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A B S T R A C T

Aims: Diabetes induces various skin troubles including foot ulcer. This type of skin ulcer is

refractory but the pathogenesis is not so certain. Recent study show that glucagon-like

peptide-1 (GLP-1) analogues reduce foot complications with diabetes (Pérez et al., 2015),

however, the role of GLP-1/GLP-1R axis is not fully understood, and clear evidence of

GLP-1 to facilitate wound closure is still lacking. In this study, we investigated whether a

potent GLP-1R agonist liraglutide affects wound healing process.

Methods: The expression of GLP-1R in HaCaT cells were indentified by quantitative reverse-

transcription polymerase chain reaction (qRT-PCR) and immunoblotting analysis. To assess

the effect on wound closure in keratinocytes, we performed in vitro scratch assay using the

IncuCyte system (Essen BioSciences, Ann Arborm MI). We applied ointment containing

liraglutide on full-thickness wounds in the dorsum of female balb/c mice (n = 6) until heal-

ing. To investigate the effect on PI3K/Akt pathway, we used IncuCyte system in HaCaT trea-

ted with PI3K inhibitor and Akt inhibitor.

Results: Keratinocytes expressed GLP-1R and liraglutide induced their migration. Liraglu-

tide facilitated the wound healing in mice. Liraglutide upregulated keratinocyte migration

via PI3K/Akt activation.

Conclusions: Our study suggests that liraglutide may be a potential target drug to improve

skin ulcer with diabetes through its specific receptor GLP-1.
� 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Skin is one of the important target organs affected by diabetes

mellitus, therefore, diabetes induces multifactorial complica-

tions in skin including intractable foot ulcer [2,3]. Although
both micro- and macroangiopathy are believed to contribute

to the development and delayed healing of diabetic wounds,

the pathogenesis of diabetic skin ulcer is complex and still

incompletely understood [4,5].
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Recently, glucagon-like peptide-1 (GLP-1) analogues and

inhibitors of dipeptidyl peptidase-4 (DPP4) receive much

attention in diabetic treatment because these drugs signifi-

cantly reduce glycemic condition as well as cardiovascular

and metabolic comorbidities [6,7]. Given that DPP4 is a potent

degrading enzyme for GLP-1, the DPP4 inhibitors augment the

GLP-1 levels [8]. Of note, DPP4 inhibitors promote wound heal-

ing in diabetic mouse [9]. A GLP-1 analogue liraglutide is also

estimated to reduce foot complications with diabetes [1],

however, clear evidence of GLP-1 to facilitate wound closure

is still lacking.

GLP-1exerts its biological effects throughbinding to specific

GLP-1 receptor (GLP-1R) of the G-protein coupled receptor fam-

ily [8,10]. Upon binding to GLP-1R, GLP-1 increases the intracel-

lular levels of cyclic adenosinemonophosphate in pancreatic b

cells and thereby stimulates insulin secretion in a glucose-

dependent manner [8,10]. Moreover, GLP-1R is expressed in

various extrapancreatic tissues including intestine, lung and

innate immune system [8,11–13] and the GLP-1/GLP-1R signal-

ing plays a distinct biological role in each tissue [8,11–13].

The GLP-1R is also expressed in skin [14–16], however, the

role of GLP-1/GLP-1R axis is not fully understood in the skin.

In this study, we investigatedwhether a potent GLP-1R agonist

liraglutide upregulates migration and/or proliferation of ker-

atinocytes and affects wound healing process. We found that

liraglutide did upregulate the keratinocyte migration via PI3K

signal activation and promoted the wound healing in mice.
2. Material and methods

2.1. Reagents and antibodies

Liraglutide was provided from NOVO (Nordisk Co., Denmark),

dissolved in DMSO (Sigma-Aldrich, St. Louis, MO) at a concen-

tration of 100 mM, and further diluted in medium. mitomycin

C was obtained from Sigma-Aldrich; Akt inhibitor(ab142088)

and LY 294002(ab120243) were purchased from abcam (Cam-

bridge, UK). The antibodies used in this study were rabbit

anti-b-actin, rabbit anti-GLP-1R, rabbit anti-Akt, rabbit anti-

phosphorylated Akt and horseradish peroxidase-conjugated

secondary antibody from Cell Signaling Technology (Danvers,

MA).

