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Abstract

The “direct method” proposed by R. Hirota in 1971 [1] is a very effective tool
for constructing soliton solutions and has been applied to almost all integrable
equations. In applying this method the condition of integrability appears when
one tries to construct three-soliton solutions, whereas two-soliton solutions can be
constructed even for non-integrable equations. Here we apply this method to fully
discrete lattice equations defined on a 2×N stencil. It turns out that all the results
obtained can also be obtained by reductions from the Hirota-Miwa equation. Thus
the three-soliton condition is again found to give same results as other integrability
criteria.

1 Introduction

It is well known that integrability of Partial Differential Equations (PDE) is associated
with several different properties of the equation, such as the existence of conserved quan-
tities, symmetries, Lax pair and multi-soliton solutions. These properties can also be used
to search for integrable PDE’s and it turns out that all methods give essentially the same
set of integrable equations. Recently some of these methods have been applied to Partial
Difference Equations (P∆E), although in that context there are also integrability criteria
that do not have obvious continuous counterparts.

Here we consider the existence of multi-soliton solutions for P∆E’s as an indicator
of integrability. We use Hirota’s bilinear method, which is well suited for constructing
soliton solutions.

∗E-mail: jarmo.hietarinta@utu.fi
†E-mail: djzhang@staff.shu.edu.cn
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2 Hirota’s direct method for PDE’s

In Hirota’s direct method [1, 2] a key ingredient is the transformation to new dependent
variables, and in terms of which the soliton solution is given by a finite sum of exponentials.
For example, in the case of the KdV equation ut + uxxx + 6uux = 0, the transformation
u→ F by u = 2∂2

x logF , leads to an equation, which after one integration can be written
as

P ( ~D)F · F = 0, (1)

where P (Dx, Dt) = D4
x +DxDt. Here the D’s are Hirota derivative operators defined by

Dn
x f · g = (∂x1 − ∂x2)

nf(x1)g(x2)
∣∣
x2=x1=x

. (2)

The D-derivative differs from the usual derivative by a crucial sign change. It is important
to observe that equations written in Hirota bilinear form are gauge invariant:

P ( ~D)(e~x·~pf) · (e~x·~pg) = e2~x·~p P ( ~D)f · g. (3)

Gauge invariance is the property that allows generalizations of the Hirota bilinear form
to other circumstances, such as higher multi-linearity [3] and discrete equations.

The existence of a bilinear form does not guarantee the existence ofN -soliton solutions,
but one- and two-soliton solutions are often easy to construct. For the KdV-class (1),
where P is some even polynomial, the construction proceeds as follows:

One starts with the vacuum or background solution, which in this case is F ≡ 1 (which
in the KdV case corresponds to u ≡ 0). This implies the condition P (0) = 0. Next starting
with the vacuum F = 1 one builds a one-soliton solution (1SS) “perturbatively”

F = 1 + eηi , where ηi = ~x · ~pi + η0
i , with constant η0

i , (4)

and upon substituting this to (1) one obtains the dispersion relation (DR)

P (~pi) = 0, (5)

which restricts the parameters of the soliton.
Next one finds that (1) also has two-soliton solutions of the form

F = 1 + eη1 + eη2 + A12e
η1+η2 , (6)

where the phase factor Aij is given by

Aij = −P (~pi − ~pj)
P (~pi + ~pj)

. (7)

Here each ~pi is restricted by the DR (5). Note that Aij = Aji due to P being even.
In the above constructions crucial role is played by the minus sign in the definition

(2) of the Hirota derivative, which implies

P ( ~D)e~x·~p · e~x·~p ′
= P (~p− ~p ′)e~x·(~p+~p ′). (8)
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In practice this means that the first and the last terms of expressions like the 1SS (4) and
2SS (6) automatically satisfy the equation (if P (0) = 0).

The above construction shows a level of partial integrability: we can have elastic scat-
tering of two solitons, for any dispersion relation, if the nonlinearity is suitable (namely if
it arises from a bilinear equation as above). However, when one tries to follow this method
and derive a 3SS, one finds an obstacle which only integrable equations pass. One can
then say that a bilinear equation is Hirota integrable if the 1SS (4) can be extended to a
NSS of the form

F = 1 + ε

N∑
j=1

eηj + (finite number of h.o. terms in ε)

without any further conditions on the parameters ~pj of the individual solitons. The as-
sumption that there are no further restrictions is important, because any equation has
multi-soliton solutions for some restricted set of parameters.

