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Chapter 1 

Preface 



1.1. Preface 

The multi-anned bandit problem, the origin of the word is from bandit machines in 

gambling, is a mathematical model for optimizing in sequential manner allocating between 

a number of competing projects. The well-known example is : 

(a) Goldmining : A man owns n goldmines and a gold-miming machine . Each day he 

must assign the machine to one of the mines. When the machine is assigned to mine 

i there is a probability Pi that it extracts a proportion qi of the gold left in the mine, 

and a probability 1 -Pi that it extracts no gold and breaks down permanently. To 

what sequence of mines on successive days should the machine be assigned so as to 

maximize the expected amount of gold mined before it breaks down? 

Further the 1nulti-armed-bandit 1nod l ha 1nany examples and applications : 

(b) Scheduling: There are n jobs which ar waiting to be processed on a single industrial 

machine. A problem is to detennine the order of the jobs to be processed so as to 

n1ini1nize the total costs. 

(c) Search : A stationary object is hidden in one of n boxes. The probability that a 

search of i finds the object if it in box i is qi. The probability that the object is in 

box is Pi. The cost of a single search of box i is Ci. A problem is to minimize the 

expected costs of finding the objects in a. sequential search of boxes. 

(d) Industrial research : The manager of a team of industrial scientists has n research 

projects which may be carried out in any order. Loss of time to switch from project 

to project is negligible, and a project has been successfully completed or not in some 

probability. The time which the team would need to spend on project i in order 

to complete it has a distribution function Fi(t). What policy should the manager 

follow in order to maximize the expected total value g nerated by the n projects? 

(e) A problem is to choose a job when a man is faced with a number of opportunities 

for employment which he can investigate at a rate of one per day. 

(f) A problem regarding a sequence of patients and alternative treatments in a clinic. 

(g) A sever with a qu ue of customers; and so on. 

The multi-armed bandit problem has been studied by many authors. Tim may be 

discrete or continuous and the processes themselves may be discrete or continuous. The 

classical type of th multi-anned bandit problem is studied in the case of several Bernoulli 

proc sses, and later the study is extended to the case of Markov processes (see [PreSonl], 
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[BerFri 1]). Most of the literature deals with discrete time. In such a setting, each of d 

arms generates an infinite sequence of random variables. An observation on a particular 

sequence is made by selecting the corresponding arm. The tth member of a sequence is 

observed if the corresponding arm is selected at time t. The classical object in bandit 

problems is to maximize the expected value of the payoff 2::�1 atZt, where Zt, the reward 

process, is the variable observed at time t and at, the discount rates, are non-negative 

numbers (0 ::; at ::; 1). A strategy is called optimal if it yields the maximal expected 

payoff. The maximal expected payoff is called the optimal payoff. 

Several methods have been studied in order to solve the multi-armed bandit problem. 

They are classified as follows : 

(i) Bayesian appToache (se [BJK1] [Bell], [Fell]) : Using Bayes's theorem, the multi

armed bandit problem becomes a typical dynamic progTamming. Dynamic program

ming is introduced by [Bel2] and is a general technique devised for sequential opti

mization problems. The optimal strategies and the optimal payoffs are calculated 

by a backward induction on tin1e t. The backward induction is called Bellman's 

equation. 

(ii) Comparison (see [Rob1], [Isbl]): The second approach taken in the literature is to 

consider particular strategies and compare their payoffs. Taking one of the strategies 

optimal, certain conditions for the opti1nality are studied. 

(iii) Dynamic allocation indices (DAI) (se [Gitl]) : The third approach is to solve by 

use of DAI. Th DAI was introduced by [GitJonl] and is an effective method for 

numerical calculation regarding the problem. DAI gives a. forward induction method 

differently from Bayesian approach. [Whil] rewrote the proof of [GitJonl] elegantly 

with the dynamic programming. The early literature regarding the DAI was studied 

for Markov reward processes. Recently [VWBl] relaxed the Markov property. 

(iv) Min1:max approach (see [Vog1]) : This approach is a technique in non-cooperative 

two-person zero-sum games. Each player selects strategies so as to maximize his own 

payoff, however both player's payoffs are competing since the sum of both player's 

payoffs is assumed to be 0 in mathematical models. 

This thesis deals with three kinds of th mes regarding 1nulti-armed bandit processes. 

One is the optimal stopping problen1 for discrete-time n1ulti-armed bandit processes with 

independence of arms (see Chapter 2). Another is the optimal stopping problem for 

continuous-time multi-armed bandit processes (see Chapter 3). We deal with the problem 
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on the basis of [Yos3). The other is the multi-arn1ed bandit gan1e (see Chapter 4). We deal 
with the problem in a general form, combining the results of [Yos4) and [Yos5). In order 
to analyse multi-armed bandit processes, we use the theory of multi-parameter processes. 

The study of multi-parameter processes are started by [McK1 ). [McK1] studied Wiener 
sheet in the potential theory of Markov processes : 

{Bs}sER2 is a family of random variables, where R+ is the set of all non-negative 
+ 

real numbers. A partial order � is induced on the time space R! : r � s iff 
ri � si (i = 1,2) for r = (r\r2),s = (s1,s2) E R!. Then {Bs}sER� is called 

W iener sheet if it satisfies 

B(o,o) = 0 and E[B B) = 
JrJ2 + JsJ2- Jr- sJ2 

(r s E R2 ) 7' s 
2 ' + ' 

where JrJ2 = L:I=I (ri)2 for r = (r\r2) E R!. This means that maps r1 f---+ B(r1,r2) 
and r2 f---+ B(1.t ,r2) are Brownian 1notions for r = ( r 1 , r2) E R!. 

