九州大学学術情報リポジトリ Kyushu University Institutional Repository

Linkage Studies in Rice (Oryza sativa L..): On Some Mutants Derived from Chronic Gamma Irradiation

Iwata, Nobuo Laboratory of Plant Breeding, Faculty of Agriculture, Kyushu University

Omura, Takeshi Laboratory of Plant Breeding, Faculty of Agriculture, Kyushu University

https://doi.org/10.5109/23492

出版情報:九州大学大学院農学研究院紀要. 21 (2/3), pp.117-127, 1977-03. Kyushu University

バージョン: 権利関係:

Linkage Studies in Rice (Oryza sativa L.)

On Some Mutants Derived from Chronic Gamma Irradiation

Nobuo Iwata and Takeshi Omura

Laboratory of Plant Breeding, Faculty of Agriculture, Kyushu University 46-01, Fukuoka 812

(Received December 6, 1976)

Thirteen of the mutant genes induced by gamma irradiation and two of the spontaneous mutant genes of rice were newly described and determined their linkage groups as follows:

Group I; spotted leaf 4 (spl_4) . Group II; narrow leaf 1 (nal_1) , yellowish leaf margin (ylm) and round kernels 1 (rk_1) . Group I or III; semi-rolled leaf 2 (rl_2) . Group IV; spotted leaf 5 (spl_5) . Group VI; neck leaf 2 (nl_2) . Group VIII; zebra leaf 2 (z_2) and tillering dwarf $(d_n$, spontaneous). Group X; dwarf $(d_{\kappa-1})$, brittle culm 3 (bc_n) and gold hull 3 (gh_3) . Group XI; fine culm and tillering (fc), spotted leaf 3 (spl_3) and virescent 1 (vi, spontaneous).

INTRODUCTION

Recently, linkage studies in rice plants have satisfactorily progressed by the use of reciprocal translocations and trisomics (Iwata and Omura, 1971a, b, 1975, 1976; Kinoshita *et al.*, 1975; Sato *et al.*, 1972). However, the number of mutants capable to use for the studies was too limited to complete the more detailed linkage map.

Then, the use of induced mutants for the linkage analysis was planned, and thousands of mutants suitable for the studies have been induced or supplied. Several years ago, more than one handred of the mutant stocks of Norin 8 were supplied by Dr. S. Tanaka of Institute of Radiation Breeding, National Institute of Agricultural Sciences, Ohmiya, Ibaraki, Japan. Using these stocks, linkage analysis has continued, and as the results, some of linkage relations with marker genes were found.

MATERIALS AND METHODS

The mutants used were induced in the gamma-field of Institute of Radiation Breeding, National Institute of Agricultural Sciences. General conditions of irradiation for inducing the mutants are described by Tanaka (1967). Stock number and their main characteristics are listed in Table 1.

The mutant stocks were crossed with linkage testers having marker genes shown in Table 2 and the linkage relation was tested in F_2 . When the linkage was detected, the recombination value was estimated from the segregations in F_2 and in some cases in F_3 progenies by the method of maximum likelihood.

Table 1.	The stoo	k number of mu	tant lines at Kyushu	University ar	nd their original
number a	at Ohmiya	, and their main	characteristics.		

Stock number at Kyushu	Original number at Ohmiya (1966)	Main characteristics
M 11 M 36 M 41 M 45 M 50 M 56 M 87 M 88 M 92 M 92 M 93 M 100 M 114	265 46 187 239 304 512 781 785 820 846 886 971	brittle culm zebra leaf spotted leaf neck leaf rolled leaf fine culm, tillering spotted leaf yellowish leaf margin, round kernel dwarf gold hull narrow leaf spotted leaf

Table 2. List of marker genes used and their linkage groups.

