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The response of the enzymatic feedback system to an oscillatory input was studied
in order to characterize the model system with emphasizing specially the qualitative
difference in response of the system from that of a linear feedback system. The
frequency response-curve of the enzymatic feedback system exhibits single or double
peaks and the positions of these peaks in the frequency axis shift as the feedback
constant increases. The distorted wave form on the reactant concentration is
observable only in the case that the input had a low frequency or low angular
velocity. The stationary value of the end product changed scarcely against the @
value of the input except for the input with a certain value of angular velocity
which causes a peak in the frequency response-curve. The frequency of the input
is held almost invariably through the oscillations of the reactants in the system.

INTRODUCTION

It has been reported that the appearance of oscillatory behavior in con-
secutive enzymatic reaction-systems may not be particular but general ones,
and this behavior could be fundamentally caused by feedback systems (Okamoto
et al, 1976). This suggests a solid possibility that a feedback control system
may play a major role in the appearance of oscillation of an intermediate in
an enzymatic reaction system in vivo.

It is easily presumable that in the real enzymatic reaction systems in vivo,
the input of the feedback system has not only a stationary but also an oscillat-
ing mode. The oscillating input may be introduced, when a reactant produced
by the other feedback sub-systems locating in adjacent position flows in the
system subject to the analysis. In such a case, it is expected that the output
of the system would have a oscillatory mode different from that of the input.
For example, differences would appear in a wave form, an amplitude and a
frequency of the wave.

On the other hand, it has been well known that the frequency response
test is one of the valuable methods for the characterization of general feed-
back systems. This method is concerning with the question how the amplitude
ratio of the output to the input changes with the increase in an angular ve-
locity or frequency of the sinusoidal input. Furthermore, the natural fre-
quency of the system, which is defined as a frequency of oscillation produced
by stationary input, can be calculated from this method.
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The present paper deals with the frequency response of the enzymatic
feedback system, using the previously reported model (Okamoto et al., 1976),
and with the qualitative difference in the frequency response between the
nonlinear and the linear feedback systems.

COMPUTATION

As described in the previous paper, the following reaction scheme was
assumed to be a typical biochemical feedback system:

ks

— X, X, > X, X, —>
ke ke ks

Scheme 1.

where X, represents the reactant or the intermediate; %, % and %, are the
rate constants of corresponding steps. %, is considered to be a feedback con-
stant. The detailed operation mode at the summing point in the feedback
loop was described in the previous paper. Y; and Y, ae an input and an
output of the system, respectively. The value of output (Y,) is assumed to be
constant during the reaction, while the input (Y,) is assumed to be given by
the following equation :

Y, = A+ Bsin(w?) (€))

where B and «» denote an amplitude and an angular velocity (defined as
frequency), respectively. The rate equation of Scheme 1 in the form of the
simultaneous differential equation may be written as follows:

‘id{f_l =Y, — (b /b XD X,

d;fz = (kl/kAXl)Xl — kX,

%X_s = k,g;rrngs (2)
d(]{f‘ = leIL_! Yg

4Ys = Beos(wr)

dt
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The numerical solution of the simultaneous differential equation (2) was
obtained either by means of MRKGM subprogram, that is slight modification of
the Runge-Kutta-Gill method (Okamoto ez al., 1975), or by the ADSL (Analog
to Digital Simulation Language) application program.

All the computations were performed by a FACOM digital computer (Mod-
el 230-75) in the Computer Center of Kyushu University.

RESULTS

Frequency response

Figure 1 shows a typical damped oscillatory pattern of the concentration
of X, vs time under the conditions that the input (Y;) was held at a constant
value (stationary state). After about 18 min from the initiation of the re-
action, the concentration of X, reached to a certain constant level.

CONCENTRATION, X4

0 10 20 30
TIME

Fig. 1. Typical damped oscillation. Scheme 1 was numerically analyzed
assuming that Y, is the constant value.

CONCENTRATION, X4
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Fig. 2. Effect of a sinusoidal input. Scheme 1 was numerically analyzed
assuming that ¥;=A+B sin (ot).

When the input (Y1) has a sinusoidal mode represented by equation (1), a
typical sustained oscillation of X, was observed after 18 min as depicted in Fig.
2. It was easily presumed, therefore, that this sustained oscillation was due to
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the oscillating input (Y;) as is evident from the patterns shown in Figs. 1 and
2. The amplitude ratio of the output to the input (B’/B) was obtained for
various ® values of the input, where B’ denotes the amplitude of the sustained
oscillation of X,.