Recently the optimization proble1n for 1nulti-parameter processes are studied by several 
authors. It is to find a stochastic time-sequence on the partial ordered time space so as 
to 1naximize the total expected value of the processes. [Wall] introduced a mathematical 
formulation for the time-sequence, which is called an optional increasing path : 

N is the set of all non-negative integers, d is a positive integer and ei is the i'th 
unit vector in Nd . {Z(s)}sENd = {(Z1(s1), ... 'zd(sd))}s=(sl, ... ,sd)ENd denotes ad
parameter process with the partial order � on Nd and { Fs} sENd denotes a family of 
sub-a-fields. An optional incr asing path 1r = {1r(t)}tEN = {(1r1(t), · · ·, 7rd(t))}tEN 
is aNd-valued stochastic process satisfying (d.i)- (d.iii): 

(d.i) 1r(O) = (0, 0, . .  · , 0) ENd. 

(d.ii) For all tEN it holds that 1r(t + 1) = 1r ( t ) + ei for some i = 1,· ··,d. 

(d.iii) For all tEN and all rENd it holds that {1r(t) = r} E �·· 

The time spaces of 1nulti-para1neter processes are called discr te or continuous if they 
are Nd orR� respectively. [Man Van1], [LawVan1), [KreSuc1) and [DTW1) have studied 
the c�se where the time space is a 1nore general partial ord red set. [Man Van1) has 
also studied the opti1nal stopping problem for multi-parameter processes. The problem 
is to decide the optimal optional increasing paths and the optimal stopping times along 
the paths, and th n the pairs of optional increasing paths and stopping times are called 
tactics. [Man Van1) has studied the proble1n from the dyna1nic progran1ming approach. 
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[Manl] has studied th r lation between multi-armed bandit processes and multi

parameter processes, taking optional increasing paths as strategies for the bandit pro

cesses. In Chapter 2 this thesis deals with the optimal stopping problem for multi-armed 

bandit processes and analyses it by use of the DAI. Regarding the optimal stopping prob

lem for d-armed bandit processes under the assumption of independence of arms, we show 

that the optimal strategies and the optimal stopping times are expressed by the DAI for 

each arm. The advantage to analyze the optimal strategies and the optimal stopping times 

by use of the DAI is that we can reduce the original problem to d independent classical 

one-parameter optimization problems. The computation efficiency of the solutions for the 

reduced problem, which is represented by the linear programming, is better than to solve 

directly Bellman's equation derived by the dynamic programming (see [CheKatl,Section 

2) and [VWB 1 ,Section 4]). 

In Chapter 3 we extend the results of Chapter 2 to the case where the reward pro

cesses are one-dimensional diffusions. Then the formulation itself of 1nulti-armed bandit 

processes has difficult problems. We utilize continuous multi-parameter proc sses in or

der to solve the problem. [Wall] has defined optional increasing paths for continuous 

multi-parameter processes in a different form from the discrete-time. Because in the 

continuous-time we cannot find optimal optional increasing paths in the family of paths 

satisfying the condition ( d.ii). [Wall) has given the definition in the continuous-time as 

follows : 

In continuous-time bandit proc sses an optional increasing path 1r = { 1r(t) }tER+ 

{(1r1(t), · · · , 7rd(t))}tER+ is a R! -valued stochastic process satisfying (c.i)- (c.iv): 

(c. i) 1r ( 0) = ( 0, 0, · · · , 0) E R! . 

( c.ii) { 1ri ( t) }tER+ is a non-decreasing process for each i = 1, · · · , d. 

( c.iii) L._f=1 1ri ( t) = t for all t E R+. 

(c.iv) {1r(t):::; r} E Fr for all t E R+ andrE R! . 

The conditions (cji) and (c.iii) are weaker than (d.ii). (d.ii) 1nodels that at every time 

we may select one of i's, however ( c.ii) n1eans that we are allowed to select plural i's 

simultaneously under the condition ( c.iii), which means that the total sum of time when 

selecting each i always increases constantly. Th continuous multi-parameter process has 

been studied by [Merl], [Mill], [Maz2] and some authors. [Maz2] has formulated them as 

multi-parameter Markov processes, which is constructed by the product of independent 

usual one-parameter Markov processes. [Mazl] deals with the optimal stopping problem 

of multi-parameter Markov pro ess s from th dynamic programming approach. This 
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thesis deals with the problen1 by use of DAI and obtains th extended results of Chapter 

2 to the continuous-time. We show that the optimal stopping time for the original problem 

equals to the sum of the smallest optimal stopping times of the one-parameter optimal 

stopping problems for reward processes corresponding each arm. We reduce Bellman's 

equation, which is represented by a free boundary problem, to a fixed boundary problem 

when solutions of the optimal stopping problems for each arm are known. 

Chapter 4 deals with zero-sun1 ga1nes where in every time two players alternately either 

select only one of arms of bandit machines or stop them. We call these games bandit games 

for abbreviation. Player A has two kinds of decisions, i.e. selecting arms and stopping 

the games. We represent the fonner with player A's strategies 1r A and the latter with his 

stopping times T A. Therefore player B also has his strategies 7r 8 and stopping times Ta. 

In the game each player A (player B) alt rnately selects strategies 7r A ( 1r B) or stop the 

game with TA ( Ta ) so as to maximize his own payoff under the condition that the sum of 

both player's payoffs is 0. 

