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INTRODUCTION

Over the past several decades, raphidophytes 
Chattonella spp. have frequently formed harmful algal 
blooms (HABs) and caused serious ecological damages 
and economic losses in the coastal waters around the 
world (Imai and Yamaguchi, 2012; Pérez–Morales et al., 
2017; García–Mendoza et al., 2018).  Because a massive 
increase in cell number is essential for the occurrences 
of Chattonella HABs, numerous studies have been con-
ducted to investigate the effects of ambient factors on 
their growth and bloom ecology (Imai and Yamaguchi, 
2012).  In general, the irradiance, water temperature, 
salinity, and nutrients are the most significant factors for 
the growth and their bloom formation of Chattonella 
spp. (Nakamura, 1985; Yamaguchi et al., 1991; Yamatogi 
et al., 2006; Katano et al., 2012; Katano et al., 2014), 
while some biological factors also play important roles in 
affecting their bloom dynamics (Qiu et al., 2011; Qiu et 
al., 2014; Park et al., 2016). 

On the other hand, HABs species may undergo rapid 

shifts of environmental factors, especially in the coastal 
areas.  For example, the irradiance of surface water can 
increase from 0 to >1000 µmol photons m–2 s–1 within 8 
hours in summer (Marshall and Hallegraeff, 1999), and 
the salinity of surface water can rapidly decrease from 
more than 30 to less than 10, due to large amount of 
freshwater inflow after heavy rain (Katano et al., 2012).  
Adaptation to those unavoidable environmental stress is 
crucial for the survival and growth of algae.  It has been 
shown that exposure to elevated irradiance may cause 
photooxidative damage of Chattonella species (Warner 
and Madden, 2007; Mukai et al., 2018), and rapid 
decrease in salinity may affect their diel vertical migra-
tion (DVM) behavior and accumulation in surface water 
(Katano et al., 2012; Shikata et al., 2014).  However, 
insights into the responses of Chattonella to rapid shifts 
of environmental factors remains largely unknown.   

Photosynthesis is the basic and essential process for 
the growth, cell division, and other vital functions of all 
photosynthetic organisms (Baker, 2008; Schaum et al., 
2017; Slattery et al., 2017).  Thus, photosynthetic 
parameters have been widely used to reflect and monitor 
algal growth and health (Kruskopf and Flynn, 2010; 
Stirbet and Govindjee, 2011; Larkum et al., 2012).  For 
example, the Fv /Fm ratio, which reflects the efficiency of 
photochemical conversion of light energy, has been 
found to be significantly correlated to the growth rate 
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and/or growth phase of phytoplankton species (Kruskopf 
and Flynn, 2010; Oukarroum, 2016), including 
Chattonella (Qiu et al., 2013; Qiu et al., 2016).  
Recently, the Chlorophyll a fluorescence transient 
(OJIP) test has become an important tool in monitoring 
the photosynthetic events and physiological state of 
plant and algae (Strasser et al., 2004; Kruskopf and 
Flynn, 2010).  It has been proved that the OJIP analysis 
not only can reflect the impacts of various stresses to 
algae, but also can provide reliable interpretation for the 
mechanisms involved in the stress responses (Hockin et 
al., 2012; Z

· 
ak and Kosakowska, 2015).

In this study, therefore, we investigated variations in 
OJIP parameters of C. marina var. antiqua grown 
under various culture conditions, i.e., short–term irradi-
ance shifts, repeated irradiance shifts, and rapid salinity 
shifts at various temperatures.  The objective of this 
study is to reveal the stress responses of Chattonella 
species to shifts of those environmental factors, from the 
viewpoint of its photosynthetic activity.  

MATERIALS AND METHODS

Species and general culture conditions
An axenic strain of C. marina var. antiqua 

(NIES–1) was obtained from the National Institute of 
Environmental Studies (NIES, Japan).  Stock cultures 
were maintained using modified SWM–3 medium 
(Yamasaki et al., 2007) adjusted to a salinity of 30 at 
25°C under 110 ± 10 μmol photons m−2 s−1 of cool–white 
fluorescent illumination with a 14:10 h light: dark cycle.  
Semicontinuous cultures of C. marina var. antiqua 
were conducted under the same conditions as stock cul-
ture.  These cultures were diluted daily by fresh media 
to maintain a constant cell density (8 × 103 cells ml−1), 
and, after acclimation, a constant growth rate (0.59 ± 
0.08 div. d−1).  Those cell suspensions were used for the 
following experiments.

