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Abstract

Distributed word representations are used
in many natural language processing tasks.
When dealing with ambiguous words, it is de-
sired to generate multi-sense embeddings, i.e.,
multiple representations per word. Therefore,
several methods have been proposed to gen-
erate different word representations based on
parts of speech or topic, but these methods
tend to be too coarse to deal with ambiguity.
In this paper, we propose methods to generate
multiple word representations for each word
based on dependency structure relations. In
order to deal with the data sparseness prob-
lem due to the increase in the size of vocabu-
lary, the initial value for each word represen-
tations is determined using pre-trained word
representations. It is expected that the repre-
sentations of low frequency words will remain
in the vicinity of the initial value, which will in
turn reduce the negative effects of data sparse-
ness. Extensive evaluation results confirm
the effectiveness of our methods that signif-
icantly outperformed state-of-the-art methods
for multi-sense embeddings. Detailed analysis
of our method shows that the data sparseness
problem is resolved due to the pre-training.

1 Introduction

Distributed word representations by neural net-
works (Mikolov et al., 2013a; Mikolov et al.,
2013b; Pennington et al., 2014; Levy and Gold-
berg, 2014; Bojanowski et al., 2017), which are
one of the implementations of the distributional hy-
pothesis (Harris, 1954), have shown surprising ef-
fectiveness in representing semantic or syntactic in-

formation of words by dense vectors. They have
become the standard language resource for many
natural language processing tasks, such as machine
translation (Sutskever et al., 2014), text classifica-
tion (Mikolov and Com, 2014) and lexical substitu-
tion (Melamud et al., 2015). Widely used methods
for word embedding including CBOW (Continuous
Bag-of-Words) (Mikolov et al., 2013b) and SGNS
(Skip-gram with Negative Sampling) (Mikolov et
al., 2013a) generate a single word representation
per word. Hence several meanings of the word are
mixed in the representation, which significantly af-
fect the downstream usability.

To solve this problem, several methods (Nee-
lakantan et al., 2014; Paetzold and Specia, 2016;
Fadaee et al., 2017; Athiwaratkun and Wilson, 2017)
to generate multi-sense embeddings, i.e., represen-
tations for each word sense are proposed. Because
word sense disambiguation itself is still an open
problem, these studies use approximate approaches.
Paetzold and Specia (2016) use parts of speech to
distinguish functionally different word senses, while
Fadaee et al. (2017) propose to use topics. How-
ever, either parts of speech or topics are too coarse
to distinguish word senses. In the following exam-
ples, both sentences have the topic of food, and the
parts of speech of the words soft are both adjec-
tive.1

ex.1) I ate a soft cheese.

ex.2) I drank soft drinks.

Although the previous studies regard the senses of
1We use the typewriter font to indicate examples.



words soft as the same, they are indeed different;
the word soft in ex.1) expresses the meaning of
tender but in ex.2) it denotes the meaning of non-
alcoholic. In order to capture word senses at a finer-
grained level, we propose a method to consider con-
text words as a clue to distinguish word senses and
generate representations for each pair of word and
its context word.

Specifically, we regard words with dependency
relations in a sentence as context words. For
example, the soft in ex.1) has a representa-
tion of soft cheese while that in ex.2) has
soft drink. In our approach, data sparseness
is a challenge because a word has as many repre-
sentations as the number of its context words. To
deal with the data sparseness problem, we lemma-
tize each word and conduct pre-training of word rep-
resentations using a conventional algorithm and use
them as initial weights of the representations. It is
expected that the representations of low frequency
word pairs will remain in the vicinity of the initial
value, which will in turn reduce the negative effects
of data sparseness.

Evaluation on the Context-Aware Word Similar-
ity Task (Huang et al., 2012) and Lexical Substitu-
tion Task (McCarthy and Navigli, 2007; Kremer et
al., 2014) are conducted to investigate the effects of
the generated word representations in downstream
tasks. The results show that our method signifi-
cantly outperforms the state-of-the-art methods for
multi-sense embeddings. In addition, detailed anal-
ysis confirms that the data sparseness problem has
been effectively resolved by our methods due to pre-
training.