The discrete-time optin1al stopping games have been introduced by [Dyn2) and gener

alized by [Nev 1 ,Section VI-6] and some authors. Various types of continuous-time optimal 

control problems and optin1al stopping problems have been developed by [BenFril], [Stel] 

and some authors. The purpose of this chapter is to formulate the bandit game with a 

generalized discount and to solve them as control problems. The multi-armed bandit 

problems with time-dependent discount rate are studied by [BerFril]. [BerFril] intro

duced the regularity condition for discount rates as one of conditions such that myopic 

strategies are still optimal. In this chapter we introduce a discount rate which vary to

gether with not only ti1ne but also strategies selected by players. We introduce backward 

value iterations in order to analyse multi-ann d bandit games and show their convergence 

to Bellman's equation. We construct each player's optimal Markov strategies and optimal 

stopping ti1nes on the basis of Bellman's equation. F inally this chapter shows that the 

game has a unique optimal value and that the optimal tactics are saddle points for the 

game. 
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Chapter 2 

The Optimal Stopping Problem 
for Discrete-Time 

Multi-Armed Bandit Processes 



2.1. Introduction 

The chapter deals with the optimal stopping problem for d-armed bandit processes 

under the assumption of independence of arn1s. We analyze optimal strategies and optimal 

stopping times by use of the DAI and we reduce the original problem to d independent 

one-parameter optimization problems. 

The construction and the results at each section are as follows: In Section 2.2 we 

describe formulations of the optirnal stopping problem for d-armed bandit processes, re

ferring [Man1]. In Section 2.3 we investigate the optimal strategies and the optimal 

stopping times by use of the DAI for each arm and we prove the following results (a) -

(d): 

(a) By the different approach frorn [Gla1), Theorem 2.1 shows that the DAI for each 

arm give the optirnal strategy and th optimal stopping time. Therefore we see that 

in order to solve the original problem it is sufficient to calculate the DAI for each 

arm. 

(b) Theorem 2.2 shows that the optimal stopping time given by Theorern 2.1 is expressed 

explicitly as the sum of d smallest optimal stopping times for one-parameter classical 

optimal stopping problems. In th Markov case in order to calculate the optimal 

stopping region it is sufficient to solve individually don -pararneter optin1al stopping 

problems (see also Section 2.5). 

(c) We give a necessary and sufficient condition for the finiteness of the optimal stop

ping times given by Theorern 2.1. This condition results in the finiteness of the 

smallest optirnal stopping tin1es of d independent one-paran1eter stopping problems 

(see Theorern 2.2(iii) and Section 2.5). 

(d) Theorem 2.3 shows that the optimal stopping time given by Theorem 2.1 is the 

smallest optimal stopping time in th family of stopping times along the optimal 

strategy of Theorem 2.1. 

In Section 2.4 we show that the results of Section 2.3 still hold for the extended case 

with constraints. In Section 2.5 we inv stigat the Markov cas and we characterize the 

optimal strategies and the optimal stopping tirn s on the basis of Theorerns 2.1 and 2.2. 

Moreover we investigate the linear programrning calculation of optimal strat gies and 

stopping times. 

2.2. Multi-artned bandit processes 
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We let d, the number of arms, be a positive integer. In this section we shall formu

late the optimal stopping proble1n for d-armed bandit processes and show fundamental 
len1mas. This thesis deals with the case where arms are mutually independent. There
fore we regard that d-armed bandit processes consists of d mutually independent reward 
processes. F irst we shall define reward processes, following [Man1]. 

Let (0, F, P) denote a probability space. Set the time space by N = {0, 1, 2, · · · }. For 

each arm i = 1, · · ·, d, Fi = {Fti}tEN denotes an increasing family of completed sub-cr

fields ofF and a bounded Fi-adapted process zi = { z;}tEN means a reward process with 

arm i. Moreover fori = 1, · · ·, d we put cr-fields F� = VtENF/ * and we let Mi denote 
the family of all Fi-adapted stopping times. Hence we assum independence of reward 

processes: 

Assu1nption (F). F� (i = 1, ···,d) are mutually independent. 

We put its time space T = Nd, a d-paran1eter process Z(s) = (Z1(s1), · . .  ,Zd(sd)) 
and sub-cr-fields Fs = F;1 V · · · V F;d for s = (s1, · · ·, sd) E T. Let ei denote the i'th 

unit vector in T. Hence we shall define strategies. For s = ( s1 · · ·, sd) E T we define a 
strategy 1r starting from the state wher ach reward process with arm i has already been 
selected si times. 

Such a strategy 1r = {1r(t)}tEN = {(1r1(t), · · · , 7rd(t))}tEN is a T-valued stochastic 
process on (0, F) satisfying (i) - (jii): 

(i) 1r(O) = s. 

(ii) For all tE N it holds that 1r(t + 1) = 1r(t) + ei for some i = 1, ···,d. 

(iii) For all tE N and all rET it holds that {1r(t) = r} E Fr. 

(2.1) 

(2.2) 

(2.3) 

Here 1ri(t) denotes the number of selection of arm i up to timet and S(s) denotes the 
family of all the strategies starting from s. (These strategies are called optional increasing 

paths.) Let f3, a discount rate, be a constant ( 0 < f3 < 1). Let 0 be the zero vector in T. 

For a strategy 1r E S(O), the total expected value of the (d-anned) bandit process based 

on the strategy 1r (without stopping) is defined by 

d 
R1r = E[2: 2:f3

tzi(7ri(t))(7ri(t + 1)- 1ri(t))]. (2.4) 
tEN i=l 

Next we formulate the opti1nal stopping problem for d-armed bandit processes. For 
s E T and a strategy 1r E S ( s), { Ft }tEN denotes the information available at time 

*This denotes the small st sub-O"-field containing {Fll t E N}. 
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t corresponding to the strategy 1r and M; denotes the family of all { Ft" }tEN-stopping 

times along the strategy 1r: 

Ft = {rEF I r n  {7r(t) = s'} E Fs' for s' E T}, 

M; = { T I N U { oo }-valued random variables satisfying 

{T = t} n {1r(t) = s'} E Fs' for t E Nand s' E T}. 