Effects of short–term irradiance shifts
Effects of short–term irradiance shifts on OJIP 

parameters were assessed over the course of a day dur-
ing the semicontinuous culture under the control irradi-
ance (CI, i.e., 110 ± 10 μmol photons m−2 s−1).  About 
50 ml cell suspension was incubated to a new 70 ml ster-
ile flask (n = 3) and then shifted from control irradiance 
to an elevated irradiance (EI) at 1100 ± 50 μmol pho-
tons m−2 s−1 from 11:00 (6 h after lights–on), and sub–
samples for OJIP test were taken at 15:00 (4 h after shift 
to EI).  Subsequently, 30 ml cell suspension exposed to 
EI were incubated to a new 70 ml sterile flask (n = 3) 
and then shifted to CI for recovery, respectively.  
Samples to assess recovery of OJIP parameters were 
taken at 16:00 (1 h after recovery), 17:00, and 18:00.  As 
the control, OJIP parameters of cell suspensions in the 
semicontinuous culture were measured at the necessary 
time points described as above.

Effects of repeated irradiance shifts
To assess effects of repeated exposure to elevated 

irradiance (EI), batch cultures of C. marina var. anti-
qua were started by inoculating cells suspension in sem-
icontinuous culture into 70–ml sterile flask (Nunc; n = 3) 
containing 50 ml modified SWM–3 medium, at an initial 
cell density of 1 × 103 cells ml−1.  C. marina var. antiqua 
was grown under the same conditions as stock culture, 
except the irradiance condition described as follows: (i) 
control, the irradiance was set at 110 ± 10 μmol photons 
m−2 s−1 during the 14–h light period (Fig. 1A); (ii) 
repeated exposure to elevated irradiance (REI), the irra-
diance was elevated to 1100 ± 50 μmol photons m−2 s−1 
from 11:00 to 15:00, and was set at 110 ± 10 μmol pho-
tons m−2 s−1 during the rest times of the 14–h light period 
(Fig. 1B).  Batch cultures of C. marina var. antiqua 
were conducted for 7 days, and all flasks were gently 
mixed by hand twice a day.  Measurement of cell number 
and OJIP test were conducted daily at 10:30 (4.5 h after 
the start of the photoperiod), and OJIP parameters in 
REI treatment were also measured at 15:00 (just after 
4–h exposure to EI) and 18:00 (after 3–h recovery in 
CI).

Combined effects of temperatures and rapid shifts 
of salinity 

To test the effects of rapid shifts in salinity at differ-
ent temperatures, C. marina var. antiqua cells in semi-
continuous culture were preconditioned to each temper-
ature (i.e., 30, 25, or 20°C) for a minimum of 2 weeks 
before experiment.  Five test salinities (30, 25, 20, 15, 
and 10) of modified SWM–3 medium were adjusted by 
mixing the modified SWM–3 media of salinities 30 and 0, 
accordingly.  After acclimation, C. marina var. antiqua 
cells in semicontinuous were inoculated into 8–ml sterile 
culture tubes (Evergreen Scientific, Los Angeles, CA) 
containing 5 ml of a prepared modified SWM–3 medium 
with different salinities, and grown under corresponding 
temperatures.  The initial cell density was 1 × 103 cells 
ml−1, and other culture conditions (except temperature 
and salinity) were the same as those of stock cultures.  
Each experimental group had three replicates.  
Cultivations were conducted for 3 days, and cell growth 
was measured daily by in vivo fluorescence (model 10–
AU–005–CE fluorometer; Turner Designs, Sunnyvale, 
CA).  The OJIP test were conducted at the end of culti-

Fig. 1.   Diagram showing the setting of light intensity for testing 
effects of repeated elevated irradiance (REI) exposure on 
the growth and OJIP–fluorescence parameters of 
Chattonella marina var. antiqua during batch cultures. 
CI: control irradiance at 110 ± 10 μmol photons m−2 s−1; EI: 
elevated irradiance at 1100 ± 50 μmol photons m−2 s−1.
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vation (i.e., 72 h after the salinity shifts).  

OJIP test and calculation of growth rate
Unless noted otherwise, OJIP tests were conducted 

at the same times between 10:00 (4 h after the start of 
the photoperiod) and 11:00 am to minimize effects of 
diel periodicity in algal physiological factors.  The OJIP 
test was conducted using an AquaPen–C portable fluo-
rometer (Photon Systems Instruments, Czech Republic).  
The AquaPen–C was set to maximum saturation pulse 
intensity of 3000 μmol photon m−2 s−1 of red light (625 
nm) for 2 s and OJIP curves were recorded using the 
supplied FluorPen software (Photon Systems 
Instruments).  The OJIP features of the fluorescence 
induction curve were defined following the equations 
described by Strasser et al. (2004).

