九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Note on a geometrical formula for the Hall conductivity in metals

Narikiyo，Osamu
九州大大学院理学研究院
https：／／hdl．handle．net／2324／2344834

出版情報：2019－10－07
バージョン：
権利関係：

Note on a geometrical formula for the Hall conductivity in metals

Osamu NARIKIYO *

(October 7, 2019)

Abstract

The Tsuji formula for the Hall conductivity in metals is discussed in Haldane's framework.

The Tsuji formula [1] is widely known as a geometrical formula for the Hall conductivity in metals under weak magnetic field. Since it was derived under the assumption of the cubic symmetry, Haldane [2] tried to eliminate the assumption. Here we discuss the Tsuji formula using Haldane's framework. However, our conclusion is different from Haldane's. The details ${ }^{1}$ are described in http://hdl.handle.net/2324/1957531.

In usual notation the weak-field DC Hall conductivity tensor $\sigma^{x y}$ per spin is given by $[1,2]$

$$
\sigma^{x y}=e^{3} B \int \frac{\mathrm{~d} S}{(2 \pi)^{3}}\left(v^{x}, v^{y}\right)\left(\begin{array}{cc}
M_{y y}^{-1} & -M_{y x}^{-1} \tag{1}\\
0 & 0
\end{array}\right)\binom{v^{x}}{v^{y}} \frac{\tau^{2}}{|\vec{v}|},
$$

for the Fermi surface contribution in metals. Throughout this note we only consider the contribution from a single sheet of the Fermi surface. Here the magnetic field is chosen as $\vec{B}=(0,0, B)$. The quasi-particle velocity $\vec{v}=\left(v^{x}, v^{y}, v^{z}\right)$ and the effective mass tensor $M_{\alpha \beta}$ are given by the derivative of the quasi-particle energy $\varepsilon: v^{\alpha}=\partial \varepsilon / \partial k^{\alpha}$ and $M_{\alpha \beta}^{-1}=\partial^{2} \varepsilon / \partial k^{\alpha} \partial k^{\beta}$. Since the contribution of the derivative of τ does not appear in the antisymmetric tensor $\left(\sigma^{x y}-\sigma^{y x}\right) / 2$, we have dropped it.

[^0]Experimentally $\sigma^{x y}$ is obtained from the measurement where we measure the current in x-direction under the electric field in y-direction and the magnetic field in z-direction. If we measure the current in y-direction under the electric field in x-direction and the magnetic field in z-direction, we obtain $\sigma^{y x}$ described as

$$
\sigma^{y x}=e^{3} B \int \frac{\mathrm{~d} S}{(2 \pi)^{3}}\left(v^{x}, v^{y}\right)\left(\begin{array}{cc}
0 & 0 \tag{2}\\
-M_{x y}^{-1} & M_{x x}^{-1}
\end{array}\right)\binom{v^{x}}{v^{y}} \frac{\tau^{2}}{|\vec{v}|} .
$$

Haldane [2] introduced the symmetric tensor $e^{3} B \gamma_{z z} \equiv\left(\sigma^{x y}+\sigma^{y x}\right) / 2$. Eq. (1) and Eq. (2) lead to

$$
\gamma_{z z}=\frac{1}{2} \int \frac{\mathrm{~d} S}{(2 \pi)^{3}}\left(v^{x}, v^{y}\right)\left(\begin{array}{cc}
M_{y y}^{-1} & -M_{y x}^{-1} \tag{3}\\
-M_{x y}^{-1} & M_{x x}^{-1}
\end{array}\right)\binom{v^{x}}{v^{y}} \frac{\tau^{2}}{|\vec{v}|} .
$$

Other symmetric tensors are introduced in the same manner as $e^{3} B \gamma_{x x} \equiv$ $\left(\sigma^{y z}+\sigma^{z y}\right) / 2$ and $e^{3} B \gamma_{y y} \equiv\left(\sigma^{z x}+\sigma^{x z}\right) / 2$. As shown in the following the geometrical nature is captured by these symmetric tensors. It should be noted that our result, Eq. (3), is different form Haldane's [2]. The difference arises from the following fact. While Eq. (3) contains $\left(\partial v^{x} / \partial k^{y}\right) /|\vec{v}|$, Haldane erroneously uses $\partial\left(v^{x} /|\vec{v}|\right) / \partial k^{y}$ instead.