Then for s = (s1,···,sd ) E T, a strategy 1r E S(s) and a stopping time T EM;, the 

expected value of the bandit process (which is starting from the state where each reward 

process with arm i has already been selected si times and which is using a strategy 1r and 

stopped at time T - 1) is d noted by 

T-1 d 
v7rT (s) = E:Fs[L Lf3tzi(7ri(t))(7ri(t + 1)- 7ri(t))].t (2.5) 

t=O i=l 

For s E T and a strategy 1r E S( s)  the optimal expected values of the bandit process 

(starting from s and using a strategy 1r ) are defined by 

(2.6) 

Then for s E T and a strategy 1r E S ( s )  the optimal expected values of the optimal 

stopping problem for d-armed bandit processes (starting from s )  are defined by 

Here we have the following lem1na regarding the finiteness of stopping times in (2.6): 

Lemma 2.1. FoT s E T a.nd a. stra.tegy 1r E S(s) it holds tha.t 

(2.7) 

Proof. Fix any s E T and any strategy 1r E S ( s) . Then we can easily check this lemma, 

by noting that T 1\ t E M; holds for each stopping timeT E M; and t E N. 0 

Next we shall introduce the DAI in order to analyze the optimal stopping problem for 

d-armed bandit proc sses. For each ann i = 1, · · · , d the DAI (for the reward process) 

with arm i is the process 1i = {vi(t)}tEN defined by 

(2.8) 

twe deal with the case without terminal rewards. 
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Hence we define the maximum index. The maximum index is the family of the largest 

DAI v = { v ( s)} sET which is defined by 

( 2.9) 

Regarding DAI, the following lerruna is well-known. 

Lemma 2.2. ([Man1,Theorem 2]) The essential supremum in (2.8) is attained by Ti(t): 

( 2.10) 

In n1ulti-armed bandit proble1ns, the DAI gives us an optimal strategy. 

Lemma 2.3. ([Man1,Theorem1]) For a strategy 1r E S(O), 1r is optimal faT the d-aTmed 

bandit pToblem of (2.4) if and only if 1r is an index strategy t , i.e., for all t E N 

( 2.11) 

2.3. The optitnal strategies and the opti1nal stopping times 

In this section we investigate the optimal stopping problem for d-armed bandit pro

cesses and give opti1nal strategies and optimal stopping times for this problem, by the 

1nethod of embedding this problem into a d+1-armed bandit problem. In order to em

bed this problem into a d+1-armed bandit problem we shall add one more arm 0 to the 

d-armed bandit proc ss defined in Section 2.2 and define an extended d+ 1-anned bandit 

process. Let (Z0,P) denot the reward process with arm 0 sati fying (i) and (ii): 

(i) Z0(t) = 0 for all t E N, 

(ii) P = {.F?}tEN is a non-decreasing family of sub-cr-fields of F such that � ( = 

V tEN F?) is ind pendent to each cr-field F� ( i = 1, · · · , d). 

Therefore the extended d+ 1-armed bandit process also satisfies the mutual indepen

dence of F� ( i = 0, ... 'd). For the reward processes { ( zi' Fi) I i = 0, ... 'd} we shall 

introduce notations of th xtended d+ 1-armed bandit probl m. Tak its time space 

Nd+I and let 0 be the zero vector in Nd+I. We consider a d + 1-paran1eter process 

((Z0(s0), ... 'zd(sd)), �0 • • •  'F:d)(sO, ... ,sd)ENd+l· Strategies for the xtended d + 1-armed 

tAn index strategy means that we select (the reward process corresponding to) one of the largest 
dynamic allocation indices at every time. 
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bandit problem are Nd+1-valued processes which is defined in the same manner as those 

for d-armed bandit problems in Section 2.2. Then we denote the family of all the strate

gies (for the extended d + 1-armed bandit problem) starting fro1n 0 by S. For a strategy 
- � . -* 

1f E S we express the total expected value R and the optnnal expected value R of the 

extended d + 1-armed bandit processes by 

and 

d 
It = E[L I: f3t zi(1fi(t))(-wi(t + 1) -:n:-i(t))], 

tEN 
i
=O 

-=-* � 
R = supR . 

(2.12) 

(2.13) 

We define the DAI v0 for arm 0 in the same way as (2.8). Hence it is trivial that J/0(t) = 0 

for all t E N. Moreover w put the maximum index in arms i = 0, · · · , d by 

v( ( s0, · · · , sd)) := 

i
=W,f,

�
,d 

vi ( si) for ( s0, · · · , sd) E Nd+I. 

Then the following lem1na holds regarding the relation between the optimal stopping 

problem for d-armed bandit processes and the extended d + 1-armed bandit problem. 

Lemma 2.4. For a strategy 1r E S(O) and a stopping time T E Mg we define a 

Nd+1-valued stochastic process 1f: fort E N, 

Then (i) and (ii) hold: 

(i) 1f E S, 

(ii) 1f = E[V7rT(O)]. 