As described before, the frequency response test is concerning with the
change in the ratio (B’/B) with the increase in an angular velocity () of
the input under fixing A and B in equation (1) at constant levels. Generally,
this test can be visualized by means of Bode diagram, in which the abscissa
represents @ on a logarithmic scale and the ordinate shows the gain in
dB (decibel) units. The gain, g, is defined by

g = 20 log (B’/B) 3)

Thus, the characteristic of the frequency response of the system can be read
from the profile of the Bode diagram.

Frequency response of enzymatic feedback system

The computer simulation of Scheme 1 was performed with varying the o
and %, values under fixing the values of other parameters, in order to observe
the frequency response. On simulation, the initial concentrations were as-
sumed as:

X1(0) = 0.821, X,(0) = 0.533, X,(0) = 0.915,
X,(0) = 0.543, Y,(O) = 0.701
The fixed values of the parameters were chosen as follows:

£=0.704, k. = 0900, £k;=0.645,
A =0.701, B =0.500

Figure 3 shows the Bode diagram obtained with changing the %, value. The
broken line indicates the frequency response of the reaction system without
the feedback loop (corresponding to the case of =0 in Scheme 1). The

gain (dB)

Fig. 3. The Bode diagram for Scheme 1. Curve A, k,=7.50; B, k,=6.33;
C, k=5.00; D, £=3.30; E, £=0. 063 ; F, £,=3.00. The broken line corre-
sponds to k=0 (no feedback loop).
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characteristic features observable from Fig. 3 can be summarized as follows:

i) The shape of each curve is not simple. Each single curve has several
crossing points. ii) The curves with the %, value larger than 3.30 exhibit a
distinct peak, and the position of the peak shifts toward the right with inten-
sifying the sharpness as the £k, value increases. The amplitude ratio (B'/B)
becomes to increase steeply as the %, value exceeds 4.50, as shown in Table 1.
iii) The peak appears in the low o region in Fig. 3 when the %, value is
over 6.33, and the position of the peak also shifts as in the case of the peak
in the right side. iv) In the low w region, the height of curves can be
arranged in the order of the %k values from top to bottom, whereas in the
right side, the order is nearly inverted.

Table 1. Influence of &, value on the amplitude ratio (B’/B) of the peak

(see Fig. 3).
k, » value at peak amplitude ratio
3.30 0.811 0.598
3.50 0.838 0.598
4,50 0.924 0.618
5.00 0.938 0.656
6. 33 0.993 0.776
7.50 0.997 0.795

Effect of input frequency on wave form of X,

In order to estimate the effect of the value of angular velocity of the
oscillatory input on the wave form of X,, computations were performed with
changing o value in equation (1) with fixing %, value at 6.33. This effect is
shown in Fig. 4 with selected w values; 0, 0.52, 1.00. With @=0 (A), the
pattern of X, exhibited the mode of a typical damped oscillation. In the case
of w=1.00 (B), for which the amplitude ratio (B’/B) took a high value (see
Fig. 3), the pattern of X, showed the same sinusoidal wave as that in the
input. With ©=0.52 (C), for which the ratio (B/B) took a low value (see
Fig. 3), the pattern of X, showed distorted wave forms. These distorted wave
forms appeared only in the case that the input has an extremely small o
value.

The period of X, and that of the input (Y1) were nearly the same in
every case.

Value of X, at steady-state

After the concentration of X, reached at a stationary level under the con-
ditions that the input has a sinusoidal mode, the stationary value of X, is de-
fined as the average of the values at top and bottom in the waved curve.
Figure 5 shows the effect of ® and %, values on the stationary value of X,.
The broken line indicates the value for the system without the feedback loop.
In the case, the stationary value of X, decreased almost exponentially with
increase in the w value.

As is evident from Fig. 5, the feedback control system has a capability to
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Fig. 4. Effect of oscillatory input on the wave form of X,. Equation (2)
was numerically computed with changing the value of w. (A), #=0.0;
(B), @=1. 00 ; (C), @=0. 52.
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Fig. 5. Influence of w and %, values on the stationary value of X;. Curve
A, k=3.30; B, k=5.00; C, £=6.33; D, £=17.50. The broken line cor-
responds to %4,=0 (no feedback loop).

keep the stationary value of X, unchanged against the various oscillatory in-
puts, except for the input with certain @ values which causes the peak on
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the frequency response-curve.

Thus, the results of the simulation on the response of the enzymatic feed-
back system to the sinusoidal input are summarized as follows:
i) The curve of the frequency response exhibited single or double peaks at
the %, value larger than 3.30. The positions of the peaks shifted with accom-
panying the increment of the sharpness as the k& value increased. ii) In the
case that the input has an extremely small @ value, the pattern of the con-
centration of X,vs time showed some distroted forms. In other cases, the Xj
exhibited nearly the same sinusoidal curve as that of the input. iii) The
period of X, was equal to that of the input in every case. iv) The stationary
value of X, was kept almost changed against a great change in w value of
the input, except the input with a limited ® value.

