
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Combinatorial Online Prediction

Hatano, Kohei
Kyushu University

https://hdl.handle.net/2324/2320605

出版情報：2018-10-28. IEICE
バージョン：
権利関係：

Combinatorial Online Prediction
Kohei Hatano

Kyushu Univeristy /RIKEN AIP
hatano@inf.kyushu-u.ac.jp

Abstract—We present a short survey on recent results on
combinatorial online prediction in the adversarial setting.

Index Terms—online learning, combinatorial online prediction,
online convex optimization, combinatorial optimization

I. INTRODUCTION

Combinatorial online prediction problems arise in many
situations such as scheduling [13], ranking [20], [43], rout-
ing [5], [39], network optimization [26], and so on. Recent
advances in online convex optimization, offline convex and
discrete optimization, and discrete data structures enable us
to investigate broader problems than ever. In this paper, we
survey results in combinatorial online prediction and related
areas, as well as their applications.

The combinatorial online decision-making problem is de-
fined as the following protocol between the player and the
adversary. Let C ⊂ Rn+ be the set of decisions of interest.

For each trial t = 1, . . . , T ,
1) the player chooses a decision ct ∈ C,
2) the adversary chooses a loss vector `t ∈ [0, 1]n, and
3) the adversary provides the player a feedback:

• The feedback is the loss vector `t itself (full-
information setting).

• The feedback is the inner product ct ·`t only (bandit
setting).

There are options for feedbacks from the adversary. In the
full-information setting, the loss vector `t is always revealed
to the player. In the bandit setting, the loss, which is the
inner product between the decision ct and the loss vector `t is
provided to the learner, while the information of the loss vector
is not given. There is an intermediate setting between these,
called semi-bandit setting. In the semi-bandit setting, where
typically C ⊆ {0, 1}n, not only the loss, but also components
of the loss vector `t,i s.t. ct,i = 1 are shown to the learner.
This setting is natural in some applications, e.g., online routing
where cost of each edge in the chosen route is available.

The goal of the player is to minimize the α-regret for small
α ≥ 1:

α-regret = E

[
T∑
t=1

ct · `t

]
− α min

c∗∈C

T∑
t=1

c∗ · `t,

where the expectation is taken w.r.t. the randomness of the
player. In typical settings, we consider the cases with α =
1 and 1-regret. For simplicity, we abbreviate 1-regret as just
regret.

When the set C is finite and the size is small or C is a
closed convex set, the problem is called the expert setting, or

the online linear optimization, for which there are algorithms
whose regret bounds are O(

√
T), which are optimal w.r.t.

T and running times at each trial are polynomial in |C| for
the expert setting and polynomial in n (other parameters are
omitted).

However, when the size of C is huge, e.g., exponentially
large w.r.t. n or other relevant parameters, those optimal
algorithms are inefficient. We will review three approaches
for combinatorial online prediction problems.

Note that we will focus on the setting where the adversary
is literally “adversarial”. More precisely, we assume that the
adversary is oblivious, meaning that it determines loss vectors
without seeing the player’s decisions before the game starts.
This setting is not weak as it seems, since if the player is a
deterministic algorithm, the adversary could know its behavior
in advance. But, we assume that the player is a randomized
algorithm. Further, the adversary is assume to not see results
of player’s random choices. There are more relaxed setting
where the adversary is adaptive, in which it can see the random
choices of the player. Some approaches work in the adaptive
setting, but some do not.

Another relevant assumption would be that the adversary
is random and the loss vectors follows some probability
distribution. We omit this case and we recommend interested
readers to see, e.g., the survey of Cesa-Bianchi and Bubeck [6].

For other related topics on online prediction and online
convex optimization, see textbooks of Cesa-Bianchi and Lu-
gosi [7] and Hazan [19], respectively.

II. PRELIMINARIES

We begin with some notations. For n ≥ 1, let [n] =
{1, . . . , n}. For n ≥ 2, let ∆n be the probability simplex
over 1, . . . , n, i.e., ∆n = {p ∈ [0, 1]n |

∑n
i=1 pi = 1}. For

a finite set C ⊂ Rn, the convex hull conv(C) is defined as
conv(C) = {

∑
c∈C αcc |

∑
c∈C αc = 1,α ≥ 0}.