2.2. Cell culture

The human immortalized keratinocyte cell line, HaCaT, were

cultured in Dulbecco’s modified Eagle’s medium (DMEM) with

10% fetal bovine serum and 1% antibiotics (10,000 mg/ml strep-

tomycin and 10,000 units/ml penicillin) at 37 �C with 5% CO2

incubator.

2.3. In vitro scratch assay

HaCaT cells (3 � 104 cells/well) were seeded onto a collagen-

1-coated 96-well ImageLock tissue culture plate (Essen

BioScience) and incubated at 37 �C with 5% CO2 incubator

for 24 h. Wounds were made by the 96-well WoundMaker

(Essen BioScience). The wounded cells were washed twice

with culture medium to remove the detached cells and then
treated with 100 ml of medium containing several concentra-

tions of test materials (Fig. 1. liraglutide 1 nM, 10 nM,

100 nM and Fif 2. liraglutide 100 nM and Fig. 4. Liraglutide

100 nM, LY 294002 0.5 mM). Image of the wounds were

automatically acquired within the CO2 incubator by IncuCyte

zoom software (Essen BioScience). The wound image updates

were taken at 2 h intervals for the duration of the experiment.

The data were analyzed with respect to wound confluence

and calculated by using the IncuCyte software package (Essen

BioScience). And to inhibit cell proliferation HaCaT cells were

pretreated with 5 mg/ml mitomycin C for 2 h.

2.4. CCK-8 assay

HaCaT cells were incubated in 96-well plates at 37 �C with 5%

CO2. When the cell confluence reached 60% after cell inocula-

tion, cell culture medium of each wells were changed to sev-

eral concentration Liraglutide (1 nM, 10 nM and 100 nM), and

incubated further 24 h. CCK-8 solution was added and the

optical density values were detected at 450 nm using a quan-

titative automatic microplate reader (BIORAD).

2.5. Real-time quantitative reverse transcriptase-PCR

Total RNA was isolated from HaCaT cells using the RNeasy

Mini kit

(Qiagen). Quantitative real-time reverse transcriptase-PCR

was preformed with PrimeScript RT reagent and SYBR Premic

Ex Taq Ⅱ (Takara Bio, Ohtsu, Japan) in accordance with the

manufacturer’s instructions. PCR amplifications were per-

formed with the following cycling conditions: 95 �C for 30 s

initially, followed by 40 cycles of 95 �C for 5 s (denaturation

step) and 60 �C for 20 s (annealing/extension steps). The cycle

threshold for each amplification was normalized using b-

actin (internal control). Normalized gene expression is shown

as the quantity of gene-specific mRNA relative to that of con-

trol mRNA (fold induction). Oligonucleotide primers used in

this study are listed below.

Sequences of nucleotides used as primer for PCR

amplification:

human GLP-1R: sense, 50-CAGCGCTCCCTGACTGAG-30

antisense, 50-CAGGCGTATTCATCGAAGGT-30

human b-actin: sense, 50-CTACAGGTTCAGATGATGTC-30

antisense, 50-CAGCTTCTCCTTCTCCATTG-30

2.6. Animals

Female Balb/c normal mice (from Charles River Laboratories,

Kanagawa, Japan) housed in vivarium in accordance with

the guidelines of the animal facility center of Kyushu Univer-

sity. The mice were caged individually and maintained on

food and water ad libitum.

2.7. Wound healing in vivo

Their skins were prepped for surgery by shaving the fur with

electric clipper followed by a depilatory agent. The mice were

anesthetized with sevoflurane, after which full-thickness

wounds were made in the dorsal skin using a biopsy

punch with a diameter of 6 mm (Kai Industries, Gifu, Japan).
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Fig. 1 – A: HaCaT cells were cultured in DMEM for 2 days (50% confluent), and 6 days (100% confluent) (n = 6). B: HaCaT cells

were cultured in DMEM for 5 days (90% confluent) (n = 3). C, D: HaCaT cells were scratched and incubated with liraglutide

1 nM, 10 nM, 100 nM or DMSO (n = 6).
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To inhibit the contraction of wound, toric silicon rubber

(diameter of the inner circle was 8 mm) was affixed with 8

interrupted sutures on each wound. On the day of wound cre-

ation and every 2 days thereafter, ointment (vaseline contain-

ing liraglutide [liraglutide: 10 pm/g vaseline, DMSO: 100 ll/g

vaseline] or vehicle [DMSO: 100 ll/g vaseline]) was occlusively

applied to each wound. Wound was dressed with aluminum

plate (Finn Chambers, smart practice Japan) and taped after

applied each agents. Digital photographs were taken under

sevoflurane anesthesia until healing. The wound area was

calculated from the photographs using the ImageJ software

(NIH, Bethesda, MD).