Linkage group	Gene symbol	Character	Reference
I	<i>dp</i> ₁ c	depressed palea 1 chromogen for anthocyanin	Nagamatsu and Omura (1962) Nagao and Takahashi (1963)
II	lg	liguleless	Nagao and Takahashi (1963)
III	A	anthocyanin activator	Nagao and Takahashi (1963)
IV	d ₆ g Rc	lop-leaved type dwarf long empty glumes brown pericarp	Nagao and Takahashi (1963) Nagao and Takahashi (1963) Nagao and Takahashi (1963)
VI	d_1	Daikoku type dwarf	Nagao and Takahashi (1963)
VIII	sp z	short panicle zebra leaf	Iwata and Omura (1971a) Iwata and Omura (1975)
X	$\begin{array}{c} bl_1 \\ d_{_W} \\ gh_2 \end{array}$	physiological disease showing dark brown discoloration of leaves Waisei-shirasasa type dwarf gold hull 2	Nagao and Takahashi (1963) Iwata and Omura (1971b) Iwata and Omura (1971b)
XI	ch dl	chlorina drooping leaf	Iwata and Omura (1971b) Iwata and Omura (1971b)

RESULTS AND DISCUSSION

 F_1 plants of all cross combinations between mutant stocks and linkage testers had normal phenotype. The F_2 segregation modes of all mutant characters tested, except for those of M 88 described later, fitted well the expected ratio of $3\colon 1$ as shown in Table 3. The linkage relations between the mutant characters and the marker genes are as follows.

Linkage group I

 $\,$ M 114: It is characterized by a kind of physiological disease showing relatively large brown spots in leaves. A gene of the character is designated as

Mutant		Observed number		χ² for
lines	Dominant	Recessive	Total	3:1
M 11 M 36 M 41 M 45 M 50 M 56 M 87 M 92	887 1,310 2,489 2,183 1,488 2,564 1,118	270 413 812 734 448 804 341	1,157 1,723 3,301 2,917 1,936 3,368 1,459	1.708 0.975 0.284 0.041 3.570 2.287 2.062
M 92 M 93 M 100 M 114 HO 568" US 2 ²⁾	3,293 657 1,861 772 1,679 954	1,051 214 572 259 523 308	4,344 871 2,433 1,031 2,202 1,262	1.504 0.086 2.881 0.008 1.832 0.238

Table 3. F_2 segregation mode in crosses between mutant stocks and normal forms, indicating that each of the mutant characters is governed by single recessive gene.

 spl_4 , because two genes for spotted leaves generated spontaneously, spl_1 and spl_2 , have already been designated by the authors (Iwata and Omura, 1975; Omura and Iwata, unpublished) and another gene for spotted leaves, spl_3 , will be described later on.

A very close linkage was found between spl_4 and dp, from the fact that none of the double recessive plant was observed in F_2 in the cross of repulsion phase as shown in Table 4. The weighted mean of recombination value of 1.4 % was calculated from the segregations of F_3 lines from F_2 plants showing such phenotypes as $spl_4 + dp_1$ and $spl_4 dp_1^+$.

	Items			Segregati	ion mod	Recombination value (%)	χ ²¹⁾		
F,	Phas	e No. c	of ++	$+ dp_1$	<i>spl</i> ₄ +	$spl_4 dp_1$	Total		
Гэ	Rep.	4	205 (214.5)	102 (107.3)	122 (107.3)	(0)	429	÷ 0	2.664
F ₃ :	F ₃ from F ₂ plants		spl ₄ seg.		spl_4 non-seg.		Total		
	$(spl_4^+$	dp_1)		1	59		60	0.8 ± 0.8	
F ₃ :	from F ₂	plants	dp_1	seg.	d p ₁ n	on-seg.	Total		
_	$(spl_4 dp_1^+)$ 5		5		71	76	3.4 ± 1.5		
Wei	ighted m	ean						1.4 ± 0.7	

Table 4. Segregations of spl_4 and dp_1 in F_2 and F_4 .

Takahashi et al. (1967) reported that a loose linkage relation with the recombination value of about 32 % was detected between one of physiological

¹⁾ A spontaneous dwarf mutant originated from "Bunketsu-to."

²⁾ A spontaneous virescent mutant introduced from Dr. Jodon.

¹⁾ In Tables 4-17, degree of freedom for χ^2 was 3.

disease character, bl_3 , and waxy, wx, belonging to the linkage group I. As wx links closely with dp_1 with the intensity of 5.5 % (Nagamatsu and Omura, 1962), it is thought that spl_4 is not the same as bl_3 .