A. Examples of combinatorial sets
We explain several combinatorial objects often treated in

the literature.
a) k-sets: A k-set is a vector in {0, 1}n whose 1-

components are exactly k (1 ≤ k ≤ n). k-sets represent k
multiple choices from n fixed alternatives. The set C of k-sets
is represented as C = {x ∈ {0, 1}n |

∑
i∈[n] xi = k}.

b) Paths in a Directed Acyclic Graph: Given a di-
rected acyclic graph (DAG) with the source and sink nodes
G = (V,E) with |V | = n and |E| = m, C =
{c ∈ {0, 1}m | c represents a path from the source node
to the sink node in G}.

c) Permutations: A permutation π over [n] is a bijection
from [n] to [n]. Let Sn be the set of permutations over [n].
Given a permutation π ∈ Sn, the associated permutation
matrix Π ∈ [0, 1]n×n is defined as Πij = 1 if π(i) = j and
Πij = 0, otherwise. The convex hull of all permutation ma-
trices is called the Birkhoff polytope and represented as {X ∈
[0, 1]n×n |

∑
i∈[n]Xij = 1for j ∈ [n]and

∑
j∈[n]Xij =

1for j ∈ [n]}. Similarly, a permutation vector π associated
with a permutation π is defined as π = (π(1), . . . , π(n)).
The convex hull of all permutation vectors is called the
permutahedron.

d) Spanning Trees: Given an undirected graph G, a
spanning tree of the graph G is a subgraph without cycles
that contains all vertices in G.

B. Hedge Algorithm in the Experts Setting

Consider the simple case where C = {e1, . . . , en}, where
ei ∈ {0, 1}n (i = 1, . . . , n) is the unit vector whose the i-
th component is 1 and other components are 0s. This case is
called the experts setting. In the experts setting, there are n
experts and at each trial, the player chooses one of the experts
and follows its prediction. This setting naturally generalizes
the case where the player has several fixed choices. The
Hedge algorithm was developed by Freund and Schapire [12].
In the experts setting, given a parameter η > 0 and the
initial distriution p1 ∈ ∆n over experts, at each trial t, the
Hedge algorithm chooses ct = eit randomly according to the
distribution pt s.t.

pt,i = e−η
∑t−1
τ=1 `τ,i/Zt−1 for i = 1, . . . , n, (1)

where Zt−1 =
∑n
i=1 e

−η
∑t−1
τ=1 `τ,i .

Theorem 1 (Freund &Schapire [12]). The regret of Hedge
algorithm is O(

√
T lnn) and O(

√
L∗ lnn) with η =

√
lnn/T

and η = ln(1 +
√

(2 lnn)/L∗), respectively, where L∗ =

mini∈[n]
∑T
t=1 `t,i.

Note that the regret bound O(
√
L∗ lnn) has a matching

lower bound and thus the bound is optimal (for proofs, see,
e.g., [7], [20], [34]). prior knowledge, including An annoying
issue is that, to obtain the optimal regret bound, we need
to know the horizon T or the cumulative loss L∗ of the
best expert a priori. There are several variants of the Hedge,
including the work of Koolen and Van Erven [25], which
adaptively tune the time-dependent parameter ηt instead of
the fixed η and attain the same optimal bound in the worst
case and better bounds in some easy cases.

III. SIMULATION OF HEDGE OVER LARGE DECISION
SPACE

The first approach to deal with large decision spaces is to
simulate Hedge efficiently. The computational bottleneck of
Hedge is to sample decisions ct ∈ C, where C is possibly
exponentially large, according to the exponential weights pt

pt,c ∝ e−η
∑t−1
τ=1 cτ ·`τ . (2)

There is no known general efficient method to simulate the
sampling and it would be computationally hard for certain
classes of C. This is because such algorithms implies random-
ized offline linear optimization algorithms over C (possibly
NP-hard) via the standard online-to-batch conversion tech-
nique.