1f(t) = ((t- T) V 0, 1r(t ;\ T)). (2.14) 

Proof. (i) Fix any strategy 1r E S(O) and any stopping timeT E Mg. It is sufficient to 

show that the strategy 7f, which is defined by (2. 14), satisfies {1f(t) = (s0, s)} E �0 V Fs 
for all tEN and all (s0, s) E Nd+I. Fix any tEN and any (s0, s) EN x Nd. If s0 > 0, 

then {1f(t) = (s0, s)} n {t < T} is empty. While if s0 = 0, then {:n=-(t) = (s0, s)} n {t < T} = 

{1r(t) = s}n{t < T} E �oVF5• And {1f(t) = (s0,s)}n{t 2:: T} = {T = t-s0}n{1r(T) = s} 

E �o V Fs· Thus we obtain (i). (ii) Since Z0(t) = 0 for all tEN we have 

d 
1f = E [ L L {3t ( 7fi ( t)) ( 7fi + 1 ( t) - 1fi ( t))] 

tEN 
i
=O 

T-1 d 
E[L L {3t(7ri(t))(7ri+1(t)- 7ri(t))] 

t=O 
i
=O 

E[V?TT(O)]. 
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Therefore we obtain this lemma. 

For a strategy 1r E S(O) we define a stopping time T1r by 

T1r = inf {t EN I v(1r(t)::; 0}. 

Then regarding the stopping times T1r we have the following properties. 

Lemma 2.5. The following (i) and (ii) hold: 

(i) T1r E M� for each 1r E S(O). 

0 

(2.15 ) 

(ii) For a strategy 1r E S(O) we define a. stopping time T1r by (2.15) and we define a 

strategy 7f in the same way a.s (2.14), repla.cing T with T1r. Then we have 1f E S. 

Proof. (i) is trivial from the definition of T1r. ( ii) is obtained from ( i) and Lemma 2.4 ( i ). 

0 

Now we shall construct optimal strategies for the extended d+ 1-armed bandit problem. 

In Chapter 2 we take 1r*, T1r• and 7f* as follows: We take an index strategy 1r* E S(O) 

(for a d- armed bandit problem ) and define a stopping time T1r• by (2.15 ) with the index 

strategy 1r*. Next we define a strategy 7f* in the same way as (2.14), replacing 1r and T 

with ?T* and T1r• respectively. Then we have the following lemma. 

Le1nma 2.6. For all tEN it holds that v(1f*(t)) = v(1r*(t)) · I{t<Trr•}, where I denotes 

the indicator function. 

Proof. We note v0(t) = 0 for all t E N. Fix any t E N. Then since v(1r*(t)) > 0 on 

{t < T1r•}, we have v(1f*(t)) = v0(0) V v(1r*(t)) = v(?T*(t)) on {t < T1r•}. Next since 

v(1r*(T1r•)) ::; 0, the definition of T1r• in1plies v(7r*(t)) = v0(t- T1r•) V v(?T*(T7r•)) = 0 on 

{ t � T1r•}. Thus we obtain this lemma. 0 

Hence we obtain the following prop rty of the strategy 7f*. 

Proposition 2.1. 

bandit problem. 

The strategy 1f* is an index strategy for the extended d + 1-armed 

Proof. From (2.14 ) and Lemmas 2.6 and 2.3, for all t E N and i = 1, · · · ,  d we obtain 

On the other hand for all t E N we have 
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Consequently 7f* is an index strategy for the extended d + 1-armed bandit problem. 0 

Now we obtain the following theorem. 

Theorem 2.1. It holds tha.t 

Therefore if P { T1r• < oo} = 1, then an index strategy 1r* is an optimal strategy and T1r• 

= inf {t EN lv(1r*(t))::; 0} is an optimal stopping time. 

Ren1ark. An opti1nal stopping tin1e T1r• = inf{t E N lv(1r*(t)) ::; 0} means that we 

should continue to select on the basis of 1r* and quit this game when all DAI for each arm 

becon1e non-positive. 

Proof. From Proposition 2.1 7f* is an index strategy for the extended d + 1-armed bandit 

problem. Moreover, by considering Lemma 2.3 for the extended d + 1-armed bandit 

problem instead of d-armed bandit problems, we obtain that 7f* is an optimal strategy for 

the extended d + 1-armed bandit problem. Therefore we obtain 

(2.16) 

While from Lemma 2.4 we have Rrr• = E[V1r•T7r
. 
(0)) ::; E[V**(O)] ::; K. Consequently this 

inequality and (2.16) complete the proof of this theorem. 0 

Next we shall characterize the optimal stopping time T1r• = inf{t EN lv(1r*(t))::; 0} 

by classical potential theory. We would like to express the optimal stopping time T1r• by 

the sum of the optimal stopping times for d one-parameter optimal stopping problems for 

reward processes. Therefore we shall introduce one-parameter optin1al stopping problems 

for the reward process with each ann i. 

For each arm i = 1, · · · , d w consider a one-parameter opti1nal stopping problem for 

the reward process {Zi(t)}tEN· FortE Nand Fi-adapted stopping times T (T � t) we 

define the expected Value ViT(t) (from tiiTie t LO time T- 1) Of the reward prOCeSS With 

arm i by 
T-l 

viT(t) = EFt[L: ,er zi(r)], (2.17) 

where in (2.17) we define that the sum takes zero if T = t. Then for t E N we defin the 

optimal expected value Vi* ( t) of the reward process with arm i by 

(2.18) 
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Hence for i( = 1� · · · �d) we put an Fi-adapt d stopping tin1e a-! by 

a-: = inf { t E N I Vi* ( t) = 0}. 

Then the following lemma is well-known (see [N ev 1]). 

Le1nma 2.7. If P {a-! < oo} = 1, then a-! is the smallest optimal stopping time for 

(2.18). 

Moreover we have the following relation between the optimal expected value Vi* ( t) 
and the DAI vi(t) with arm i. 

Lemma 2.8. Fort E N and i = 1, · · · , d we have (i) and (ii): 

(i) Vi*(t) � 0, 

(ii) {vi(t) � 0} = {Vi*(t) = 0}. 

