomes of the amphiploid *punctata-eichingeri* are homologous with those of the species with the BBCC genomes, such as 0. *punctata* (4x) and 0. *minuta*.

In addition to the normal bivalent formation as described above, these tetraploid F_1 plants (D, E, F, G and H) rarely formed univalents, trivalents and/or tetravalents (Table 4). Tetravalents appeared as o-type (Fig. 2-B) or zigzag type (Fig. Z-C). This fact suggests that one reciprocal translocation should have occurred between 2 nonhomologous chromosomes concerned. Hu and Chang (1965) observed such chromosome configurations in the F_1 plants between 0. punctata (4x) and its related species, and assumed that these species would be differentiated through translocation.

From the morphological characteristics, Sampath (1962) supposed that Ceylonese *officinalis* (0. collina) and diploid punctata strain have the B and C genomes, respectively. Morinaga and Kuriyama (1960) reported already that

Tabl 3. Comparison of morphological

	A (4x-l)	F ₁ plants						
Characteristics		Е	D	Н	F			
Plant height	high	inter mediate	inter mediate	high	inter mediate			
Panicle length	inter mediate	long	inter mediate	short	long			
Habit	semi-erect	semi-erect	semi-erect	semi-erect	semi-erect			
Awn length	long	long	long	long	long			
Color								
stigma	purple	purple	purple	purple	purple			
node	purple	purple	purple	colorless	colorless			
internode	purple	colorless	colorless	colorless	colorless			
leaf-sheath	dilute	purple	purple		colorless			
	purple	(under part)	(under part)					
Spikelet								
length	0. 65	0. 61	0.70	0. 68				
width	0. 25	0. 24	0. 24	0. 22				
L/W	2. 60	2. 60	2. 90	3.09				
Hulled rice								
length	0. 48	0.46	0. 52	0. 56				
width	0. 20	0. 21	0.19	0. 19				
L/W	2.46	2.19	2. 74	3.00				

Table 4. Chromosome pairing at MI and fertility of F_1 plants between amphiploid $\it punctata-eichingeri$ and BBCC genome species.

		No. of	Ch	romosome p	Fertility			
Acc. no.	2 n	cells observed	IV	Ш	Ш	1	pollen (%)	seed (%)
A (4x-1) F ₁ plant	48	18 25			23.9(22-24)	0. 1 (O-l)	98.00	40.91
E-6	48	30	0.32 (O-l)		23.0(21-24)	0.8(0-2)	93.33	73.53
D-3 H-1	48 48	39 2 7	0.23 (O-2)	0.1 (O-l) 0.5 (O-1)	23. 0(18–24) 23. 0(22–24)	0.8(0-4) 0.5 (O-l)	54.29 93.40	29.17 68.63
F-5 G-1	48 48	23	0.67 (O-2) 0. 22 (O-2)	0.04(0-1)	22. 0(20–24) 23. 0(20–24)	0.2(0-3)	50.32 20.97	22. 81 14.40

Ceylonese *officinalis* has a homologous genome with 0. *officinalis* from the cytogenetical investigations. The authors also obtained a similar result to Morinaga and Kuriyama (Ogawa and Katayama, 1973).

From the cytogenetical standpoints in which the genome of diploid **punctata** strain is homologous with one of the BC genomes of 0. **minuta**, and also partially

characteristics	of	F,	plants	and	their	parents.
-----------------	----	----	--------	-----	-------	----------

G	w1145	Y22	wo21	W 1159
high	high	low	inter mediate	high
inter mediate	inter mediate	short	inter mediate	inter mediate
semi-erect	semi-erect	procumbent	semi-erect	semi-erect
long	short	short	short	
purple	purple	purple	purple	purple
colorless	colorless	colorless	colorless	colorless
purple	colorless	colorless	colorless	colorless
colorless	colorless	colorless		dilute
				purple
0. 65	0.50	0. 47	0.53	0. 56
0. 26	0, 21	0.16	0.21	0.23
2.50	2.38	2.94	2. 59	2. 43
0. 50	0. 40	0. 35	0.46	0.49
0. 20	0. 17	0.14	0.17	0.19
2. 50	2. 42	2. 50	2.43	2. 55

homologous with the A genome of 0. **sativa**. Hu (1970) proposed that the genome of the diploid **punctata** strain could not be identified as A, B or C. The mean number of bivalents per cell in this datum, however, is only 2.3 in the cross with the C genome and 0.54-3.34 in the cross with the A genome, respectively. The results suggest that the genome of diploid **punctata** strain differs from C and A.

The amphiploid **punctata-eichingeri** used in the present experiment was artificially produced by Sampath and studied cytologically by Watanabe and Sampath (1972) based on the hypothesis in which African 0. **punctata (4x)** resulted from spontaneous polyploidization of the diploid F_1 plants between diploid **punctata** (BB) and 0. **eichingeri** (CC). The results described above show with reasonable certainty that the amphiploid **punctata-eichingeri** has homologous chromosomes with the BBCC genome species as supposed by Watanabe and Sampath (1972).