For some particular classes of C, there exists efficient
sampling algorithms.

a) Paths and k-Sets: For the set of paths, Takimoto
and Warmuth developed the efficient sampling technique [39]
using the weight pushing algorithm of Mohri [31]. The com-
putation time of the method is O(m+n). For k-sets, the set of
{0, 1}-vectors with k ones are encoded as paths in a DAG of
size O(nk) and the sampling problem over k-sets is reduced
to that of paths in a DAG with O(nk) nodes and edges.

b) Permutation Matrices and Vectors: For perfect match-
ings (permutation matrices), Cesa-Bianch and Lugosi pointed
out that computing weights of all permutation matrices can
be reduced to computing the permanent [8] and thus can be
(approximately) computed by the polynomial time approxi-
mating algorithms of Jerrum et al. [21], which takes Õ(n10)
time. For permutation vectors, Ailon proposed an improved
sampling scheme whose running time is O(n log n) [2].

c) Spanning Trees: For spanning trees, to the best of our
knowledge, there is no known polynomial time algorithm (in
terms of m and n). Cesa-Bianchi and Lugosi also mentioned
that the Markov chain-based method of Propp and Wilson [35]
could be used to sample spanning trees according to exponen-
tial weights efficiently [8].

Other examples of combinatorial objects include initial
segments of lists, for which Warmuth et al. proposed an
efficient sampling scheme [41].

For the bandit cases, Cesa-Bianchi and Lugosi proposed
COMBAND, a variant of Hedge using the sampling scheme
over |C|. The COMBAND employs the sampling scheme over
the decision set C w.r.t. exponential weights and thus can
be applied to combinatorial objects listed above. For paths
in the bandit cases, Awerbuch and Kleinberg developed a
technique using the barycentric spanner and obtained non-
trivial regret bounds [5] (similar bounds are obtained by
Mcmahan and Blum [28]). György et al. considered paths
in the semi-bandit cases [18]. For the bandit setting, Dani
et al. developed a method withO(

√
T) regret bounds using

the barycentric spanner and the sampling scheme [10]. For
permutation vectors, Ailon et al. proposed a generalization of
Ailon’s sampling scheme for the bandit setting [3].

As a summary, an advantage of this approach is that it is
often easier to analyze the regret in the full-information, semi-
bandit and bandit settings, once we assume that there is an ef-
ficient sampling algorithm according to the rule (2). However,
the sampling scheme needs careful design for specific classes.

IV. ONLINE MIRROR DESCENT/FTRL WITH PROJECTION
AND DECOMPOSITION

The second approach for combinatorial online prediction is
to relax the problems from discrete to continuous convex ones.

More precisely, the strategy is as follows:

1) (Convex relaxation) Relax the decision set C to
Relax(C) (which includes conv(C), typically
Relax(C) = conv(C)) and use an online linear
optimization algorithm over Relax(C).

2) (Rounding, or Decomposition) “Round” predictions
xt ∈ Relax(C) of the online linear optimization algo-
rithm over Relax(C) to discrete ones ct ∈ C.

More precisely, rounding is defined as, given x ∈ Relax(C),
to choose c ∈ C randomly so that E[c] ≤ αx for some α ≥ 1,
where the expectation is defined in terms of the algorithm’s
randomness. In particular, the decomposition, which is a spe-
cial case of rounding, is to find a convex combination of c ∈ C
satisfying x =

∑
c∈C αcc with α ∈ [0, 1]C and

∑
c∈C αc = 1.

A decomposition method implies a rounding method with
E[c] = x with α = 1. A detailed description of the scheme
is shown in Algorithm 1. With these components, it is easy

Algorithm 1 OLO over Relax(C) with Rounding (full infor-
mation setting)
Given: an online linear optimization algorithm A with decision
set Relax(C)

1) For t = 1, . . . , T

a) Run an algorithm A over Relax(C) and get a
decision xt ∈ Relax(C).

b) “Round” xt and predict ct = Round(xt) ∈ C
s.t. E(ct) ≤ αxt.

c) Receive the loss vector `t and incur loss ct · `t.
Feed the loss vector `t to the algorithm A.

to construct an combinatorial online prediction algorithm with
regret O(

√
T) in the full-information setting.

Theorem 2. Suppose that an online linear optimization al-
gorithm A with a decision set Relax(C) has a regret bound
O(
√
T). Then, Algorithm 1 has α-regret O(

√
T).

Proof.

(α-Regret) =

T∑
t=1

E[ct · `t]− α min
c∗∈C

T∑
t=1

c∗ · `t

≤α
T∑
t=1

xt · `t − α min
c∗∈Relax(C)

T∑
t=1

c∗ · `t

(by definition of rounding and C ⊂ Relax(C))

=O(α
√
T) (by definition of A).

