Studies on the marine yeasts. VI : On some physiological properties of the isolates

Suehiro, Sumio Laboratory of Chemistry of Fishery Product, Faculty of Agriculture, Kyusyu University

Tomiyasu, Yukio Laboratory of Chemistry of Fishery Product, Faculty of Agriculture, Kyusyu University

https://doi.org/10.5109/22720

出版情報:九州大学大学院農学研究院紀要. 13 (1), pp.213-225, 1964-03. Kyushu University バージョン: 権利関係: Journal of the Faculty of Agriculture, Kyushu University, Vol. 13, No. 1 March 30, 1964

Studies on the marine yeasts. VI On some physiological properties of the isolates

Sumio SUEHIRO* and Yukio TOMIYASU†

The physiological properties of 138 cultures of yeast, isolated from marine muds,³⁾ marine plankton,"? ⁴⁾ and seaweeds,^{1,5)} were investigated : namely, the salt tolerance, the temperature range for the growth, the effect of the addition of 3 % NaCl on the growth, and the growth in peptone sea water.

The salt tolerance

The salt tolerance test was made with 3 % Malt Extract (Difco) containing NaCl ranging in concentration from 5 to 20 %. The incubation period ranged from 10 days (5, 10 %) to 20 days (15, 20 %) at 20°C.

Three cultures were able to grow in the medium containing 20 % NaCl and eight in 15 %. All of them belonged to *Torulopsis famata* or *Candida parapsilosis* var. *intermedia*. It is interesting that all these cultures showing high salt tolerance were isolated from seaweeds only, while the cultures of *C. parapsilosis* var. *intermedia* isolated from plankton never showed such high tolerance. All of them, moreover, have maintained the high tolerance after having been cultured on wort agar without NaCl for ten years. Since the salt concentration of the surface of seaweeds becomes higher in low tide due to evaporation, the yeasts, attaching themselves to the surface, may get such a high degree of tolerance. It is considered, therefore, that the yeasts must always attach themselves to the seaweeds in order to get such high tolerance. Moreover, the other physiological properties of the marine yeasts appear to vary according to the places where they exist.

The temperature range for the growth

The temperature range for the growth was determined by using

^{*} Fishery Research Laboratory, Kyushu University, Tsuyazaki, near Fukuoka.

[†] Department of Fisheries, Kyushu University, Fukuoka.

3 % Malt Extract. The incubation period ranged from 2-5 days (above 20°C) to 20 days (5°C).

Among 11 cultures of C. *tropicalis* tested, four, isolated in summer, could grow at 41° C, while all of them isolated in winter could not grow even at 38° C, and at 5° C most of them isolated in summer were unable to grow or grew poorly. There were no cultures that could grow at 43° C. From the point of view of the temperature range for the growth, therefore, yeast biota in the sea seems to vary according to seasonal changes.

The effect of the addition of 3 % NaCl

The effect was tested with Hayduck's media, one containing 3 % NaCl and the other containing no NaCl, at 20°C for five days. The degree of the growth was determined with the turbidity by using photoelectric colorimeter, and the effect was determined by estimating the ratio of the growth in the medium containing 3 % NaCl to that in the medium containing no NaCl.

Most of the cultures grew better in the medium without NaCl than in that containing 3 % NaCl. Within the limit of this experiment,

Fig. 1. Frequency distribution of the ratio, r,* with all the cultures tested. *r is obtained as the value of the ratio of the growth in the medium containing 3% NaCl to that without NaCl.

it seems that the salt requirement of these cultures are not remarkable. However, the ratio, above mentioned, varied with cultures. This is the reason why this test was carried out. The frequency distribution of the ratio with all the cultures is given in Fig. 1. The maximal number of the cultures was observed at 0.8 (value of the ratio), the distribution itself being definable with genus. The distributions with *Candida*, *Cryptococcus*, and *Rhodotorula* are shown in Fig. 2.