2 Related Work

Li and Jurafsky (2015) show that generating multi-
ple word representations per word contributes to im-
proving the performance of downstream tasks such
as parts of speech tagging and semantic relation
identification.

There are several previous studies (Neelakantan
et al., 2014; Paetzold and Specia, 2016; Fadaee
et al., 2017; Athiwaratkun and Wilson, 2017) that
generate multiple word representations per word.
Athiwaratkun and Wilson (2017) assume that all
words have a predetermined number of word senses
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Figure 1: Outline of the proposed method.

and generate multiple word representations for each
word. They assume two or three as the number of
word senses, but it varies from word to word. Nee-
lakantan et al. (2014) group word senses into clus-
ters based on the similarity of the context and gen-
erate several word representations for each cluster.
Word sense disambiguation is itself a difficult task,
hence the quality of the clustering significantly af-
fects the learning of word representations. Paetzold
and Specia (2016) generate multiple word represen-
tations based on parts of speech. Because the error
rate of POS tagging is low, this approach seems to
be stable in quality, but there are some words with
ambiguity among the same parts of speech. Fadaee
et al. (2017) generate different word representa-
tions for each topic. Topics can distinguish mean-
ings with finer granularity compared to the approach
using parts of speech, but there are cases where top-
ics are still coarse in distinguishing the meanings of
polysemous words as shown in ex.1) and ex.2).

3 Proposed Method

In the present study, we aim to generate representa-
tions at a finer-grained level for each word that can
capture differences in word senses. As a clue to dis-
tinguish word senses, we focus on words with de-
pendency relations in a sentence, which are referred
to as context-word hereafter. We assume that each
word wi has different meanings that are character-
ized by context-words C and generate |C| sets of
word representations for word wi. The number of
context-words should be larger than that of the word
senses, but we assume that each representation does
not interfere each other and can be independently
used for downstream tasks.



Algorithm 1 Word representation generation with
context-words

Input: Set of training sentences S, Window size
W in CBOW(·)
for all s ∈ S do

D ← DEPPARSE(s) ▷ dependency parsing
for i← 1, n do ▷ n is length of s

lc ← s[i−W : i] ▷ slice left W words
rc ← s[i : i+W ] ▷ slice right W words
C ← GETCONTEXTW(s[i], D)
for c ∈ C do

wc ← s[i] + ” ” + c ▷ concatenate
with its context-word

CBOW(wc, lc, rc)
end for

end for
end for
function GETCONTEXTW(w,D)

C ← ∅
for all h, d ∈ D do ▷ h is head, d is

dependent word
if h = w then

C ← C + d
else if d = w then

C ← C + h
end if

end for
return C

end function

Algorithm 1 shows the pesudo-code of our
method. For each sentence s in the training data
S, it obtains dependency relations D by dependency
parsing. Then each word s[i] ∈ s is processed to col-
lect C in GETCONTEXTW(s[i], D). Finally, s[i] is
concatenated with one of its context-words c as wc.
Then wc is the input to CBOW(wc, lc, rc) together
with left and right W words, lc and rc, respectively,
as the same manner with the plain training of CBOW
algorithm, where W is the window size defined in
CBOW.

In the example shown in Figure 1, since there are
cheese, drink and iron as context-words of the
target word soft, our approach generates word rep-
resentations for each pair such as soft cheese,
soft drink, and soft iron.

In the proposed method, we need to deal with the

data sparseness problem because there are a num-
ber of word combinations among target and context-
words. Specifically, we take the following two mea-
sures to address this problem.

1. Changing each word into lemma using a lem-
matizer.

2. Setting the initial value for each word represen-
tations using the pre-trained word representa-
tions.

In measure (1), we can reduce the size of vo-
cabulary to that of lemmas. In measure (2), we
first pre-train vanilla word representations (with-
out considering the context-word) using CBOW and
use them to initialize our representations based on
context-word (post-training). For example, we ob-
tain word representations of soft through normal
CBOW algorithm. Using this as an initial value for
soft cheese and soft drink, we train their
representations in the post-training.