The growth rate (GR, divisions d−1) were determined 
as GR = ln (N2 / N1)/ [ln (2) * (t2 − t1)], where N1 and N2 
are defined as values of cell densities or in vivo fluores-
cence at time 1 (t1) and time 2 (t2), respectively 
(Guillard, 1973).  The maximum growth rate was deter-
mined as the maximum GR from 3 consecutive data 
points during the entire cultivation.

Statistical analysis
The experimental data were checked for assump-

tions of homogeneity of variance across treatments using 
Levene’s test, and data were normalized using square 
root or square arcsine transformation to meet the 
requirements of analysis of variance (ANOVA).  For data 
of subsection 2.2, an independent sample t–test was 
used to test for differences between the irradiance shifts 
treatment and control groups.  For data of subsection 
2.3, one–way ANOVA followed by Dunnett’s pairwise 
multiple comparison t–test was used to test differences 
between treatments and control.  For data of subsec-
tions 2.4, two–way ANOVA was applied in analyzing the 
effects of temperature, salinity and their interactions on 
the growth and OJIP parameters.  Once a significant 
interaction was detected, a simple effect analysis was 
conducted to examine the difference between various 
salinity shifts groups within each level of temperature.  
All statistical analyses were performed using SPSS 
Advanced Models 11.0J software (SPSS Japan, Tokyo, 
Japan).

RESULTS

Effects of short–term irradiance shifts
During the light period of experiment, the ranges of 

average Fv /Fm ratio, PIABS, ABS/RC, TRo/RC, ETo/RC, and 
DIo/RC of C. marina var. antiqua grown at control irra-

Fig. 2.   Spider diagrams showing variations in OJIP–fluorescence parameters 
of Chattonella marina var. antiqua exposed to elevated irradiance 
(EI, 1100 ± 50 μmol photons m−2 s−1) for 4 h (A), and subsequently 
recovered at control irradiance (CI, 110 ± 10 μmol photons m−2 s−1) for 
1 h (B), 2 h (C), and 3 h (D). Data of irradiance shifts treatment group 
(solid lines with circle symbol) are shown as the values after normal-
ization to respective values obtained in the control (dotted lines). 
Asterisks following the parameter labels indicates significant between 
treatment and control (* p < 0.05; ** p < 0.01). 
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diance were 0.67−0.70, 0.97−1.42, 2.47−2.71, 1.74−1.78, 
1.03−1.07, and 0.73−0.94, respectively.  As shown in Fig. 
2A, exposure to EI for 4 h significantly decreased the Fv /
Fm ratio (72% of control), PIABS (18% of control), and 
ETo/RC (82% of control), while increased the ABS/RC 
(145% of control), TRo/RC (107% of control), and DIo/
RC (234% of control).  When the EI exposed cells were 
shifted back to the CI, all the parameters derived from 
the OJIP analysis rapidly recovered to the level of those 
in the control group.  The ETo/RC recovered within 1 h 
(Fig. 2B), the PIABS and TRo/RC recovered within 2 h 
(Fig. 2C), and the Fv /Fm ratio, ABS/RC, and DIo/RC 
recovered within 3 h (Fig. 2D).

Effects of repeated irradiance shifts
Despite the irradiance conditions of batch cultures, 

C. marina var. antiqua cells began to grow well from 
day 1 and reached early stationary phase from day 4 
onwards (Fig. 3A).  There was no significant difference 
in the maximum growth rates of C. marina var. antiqua 
cultured in CI (1.07 ± 0.04 divisions d−1) and REI (0.98 
± 0.04 divisions d−1).  However, REI treatment signifi-
cantly reduced the maximum cell densities of C. marina 
var. antiqua, which were decreased to 64% (p < 0.01) 
of that in control cultures.  As shown in Fig. 3B, the Fv /
Fm ratio of C. marina var. antiqua was significantly 
decreased to 61–92% of that in control cultures after 4–h 
EI exposure, and those inhibitions recovered to the level 
of control (97–101%) at the next morning.  The PIABS of 
C. marina var. antiqua was significantly decreased to 
5–60% of that in control cultures after 4–h EI exposure, 
and those inhibitions recovered to the level of control 
(94–96%) at the next morning at the exponential phase 
(i.e., day 1 to day 3, Fig. 3B).  When the cultures 
reached stationary phase (i.e., from day 4 onwards), 
however, the inhibitions of PIABS could not completely 
recover to the level of control (Fig. 3C).