The zymograms for peroxidase, acid phosphatase and esterase in diploid **punctata** strain differed from those of the other related species or strain, 0. **eichingeri**, 0. collina and intermediate **punctata-eichingeri** strain (Katayama and



Fig. 2. Somatic chromosome and chromosome configurations at MI of plant of the cross, amphiploid $punctata\text{-}eichingeri \times BBCC$ genome species.

- A: Somatic chromosome number showing 2n=48.
- B: MI of F_1 plant (D) showing 1 IV (o-type, arrow) +21 H + 2 I.
- C: MI of F_1 plant (F) showing 1 IV (zig-zag, arrow) +21 II + 2 I.

Chern, 1973). The zymograms for peroxidase and acid phosphatase obtained in the amphiploid *punctata-eichingeri* are similar to those of the diploid F_{I} plants of 0. *punctata* (W 1515) \times 0. *officinalis* (W 0561) and of 0. *punctata* (W 1474) \times 0. *officinalis* (W 0561) (Chern and Katayama, 1977).

The present results are in good agreement with those of the description by one of the authors (Katayama, 1977) and support those described already by the authors (Katayama, 1967; Katayama and Ogawa, 1974; Ogawa and Katayama, 1973, 1974). The authors emphasize again that the diploid *punctata* strains are the donor of the B genome.

ACKNOWLEDGEMENT

The authors wish to express their sincere thanks to Dr. Y. Watanabe, National Institute of Agricultural Sciences at Hiratsuka, for supplying the material and valuable comments.

REFERENCES

- Chern, J. L. and T. Katayama 1977 Electrophoretical studies on phylogenetic relationship between 0. punctata (BBCC) and its related species. Japan. J. Breed., 27 (Appendix 1): 90-91 (in Japanese)
- Gopalakrishnan, R. and S. Sampath 1966 The American species. Indian J. Genet. PI. Breed., 22: 108-113
- Hu, C. H. 1970 Cytogenetic studies of *Oryza officinalis* complex. III. The genomic constitution of 0. punctata and 0. eichingeri. Cytologia, 35: 304-318

- Katayama, T. 1967 Cytogenetical studies on Oryza—F₁ hybrids of the crosses BBCC x CC, BBCC x a diploid strain of 0. punctata and CC x a diploid strain of 0. punctata. Proc. Japan Acad., 43: 327-331
- Katayama, T. 1977 Cytogenetical studies on the genus Oryza. IX. The F₁ hybrids from synthesized amphiploid x species with the BBCC genomes. *Japan. J. Genet.*, 52: 301-307
- Katayama, T. and J. L. Chern 1973 Zymographic studies on diploid Oryza punctata and its related species. Japan. J. Breed., 23: 329-333
- Katayama, T. and T. Ogawa 1974 Cytogenetical studies on the genus Oryza. VII. Cytogenetical studies on F₁ hybrids between diploid 0. punctata and diploid species having C genome. Japan. J. Breed., 24: 165-168
- Morinaga. T. and H. Kuriyama 1960 Interspecific hybrids and genomic constitutions of various species in the genus Oryza. Agr. Hort., 35: 935-938, 1091-1094(in Japanese)
- Ogawa, T. and T. Katayama 1973 Cytogenetical studies on the genus Oryza. VI. Chromosome pairing in the interspecific hybrids between 0. officinalis and its related diploid species. Japan. J. Genet., 48: 159-165
- Ogawa, T. and T. Katayama 1974 Cytogenetics on the genus Oryza-Chromosome pairing in the interspecific hybrid between diploid 0. punctata and 0. officinalis -. Japan. J. Genet., 49: 257-260
- Sampath, S. 1962 The genus Oryza: Its taxonomy and species interrelationships. Oryza, 1: 1-29
- Tateoka. T. 1965a A taxonomic study of Oryza eichingeri and 0. punctata. Bot. Mag. Tokyo, 78: 156-163
- Tateoka. T. 1965b Taxonomy and chromosome numbers of African representatives of the Oryza officinalis complex. Bot. Mag. Tokyo, 78: 198-201
- Watanabe, Y. and S. Sampath 1972 Cytotaxonomic considerations on African tetraploid species, Oryza punctata Kotschy. Japan. J. Breed., 22 (Appendix 2): 84-85 (in Japanese)
- Watanabe, Y. 1975 Cytogenetic studies on rice and its wild relatives. (I) Cytogenetic investigations of induced polyploids, with special reference to the sterility of synthesized amphiploids. Bull. Nat. Inst. Agr. Sci., Series D, 26: 1-90