Some cultures (especially *Torulopsis*) grew better in the medium containing 3 % NaCl than in that without NaCl. The cultures of *Candida* seemed to be more halophylic than those of *Cryptococcus* and

Rhodotorula. Though the cultures of Torulopsis were not enough it. number to be discussed adequately, they seemed to be most halophylic among the cultures tested, and the peak of the distribution appeared to be at 1.0. From the view point of salt requirement, there seemed to be few indigenous marine species among the cultures. It is a wellknown fact that most marine bacteria fail to grow in the medium without 3% NaCl, but in our studies such cultures of yeast as fail to grow without NaCl have not been isolated. Even those cultures, showing high salt tolerance as previously mentioned, could grow well in the medium without NaCl. Among the cultures of Candida, some were found to be unable to produce pseudomycelium in the medium without NaCl. On counting the number of the yeasts in marine samples by plating, the ratio of the number of yeast colonies developing in the medium without NaCl to that developing in the medium containing 3 % NaCl was always found to be 1:1 in our experiments. In the case of marine bacteria, however, the ratio was 8 : 100.⁶ Consequently, the characteristics of indigenous marine species of yeast appear to differ considerably from that of bacteria, and in spite of lacking in strict salt requirement, following cultures may be considered as indigenous marine species :

1) The cultures unable to produce pseudomycelium in the medium not containing 3 % NaCl.

2) The cultures showing high salt tolerance.

3) The cultures growing better in the medium containing 3 γ_0 NaCl than in that without NaCl.

The growth in peptone sea water

The growth in peptone sea water was determined by using the sea water containing 0.5 % Polypeptone (Wakō Co.) at 20°C for five days. The pH of the medium was adjusted to 7.5 with NaOH.

In spite of poor sugar content in plankton, the marine yeasts utilize it well. These yeasts, therefore, may grow well with amino acids as sole source of carbon. Then, if these cultures are indigenous marine species, they may grow in the medium. As shown in Table 3, a considerable number of the cultures were able to grow well. Most of the cultures of **Rhodotorula mucilaginosa** grew well, while all the cultures of the other species of the genus were unable to grow or grew poorly. The characteristic of the cultures of the species seems to have some connection with the abundance of the isolates of the species from decaying plankton and seaweeds.

SUMMARY

1) Among 138 cultures of yeast tested, three cultures were able to grow in the medium containing 20 % NaCl and eight in 15 %. They belonged to Torulopsis famata or Candida parapsilosis var. intermedia and were isolated from seaweeds only. Such high salt tolerance was never observed on the cultures isolated from plankton. All cultures could grow in the medium containing 5 % NaCl.

2) Most of the cultures grew well at 5-30°C. Four cultures of Candida tropicalis isolated in summer were able to grow at 41°C, but all cultures of the species isolated in winter were unable to grow even at 38°C.

3) Most cultures grew better in the medium not containing NaCl than in that containing 3 % NaCl. The cultures of Torulopsis and Candida seemed to be more halophylic than those of Cryptococcus and Rhodotorula.

4) A considerable number of the cultures could grow well in peptone sea water (pH 7.5). Most cultures of Rhodotorula mucilaginosa grew well in it, but the cultures of the other species of the genus could not grow or grew poorly in it.

REFERENCES

- 1) Suehiro, S, 1960. Sci. Bull. Fac. Agr. Kyushu Univ., 17: 443.
- 2) _____, 1962. *Ibid*. **20**: 101.
- 3) _____, 1963. Ibid. 20: 223.
- 4) _____ and Y. Tomiyasu, 1962. J. Fac. Agr. Kyushu Univ., 12: 163.
 5) _____, ____, and O. Tanaka, 1962. *Ibid.* 12: 155.
- 6) ZoBell, C. E., 1941. J. Marine Research, 4: 42.