Effects of temperature and rapid shifts of salinity
The maximum growth rates of C. marina var. anti-

qua grown at different combinations of temperature and 
salinity are shown in Fig. 4A.  The highest maximum 
growth rate (0.96 ± 0.04 divisions d−1) was observed at 
25°C and a salinity of 20.  Two–way ANOVA indicated 
significant effects of temperature, salinity shifts, and 
their interactions on the growth rate, Fv /Fm ratio, and 

PIABS of C. marina var. antiqua at the p < 0.001 level 
(Table 1).  Therefore, simple effect analysis was con-
ducted to examine the difference among salinity shifts 
within each level of temperature.  At 30°C, only the 
salinity shifts from 30 to 10 significantly decreased the 
maximum growth rate, Fv /Fm ratio, and PIABS of C. 

Fig. 3.   Daily variations in cell density (A), Fv /Fm ratio (B) and PIABS 
(C) of Chattonella marina var. antiqua during batch cul-
tures at different irradiance conditions. Control irradiance 
(CI): 110 ± 10 μmol photons m−2 s−1 during the 14–h light 
period; REI: the irradiance was elevated to 1100 ± 50 μmol 
photons m−2 s−1 (EI) from 11:00 to 15:00, and was set at CI 
during the rest times of light period. OJIP parameters were 
measured at 10:30 (just before EI exposure), 15:00 (just 
after the 4–h exposure to EI), and 18:00 (3h after the end 
of EI exposure). Data of Fv /Fm ratio and PIABS are are mean 
± SD (n = 3), which are shown as the values after normal-
ization to respective values obtained in the control (dotted 
lines). Asterisks indicates significant between treatment 
and control (* p < 0.05; ** p < 0.01).  

Table 1.   Summary of results of two–way ANOVA testing the effects of temperature, salinity shifts and their interaction on the maximum 
growth rate, Fv /Fm ratio, and PIABS of C. marina var. antiqua a

Factors df
Maximum growth rate Fv /Fm ratio PIABS

Type 
III–SS 

Mean S F–value p–value
Type 
III–SS 

Mean S F–value p–value
Type 
III–SS 

Mean S F–value p–value

Intercept 1 2.2e+01 2.2e+01 1.2e+04 <0.001 2.4e+01 2.4e+01 2.0e+06 <0.001 2.3e+02 2.3e+02 8.8e+03 <0.001

Temperature 2 6.9e−01 3.4e−01 1.9e+02 <0.001 5.0e−02 2.5e−02 2.0e+03 <0.001 3.6e+01 1.8e+01 7.1e+02 <0.001

Salinity 4 8.2e−01 2.1e−01 1.1e+02 <0.001 3.3e−03 8.3e−04 6.7e+01 <0.001 2.0e+00 4.9e−01 1.9e+01 <0.001

Interaction 8 8.3e−02 1.0e−02 5.8e+00 <0.001 8.7e−04 1.1e−04 8.8e+00 <0.001 1.4e+00 1.8e−01 7.1e+00 <0.001

Error 30 5.4e−02 1.8e−03 3.7e−04 1.2e−05 7.6e−01 2.5e−02

a df: degree of freedom; Type III–SS: Type III sum of squares; Mean S: mean square; bold value is statistically significant
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marina var. antiqua (Fig. 4).  At 25°C, the acute salin-
ity shifts from 30 to 10 also tended to significantly 
decrease the maximum growth rate, Fv /Fm ratio, and PIABS 
(Fig. 4), and the acute salinity shifts from 30 to 20–25 
tended to significantly increase the PIABS (Fig. 4C).  At 
20°C, acute salinity shifts from 30 to 10 or 15 tended to 
significantly decrease the maximum growth rate and Fv /
Fm ratio of C. marina var. antiqua (Fig. 4A and B), 
while no significant differences were observed among 
their PIABS values (Fig. 4C).

DISCUSSION

Chlorophyll a fluorescence transient (OJIP) analysis 
suggested that C. marina var. antiqua at exponential 
phase has relative strong capabilities to avoid impacts of 
environmental stress, such as rapid shifts to elevated 
irradiance or to low salinity.  Those capabilities may con-
tribute to maintaining a high photosynthetic activity and 
growth rate of cells grown at complex and volatile envi-
ronment conditions, such as in the coastal waters during 
summer seasons.   