It is supposed that if a certain word representa-
tion is not learned well due to its low frequency in
a training data, word representations in such cases
are expected to remain in the vicinity of the ini-
tial value by measure (2) and it will in turn re-
duce the negative effect of data sparseness. Fig-
ure 1 illustrates how the word representations of
soft cheese, soft drink, and soft iron
change from the initial representation of the word
soft as a starting point. As a result of the post-
training, soft cheese whose meaning is close to
the main meaning of the word soft is located near
the initial value of soft and soft drink which
has different meaning is located near the position of
non-alcoholic. Note that soft iron with a
low frequent context-word remains in the vicinity of
the initial value soft.

4 Evaluation Setting

In order to evaluate the effects of the proposed
method in downstream tasks, we conducted exper-
iments in Context-Aware Word Similarity Task and
Lexical Substitution Task. Both tasks require con-
sidering word senses, hence it is especially impor-
tant to handle word representations for sense disam-
biguation.



4.1 Preprocessing

We use 988M sentences extracted from main con-
tents of English Wikipedia2 articles as training
data. We lemmatize each word using Stanford
Parser (Manning et al., 2014) and replace words
with frequency of 200 or less to ⟨unk⟩ tag to re-
duce the size of the vocabulary, which results in
112, 087 words. Dependency relations are also ex-
tracted using Stanford Parser. In order to avoid the
data sparseness problem, parts of speech of context-
word is limited to content word (i.e. noun, verb,
adjective and adverb). For pre-training and post-
training of word representations, we set the window
size to 5 and dimensions of representation to 300 in
CBOW algorithm.

4.2 Baseline Models

We compared our method to a baseline that gener-
ates a single word representation as well as methods
that generate multiple word representations as be-
low.

SGNS (Mikolov et al., 2013a)
Generates one word representation per word,
which is the baseline in this experiment.

CBOW (Mikolov et al., 2013b)
Generates one word representation per word.

MSSG (Neelakantan et al., 2014)
Generates multiple word representations for
each word by clustering based on the context
similarity.

POS (Paetzold and Specia, 2016)
Generates multiple word representations for
each word based on parts of speech.

TOPIC (Fadaee et al., 2017)
Generates multiple word representations for
each word based on topics.

In addition, we evaluate variations of our method
that use the lemma of a context-word and that
use both the lemmas and parts of speech inspired
by (Paetzold and Specia, 2016). For example, the
representation of soft with the context-word of
cheese is generated as soft adj cheese n.

2https://dumps.wikimedia.org/enwiki/20170601/

snippet1 In 1955 the Soviet Union forwarded $
100 million in credit to Afghanistan,
which financed public transportation,
airports, etc.

snippet2 Only congress has the authority to
coin this money that should be used
by the States.

Table 1: An example of Context-Aware Word Similarity
Task. Words in bold are the targets.

5 Context-Aware Word Similarity Task

In order to evaluate the performance of word repre-
sentations in a text analysis that needs to take ambi-
guity into consideration, we use the dataset of Stan-
ford Contextual Word Similarity（SCWS) (Huang
et al., 2012)3. In this dataset, a pair of target words
and its surrounding snippets (50 preceding and fol-
lowing words) are given. The task is to estimate the
similarity between targets in given snippets. Ten an-
notators were employed through Amazon Mechani-
cal Turk and annotated similarity to 2, 003 pairs of
targets. As shown in Table 1, target pairs that are se-
mantically close or distant in given snippets are both
included in the dataset, so in this task, it is necessary
to estimate similarities of targets considering their
senses.

5.1 Evaluating Appropriateness of Word
Similarity

First, we extract the context-words Ci and Cj of each
target of wi and wj , respectively, from dependency
relations in given snippets. Next, we obtain the rep-
resentations of wi and wj , namely Vi and Vj , re-
spectively, using the context-words of ci ∈ Ci and
cj ∈ Cj . Finally, the similarity is calculated be-
tween the two representations of targets using two
measures as shown below.