Code	Taxon	Source	Growth at various con- centration of NaCl				
Code	122011	gource	5	10	15	20	
No. 1 No. 14 No. 16 No. 10 No. 24	Saccharomyces exiguus S. cerevisiae S. delbrueckii Hansenula anomala Candida parapsilosis yar. intermedia	marine mud seaweed					
No. 164 No. 165 No. 169 No. 170 No. 177	val. micrimatia						
No. 181 No. 185 No. 187 No. 192 No. 193				++ ++ ++ ++			
No. 194 No. 197 No. 200 No. 203 No. 204				+++ +++ +++ +++ +++	+++ +++ +++	++	
No. 84 No. 98 No. 100 No. 112 No. 114		marine plankton	+++ +++ +++ +++ +++				
No. 115 No. 163 No. 167 No. 62 No. 63		T. subtilis*	+++ +++ +++ +++				
No. 69 No. 70 No. 71 No. 31 No. 106	C. tropicalis	marine mud marine plankton					
No. 123 No. 124 No. 131 No. 132 No. 135				-+- -+- ++			
No. 139 No. 158 No. 172 No. 182 No. 109	<i>C.</i> sp.						

Table 1. The salt tolerance of the isolates.

+ little growth, ++ moderate growth, ++ heavy growth. * Thalassiosira subtilis (marine diatom)²⁾

218

Code		Taxon	Source	Growth at various con- centration of Nacl			
	le	Taxon	Source	5	10	15	20
No. No. No. No. No.	$110 \\ 122 \\ 146 \\ 147 \\ 148$			## ## ## ## ##	++ ++ ++ ++ ++		
No. No. No. No. No.	149 150 151 152 153			* * * * * *	++ ++ ++		
No. No. No. No. No.	$154 \\ 159 \\ 160 \\ 2 \\ 99$	C. brumptii	marine mud marine plankton		# # # +		
No. No. No. No. No.	117 82 17 29 34	C. solani C. mycoderma C. albicans C. guilliermondii	marine plankton marine mud seaweed marine mud				
No. No. No. No. No.	7 66 67 68 36	C. intermedia C. lipolytica Rhodotorula mucilaginosa	marine mud T. subtilis marine mud		+++++++++++++++++++++++++++++++++++++++		
No. No. No. No. No.	33 61 78 80 89		<i>T. subtilis</i> marine plankton				
No. No. No. No.	$127 \\ 128 \\ 136 \\ 161 \\ 171$		seaweed		 ++ ++ ++		
No. No. No. No. No.	174 179 188 190 195				 +		
No. No. No. No. No.	201 104 88 94 95	Rh. minuta Rh. flava	marine plankton marine plankton	# # # # # #			
No. No.	77 85	Rh. glutinis	marine plankton	+++ +++	_		

Table 1. Continued.

			Growth at various con- centration of NaCl				
Code	Taxon	Source	5	10	15	20	
No. 162 No. 35 No. 64 No. 65 No. 72	Cryptococcus laurentii	marine mud T. subtilis		++ -+ ++			
No. 79 No. 83 No. 92 No. 111 No. 143		marine plankton	## ## ## ## ##	++ ++			
No. 176 No. 178 No. 108 No. 119 No. 120	Cr. albidus	seaweed marine plankton		+		No.1 (1997)	
No. 125 No. 133 No. 183 No. 86 No. 175	Cr. diffluens	marine plankton seaweed marine plankton seaweed					
No. 93 No. 191 No. 101 No. 156 No. 5	Cr. neoformans Cr. luteolus Torulopsis famata	marine plankton seaweed marine plankton seaweed		 ++	 +++		
No. 168 No. 180 No. 186 No. 184 No. 196				# # # #		++-	
No. 199 No. 202 No. 74 No. 75 No. 76	T. inconspicua	T. subtilis			+++		
No. 116 No. 20 No. 27 No. 129 No. 130	Trichosporon behrendii Tr. cutaneum	marine plankton seaweed seaweed marine plankton		+			
No. 189 No. 18 No. 173 No. 22 No. 155	Tr. infestans Tr. pullulans Black yeast	seaweed seaweed marine mud marine plankton	** * * *	+++++++++++++++++++++++++++++++++++++++			
No. 144	yeast-like fungi	marine plankton	+++	+			

Table 1. Continued.