Linkage group II

M 100: It is a semi-dwarf with narrow and dark green leaves. The gene for this type is temporarily designated as nal_1 . A linkage relation between nal_1 and lg was observed and the recombination value was estimated at 9.5 % in weighted mean from the F_2 and F_3 data (Table 5).

	Items				Segregat	Recombination value (%)	χ^2		
Б	Phase	No. cross	of	++	+ lg	$nal_1 + nal_1 lg$	Total		
F ₂ -	Rep.	11	1 (1	, 229 , 220. 6	632 (604.2)	568 (4.1) (604.2)	2,433	8. 2 ±2. 0	3.508
F ₃ fi	F ₃ from F ₂ plants		nal_1 seg.			nal ₁ non-seg.	Total		
	(nal_1^+)	lg)	•	35		174	209	9.1 ± 1.5	
F ₃ fi	rom F ₂ p			lg	seg.	lg non-seg.	Total		
	$(nal_1 \hat{l}$	g+)	•		41	168	209	10.9 \pm 1.7	
Wei	ighted n	nean						9.5±1.0	

Table 5. Segregations of nal_1 and lg in F_2 and F_3 .

On the other hand, two types of the dwarf with narrow leaf linking with lg have been described previously. Yen **et al.** (1968) have found that **nal** and lg linked each other with the recombination value of 19.1%. Hsieh and Yen (1966) have also found that the d_{42} linked with lg and the recombination value was estimated at 10 %. However, the relations among nal_1 , **nal** and d_{42} remain uncertain.

M 88: It is characterized by a yellowish leaf margin manifesting at the heading stage and round kernels.

These characteristics behaved separately as two of single recessive characters in F_2 as shown in Table 6. So, gene symbols are given as \emph{ylm} for yel-

Cono noin	Phase	No. of		Segrega	Recombination	χ²			
Gene pair	rnase	cross	AB	Ab	aВ	ab	Total	value (%)	χ-
ylm-lg	Rep.	3	196 (197.0)	98 (9 7. 0)	97 (97. 0	1 (1. 0)	392	10.0±5.0	0.015
rk_1 - lg	Rep.	3	197 (208.1)	85 64. 9)	96 785 0	14 17	392	35.1 ± 4.4	2.086
ylm-rk ₁	coup.	3	230 (237.9)	(56. 1)		(41.9)	392	34.7t3.1	2.076

Table 6. F₂ segregation of M 88 (rk., ylm) and lg.

lowish leaf margin and \mathbf{rk} , for round kernels. Both \mathbf{ylm} and \mathbf{rk} , linked with lg. The recombination values of \mathbf{ylm} - \mathbf{lg} , \mathbf{rk}_1 - \mathbf{lg} and \mathbf{ylm} - \mathbf{rk} , amounted to 10.0 %, 35.1 % and 34.7 %, respectively, suggesting that the order of the genes in the linkage group II would be \mathbf{lg} - \mathbf{ylm} - \mathbf{rk} .

The authors reported previously that a round kernel character of "Henpei-to," which was designated as **rk**, had been recognized to belong to the linkage group II by trisomic method (Iwata and Omura, 1975). However, the identification of **rk** and **rk**, has not yet been made.

Linkage group I or III

M 50: It has semi-rolled leaf, and rl_2 is used as a gene symbol of the character.

The joint segregation of semi-rolled leaf and colored apiculus was examined in the F_2 of cross between M 50 and a linkage tester having colored apiculus. The apiculus colors by the coexistence of two genes, C and **A**, belonging to the linkage groups I and III, respectively. In the F_2 given in Table 7, colored and non-colored apiculi segregated in a ratio of 9:7. The linkage between apiculus coloration and semi-rolled leaf was observed with the recombination value of 19.5 %, though which of C or **A** links with rl_2 was not proved.

Segregation mode1) No. of Recombination non-colored ap. Phase colored ap. χ^2 cross value (%) Total + rl_2 rl_2 104 coup. 198 64 387 19.5 \pm 3.3 (25.5) (98.0) (71.3) (192.2)2.084

Table 7. F_2 segregation of rl_2 and apiculus color.