Avg
In Avg, the average of the cosine similarity
scores is used as the similarity measure be-
tween the target words. If there is more than
one context-word, we can obtain several word

3http://www-nlp.stanford.edu/˜ehhuang/
SCWS.zip



representations for each context-word that po-
tentially represent different word senses. We
take all the word senses into account by taking
the average of their similarity scores:

Savg =
1

|Vi||Vj |
∑

vi∈Vi,vj∈Vj

cos(vi, vj).

where |·| computes the size of a set and cos(·, ·)
calculates the cosine similarity between two
vectors.

Max
In Max, the highest score among the cosine
similarity scores which are calculated using
each word representation is employed as the
similarity measure between the target words.
If a word has more than one context-word,
the representations could be a mix of different
senses. Hence, we use only the most similar
representations indicated by the highest simi-
larity score:

Smax = max
vi∈Vi,vj∈Vj

cos(vi, vj).

When any word representations given by context-
words do not exist in our vocabulary, the similarity
score cannot be obtained. In case no context-word
is identified or when word representations given by
context-words do not exist in our vocabulary, we re-
turn to using the cosine similarity between target
words.

5.2 Results
Table 2 shows Spearman’s rank correlation coeffi-
cient between each models and the manual scores
in SCWS. Here, Ours uses only lemmas of context-
words and Ours+POS uses both lemmas and parts
of speech. CBOW and POS are our reproduc-
tion of CBOW algorithm and Paetzold and Specia
(2016), respectively, trained with the same lemma-
tized training data as our methods. It is observed
that the scores of the model using context-words
are slightly higher than the models without context-
words.

Table 3 shows the coverage of target word repre-
sentations (with context-words) in our vocabulary. It
is clear from this table that more than 80% of neces-
sary representations are covered in our model even
when combining parts of speech.

Model Spearman’s ρ

SGNS (Fadaee et al., 2017) 0.59
MSSG (Fadaee et al., 2017) 0.61
TOPIC (Fadaee et al., 2017) 0.61

CBOW 0.63
POS 0.64
Ours (Savg) 0.64
Ours (Smax) 0.64
Ours+POS (Savg) 0.65
Ours+POS (Smax) 0.64

Table 2: Spearman’s rank correlation coefficient on
SCWS dataset.

In vocabulary / All tokens

Ours 7297 / 8772 83.2%
Ours+POS 7058 / 8772 80.5%

Table 3: Coverage of target representations in our vocab-
ulary on SCWS dataset.

6 Lexical Substitution Task

In order to evaluate the performance of word repre-
sentations in a text generation that needs to take am-
biguity into consideration, we use the following two
datasets 4 for Lexical Substitution Task. In this task,
in addition to the target word and its context, substi-
tution candidates are given. The task is to rank can-
didates from the viewpoint of paraphrasability into
the target word in a given context. Hence, this task
also needs to capture word senses of word represen-
tation.

LS-SE
This is a dataset (McCarthy and Navigli,
2007) used in the Lexical Substitution Task
of SemEval-2007. For each target word (201
types of targets in total), five annotators pro-
duce up to three types of substitutions in 10 dif-
ferent contexts.

LS-CIC
This is a large-scale dataset (Kremer et al.,
2014) for Lexical Substitution Task. For

4https://github.com/stephenroller/
naacl2016



15, 629 target words, six annotators produce up
to five types of substitutions under given con-
text. Unlike LS-SE, three sentences are given
as context; a sentence containing the target as
well as its preceding and following sentences.

Following the previous studies (Melamud et al.,
2015; Roller and Erk, 2016; Fadaee et al., 2017),
substitution candidates are the union set of substitu-
tions in each context with same target word. There-
fore, these candidates are semantically and syntac-
tically close to the target word in a certain context.
Hence, it is important for this task to distinguish the
meaning of target word using a given context.

We use Generalized Average Precision
(GAP) (Kishida, 2005) as an evaluation met-
ric. GAP is commonly used in evaluation of Lexical
Substitution Task that calculates ranking accuracy
by considering the weight of correct examples.