2.8. Immunoblotting

HaCaT cells were seeded in six-well plated, and at full conflu-

ence, cell monolayers were scratched with a blue pipette tip.

Scratched cells were then treated with liraglutide (100 nM)

or DMSO supplemented in DMEM for 3 h and protein lysates

from cells were isolated with lysis buffer (25 mM HEPES,

10 mM Na4P2O7�10H2O, 100 mM NaF, 5 mM EDTA, 2 mM

Na3VO4, 1% TriTon X-100) and analyzed by SDS-PAGE on a
10% polyacrylamide gel. Proteins were transferred to

polyvinylidene difluoride membraned (Millipore, Bedford, MA)

and probed with specific antibodies. Immunological bands

were identified with a horseradish peroxidase-conjugated

secondary antibody followed by visualization with SuperSignal

west pico chemiluminescence substrate (Pierce, Rockford, IL).

2.9. Statistics

Data are presented as mean ± standard error. The significance

of differences between groups was assessed using Student’s

unpaired two-tailed t test (when two groups were analyzed)

or one-way analysis of variance (for three or more groups).

A P-value of <0.05 was considered statistically significant.

3. Result

3.1. Keratinocytes expressed GLP-1R and liraglutide
induced their migration

We first examined whether human keratinocytes express

GLP-1R. As shown in Fig. 1A, keratinocytes express GLP-1R



0
10
20
30
40
50
60
70
80

MMC(-) MMC(+)

R
el

at
iv

e 
w

ou
nd

 a
re

a 
(%

)

control

liraglutide
100 nM

**

0

0.5

1

1.5

2

2.5

ab
so

rb
an

ce
 a

t 4
50

nm

A

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

R
el

at
iv

e 
w

ou
nd

 a
re

a 
(%

)

Hours post-wounding

MMC(-)
control

liraglutide
100nM

B

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

R
el

at
iv

e 
w

ou
nd

 a
re

a 
(%

)

Hours post-wounding

MMC(+)
control

liraglutide
100nM

C

**
***

**
**

**

***
***

***
*

***
**

D

Fig. 2 – A: HaCaT cells were treatedwith liraglutide (1 nM, 10 nM, 100 nM) or DMSO for 24 h and the reaction products of CCK-8

assay were quantified (n = 6). B, C, D: HaCaT cells were treated (B) without or (C) with 5 lg/ml mitomycin C for 2 h. Cells were

scratched and incubated with 100 nM liraglutide or DMSO (n = 6). (D) The relative wound area at 8 h is shown.
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Fig. 3 – A, B: Representative photographs and the time courses of the relative wound area after wound creation in balb/c mice

are shown (n = 5).
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mRNA. The mRNA level of GLP-1R was low at the initiation of

culture, however, it was upregulated when keratinocyte cul-

ture became confluent. The protein expression of GLP-1R

was also confirmed by Western blot analysis (Fig. 1B).

We then examined whether liraglutide affects migratory

capacity of keratinocytes. Confluent keratinocyte cultures

were scratched byWoundMaker andwound closure was mea-

sured. In graded concentrations of liraglutide (1–100 nM),

10 nM and 100 nM of liraglutide significantly enhanced the

keratinocyte migration at each time points until 10 h

post-wounding (Fig. 1C). At 8 h post-wounding, significant

dose-dependency was evident between 10 nM and 100 nM

liraglutide (Fig. 1D)

The augmented wound closure was not due to the

enhanced proliferation of keratinocytes by liraglutide,

because liraglutide did not enhance the keratinocyte prolifer-

ation (Fig. 2A). Moreover, the liraglutide-induced upregulation
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of migration was demonstrated in keratinocytes treated with

or without mitomycin C (Fig. 2B, C and D). As mitomycin C

inhibited the proliferation of keratinocytes, these results sug-

gested that liraglutide-induced upregulation of migration was

independent of keratinocyte proliferation.