Nagao **et al.** (1964) described that a sort of \mathbf{rl} gene linked with \mathbf{A} with intensity of 41% and belonged consequently to the linkage group III. Against this result, the authors found by trisomic method that this \mathbf{rl} does not belong to the linkage group III but belong to another linkage group consisting of nal_2, d_B and spl_1 (Iwata and Omura, 1975). Therefore, it is clear that \mathbf{rl} differs from \mathbf{rl} ,.

Linkage group IV

M 87: It is also characterized by a kind of physiological leaf spots. This mutant shows relatively small reddish brown spots scattering extensively in leaves in comparison with M 114 (spl_4). A gene for this leaf spots is designated as spl_5 .

The linkage relations were found in F_2 of crosses between the **spl**, and such three genes as d_6 , \mathbf{g} and \mathbf{Rc} . From the F_2 data shown in Table 8, the recombination values of spl_5-d_6 , spl_5-g and spl_5-Rc were estimated at 19.8%, 20.1% and 13.5%, respectively. The arrangement of d_6-g-Rc on the group have previously been confirmed from numerous F_2 data (Iwata and Omura, 1971b; Nagao and Takahashi, 1963). Thus, the sequence of the four genes at the map of linkage group IV may be $d_6-g-spl_5-Rc$.

^{1) (9:7) (3: 1)}

Gene pair	Phase	No. of	S	egregati	on mode	Recombination			
Gene pan	riiase	cross	AB	Ab	aB	ab	Total	value (%) ^{X²}
spl_5-d_6	Rep.	1	100 (100.9	52) 54.7. (44 6) 447.6	2	198	19.8 <u>+</u> 6.8	0.692
spl_5 -g	Rep.	1	101 (101.0)	(47. 17. 5)	(47.	(2,0)	198	20.1 ± 6.8	0.684
spl ₅ -Rc	coup.	1	135 (136.1)	(12.4)		(37.1)	198	13.5 <u>+</u> 2.6	3.298

Table 8. Linkage relation between spl₅ and genes belonging to the linkage group IV.

Linkage group VI

M 45: It is characterized by a imperfect degeneration of a bract arising at the panicle base. However, its bract is not so large as that of neck leaf mutant governed by nl gene, of which bract is large enough to cover the panicles, but much the same as that of the heterozygous plants for nl. F_1 plants from the cross between M 45 and normal testers were completely normal. Then, a gene symbol for the character of M 45 is designated as nl_2 , and thus nl should be altered hereafter as nl_1 .

As shown in Table 9, the nl_2 showed a linkage relation with d_1 and its recombination value came to 20.9 %.

Dhara	Phase cross		Seg	regation n	Recombination	2/2		
Phase	cross	++	$+d_1$	$nl_2 +$	$nl_2 d_1$	Total	value (%)	χ^2
Rep.	2	194 (192.1)	(89. 9)	103 (89.9)	(4.	376	20.9 <u>+</u> 4.9	4.000

Table 9. $\mathbf{F_2}$ segregation of nl_2 and d_1 .

Linkage group VIII

M 36: It is a kind of chlorophyll mutants having zebra leaves, of which color is yellowish pale green. It appears more clearly in the stage from seedling to tillering. It has fine culm and inferior growth. A gene for the character is designated as z_2 , because the F_1 hybrids between M 36 and another zebra leaf, z_1 , manifest normal phenotype. Now, the z_2 is altered as z_3 .

A striking linkage relationship was observed in F_2 populations of a cross between M 36 and a tillering type dwarf, which originated from "Bunketsu-to" and was governed by a single recessive gene, d_t (see Table 3). A linkage intensity was given as 5.9 % from a segregation mode of z_2 in the F_3 lines from F_2 plants having the phenotype of $z_2^+ d_t$, though double recessive plants were not observed in the F_2 segregants (Table 10).

On the other hand, a linkage relation with recombination value of about 35 % was observed between d_t and sp (Table 11). Therefore, it is concluded that the z_2 belongs to the linkage group VIII. Then the linkage intensities of z_2 -sp were estimated from F_2 , F_3 and their weighted mean at 41.5 %, 23.6 % and 35.7 %, respectively, showing indistinct linkage relation between them (Table 12).