6.1 Evaluating Appropriateness of Lexical
Substitution

In this task, we need to evaluate the appropriateness
of substituting a target wt with a candidate wc con-
sidering the sentence s in which the target appears.
We assume that candidates with representations that
are substantially similar to those of the target are
more appropriate for substitution. First, we identify
context-words Ct of wt based on dependency rela-
tions. Next, we obtain the representations of wt as
Vt for each context-word ct ∈ Ct. We then obtain the
representations of wc as Vc by retrieving representa-
tions of wc ct s.t. ct ∈ Ct. Finally, we calculate the
similarity between representations of vt ∈ Vt and
vc ∈ Vc to rank the candidates using the following
metrics:

Cos
This metric computes the cosine similarity of
representations as cos(vt, vc).

balAddCos (Melamud et al., 2015)
This metric considers not only the similarity
between vt and vc, but also between vc and rep-
resentations of words in s:

|s| cos(vt, vc) +
∑
wi∈s

cos(vc, wi)

At this stage, we ignore cases where representations
of the words are out of the vocabulary.

When there are several context-words, we can ob-
tain representations of wt and wc for each context-
word. The straight-forward ways to compute the fi-
nal similarity given multiple context-words are Avg
and Max described in Section 5.1, which considers
all possible combinations of representations.

In the Context-Aware Word Similarity Task,
context-words of an input pair of words are com-
pletely independent. Unlike this, the context-words
in Lexical Substitution Task are common between
the target and candidate words. Hence, we expect
that more accurate similarity can be computed by
restricting pairs of representations to these based on
the same context-word. Specifically, Avg is refor-
malized as Avgc as:

Savgc =
1

|Ct|
∑
ct∈Ct

sim(vec(wt, ct), vec(wc, ct)),

where sim(·, ·) is either Cos or balAddCos. The
function vec(·, ·) obtains a word representation
given a context-word. Similarly, Max is reformal-
ized as Maxc as:

Smaxc = max
ct∈Ct

sim(vec(wt, ct), vec(wc, ct)).

Based on the final similarity scores, we rank the can-
didates in descending order of the similarities.

6.2 Results
Table 4 shows GAP scores on LS-SE and LS-CIC
datasets. When using Cos as a similarity metric,
all of the proposed methods significantly outper-
formed previous methods. These results indicate
that our approach generating multiple word repre-
sentations per word using context-words is effec-
tive to capture word senses. Table 5 shows exam-
ple results in which the meanings of a polysemous
word hard were successfully captured by consid-
ering context-words. We can also see that the top-
rated words in the output have the largest num-
ber of annotators who listed these words as substi-
tutes. Figure 2 visualizes the actual word represen-
tations in the output of Table 5, where the vector di-
mensions are reduced to 2 by Principal Component
Analysis. Circles represent the embeddings of pre-
training and triangles represent the embeddings gen-
erated by post-training. It shows that embeddings



Model
LS-SE LS-CIC

Cos balAddCos Cos balAddCos

SGNS (Fadaee et al., 2017) 40.5 40.9 32.1 36.1
MSSG (Fadaee et al., 2017) 41.1 NA 37.8 NA
TOPIC (Fadaee et al., 2017) NA 42.8 NA 40.9

CBOW 41.0 40.1 44.1 44.4
POS 41.8 42.1 46.5 46.7

Ours (Savg) 47.0 47.2 45.7 45.9
Ours (Smax) 48.4 48.5 46.4 46.5
Ours+POS (Savg) 46.7 47.0 45.7 45.9
Ours+POS (Smax) 47.7 48.1 46.3 46.5

Ours (Savgc) 47.4 47.7 46.1 46.2
Ours (Smaxc) 48.4 48.5 46.4 46.5
Ours+POS (Savgc) 46.9 47.4 47.7 47.8
Ours+POS (Smaxc) 47.7 48.0 48.1 48.2

Table 4: GAP scores on LS-SE and LS-CIC datasets, where highest scores are indicated in bold.

Input ... you are carrying on two conversations at once and you are required to listen hard.
Output carefully (4), intensively (0), closely(1), intently(1), seriously (0), ...
Input One event in particular hits the platoon hard : the death of its platoon leader, ...

Output badly (3), heavily (0), strongly (0), severely (1), firmly (0), ...