3.2. Liraglutide facilitated the wound healing in mice

As these in vitro studies suggested a migration-promoting

effects of liraglutide in keratinocytes, we applied liraglutide

to the experimental wounds made by 6-mm size punch exci-

sion in mice. Topical application of liraglutide (7.5 ng per 6-

mm wound) significantly accelerated the wound closure at

day 1 to day3 (Fig. 3A and B), indicating the promoting capac-

ity of liraglutide in wound healing in vivo. Topical administra-

tion of liraglutide did not affect blood glucose level in mice

(data not shown).
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3.3. Liraglutide upregulated keratinocyte migration via
PI3K/Akt activation

It has been reported that phosphorylation of Akt is essentially

involved in the keratinocyte migratory capacity [17,18]. As

liraglutide/GLP-1R signaling has been demonstrated to acti-

vate PI3K/Akt pathway [19,20], we then examined the effects

of PI3K inhibitor LY294002. In the presence of LY294002, the

migration-facilitating effect of liraglutide was canceled in

10 h incubation period (Fig. 4A). The inhibitory action of

LY294002 was evident even at 8 h incubation period (Fig. 4B).

We next examined the ratio of phosphorylated Akt (pAkt)

and total Akt. Scratch stimulation per se upregulated the

pAkt/Akt ratio in the confluent keratinocyte culture as has

been reported previously [18]. Consistent to this notion,

scratch injury enhanced phosphorylation of Akt, but liraglu-

tide further augmented the scratch-induced phosphorylation

of Akt (Fig. 4C and D).
4. Discussion

GLP-1 is a gut-derived incretinhormone that stimulates insulin

and suppresses glucagon secretion, inhibits gastric emptying,

and reduces appetite and food intake [21]. Systemic adminis-

tration of GLP-1 mimetics such as liraglutide is beneficial not

only in treating type II diabetes but also in reducing comorbid

cardiovascular diseases [22]. GLP-1 is metabolically unstable

and is rapidly degraded by DPP-4. Therefore, DPP-4 inhibitors

increase the GLP-1 levels and eventually improve diabetic con-

dition [8]. In addition, DPP-4 inhibitors are capable of accelerat-

ing wound healing in diabetic mouse model [9]. However, no

studies have challenged a question whether GLP-1 mimetic

liraglutide exhibits such a wound healing property.

In the present study, we first demonstrated (1) that ker-

atinocytes expressed functional GLP-1R at mRNA and protein

level, (2) that exogenous liraglutide promoted keratinocyte

migration in vitro and facilitated wound closure in mice,

and (3) that the upregulation of migratory capacity was medi-

ated, at least in part, via PI3K/Akt pathway. In addition, the

gene expression of GLP-1R was culture-time-, namely,

confluency-dependent manner. Faurschou et al. first reported

that mRNA expression of GLP-1R was detected in normal skin

as well as uninvolved and involved skin in psoriasis patients

[15]. However, they did not mention about cell types. We

showed that liraglutide did activate PI3K/Akt pathway via

functional GLP-1R.

The present results corroborated the previous findings that

DPP-4 inhibitor linagliptin strongly reduced DPP-4 activity,

stabilized active GLP-1 in chronic wounds, and improved

healing in ob/ob mice [9]. Increase of endogenous GLP-1 by

DPP-4 inhibitor linagliptin or administration of GLP-1 mimetic

liraglutide facilitate wound closure. Among various signaling

pathways, recent studies have stressed an importance of

PI3K/Akt pathway in keratinocyte migration and wound clo-

sure [23,24]. In parallel, our study revealed that the PI3K/Akt

pathway was involved in the liraglutide/GLP-1R-induced ker-

atinocyte migration.

Besides wound healing acceleration, liraglutide has been

expected to be beneficial in psoriasis frequently comorbid
with diabetes and cardiovascular diseases [16,25], a random-

ized placebo-controlled study failed to prove this expectation

[26]. Given that major pathogenetic pipeline in psoriasis is

TNF/IL-23/IL-17A axis, the activation of GLP-1R/PI3K/Akt

pathway is not influential. However, the cardinal signaling

for wound healing is mediated via PI3K/Akt pathway [24] so

that liraglutide may be a potential target drug to improve

diabetic ulcer through its specific receptor GLP-1R.
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