Our results demonstrated that short–term exposure 
to light intensity of 1100 μmol photons m−2 s−1 is strong 
enough to induce photoinhibition of C. marina var. 
antiqua, as indicated by the significant decreases in Fv /

Fm ratio and PIABS (Fig. 2A).  When the amount of light 
exceeds that which can be used for photochemical 
energy transfer, the potential for irreversible photooxi-
dative damage increases (Sirikhachornkit and Niyogi, 
2010).  However, our results suggested that C. marina 
var. antiqua may own strong capabilities to resist the 
potential damage induced high light intensity, as indi-
cated by the rapid (within 3 h) recovery of the photosyn-
thetic parameters, after shifting back to CI (Fig. 2B–D).  
Similarly, Warner and Madden (2007) also reported that 
exposure to a high light intensity (600 μmol photons m−2 
s−1 for 1 h) notably reduced the Fv /Fm ratio of the C. sub-
salsa (raphidophyte), while the inhibited Fv /Fm ratio 
could recover to normal within 6 h after shifting back to 
the low irradiance (30 μmol photons m−2 s−1).  It seems 
that Chattonella spp. have strong tolerance to high light 
intensity exposure. 

Analysis of parameters derived from the OJIP curve 
also well supported the conclusion that Chattonella has 
strong tolerance to irradiance shifts (Fig. 2).  Under EI 
exposure conditions, the increase in ABS/RC could 
attribute to the decrease in active reaction centers and/
or in active QA reducing centers (Strasser and Stirbet, 
1998).  The inhibition of re–oxidation of QA

− to QA can 
increase the value of TRo/RC, in turn resulting in 
reduced electron transport per trapping, as indicated by 
the reduced ETo/RC (Strasser et al., 2000; 
Seepratoomrosh et al., 2016).  The notably increased 
DIo/RC indicates an increased non–photochemical 
energy dissipation from the active RCs (Strasser et al., 
2004).  All these energy flux ratios supported that the 
photosynthetic efficiency was decreased due to EI expo-
sure.  However, rapid recovery of those parameters 
derived from the OJIP curve suggested that the regulate 
mechanisms are effective for acclimating to rapid 
changes in light intensity, which may give Chattonella 
cells some ecological advantages HABs.  

It is well known that natural populations of some 
flagellates display diurnal vertical migration (DVM) 
behavior, which enable them to actively acquire light at 
surface layers and nutrients over a wide depth range 
(Watanabe et al., 1995; Shikata et al., 2015; Tilney et al., 
2015).  Because Chattonella cells tend to accumulated 
in the surface water during midday in summer 
(Watanabe et al., 1995), a strong tolerance to EI expo-
sure is necessary for resisting the potential photooxida-
tive damages.  During the process of downward migra-
tion, the rapid recovery of photosynthetic activity may 
help Chattonella cells to store more energy and produce 
more organic matter for other vital functions.  Those 
rapid photoprotective mechanisms may provide an 
explanation for the findings that Chattonella species can 
maximize photosynthesis and growth well under high 
light conditions (Warner and Madden, 2007; Qiu et al., 
2013; Tilney et al., 2015).

During a batch culture, repeated EI exposure (REI, 
exposure to EI for 4h per day) did not affect the maxi-
mum growth rates but significantly reduced the maxi-
mum cell density of C. marina var. antiqua (Fig. 3A).  
Similar growth curves of C. marina var. antiqua and C. 

Fig. 4.   Effects of rapid salinity shifts on the maximum growth rate 
(A), Fv /Fm ratio (B) and PIABS (C) of Chattonella marina 
var. antiqua grown at different temperatures. Data are 
mean ± SD of triplicate measurements, and values not 
sharing a common letter are significantly different at p < 
0.05.
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subsalsa grown under elevated irradiances conditions 
have also been found by previous studies (Warner and 
Madden, 2007; Qiu et al., 2013; Tilney et al., 2015).  The 
OJIP analysis of parameters suggests that the tolerance 
of C. marina var. antiqua to EI exposure was 
depended on their growth phases (Fig. 3).  In the expo-
nential growth phase, the inhibitions in Fv /Fm ratio and 
PIABS recovered to the level of control in the next morn-
ing, which may provide an explanation for the unaffected 
growth rate of C. marina var. antiqua cells in the REI 
group.  These findings strongly suggested that the weak 
light intensity in morning and evening is important for 
the recovery from photoinhibition and consequent algal 
growth in actual environment.  On the other hand, 
excessive light intensity can cause photooxidative stress 
in plants and algae, and eliminating those oxidative sub-
stances needs extra consumption of energy (Leeuwe et 
al., 2005; Mukai et al., 2018).  Moreover, the reduced 
tolerance of C. marina var. antiqua in the stationary 
phase may result in an accumulation of photooxidative 
damage due to repeated EI exposure, which may further 
aggravate the extra energy consumption.  Therefore, we 
inferred that the reduced EI–tolerance may partly con-
tribute to the reduced maximum cell density of C. 
marina var. antiqua in exposure group.  