	Items	Segr	egation mode	Recombination value (%)	χ^2	
ъ	Phase No. of cross	++ +	$d_t z_2 + z_2 d_t$	Total		
$\mathbf{F_2}$	Rep. 2	205 (201.5) (97 101 0 100.8) (100.8) (0)	403	÷ 0	0.201
F_3	from F2 plants	z_2 seg.	z ₂ non-seg.	Total		
	$(z_2^+d_t)$	9	72	81	5.9±2.0	

Table 10. Segregations of z_2 and d_t in F_2 and F_3 .

Table 11. F_2 segregation of d_t and sp.

Phase	No. of		Segr	egation mo	Recombination	*·2		
Filase	cross	++	+ <i>sp</i>	$d_t +$	d_t sp	Total	value (%)	χ^2
Rep.	2	199 (196.9)	79 (81. 4)	82 (81. 4)	11 (11. 4)	371	35.0±4.5	0.112

Table 12. Segregations of z_2 and sp in F_2 and F_3 .

	Items			Segrega	ation mod	e		Recombination value (%)	χ^2
	Phase	No. of cross	++	+ <i>sp</i>	z ₂ +	$z_2 sp$	Total		
F ₂	Rep.	4	427 (414.9)	161 (158.1)	146 (158.1)	- 30 (32. 9)	764	41.5±3.0	1.588
F ₃ 1	from F ₂	plants	Z ₂ se ş	Ţ.	z ₂ non-se	g.	Total		
	$(z_2^+ s_I^+)$	p)	29		47		76	23.6 ± 4.3	
Wei	ghted n	nean						35.7 ± 2.4	

The linkage relation between z_2 and z_1 was obscure.

Linkage group X

M 92: It is a dwarf form characterized by a extremely shortened top internode, and consequently the panicle emergence is more or less imperfect. The shape and length of panicle is rather normal.

A gene for this character is designated as $d_{\kappa-1}$. As shown in Table 13, the linkage relationship with recombination value of 13.8 % was observed in the F_2 segregation of cross between $d_{\kappa-1}$ and bl_1 . However, significant linkages were not observed between $d_{\kappa-1}$ and two genes, d_{κ} and gh_{κ} .

M 11: It is featured with rather short height, imperfect emergence of panicles and especially its brittle or soft culm. The brittleness of culm and panicle axis of the mutant is, however, not so distinct as that of bc_1 and bc_2 genes described by Takahashi et **al.** (1967). Then, a gene for this character is

Table 13.	Linkage	relations betw	een some	genes	newly	described	and	marker
genes belo	nging to	the linkage gr	oup X.					

Cama main	Dhasa	No. of		Segrega	Recombination					
Gene pair Phase		cross	AB	Ab	aB	ab	Total	value	(%) X²	
d_{K-1} - bl_1	Rep.	2	326 (297.8)	128 (144.7)	134 (144.7)	(2. 51 ⁸⁾	590	13.8±4.0	5.618	
d_{K-1} - d_W	Rep.	4	397 (398.1)	128 (123.2)	119 (123.2)	(50. ₅₄ 6)	695	54.0 ± 2.7	0.336	
d_{K-1} - gh_2	Rep.	4	499 (490.8)	151 (160 2)	164	(56. 8)	868	51.2 ± 2.5	0.894	
d_{K-1} - bc_3	Rep.	2	213 (198.5)	(99.3)	(99. 3)	0 (0)	397	≑ 0	2.844	
gh_3 – bl_1	Rep.	1	92 (92. 5)	45 (43. 3)	42 (43.3)	2 (2. 0)	181	20.9±7.1	0.108	

designated as bc,.

In a total of 397 F_2 segregants from the cross between bc_3 and $d_{\kappa-1}$, none of the double recessive plant was observed as shown in Table 13, suggesting a close linkage relation between them.

M 93: It has golden yellow colored hulls and internodes at maturity, and it is alike to the phenotypes of gh_1 belonging to the linkage group VI and gh_2 . A gene symbol of the character is designated as gh_1 .

The linkage relation was observed between gh_3 and bl_1 with a intensity of 20.9 % (Table 13), while it did not between gh, and bl_1 (Iwata and Omura, 1971b)

Therefore, it was proved that three genes, d_{K-1} , bc_3 and gh_3 , belong together to the linkage group X, though the sequence of these genes and others at the group is so far not established.