Proof. (i) is trivial, since Vi*(t) � Vit(t) = 0 for every t E J\T and i = 1, · · · , d . (ii) Fix 

any t E N and i = 1, · · · , d. Then for all Fi-adapted stopping times T ( T � t + 1) we have 

viT ( t) 
0 > vi(t) > . on {vi(t) � 0}. 

- - EF; [L:;::i f)T] 

Therefore we obtain {Vi*(t) � 0} ::) {vi(t) � 0}. Together with (i) this follows that 

{Vi*(t) = 0} ::) {vi(t) � 0}. The reverse inclusion is obtained similarly. Therefore (ii) 

holds. 0 

Hence we obtain the following th or m. 

Theorem 2.2. Regarding the relation between the optimal stopping time T1r• of the 

optimal stopping problem foT d-armed bandit pTocesses and the optimal stopping times 

u! of independent optimal stopping problems (i = 1, ···,d) (i) - (iii) hold: 

( . ') 1f. "\' d i 11 T = L... i=l 0" *, 

(iii) P{ T1f. < 00} = Ilf=l P{ a-! < 00}. 

Re1nark. We note (a) and (b): 

(a) Regarding the condition P{T1r• < oo} = 1 in Theorem 2.1, Theorem 2.2(jii) gives 

a necessary and suffici nt condition P{ a-! < oo} = 1 for all i = (1, · · · , d) , which is 

from one-parameter stopping problems (2.18) fori= (1, ···,d) (see Section 2.5). 
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-----

(b) Theorem 2.2(ii) shows that in order to calculate the optimal stopping time it is also 

sufficient to solve individually d one-parameter optimal stopping problems (2.18) 

(see Section 2.5). 

Proof ofTheorem 2.2. (i) Fix any i = 1,···,d. Set pi= inf{t EN l1}(1r*(t)) � 0} . Then 

we have 

pi� inf{t EN I v(1r*(t)) � 0} = T1r•
. 

Hence for all t E N, it holds that 

This shows that the arm i is not selected at any time t on {pi � t < T1r•
} . Therefore we 

obtain 
7r*i(71r•) = 

7r*i(pi). 

On the other hand by using Assu1nption(F) and Lemma 2.8, we obtain 

1r*l(inf{t EN I v i(1r*(t)) � 0}) 

inf{1r*l(t) I vi(1r*i(t)) � 0} 

inf{T EN I vi(T) � 0} 

(2.19) 

Together with (2.19) we obtain (i). (ii) and (iii) are trivial from (i). Thus this theorem 

holds. 0 

Finally we shall show that T1r• 
is the smallest optimal stopping tin1e in the family Mg· 

of all { Fr· hEN-stopping times along 1r*. For an index strategy 1r* E S ( 0) we define a 

one-parameter process {Yt, Fr· } tEN along the strategy 1r* and its Snell's envelope by 

T-l d 

Yt = L L,Brzi(1r*i(T))(1r*i(T + 1) -1r*i(T)) fortE N, 
t=O i=l 

�· = ess supTEMf :T?_tEr( [Y7] for t E N. 

Therefore we consider a on -paran1eter optimal stopping problem: 

To find stopping times T EM�· 
maximizing E[Y7]. 

(2.20) 

(2.21) 

(2.22) 

Then we have the following results concerning the smallest of optimal stopping time T1r•
. 

Theorem 2.3. The optimal stopping time T1r• is the smallest optimal stopping time 

in the family Mg· of stopping times along an index (i.e. optimal) strategy 1r*. 
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Proof. It is well- known (see [Nev 1]) that the smallest optimal stopping time for the 

optimal stopping problem (2.22) is inf{t E N I �* = Yt} (say p). Since Theorem 2.1 

implies that Tn• is an optimal stopping time for the optimal stopping problem (2.22), we 

have 

(2.23) 

On the other hand, following Lemma 2.2, for t E N and i = 1, · · · ,  d we define stopping 

times CTi(t) and ri(t) as follows: for each s = (sl, · · · ,  sd) E T 

(2.24) 

and 

(2.25) 

Hence fix any t E N and i = 1, · · · , d. Since 1r* is an index strategy, the arm i is selected 

at every timeT on {1r*(t + 1)- 1r*(t) = ei} n {1r*i(t) ::; T < CTi(t)}. Therefore we have 

ri(t) E M;f and then together with Lemn1a 2.2 and Assun1ption(F) we obtain 

EFs[L:;�:)-1 2::1=1 (Jr zi(7r*i(T))(7r*i(T + 1)- 7r*i(r))] 

EFs [L;�:)-1 (Jr] 

- EFs [L:;:(�?-1 (Jr zi(T )] 

EFs [L;:(�?-1 {Jr] 

= vi(si) = v(s) > 0 

on {1r*(t + 1)- 1r*(t) = ei} n {t < rrr•} n {1r*(t) = s} for all s = (s1, · · · ,sd) E T. So we 

have 
T'(t)-1 d 

�*- Yt � EFt• [ L L (31·zi(7r*i(r))(7r*i(r + 1)- 7r*i(T))] > 0 
r=t i=1 

on {1r*(t + 1)- 1r*(t) = ei} n {t < rn·}. Since this inequality holds for each i = 1, · · · ,d 

and t E N, we obtain 

�* > Yt on {t < Tn•} for all tEN. 