		Growth at various temperatu					ure
Code	Taxon	5	25	30	35	38	41
No. 1 No. 14 No. 16 No. 10 No. 24	Saccharomyces exiguus S. cerevisiae S. delbrueckii Hansenula anomala Candida parapsilosis	++ ++ ++ ++	# # # # #	+++ +++ +++ +++ +++			
No. 164 No. 165 No. 169 No. 170 No. 177	var. intermeata	+++ +++ +++ +++ +++	## ## ## ##	++ ++ ++ ++ ++			
No. 181 No. 185 No. 187 No. 192 No. 193			+ + + + + + + + + + + + + + + + + + +	# # # # # #			
No. 194 No. 197 No. 200 No. 203 No. 204			## ## ## ##	## + ## #	 ##	 ++	
No. 84 No. 98 No. 100 No. 112 No. 114		+++ +++ +++ +++	1#+ 1#+ 1#+ 1#+ 1#+	# # # # #	 + # #		
No. 115 No. 163 No. 167 No. 62 No. 63		+++ +++ +++ ++		++ ++ ++ ++	++ ++ 		
No. 69 No. 70 No. 71 No. 31 No. 106	C. tropicalis		‡ ‡ ‡ ‡ ‡	+# +# +# +#	 ++ ++		
No. 123 No. 124 No. 131 No. 132 No. 135		+++++++++++++++++++++++++++++++++++++++	+++ +++ +++ +++	+++ +++ +++ +++ +++	## ## -+ ##	++ ++ ++ ++	##
No. 139 No. 158 No. 172 No. 182 No. 109	С. sp.	+## -+- +## +## +##	+#+ +#+ +#+ +#+	# # # # #	+++ ++ ++ 	+ +	++
No. 110 No. 122		+1+ +1+	+++ +++	++ -+			

Table 2. The temperature range for the growth.

Table 2. Continued.

Cali	<u>т</u>	Growth at various temperature						
Code	Taxon	5	25	30	35	38	41	
No. 146 No. 147 No. 148 No. 149 No. 150		+#+ +#+ +#+ +#+ +#+	+#+ +#+ +#+ +#+ +#+	# + + +	 			
No. 151 No. 152 No. 153 No. 154 No. 159		+ + + + + + + + + + + + + + +		++ ++ +∔ ++	 -+- +++			
No. 160 No. 99 No. 117 No. 2 No. 82	C. brumptii C. solani	+# + + + +		+ + + + + + + + + + + + + + + + + +	+++ +++	+++ 		
No. 17 No. 29 No. 34 No. 7 No. 66	C. mycoderma C. albicans C. guilliermondii C. intermedia C. lipolytica	+++ +++ +++		++ +++ +++ +++	+++ +++ +++	+++ +++ —		
No. 67 No. 68 No. 36 No. 38 No. 61	Rhodotorula mucilaginosa	++ ++ ++ ++ ++		+#+ +#+ -+ ++				
No. 78 No. 80 No. 89 No. 127 No. 128		+++ +++ +++ +++		 + #				
No. 136 No. 161 No. 171 No. 174 No. 179		## ## ##		++ + +				
No. 188 No. 190 No. 195 No. 201 No. 104	Rh. minuta	## ## ## ##		 + + +				
No. 88 No. 94 No. 95 No. 77 No. 85	Rh. flava Rh. glutinis			++ ++ ++ ++				
No. 162 No. 35	Cryptococcus laurentii	+++ ++	+++	_	_	_	_	

		Growth at various temperature					
Code	Taxon	5	25	30	35	38	41
No. 64 No. 65 No. 72 No. 79 No. 83		+++ +++ +++ +++	+++ +++ +++ +++ +++ +++				
No. 92 No. 111 No. 143 No. 176 No. 178		+++ +++ +++ +++	+++ +++ +++ +++ +++	 ++++ 			
No. 108 No. 119 No. 120 No. 125 No. 133	Cr. albidus	++ ++ ++ ++ ++	+++ +++ +++ +++ +++	++ ++ ++ ++ ++			
No. 183 No. 86 No. 175 No. 93 No. 191	Cr. diffluens Cr. neoformans	++ ++ ++ ++ ++	+++ +++ +++ +++	++ ++ ++ ++ ++			
No. 101 No. 156 No. 5 No. 168 No. 180	Cr. luteolus Torulopsis famata	 + + + + +	+++ +++ +++ +++	-11- +1- +11- +11- +11- +11-			
No. 184 No. 186 No. 196 No. 199 No. 202		# # # #		+++ +++ +++ +++ +++ +++	 ++ ++ ++		
No. 74 No. 75 No. 76 No. 116 No. 20	T. inconspicua Trichosporon behrendii		+++ +++ +++ +++		## ## ## #	++ ++ ++ ++	
No. 27 No. 129 No. 130 No. 189 No. 18	Tr. cutaneum Tr. infestans	++ ++ ++ ++	+++ +++ +++ +++	+++ +++ +++ +++	+++ +++ +++	+	
No. 173 No. 22 No. 155 No. 144	<i>Tr. pullulans</i> Black yeast yeast-like fungi	 ## ++ +	+#+ ++ +#+ ##	+++ 			