Linkage group XI

M 56: As it is characterized by many tillers with fine culm and normal

Table 14. Segregations of fc and ch in F_2 and F_3 .

Items		Segregat	Recombination χ^2 value (%)				
E	Phase	No. of cross	+ $+$ $+$ ch	fc + fc ch	Total		
F ₂	Rep.	Rep.	4	400 160 159 (11. 728 (375.2) (170.8) (170.8) 2)	728	24.8±3.4	3.570
F ₃ f	F ₃ from F ₂ plants (fc ⁺ ch)		$\mathbf{F_2}$ plants fc seg.		Total		
			36	47	83	2 7. 7 ± 4. 4	
F ₃ f	F ₃ from F ₂ plants		ch seg.	ch non-seg.	Total		
$(fc \ ch^{+})$		37	47	84	28.2 ± 4.5		
Weighted mean					26.5±2.3		

height, a gene for the character is designated as fc.

As shown in Table 14, the linkage relation was observed between fc and ch, and the recombination value was estimated from F_2 and F_3 . Namely, the value of 24.8 %, 27.7 % and 28.2 % were calculated from F_2 and F_3 from F_2 plants showing such phenotypes as $\mathit{fc}^+\mathit{ch}$ and $\mathit{fc}\,\mathit{ch}^+$ respectively, and thus weighted mean of 26.5 % was obtained.

On the other hand, a linkage relation was also found between fc and a virescent seedling mutant which had been introduced from Dr. N. E. Jodon. Although this virescent mutant is governed by a single recessive gene, v_1 , its linkage group had been unknown. The linkage intensities between fc and v_1 were, as shown in Table 15, calculated from F_2, F_3 and their weighted mean at 15.9 %, 19.5 % and 17.8 %, respectively. This fact shows that v_1 also belongs to the linkage group XI.

Items		Segregat	Recombination χ^2 value (%)				
ъ	Phase	No. of cross	++ + \nu_1	$fc + fc v_1$	Total		
F ₂ -	Rep.	4	340 140 (315.4) (151.8)	140 3 (151.8) (3.9)	623	15.9 <u>+</u> 3.9	3.961
F_3 from F_2 plants $(fc \ v_1^+)$		plants	v_1 seg.	v ₁ non-seg.	Total		
		29	60	89	19.5 \pm 3.6		
Weighted mean					17.8±2.6		

Table 15. Segregations of fc and v_1 in F_2 and F_3 .

M 41: It is also characterized as well as M 114 (spl_4) and M 87 (spl_5) by a kind of physiological leaf spots, and named as spl_3 . Although it is slightly different from spl_5 , distributing smaller reddish brown spots over the whole surface of leaves, it is difficult to distinguish them. Also, it differs distinctly from spl_1 and spl_2 .

The linkage relationship was observed between spl_3 and dl. The recombi-

	Items			Segregation mode					Recombination χ² value (%)		
12	Phase	No. of cross	++	+ dl	$spl_3 +$	$spl_3 dl$	Total				
$\mathbf{F_2}$	Rep.	6	680 (658.3)	301 (309.2)	297 (309.2)	12 (13. 3)	1,290	20.3±2.7	1.541		
F ₃ fi	F_3 from F_2 plants $(spl_3 \ dl^+)$		dl seg.		dl non-seg.		Total				
			35		52		87	25.2 ± 4.1			
Weig	Weighted mean							21.7 ± 2.2			

Table 16. Segregations of spl_3 and al in F_2 and F_3 .

nation values of spl_3 -dl were estimated at 20.3 % from F_2 , 25.2 % from F_3 , and thus their weighted mean of 21.7 % (Table 16).

In order to know the sequence of four genes, fc, spl_3 , dl and ch, in the linkage group XI, the linkage intensities among each genes were calculated from F_2 data. As shown in Table 17, the linkage intensities of fc-dl, spl_3 -fc and spl_3 -ch were 44.3%, 43.4% and 47.4%, respectively. In addition, a non-linkage relationship was known already between dl and ch (Iwata and Omura, 1971a). Consequently, the sequence of genes at the linkage group is probably dl- spl_3 -fc-ch or spl_3 -dl-fc-ch.