Together with (2.23) and th definition of p, w obtain Tn• = p. Thus w obtain this 

theorem. D 

2.4. The extended case with ti1ne constraints 

We shall investigate the extended case with time constraints, referring [Man Van1,Section 

4]. Let Ci be a random subset of N U { CX)} satisfying { t E Ci} E Ff for all t E N. (This 
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is called a random stopping set in [Man Van1 ,Section 4].) Here Ci denotes a time con

straint in which we must stop the reward process with arm i( = 1, ···,d) . Then a�(t) 
= inf { r � t I r E Ci} denotes the smallest time at which we must stop the reward process 

with arm i ( In Markov case a� may be represented by the entry time to a state constraint 

in which we must stop the reward process with arm i (see [Man Van1,Section 4.3]). Hence 

we introduce the following time constraints: 

Time constraint (C). We can not select the arm i any more after the time a�(t). 

Under Time constraint(C ) , we deal with d-armed bandit problems to maximize the values 

defined as (2.4). Hence in order to analyze the d-armed bandit problems with time 

constraints we introduce the DAI with time constraints and its rnaximurn index: 

and 

vc(s) = . max vb(si) for s = (s\ · · ·, sd) E T. 
t=l,2,···,d 

Next we define a stopping tirne Tb(t): 

i ( ) _ { inf { r � t + 1 I v� ( r) � v� ( t)} if t ti Ci 
7 c t - 0 otherwise. 

Then we have the following results. 

Len11na 2.9. The following (i) and (ii) hold: 

(i) t:::; Tb(t):::; a�(t) a.S. for every t rt Ci. 

(ii) vi (t) = 

grf[L;�;t)-1 ,W
Z' (r)] for eveTy t d Ci. C Fi "\' r(;(t)-1 � 

E t [L...,.. r= t ,W] 

Proof. (i ) is trivial from the definitions. By considering an adapted process 

t/\a�(t)-l 

Yi(t) = L f3r(zi(r)- vb(O)) fort= 1, 2 · · · , 

r=O 

we can.easily check (ii ) in the same line as the proof of [Man1,Section 6.3]. 

(2.26) 

(2.27) 

(2.28) 

0 

Theorem 2.4. For a strategy ?T E S(O), ?T is optimal for the multi-armed bandit 

problem with time constraints if and only if ?T satisfies tha.t for a.ll t E N it holds that 

vc(?T(t)) = vc(?Ti(t)) on {?T(t + 1) = ?T(t) + ei} for some i = 1, . . . 'd. (2.29) 
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Proof. For a strategy ?T E S(O) and i = 1, · · · , d we put 

Then we obtain this theorern similarly to [Man,Sections 5.4 and 5.5] by use of Lemmas 

2.11 and 2.12, since Tb(t) ::; O"�(t) and O"i(t)::; r:,j=1 O"b(t) for all tEN. D 

Under Time constraint ( C ), we may also deal with the optin1al stopping problem for 

d-armed bandit processes by similar approach to Section 2.3. Then owing to Theorem 2.4 

we may develop the same arguments as Section 2.3. Consequently we see that Theorems 

2.1-2.3 still hold, by replacing DAI vi and index strategies 7r* with v� and strategies 

satisfying (2.29) respectively. 

2.5. The Markov case and the linear progra1n1ning 

In this section we shall formulate and investigate the Markov case of Section 2.3. For 

arms i = 1, · · · , d let (D,i, J=\ Pi) denote probability spaces and let )(i = (Xf, Ff, pi)tEN 
denote homogeneous Markov chains, which are mutually independent, with the state 

space Ei. Next we introduce a d-paran1eter process by their products. Set its tirne space 

T = Nd, its path space n = f1f=1 D,i and its state space E = f1f=1 Ei. Then we define a 

d-parameter Markov process X with the state space E and its O"-fi lds by 

Then Assumption ( F) is satisfied. Hence Ex denotes the expectation induced by the 

probability measure P = f1f=1 pi with an initial state x E E, and for arm i ( = 1, · · · , d ) 
Ex' denotes the expectation induced by the probability measure pi with an initial state 

xi E Ei. For arm i( = 1, · · · , d) let fi be a bounded measurable function on Ei. Then a 

reward process with ann i is given by 

Moreover we express strategies and stopping times in the same manner as in Section 2.2. 

Now the expected value function on E (for a strategy ?T E S(O) and a stopping time 

T E M�·) and the optimal value function are denoted by 

r-1 d 

v7rr(x) = Ex[L L f3tfi(X�i(t))(?Ti(t + 1)- ?Ti(t))], 
t=O i=l 
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and 
V**(x) = sup v1rr(x) for X= (x1,···,xd) E E, 

1rES(O),rEMf :Px { r<oo }=1 

Next the DAI function with arm i( = 1, ···,d) and the maximu1n index function are 

expressed by 

I}(xi) = sup 
rEMi:r�1 

and 

Ex' [L:;:6 (3r fi(X;)] 
Exi [L:;:6 [jr] (2.30) 

(2 .31) 

Hence for arm i = (1, ·· · ,d) the optimal value function on Ei of the reward process with 

arn1 i and its optin1al stopping tin1e a.r 

T-1 

Vi*(xi) = sup Ex'[L (3r f1(X;)] for xi E Ei, 
rEM' r=O 

0"� = inf{t EN I v·i*(Xf) = 0}. 

Now an index strategy 7r* E S(O) is represented by: For each tEN, 1r* satisfies 

(2.32) 

(2.33) 

(2.34) 

Then the smallest optimal stopping ti1ne T1r• given at the beginning of Section 2.3 is 

(2.35) 

Remark. In the extended case of time constraints, the time o-�(0) (of Section 2.4) 
which is expressed by the entry time to a state constraint to stop the reward process with 

arm i (see [ManVan1,Section 4.3]). Therefore we put a-�= inf{t EN I Xf E Ci}, where 

a Borel subset Ci of Ei denotes a stop constraint. Then by replacing (2.30) and (2.31) 
respectively with th following (i) and (ji): if x tf_ Ci, then we put 

( I. ) i i _ 
ex' [L;��c -l (Y J' (X�)] vc(x ) - SUPrEM':r>1 . Tl\a1 -1 ' 

- ex' [Lr=o c ,er] 

(ii) vc(x) = maxi=1,2, ... ,d /J�(xi) for x = (x1, · · · , xd) E E. 