The molecular mechanisms involved in the stress–
tolerance of Chattonella to EI are still unclear.  In gen-
eral, excessive light energy can increase the production 
of reactive oxygen species (ROS) and thereby cause oxi-
dative stress in plants and algae (Leeuwe et al., 2005; 
Mukai et al., 2018).  Thus, the 2–Cys peroxiredoxin 
(Prx), which is a highly expressed antioxidant in C. 
marina var. antiqua in the exponential phase, has been 
considered to play important roles in protecting cells 
against photooxidative damage and maintaining a high 
growth rate (Qiu et al., 2013; Mukai et al., 2018; Mukai 
et al., 2019).  Indeed, the transcript expression levels of 
2–Cys Prx in Chattonella cells was induced by EI expo-
sure in batch cultures (Mukai et al., 2018), and its pro-
tein expression levels exhibited significant positive cor-
relations with the growth rate and Fv /Fm ratio of 
Chattonella cells during a field HAB (Qiu et al., 2016).  
In addition, our previous study also found a significant 
decrease in protein expression level of 2–Cys Prx in C. 
marina var. antiqua at the later stationary phase (Qiu 
et al., 2013).  This finding may partly explain the 
reduced tolerance of C. marina var. antiqua to EI 
exposure, when the cells reached stationary phase. 

The growth rates of C. marina var. antiqua at dif-
ferent combinations of temperature and salinity (Fig. 4 
A) agreed well with those reported by previous studies 
(Yamaguchi et al., 1991; Yamatogi et al., 2006).  For 
example, Yamaguchi et al. (1991) reported that C. 
marina var. antiqua can grow at temperatures from 15 
to 30°C and salinity from 10 to 35, with an maximal 
growth rates of 0.97 divisions d−1 (at the combination of 
25 ºC and 25).  Relative high growth rates (0.65–0.96 
divisions d−1), Fv /Fm ratios (0.76–0.77), and PIABS (2.5–
3.4) were observed within the temperature range of 
25–30 ºC and salinity range of 15–30.  Those finding are 

consistent with the phenomenon that dense blooms 
(>1000 cells ml−1) of C. marina var. antiqua often 
occurred at the temperatures of 25−33ºC in coastal areas 
of Japan (Yamaguchi et al., 1991; Yamatogi et al., 2006; 
Katano et al., 2012; Qiu et al., 2016).  However, the sur-
face salinity sometimes suddenly decreased to <10 as a 
consequence of freshwater input from rainfall during 
Chattonella blooms (Katano et al., 2012; Katano et al., 
2014).  Our results showed that the acute salinity shifts 
from 30 to 10 significantly decreased the maximum 
growth rate, Fv /Fm ratio, and PIABS of C. marina var. 
antiqua.  Some previous studies have found that 
Chattonella cells moves to avoid water with low salinity 
(Katano et al., 2012; Katano et al., 2014; Shikata et al., 
2014).  Thus, our finding, together with those field 
observations, suggested that salinity shifts may play 
important roles in regulating the bloom dynamics of 
Chattonella.  

In summary, our results indicated that the OJIP–test 
can provide reliable interpretation for stress responses 
of Chattonella spp. to rapid shifts of environmental fac-
tors.  Among the parameters derived from the OJIP–test, 
the PIABS is the most integrated and sensitive one for 
reflecting the photosynthetic events and physiological 
state of Chattonella.  Nevertheless, molecular mecha-
nisms involved in the regulation of OJIP transients in 
Chattonella is still largely unknown.  Further works are 
clearly needed to investigate variations in gene and pro-
tein expressions of OJIP transients in Chattonella cells 
at various environmental stress, in order to promote our 
understanding of their adaptation mechanisms to 
changed environmental factors.  
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