DISCUSSION

In order to estimate the qualitative difference in the frequency response
between nonlinear and linear feedback systems, the following linear feedback
system (Diagram 1) is assumed to be a counterpart of the nonlinear system
represented by Scheme 1,

T:‘_)T(_)’—f—)[ 6o [0 | — s
[oo ]<

Diagram 1.

where G;(s) is the transfer function with the complex variable s and can be
represented as follows by the Laplace transformation:

Gi () = ku/s, G,(S) = ke/s,Gs(s) = ka/s,Gu(s) = ki, )

where k, (i=1, 2, 3) is the rate constant at the step of X,—X,.:, and A is
the feedback constant (dimentionless).

In the linear system represented by Diagram 1, it is assumed that there is
additivity between X, and X,, though in chemical sense it is believed that such
additivity is not realized among the concentrations of different chemical species,
unless the concentration is transformed to a suitable thermodynamic quality.
Thus, the following operation is adopted at summing point in Diagram 1.

Z=X,—kX, 5)

l

The over-all transfer function G(s) of the closed-loop in Diagram 1 may
be written as,
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G1 (G (5)Gs (5)

G0 —156,096. ()G ()G () (6
By substituting equation (4) to (6), equation (7) is derived.
G = s @

where a=kkk;k,, and b=~kkk,. Under sinusoidal steady-state conditions, s is
replaced by iw. Then, the complex transfer function is,

. b
By deviding into the real and imaginary parts,
. ._ ab . bao®
Clw) = o par * 1 Goyar ®
is obtained. The distance of G(iw) in the complex s-plane is,
, b
IG(M))]_I/BGA—FEE (10)

The gain (g) is defined by,
g= 20 log|G(iw) | 1)
Thus, the gain is represented by,

k1k2k3

TR 1

g=20/og

Figure 6 shows the Bode diagram for Diagram 1 calculated by equation (12),
with changing the %, value under the conditions of %,=0.704,%,=0.900, z;=
0.645. The broken line represents the frequency response of the cascade
system without the feedback loop. The curves in the frequency response
exhibited quite different patterns from those shown in Fig. 3. It is clear
from the figure that the curves can be arranged in the order of the % value
from top to bottom, and that the gain (g) reached at each constant level in
the region of low @ value.

It is well known that the curve in the frequency response of a linear sec-
ond order system has one peak as shown in Fig. 7. However, the position of
the peak does not shift with changing the value of k. In contrast to above,
in the nonlinear system, it was observed that the position of the peak moved
with change of the & value as shown in Fig. 3.

As mentioned above, in a linear feedback system, the angular velocity of
the sinusoidal input is held invariant through the reaction steps; the angular
velocity on the concentration of each intermediate or the product is the same
as that of the input. The real enzymatic feebdack system must be especially
nonlinear, because the simple additive mechanism can not be realized at the
summing point due to, in general, the difference of the input from the feed-
back input in their chemical species. As described already, it was observed
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Fig.6. The Bode diagram for Diagram 1. Equation (12) was computed
with changing the value of k,. Curve A, k=7.50; B, k,=6.33 ; C, £=5.00;
D, k=4.50;E, £=3.30; F, £=3.00; G, k,=0. 633. The broken line cor-
responds to £,=0 (no feedback loop).

gain (dB)

Fig. 1. The typical Bode diagram of a linear second order system. Equa-
tion, G(s) =w,/s?+2kw,s+w? was calculated. Curve A, k=0.05; B, k=0. 10 ;
C, £=0.20; D, £=0.50; E, £=1.0.

that the angular velocity on an intermediate or the product changed slightly
from that of the input, indicating clear similarity of a nonlinear enzymatic
system to a linear system. The gain-angular velocity relationship (plotted by
the Bode diagram) of an enzymatic system, however, showed a characteristic
profile originated from its distinct nonlinearity.

It has been reported that the oscillation on the concentration of some inter-
mediates in glycolysis pathway exhibited the proper frequency according to
the species of the source; for instance, the periods on NADH concentration in
glycolysis are about 37 sec for intact yeast cell and 4 min for heart muscle
extract (Higgins, 1967). Furthermore, it was observed that the frequency of
oscillation on the concentration of some intermediates in glycolysis changed
considerably from that of the oscillating input (Boiteux et al., 1975). Evident-
ly, a nonlinear enzymatic feedback system is thought to have a complex mo-
lecular mechanism by which the frequency of the input can be altered. Fur-
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thermore, it is very likely that the external perturbation with oscillating mode
may play a critical role for the alteration of frequency mode of enzymatic
system. At the present step, however, the molecular mechanism on frequency-
alteration has not been clarified. This problem should be elucidated in a
near future.
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