The target of our geometrical description is the mean curvature H of the Fermi surface. It is given by

$$
\begin{aligned}
2 H & =\frac{1}{|\vec{v}|^{3}} \cdot\left[\varepsilon_{x} \varepsilon_{x}\left(\varepsilon_{y y}+\varepsilon_{z z}\right)+\varepsilon_{y} \varepsilon_{y}\left(\varepsilon_{z z}+\varepsilon_{x x}\right)+\varepsilon_{z} \varepsilon_{z}\left(\varepsilon_{x x}+\varepsilon_{y y}\right)\right. \\
& \left.-\varepsilon_{x}\left(\varepsilon_{y} \varepsilon_{y x}+\varepsilon_{z} \varepsilon_{z x}\right)-\varepsilon_{y}\left(\varepsilon_{x} \varepsilon_{x y}+\varepsilon_{z} \varepsilon_{z y}\right)-\varepsilon_{z}\left(\varepsilon_{x} \varepsilon_{x z}+\varepsilon_{y} \varepsilon_{y z}\right)\right],
\end{aligned}
$$

for any shape of the Fermi surface. Here we have used the notations $\varepsilon_{\alpha} \equiv v^{\alpha}$ and $\varepsilon_{\alpha \beta} \equiv M_{\alpha \beta}^{-1}$.

The geometrical information in our master equation, Eq. (3), is represented by $h_{z z}$ as

$$
\gamma_{z z}=\int \frac{\mathrm{d} S}{(2 \pi)^{3}} h_{z z} \tau^{2},
$$

with

$$
h_{z z}=\frac{1}{2|\vec{v}|}\left(\varepsilon_{x} \varepsilon_{x} \varepsilon_{y y}+\varepsilon_{y} \varepsilon_{y} \varepsilon_{x x}-\varepsilon_{x} \varepsilon_{y} \varepsilon_{y x}-\varepsilon_{y} \varepsilon_{x} \varepsilon_{x y}\right) .
$$

Using

$$
h_{x x}=\frac{1}{2|\vec{v}|}\left(\varepsilon_{y} \varepsilon_{y} \varepsilon_{z z}+\varepsilon_{z} \varepsilon_{z} \varepsilon_{y y}-\varepsilon_{y} \varepsilon_{z} \varepsilon_{z y}-\varepsilon_{z} \varepsilon_{y} \varepsilon_{y z}\right)
$$

and

$$
h_{y y}=\frac{1}{2|\vec{v}|}\left(\varepsilon_{z} \varepsilon_{z} \varepsilon_{x x}+\varepsilon_{x} \varepsilon_{x} \varepsilon_{z z}-\varepsilon_{z} \varepsilon_{x} \varepsilon_{x z}-\varepsilon_{x} \varepsilon_{z} \varepsilon_{z x}\right),
$$

additionally, we obtain

$$
\begin{equation*}
\gamma_{z z}+\gamma_{x x}+\gamma_{y y}=\int \frac{\mathrm{d} S}{(2 \pi)^{3}} H l^{2} \tag{4}
\end{equation*}
$$

with $l^{2}=|\vec{v}|^{2} \tau^{2}$. Our result, Eq. (4), is applicable to any shape of the Fermi surface. In the case of cubic symmetry Eq. (4) is reduced to the Tsuji formula [1, 2]

$$
\gamma_{z z}=\gamma_{x x}=\gamma_{y y}=\int \frac{\mathrm{d} S}{(2 \pi)^{3}} \frac{H}{3} l^{2} .
$$

Experimentally $\gamma_{c c}$ is obtained from the measurements of $\sigma^{a b}$ and $\sigma^{b a}$ where $(c, a, b)=(z, x, y),(x, y, z),(y, z, x)$. By summing six experimental results with different configurations we can use Eq. (4).

References

[1] M. Tsuji, J. Phys. Soc. Jpn. 13, 979 (1958).
[2] F. D. M. Haldane, arXiv:cond-mat/0504227v2.

[^0]: *Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
 ${ }^{1}$ This note is a nutshell of our previous note, http://hdl.handle.net/2324/1957531.