Table 5: Example outputs in a Lexical Substitution Task. The target words in the input are presented in bold and
context-words are presented in italic. The outputs are the ranked list of candidates, where the numbers in parentheses
shows the number of annotators who generated the word as one of the candidates for substitution.

carefully intensively

carefully_listen

intensively_listen

heavily_listen

heavily

heavily_hit

badly_hit

badly

hard_listen hard_hit

hard

Figure 2: Visualization of word representations

of hard listen and carefully listen (ap-
propriate substitution) get closer by deviating from
the embeddings of hard and carefully, respec-
tively. Similarly, embeddings of hard hit and

badly hit get closer after post-training. Obvi-
ously, hard listen and hard hit have distinct
embeddings, which demonstrates that our model
successfully generates representations capturing dif-
ferent word senses.

When using balAddCos as a similarity metric, our
method outperformed TOPIC. This result confirms
that context-words are more effective to generate
word representations considering word senses than
topics.

When multiple context-words are available, Maxc
performed best for both Ours and Ours+POS across
LS-SE and LS-CIC. These results indicate that the
similarity can be more accurately estimated using
representations under the same context-word rather
than considering any representations under diverse
context-words. Another reason is that the effect
of each representation can be diminished by taking
the average of similarities. Even though there is a



Coverage

LS-SE
Ours 82.2%
Ours+POS 79.7%

LS-CIC
Ours 73.4%
Ours+POS 71.7%

Table 6: Coverage of representations by our vocabulary

context-word that can pin-point the sense of the tar-
get word, its effect is blurred due to averaging.

When comparing the results of LS-SE and LS-
CIC, the improvements in LS-SE is larger than that
of the GAP score when using context-words. The
primary factor of this difference is the number of
polysemous words in the datasets. In LS-SE, we
need to conduct lexical substitution for the same tar-
get word in 10 different contexts, which capturing of
subtler differences in word senses compared to LS-
CIC. Hence, the superior performance of our model
on LS-SE shows its sensitivity representing word
senses. Also, the coverage of target and candidate
representations (with context-words) in our vocabu-
lary is another factor for our different performances
in LS-SE and LS-CIC. As shown in Table 6, LS-SE
has higher vocabulary coverage than LS-CIC. In LS-
SE dataset with higher vocabulary coverage, using
context words greatly improved substitution perfor-
mance.

Next, we examined the effects of context-word
frequencies in the training data on the quality of
generated word representations. We used balAd-
dCos combined with Maxc as the similarity mea-
sure that showed the highest GAP scores in both
datasets. We generated another two word represen-
tations; one generates representations using context-
words whose frequency is less than 5, and the other
generates representations using those of more than
100 in the training dataset. Table 7 shows GAP
scores in LS-SE and LS-CIC using different rep-
resentations, where CBOW generates plain word
representations (without context-words) and POS
generates representations combined with parts of
speech. The GAP score improves even when using
representations generated with context-words whose
frequency is 5 or less. The improvement is larger
when using representations generated with more fre-

LS-SE LS-CIC

CBOW 40.1 44.4

Ours
5 or less 41.6 44.3
100 or more 43.3 45.6
All 48.5 46.5

POS 42.1 46.7

Ours+POS
5 or less 42.8 46.7
100 or more 43.6 47.6
All 48.0 48.2

Table 7: The effect of context-word frequency, where
highest scores are indicated in bold.

quent context-words. These results confirm the ef-
fectiveness of post-training in our method to allevi-
ate the data sparseness problem. Moreover, the GAP
score dramatically improved when using the repre-
sentations generated considering all context-words
regardless of their frequency. This indicates that our
approach can effectively make use of context-words
of low-frequency to generate representations to cap-
ture word senses.

7 Conclusion

In this paper, we proposed methods that generate
multiple word representations per word in order to
capture its senses. Specifically, we assume that the
senses of a word can be captured by context-words
with dependency relations in a sentence. The ex-
tensive evaluation in Context-Aware Word Similar-
ity Task and Lexical Substitution Task confirms the
effectiveness of our methods and the detailed analy-
sis in revealing their characteristics.

One of our future tasks is to use the entire sur-
rounding context of a word, rather than single words
using bi-directional recurrent neural networks. Also,
we will extend our method to generate representa-
tions for multi-word expressions and phrases. In
addition, we will apply our methods to diverse lan-
guages.
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