If we now apply this principle to the 3SS we start with the ansatz

F = 1 + eη1 + eη2 + eη3

+A12e
η1+η2 + A23e

η2+η3 + A31e
η3+η1 + A12A23A13e

η1+η2+η3 , (9)

which is fixed by the requirement that if in a NSS any soliton goes far away, the rest should
look like the (N-1)SS. (In practice “going away” means either eηk → 0 or eηk →∞.) This
means that there is no freedom left: parameters are restricted only by the dispersion
relation (5) and the phase factors Aij were already given in (7). Thus the existence of
three-soliton solutions is not automatic, indeed, when the ansatz (9) is substituted into
(1) one obtains the three-soliton condition (3SC)∑

σi=±1

P (σ1~p1 + σ2~p2 + σ3~p3)P (σ1~p1 − σ2~p2)

×P (σ2~p2 − σ3~p3)P (σ1~p1 − σ3~p3) = 0, (10)

on the manifold P (~pi) = 0,∀i. This should be seen as a condition on the polynomial P .
If the 3SC is satisfied then the equation most likely has NSS of the form

F =
∑

µi∈{0,1}

e

hP(N)
i>j aij µi µj+

PN
i=1 µi ηi

i
, where exp(aij) = Aij. (11)

The above method has been used for searches for various types of equations for which
conditions similar to (10) can be derived [4, 5].

3 Hirota’s bilinear formalism for lattice equations

We now turn to discrete lattice equations defined on the 2-dimensional Cartesian lattice.
The discrete Hirota bilinear form is obtained by requiring gauge invariance under

fj(n,m)→ f ′j(n,m) = AnBm fj(n,m). (12)
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This leads us to the discrete Hirota bilinear (HB) form of the form∑
j

cj fj(n+ ν+
j ,m+ µ+

j ) gj(n+ ν−j ,m+ µ−j ) = 0

where the index sums µ+
j + µ−j = µs, ν+

j + ν−j = νs do not depend on j.
Note that

eaDx f(x) · g(x) = ea(∂x−∂x′ ) f(x)g(x′)
∣∣
x′=x

= f(x+ a)g(x− a) .

Therefore the discrete version of P (D)f · f = 0 should be an even function built up from
exponentials of the Hirota derivative.

The first results on discrete bilinear soliton equations were obtained by Hirota in a
series of papers in 1977 [6]. One major result was the “Discrete Analogue of a Generalized
Toda Equation” (DAGTE) or “Hirota-equation” [7]

[Z1 exp(D1) + Z1 exp(D2) + Z1 exp(D3)]f · f = 0, Z1 + Z2 + Z3 = 0. (13)

This was later generalized [8] to a four term equation

(a+ b)(a+ c)(b− c) fn+1,m,kfn,m+1,k+1 + (b+ c)(b+ a)(c− a) fn,m+1,kfn+1,m,k+1

+(c+ a)(c+ b)(a− b) fn,m,k+1fn+1,m+1,k + (a− b)(b− c)(c− a) fn+1,m+1,k+1fn,m,k = 0,
(14)

which is often called the Hirota-Miwa equation.
Hirota’s direct method has also been applied to construction of soliton solutions to

nonlinear lattice equations [10, 11].

3.1 Searching for integrable bilinear lattice equations

One can also apply the three-soliton condition on lattice equations. Since we will here
only consider 1-component equations, we still can take (1) as the basic class of equations,
but now P would have to be a sum of exponentials.

One extra problem in the discrete case is that there are so many ways to discretize a
derivative and thus there will be many more cases, see Figure 1.

For sub-figure 1a) the equation must have the form a fn,mfn+1,m+1+b fn+1,mfn,m+1 = 0,
and the existence of the vacuum soliton f ≡ 1 implies further that b = −a. In [12] we
study equations defined on the arrangement given in sub-figure 1b).