A. FTRL / OMD and Projection

For constructing an online linear optimization algorithm,
we can use the Follow the Regularized Leader (FTRL) or the
Online Mirror Descent (OMD) over Relax(C). Let R : X →
R (where X ⊂ Rn) be a twice-differentiable strictly convex

function. The FTRL over Relax(C) with the regularizer R is
defined as, for t = 1, . . . , T ,

xt = arg max
x∈Relax(C)

η

t−1∑
τ=1

x · `τ +R(x).

The equivalent algorithm with the FTRL is the OMD (some-
times called lazy version of OMD) is defined as

yt = r−1(r(yt−1)− η`t−1)

xt = arg min
x∈Relax(C)

BR(x,yt), (projection)

where r(x) = ∇R(x), BR is the Bregman divergence asso-
ciated with R and defined as BR(x,y) = R(x),−R(y) −
∇R(y) · (x − y), and y0 is s.t. r(y0) = 0. Note that r−1

exists since R is strictly convex. In particular, the second step
of the OMD is called the projection step (onto Relax(C)).
One of computational bottleneck in this approach lies in this
step.

The OMD contains the Online Gradient Descent (OGD)
[44] and the Hedge as special cases. It is known that the OMD
achieves regret O(

√
T) (neglecting other factors) for online

linear optimization. See, e.g., Hazan’s textbook [19] for the
details of the FTRL and OMD.

B. Projection and Rounding (Decomposition)

a) k-set: Warmuth and Kuzmin developed projection and
decomposition methods onto the convex hull of the k-sets in
order to solve the online optimization of PCAs [42]. The con-
vex hull can be represented as {p ∈ ∆n | pi ≤ 1/k, i ∈ [n]}.
The projection onto the hull w.r.t. the relative entropy can be
done in linear time. The decomposition can be done in O(n2)
time.

b) Permutations: Helmbold and Warmuth proposed the
PermELearn for the class C of permutation matrices [20]. The
relaxed decision space is Relaxed(C) = conv(C), which is
the Birkhoff polytope. The Birkhoff polytope can be repre-
sented by O(n) linear constraints. The OMD corresponds to
a matrix version of Hedge and the Bregman projection is
defined w.r.t. the von Neuman matrix divergence and can be
approximately solved by the Sinkhorn balancing algorithm
in time O(n6). The decomposition step can be solved by
iteratively finding a perfect matching in a bipartite graph in
time O(n4).

For permutation vectors, Yasutake et al. developed a differ-
ent algorithm whose running time is O(n2) per trial [43] (the
running time is improved to O(n log n) later [27]). The convex
hull of the decision space is the permutahedron, described with
O(2n) linear constraints. Apparently, the projection seems
hard, but only O(n) linear constraints are shown to be relevant.
A simple projection algorithm w.r.t. the relative entropy can
be done in O(n2) time. The decomposition step is solved in
O(n log n) time. Lim and Wright proposed improved projec-
tion algorithms for a large class of Bregman divergences whose
running time is O(n log n) as well [27].

c) Spanning trees: Koolen et al. proposed the Compo-
nent Hedge which generalizes the framework of Helmbold
and Warmuth [20] for wider classes of combinatorial objects
including spanning trees [26] . The convex hull of the spanning
trees is represented with O(n3) variables and linear constraints
and the unnormalized relative entropy is the instance of the
Bregman divergence. The decomposition step can be done by
iteratively solving linear optimization of the spanning trees at
most n times.

d) Paths: Koolen et al. also considered projection and
decomposition steps for paths [26]. For paths in a DAG with
the source and sink nodes, the convex hull of them corresponds
to the flow polytope, which is described with O(n+m) linear
constraints. So, the Bregman projection onto the flow polytope
is a convex optimization over O(n+m) constraints. Rounding
can be done in O(n+m) time.

Suehiro et al. provided a unified framework of the projection
and the decomposition steps for several classes of combina-
torial objects characterized with submodular functions, which
includes k-sets, permutation vectors, spanning trees and so
on [38].

C. Bandit Settings

Uchiya et al. and Kale et al. independently considered a de-
composition method for k-sets in the semi-bandit setting [24],
[40]. Combes proposed a general framework for projection
and decomposition steps for the bandit setting [9].

V. OFFLINE-TO-ONLINE CONVERSION METHODS

The third approach to online combinatorial prediction is
to “convert” offline linear optimization algorithms over C
to online ones. One of advantages of this approach is that,
there are many offline linear optimization algorithms for many
classes C and they are often efficient.