			_	_					
Gene pai	r Dhasa	No. of		Segre	Recombination				
Gene pai	i riiase	cross	AB	Ab	aВ	ab Total		value (%) ^{x²}
fc-dl	Rep.	5	514 (494.7)	174 (181 1) 76	174 (181 1)	- 39 (44. 20 ²⁾	901	44.3±2.7	1.921
spl ₃ -fc	Rep.	2	210 (215.6)	(7 9. 9) 95	(7 9. 9)	(18. 6) 27	394	43. 4± 4. 0	1.262
spl ₃ -ch	Rep.	2	289 (283.6)	(98.9)	(98.9)	(28.6)	510	47.4±3.4	0.346

Table 17. Another linkage relation of genes belonging to the linkage group XI.

ACKNOWLEDGEMENT

The authors are grateful to Dr. S. Tanaka for his kind supply of the mutant stocks.

REFERENCES

Hsieh, S. C. and S. T. Yen 1966 Linkage relations of an induced dwarfness gene, d_{42} (Genic analysis in rice, VII). Bot. Bull. Academia Sinica, 7: 81-87

Iwata, N. and T. Omura 1971a Linkage analysis by reciprocal translocation method in rice plants (*Oryza saliva* L.) I. Linkage groups corresponding to the chromosome 1, 2, 3 and 4. *Jap. J. Breed.*, 21: 19-28 (in Japanese with English summary)

Iwata, N. and T. Omura 1971b Linkage analysis by reciprocal translocation method in rice plants (*Oryra saliva* L.) II. Linkage groups corresponding to the chromosome 5, 6, 8, 9, 10 and 11. *Sci. Bull. Fac. Agr., Kyushu Univ., 25: 137-153* (in Japanese with English summary)

Iwata, N. and T. Omura 1975 Studies on the trisomics in rice plants (*Oryra sativa* L.) III. Relation between trisomics and genetic linkage groups. *Jap. J. Breed.*, 25: 363-368

Iwata, N. and T. Omura 1976 Studies on the trisomics in rice plants (*Oryza sativa* L.) IV. On the possibility of association of three linkage groups with one chromosome. *Jap. J. Genet.*, 51: 135-137

Kinoshita, *T.*, M. Takahashi and S. Sato 1975 Linkage analysis by reciprocal translocation method, with special references to the first linkage group. (Genetical studies on rice plant, LXIV). *Mem. Fac. Agr.*, *Hokkaido Univ.*, *9: 259-263* (in Japanese with English summary)

Nagamatsu, T. and T. Omura 1962 Linkage study of the genes belonging to the first chromosome in rice. *Jap. J. Breed.*, 12: 231-236

Nagao, S. and M. Takahashi 1963 Trial construction of twelve linkage groups in Japanese

- rice. (Genetical studies on rice plant, XXVII). *J. Fac. Agr., Hokkaido Univ., 53: 72-130*Nagao, S., M. Takahashi and K. Morimura 1964 Genetical studies on rice plant, XXVIII.
 Causal genes and their linkage relationships of some morphological characters, introduced from foreign rice varieties. *Mem. Fac. Agr., Hokkaido Univ., 5: 89-96* (in Japanese with English summary)
- Sato, S., T. Kinoshita and M. Takahashi 1972 Linkage analysis of rice plant, by the use of Nishimura's reciprocal-translocation lines. (Genetical studies on rice plant, LIV). *Mem. Fac. Agr., Hokkaido Univ., 8*: 367-376 (in Japanese with English summary)
- Takahashi, M., T. Kinoshita and K. Takeda 1967 Character expressions and causal genes of some mutants in rice plant. (Genetical studies on rice plant, XXXIII). J. Fac. Agr., Hokkaido Univ., 55: 496-512
- Tanaka, S. 1967 Studies on mutations induced by ionizing radiation in rice. Acta Radio-botanika et Genetica (Bull. Inst. Radiation Breeding, Japan), (1): 65-102 (in Japanese with English summary)
- Yen, S. T., M. H. Li and S. C. Hsieh 1968 Linkage relations of another induced dwarfness gene d₃₁. (Genic analysis in rice, IX). **Bot. Bull. Academia Sinica, 9:** 69-74