Table 2. Continued.

Code	Taxon	Growth	Code	Taxon	Growth
No. 1 No. 14 No. 16 No. 10 No. 24	Saccharomyces exiguus S. cerevisiae S. delbrueckii Hansenula anomala Candida parapsilosis var. intermedia	++	No. 139 No. 158 No. 172 No. 182 No. 109	С. sp.	
No. 164 No. 165 No. 169 No. 170 No. 177		# # + + -	No. 110 No. 122 No. 146 No. 147 No. 148		+++++++++++++++++++++++++++++++++++++++
No. 181 No. 185 No. 187 No. 192 No. 193		 +	No. 149 No. 150 No. 151 No. 152 No. 153		+++++++++++++++++++++++++++++++++++++++
No. 194 No. 197 No. 200 No. 203 No. 204		+# +# +#	No. 154 No. 159 No. 160 No. 2 No. 99	C. brumptii	++ +- ++
No. 84 No. 98 No. 100 No. 112 No. 114		++ +- 	No. 117 No. 82 No. 17 No. 29 No. 34	C. solani C. mycoderma C. albicans C. guilliermondii	+++ +++ ,+
No. 115 No. 163 No. 167 No. 62 No. 63		- + + -	No. 7 No. 66 No. 67 No. 68 No. 36	C. intermedia C. lipolytica Rhodotorula mucilaginosa	++ ++ ++ ++
No. 69 No. 70 No. 71 No. 31 No. 106	C. tropicalis	++-++++++++++++++++++++++++++++++++++++	No. 38 No. 61 No. 78 No. 80 No. 89		 -+ -+ +
No. 123 No. 124 No. 131 No. 132 No. 135		++ ++ ++ ++	No. 127 No. 128 No. 136 No. 161 No. 171		+ ++ ++ ++ ++ ++

Table 3. The growth in peptone sea water.

Code	Taxon	Growth	Code	Taxon	Growth
No. 174 No. 179 No. 188 No. 190 No. 195		++ ++ ++ ++	No. 186 No. 196 No. 199 No. 202 No. 74	T. inconspicua	+ +
No. 201 No. 104 No. 88 No. 94 No. 95	Rh. minuta Rh. flava	+ - +	No. 75 No. 76 No. 116 No. 20 No. 27	Trichosporon bchrendii Tr. cutaneum	 -+- -++-
No. 77 No. 85 No. 162 No. 35 No. 64	Rh. glutinis Cryptococcus laurentii	+ + + + + + + + + + + + + + + + + + + +	No. 129 No. 130 No. 189 No. 18 No. 173	Tr. infestans	* * * * *
No. 65 No. 72 No. 79 No. 83 No. 92			No. 22 No. 155 No. 144	<i>Tr. pullulans</i> Black yeast yeast-like fungi	-+- -+- 111
No. 111 No. 143 No. 176 No. 178 No. 108	Cr. albidus	+++++			
No. 119 No. 120 No. 125 No. 133 No. 183					
No. 86 No. 175 No. 93 No. 191 No. 101	Cr. diffluens Cr. neoformans Cr. luteolus	+++++++++++++++++++++++++++++++++++++++			
No. 156 No. 5 No. 168 No. 180 No. 184	Torulopsis famata	+ ++ ++ ++			

Table 3. Continued.

.