A. Offline Exact Optimization Algorithms to Online

For 1-regret minimization, we assume an offline linear
optimization algorithm OL over C. That is, given a loss vector
` ∈ [0, 1]n, OL outputs arg minc∗∈C c

∗ ·`. A naive way to use
the offline algorithm is to predict the best offline minimizer
so far, given past loss functions `1, . . . , `t−1. The strategy is
called the Follow the Leader (FTL). Unfortunately, the regret
of FTL is Ω(T) in general (see, e.g., Shalev-Shwartz’s survey
for the proof [37]).

The Follow the Perturbed Leader (FPL), a slight modifica-
tion of FTL achieves the regret O(

√
T) [23]. At each trial t, the

FPL chooses ct = arg minc∈C c ·
(
η
∑t−1
τ=1 `τ +Zt

)
, where

Zt is a random vector drawn according to some distribution
(e.g., uniform distribution over [−1, 1]n or the component-wise
exponential distributions). There are some variants of the FPL
with better bounds in some case (see, Devroye et al. [11], Neu
and Bartok [33] and Abernethy et al. [1]). For the semi-bandit
setting, Neu developed an efficient variant of the FPL [32].

Since we only need an offline linear optimization algorithm
for C, many classes of combinatorial concepts can be dealt
with the FPL, including all examples raised in previous

sections. However, a drawback of the FPL is that the regret
bounds are sometimes inferior to bounds of other types. But
recent analyses improving the gaps in full information, semi-
bandit cases [33]. Also, as far as we know, there is no non-
trivial extension of the FPL for the bandit setting.

B. Offline Approximation Algorithms to Online

For many classes of C, exact linear optimization of C is
NP-hard and thus it is natural to assume that there is only an
approximation algorithm for C available. More precisely, an
α-approximation algorithm for C (α ≥ 1), given a loss vector
` ∈ [0, 1]n as input, outputs c s.t. c · ` ≤ αminc∗∈C c

∗ · `.
The FPL does not work well with approximation algorithms
in general. Its regret bound becomes O(αT

√
T) [23].

Kakade et al. developed a better online algorithm using an
α-approximation algorithm for C, which achieves O(α

√
T)

regret bounds [22]. Their method basically follows the second
approach in the previous section. Roughly speaking, there
method is a combination of the OGD over conv(αC) with
projection and decomposition steps. The key technique is
to perform (approximate) projection and decomposition steps
based on the Frank-Wolf method which iteratively solves
linear optimization problems over conv(αC). To implement
the Frank-Wolf method, the α-approximation algorithm is used
as a key component. The Kakade et al.’ s method, however,
takes O(T) computation time per trial and thus takes O(T 2)
time after T trials. Garber proposed an improved conversion
algorithm with running time O(

√
T log T) per trial, while

preserving the same regret bounds [17].
Fujita et al. considered a mild but natural assumption for
C [14]. Their assumption is that there exists a relaxation-
based approximation algorithm for C. That is, there exists an
algorithm A such that, for some closed convex space Relax(C)
which includes C, given a loss vector ` ∈ [0, 1]n, A outputs
c ∈ C satisfying c · ` ≤ αminx∗∈Relax(C) x

∗ · `. Under this
assumption, their algorithm, again, a combination of the OGD
and projection and decomposition steps achieves ((α+ε)

√
T)

regret bounds with O((1/ε2)) time complexity per trial.

VI. CONCLUSION

In this paper, we surveyed recent results in online combi-
natorial prediction in the adversarial setting. There are many
open problems. For example, more efficient algorithms for par-
ticular classes are needed. Better regret bounds of projection-
decomposition based methods and the FPL-based methods for
the bandit setting are still open.

Another interesting direction is to application of combi-
natorial online prediction techniques to other areas, such as
online scheduling [16]. boosting over compressed data [15]. In
particular, for practical applications, data structures BDD [4],
MDD [29] and ZDD [30] can be useful. These data structures
succinctly represent combinatorial sets as DAGS in which
each combinatorial object corresponds to a path. Therefore, by
combining these structures, the combinatorial online prediction
problem over any combinatorial decision set is reduced to that
of paths. For example, Sakaue et al. considered a combination

of ZDDs and online combinatorial prediction techniques [36].
Fujita et al. proposed an algorithm which simulates AdaBoost
and its variants over compressed data by ZDDs [15].