Here we consider types c) and d) and in general the 2×N stencil which corresponds
to the difference equation

N∑
s=1

cs fn+νs,m fn−νs,m+1 = 0. (15)

In terms of Hirota’s D-derivatives this can be written as (1), with the function

P (X, Y ) := e−
1
2
Y P1(X), P1(X) :=

N∑
s=1

cs e
νsX , (νs > νt, ∀s < t),
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Figure 1: Configurations of points (“stencils”) that can be used to define a P∆E of Hirota
bilinear form.

followed by an overall shift of 1
2

in the m (i.e., Y ) direction. However, since the D-operator
is antisymmetric and P operates on a symmetric target f · f , only the symmetric part is
relevant. Thus a more proper form is

P (X, Y ) := e−
1
2
Y P1(X) + e

1
2
Y P1(−X). (16)

After the transformation Y 7→ Y + (ν1 + νN)X we may assume that ν ′N = −ν ′1.
Since equation (8) still holds the construction of 1SS and 2SS goes as usual, resulting

with formulae (4-7), where now ηj = pjn+ qjm+ η0
j . In particular, from the 0SS fn,m =

1, ∀n,m we get the condition
N∑
s=1

cs = 0, (17)

and from the 1SS fn,m = 1 + eηj we get the DR P (pj, qj) = 0, from which we can solve
for eq:

eqj = − P1(pj)

P1(−pj)
. (18)

Using the DR we can also write

P (σ1p1 + σ2p2, σ1q1+σ2q2) = σ1σ2e
− 1

2
(q1+q2)[P1(−p1)P1(−p2)]

−1×
[P1(σ1p1 + σ2p2)P1(−σ1p1)P1(−σ2p2)

+ P1(−σ1p1 − σ2p2)P1(σ1p1)P1(σ2p2)], (19a)

P (σ1p1 + σ2p2 + σ3p3, σ1q1 + σ2q2 + σ3q3) = σ1σ2σ3e
−1

2
(q1+q2+q3)×

[P1(−p1)P1(−p2)P1(−p3)]
−1[P1(σ1p1 + σ2p2 + σ3p3)P1(−σ1p1)P1(−σ2p2)P1(−σ3p3)

− P1(−σ1p1 − σ2p2 − σ3p3)P1(σ1p1)P1(σ2p2)P1(σ3p3)].
(19b)
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Note that these expressions are invariant under the simultaneous change of all signs σi.
Using them we can in particular write the phase factor for the 2SS (7) in the form

Aij =
P1(−pi)P1(pi − pj)P1(pj) + P1(pi)P1(−pi + pj)P1(−pj)
P1(−pi)P1(pi + pj)P1(−pj) + P1(pi)P1(−pi − pj)P1(pj)

.

Furthermore, using (19) we obtain the 3SC from (10), it will contain 64 terms when
written in terms of P1(X). Since polynomial computations are easier it is useful to change
variables

epj = p′j, eqj = q′j, P1(p) = P(p′)

so that the DR has the form q′j = − P(p′
j)

P(1/p′
j)

and the phase factor becomes

Aij =
P(1/p′i)P(p′i/p

′
j)P(p′j) + P(p′i)P(p′j/p

′
i)P(1/pj)

P(1/p′i)P(p′ip
′
j)P(1/p′j) + P(p′i)P(1/(p′ip

′
j))P(p′j)

.

It is now easy to verify (we used REDUCE[13] for this) that the 3SC has the solutions

P(x) = axν + bxµ + cxκ, a+ b+ c = 0 (20)

which corresponds to a sub-case of (13), and

P(x) = axν + bxµ + cx−µ + dx−ν , a+ b+ c+ d = 0 (21)

which corresponds to a reduction of (14) with (n,m, k) 7→ (n(ν−µ)−m(ν+µ)+µ, k− 1
2
).

We have also scanned other four term equations of the type

P(x) = axn1 + bxn2 + cxn3 + dx−n1 , n1 = 2, 3, 4, n1 > n2 > n3 > −n1.

but all equations that passed the 3SC condition turned out to be sub-cases of (21).

4 Conclusions

Hirota’s direct method has turned out to be very efficient in deriving soliton solutions
for a given equation, but it can also be used as a method for searching for integrable
equations. The key requirement is the existence of three-soliton solutions without extra
conditions on the soliton parameters. Here we have considered bilinear equations defined
on a 2×N stencil of the Cartesian lattice, while the 3× 3 case has been treated in [12].
In both cases the integrable equations found by the three-soliton condition turned out to
be obtainable by a reduction from the Hirota-Miwa equation.
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