ACKNOWLEDGMENTS

This work is supported in part by JSPS KAKENHI Grant
Number JP16K00305.

REFERENCES

[1] J. Abernethy, C. Lee, A. Sinha, and A. Tewari. Online Linear Optimiza-
tion via Smoothing. In Proceedings of the 27th Conference on Learning
Theory (COLT’14), volume 35 of JMLR W&CP, pages 807–823, 2014.

[2] N. Ailon. Improved bounds for online learning over the permutahedron
and other ranking polytopes. In Proceedings of 17th International
Conference on Artificial Intelligence and Statistics (AISTAT2014), pages
29–37, 2014.

[3] N. Ailon, K. Hatano, and E. Takimoto. Bandit optimization over the
permutahedron. Theoretical Computer Science, 650:92–108, 2016.

[4] S. B. Akers. Binary Decision Diagrams. IEEE Transactions on
Computers, C-27(6):509–516, 1978.

[5] B. Awerbuch and R. D. Kleinberg. Adaptive routing with end-to-end
feedback. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing (STOC2004), pages 45–53, 2004.

[6] S. Bubeck and N. Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends
in Machine Learning, 5(1):1–122, 2012.

[7] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.
Cambridge University Press, 2006.

[8] N. Cesa-Bianchi and G. Lugosi. Combinatorial Bandits. Journal of
Computer and System Sciences, 78(5):1404–1422, 2012.

[9] R. Combes, M. S. Talebi Mazraeh Shahi, A. Proutiere, and M. Lelarge.
Combinatorial Bandits Revisited. In Advances in Neural Information
Processing Systems 28 (NIPS 2015), pages 2116–2124. ., 2015.

[10] V. Dani, S. M. Kakade, and T. P. Hayes. The Price of Bandit Information
for Online Optimization. In Advances in Neural Information Processing
Systems 20 (NIPS2008), pages 345–352. 2008.

[11] L. Devroye, G. Lugosi, and G. Neu. Random-Walk Perturbations for
Online Combinatorial Optimization. IEEE Transactions on Information
Theory, 61(7):4099–4106, 2015.

[12] Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1997.

[13] T. Fujita, K. Hatano, S. Kijima, and E. Takimoto. Online Linear
Optimization for Job Scheduling under Precedence Concstraints. In
Proceedings of 26th International Conference on Algorithmic Learning
Theory(ALT 2015), volume 6331 of LNCS, pages 345–359, 2015.

[14] T. Fujita, K. Hatano, and E. Takimoto. Combinatorial Online Prediction
via Metarounding. In Proceedings of 24th Annual Conference on
Algorithmic Learning Theory (ALT 2013), volume 8139 of LNCS, pages
68–82, 2013.

[15] T. Fujita, K. Hatano, and E. Takimoto. Boosting over Non-deterministic
ZDDs. In Proceeding of the 12th international conference and work-
shops on algorithms and computation (WALCOM 2018), LNCS, vol.
10755, pages 195–206, 2018.

[16] T. Fujita, K. Hatano, and E. Takimoto. Online Combinatorial Opti-
mization with Multiple Projections and Its Application to Scheduling
Problem. IEICE Transactions on Information and Systems, (to appear),
2018.

[17] D. Garber. Efficient Online Linear Optimization with Approximation
Algorithms. In Advances in Neural Information Processing Systems 30
(NIPS2017), pages 627–635, 2017.

[18] A. György, T. Linder, G. Lugosi, and G. Ottucsák. The On-Line Shortest
Path Problem Under Partial Monitoring. Journal of Machine Learning
Research, 8:2369–2403, 2007.

[19] E. Hazan. Introduction to Online Convex Optimization. Foundations
and Trends in Optimization, 2(3-4):157–325, 2016.

[20] D. P. Helmbold and M. K. Warmuth. Learning Permutations with
Exponential Weights. Journal of Machine Learning Research, 10:1705–
1736, 2009.

[21] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approxima-
tion algorithm for the permanent of a matrix with nonnegative entries.
Journal of the ACM, 51:671–697, 2004.

[22] S. Kakade, A. T. Kalai, and L. Ligett. Playing games with approximation
algorithms. SIAM Journal on Computing, 39(3):1018–1106, 2009.

[23] A. Kalai and S. Vempala. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307,
2005.

[24] S. Kale, L. Reyzin, and R. E. Schapire. Non-Stochastic Bandit Slate
Problems. In Advances in Neural Information Processing Systems 23,
pages 1054–1062. 2010.

[25] W. M. Koolen and T. V. Erven. Second-order Quantile Methods
for Experts and Combinatorial Games. In Proceedings of the 28th
Conference on Learning Theory (COLT2015), volume 40 of PMLR,
pages 1155–1175, 2015.

[26] W. M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging Structured
Concepts. In Proceedings of the 23rd Conference on Learning Theory
(COLT 2010), pages 93–105, 2010.

[27] C. H. Lim and S. Wright. Beyond the Birkhoff Polytope: Convex
Relaxations for Vector Permutation Problems. In Advances in Neural
Information Processing Systems 27 (NIPS 2014), pages 2168–2176,
2014.

[28] H. B. McMahan and A. Blum. Online Geometric Optimization in the
Bandit Setting Against an Adaptive Adversary. In Learning Theory,
volume 3120 of LNCS, pages 109–123. Springer Berlin Heidelberg,
2004.

[29] M. D. Miller. Multiple-Valued Logic Design Tools. In Proceedings
of the23rd IEEE International Symposium on Multiple-Valued Logic
(ISMVL’93), pages 2–11, 1993.

[30] S.-i. Minato. Zero-Suppressed BDDs for Set Manipulation in Com-
binatorial Problems. In Proceedings of the 30th international Design
Automation Conference (DAC’93), pages 272–277, 1993.

[31] M. Mohri. General algebraic frameworks and algorithms for shortest
distance problems, 1998.

[32] G. Neu. First-order regret bounds for combinatorial semi-bandits. In
Proceedings of the 28th Conference on Learning Theory (COLT2015),
volume 40 of PMLR, pages 1360–1375, 2015.

[33] G. Neu and G. Bartók. Importance Weighting Without Importance
Weights: An Efficient Algorithm for Combinatorial Semi-Bandits. Jour-
nal of Machine Learning Research, 17(154):1–21, 2016.

[34] F. Orabona and D. Pal. Optimal Non-Asymptotic Lower Bound on the
Minimax Regret of Learning with Expert Advice, nov 2015.

[35] J. G. Propp and D. B. Wilson. How to Get a Perfectly Random Sample
from a Generic Markov Chain and Generate a Random Spanning Tree
of a Directed Graph. Journal of Algorithms, 27(2):170–217, may 1998.

[36] S. Sakaue, M. Ishihata, and S.-i. Minato. Efficient Bandit Combina-
torial Optimization Algorithm with Zero-suppressed Binary Decision
Diagrams. In Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics (AISTATS 2018), volume 84 of
PMLR, pages 585–594, 2018.

[37] S. Shalev-Shwartz. Online Learning and Online Convex Optimization.
Foundations and Trends in Machine Learning, 4(2):107–194, 2011.

[38] D. Suehiro, K. Hatano, S. Kijima, E. Takimoto, and K. Nagano. Online
Prediction under Submodular Constraints. In Proceedings of 23th Annual
Conference on Algorithmic Learning Theory (ALT 2012), volume 7568
of LNCS, pages 260–274, 2012.

[39] E. Takimoto and M. K. Warmuth. Path kernels and multiplicative
updates. Journal of Machine Learning Research, 4(5):773–818, 2003.

[40] T. Uchiya, A. Nakamura, and M. Kudo. Algorithms for Adversarial
Bandit Problems with Multiple Plays. In Proceedings of the 21st
International Conference on Algorithmic Learning Theory (ALT2010),
volume LNAI 6331, pages 375–389, 2010.

[41] M. K. Warmuth, W. M. Koolen, and D. P. Helmbold. Combining initial
segments of lists. Theoretical Computer Science, 519:29–45, jan 2014.

[42] M. K. Warmuth and D. Kuzmin. Randomized Online PCA Algorithms
with Regret Bounds that are Logarithmic in the Dimension. Journal of
Machine Learning Research, 9:2287–2320, 2008.

[43] S. Yasutake, K. Hatano, S. Kijima, E. Takimoto, and M. Takeda.
Online Linear Optimization over Permutations. In Proceedings of the
22nd International Symposium on Algorithms and Computation (ISAAC
2011), volume 7074 of LNCS, pages 534–543, 2011.

[44] M. Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the Twentieth International Confer-
ence on Machine Learning (ICML 2003), pages 928–936, 2003.