We may represent an index strategy ?T of (2.34) and an optimal stopping time T1r• of 

(2.35) similarly. Then the optimal value function (2.32) of the reward process with arm i 
is given by 

rl\ac -1 
sup Ex' [ L (3r fi (X7� )] for xi E Ei. 

rEM' r=O 
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We shall investigate the results of Section 2.3 in the Markov case and illustrate the 

optimal strategies 1r* and the optimal stopping times T1r• more explicitly. Set a Borel 

subset Bi ={xi E Ei I Vi*( xi)= 0} for arm i = 1, ···,d. From Lemma 2.8 we obtain 

(2.36) 

We call Bi the optimal stopping region for one-parameter stopping problem (2.32) for 

i = (1,···,d), since 0"� = inf{t EN I Xf E Bi}. Hence we put B = nt=lBi and then we 

obtain 

B = { x E E I V** ( x) = 0} = { x E E I v ( x) � 0}. (2.37) 

We call B the optimal stopping region for the optimal stopping proble1n for d-armed 

bandit processes. Then Theore1n 2.2 are d cribed as follows: 

T1r• = I:f=l O"! = inf{t EN I X1r•(t) E B}. 

P{T1r• < oo} = Tif=1 P{O": < oo}. 

(2.38) 

(2.39) 

(2.40) 

Hence on the basis of the results of Theorems 2.1 and 2.2, we obtain the following 

characterization of optimal strategies and stopping times: 

Characterization (C). We should continue to select one of the largest DAI in all 

arms at every time (i.e. on every state, since index strategies are stationary in Markov 

case) (see (2.34) and Theorem 2.1). If the reward process Xi with an arm i entries the 

optimal stopping region Bi of (2.36), then we should not select the arm i any more (see 

(2.38)). Finally we should quit tl1is game when all rewa.rd processes X entry the optimal 

stopping region B of (2.37) (see (2.39)). Moreover T1r• is the smallest optimal stopping 

time in the family M�· of stopping times along the optimal strategy 1r* (see Theorem 

2.3). The condition P{ T1r• < oo} = 1 is equivalent to the condition P{ O": < oo} = 1 for 

all i(= 1, ···,d). Regarding this condition we may refer to [Sl1il,Theorem23 in p.94} or 

{Yos2}, since it is not essential that Teward pTocesses (2.32) are bounded from below. 

We shall invesbgate the lineaT pTogramming (LP) calculation of optimal strategies 

and opti1nal stopping times. From Characterization( C) we see that in order to solve the 

optimal stopping problem for d-armed bandit processes it is sufficient to calculate the 

DAI vi (i = 1, ···,d) and the optimal stopping regions Bi (i = 1, ···,d). The LP 

calculation of the optimal stopping regions Bi is well-known in one-parameter optimal 

stopping problems (se [Der1,pp.109-116]). Next we shall investigate the LP calculation 

of the DAI vb with boundary constraints more generally than the DAI vi. Following 
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[CheKat1], we shall investigate LP to calculate the DAI with time constraints when the 

state space is finite. Here we deal with the time ab (of Section 2.4) which is expressed 

by the entry time to a state constraint to stop the reward process with arm i (see 

[Man Van1,Section 4.3]). Moreover we fix an arm number i and we concentrate on only 

the reward process with arm i Therefore in the rest of this section we shall omit the arm 

number i for simplicity. 

For one reward process, we let the finite state space E = { x{l), x(2), · · · , x(n) } and 

we put a state constraint C = {x(m+I),x(m+2), ... ,x(n) }  ( rn :=:; n) . p(i I j) denotes 

the transition probability from a state x(i) to a state x(j) for i, j = 1, · · · , n. We put 

JU) = f(xU)) for j = 1, · · · , n. Then we have 

n 
Pf(x(i)) = ExC•)[f(XI)] = LP(i I j)j(j) fori= 1, · · · ,n. 

j=l 

Hence for i = 1, · · · , n. a.nd real ntunbers M we set optimal values V�) by (2.41) and we 

set the DAI with a state constraint by v�): 
TAO"c-1 

vi,P = sup Ex(i) [ L (P'f(Xr) + (3TAO"c M] (2.41) 
rEM r=O 

Then we can easily check that for any constant M and any i 1, · · · , n, the following 

(2.42) and (2.43) are equivalent: 

vg) :=:; (1 - (3)M. (2.42) 

vi,P :=:; M. (2.43) 
Now in order to calculate the optimal values vi,P of one-parameter optimal stopping 

problem (2.41) we consider the following LP. 

LP P(M). Minimize '£/]=1 UU) such that 

(i) U(i) - (3 L:j=1 p(i I j)U(j) :2 f(i) for all i = 1, · · · , m; 

(ii) U(i) :2M for all i = 1, · · · ,n�; 

(iii) U(i) = M for all i = m + 1, · · · ,n. 

We can easily check the following lemma, by noting that { v).P I j = 1' ... 'm } is the 

smallest (3-superharmonic majorant of a constant function M. 

Lemma 2.10. LP P(M) bas solutions {Vi,P I j = 1, · · · , n} . 

Therefore we consider the following LP in order to calculate the DAI. 

LP p(k) (k = 1, · · · , m ) . Minimize 2:::�1 UU) + mM such that 
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(i) U(i) + M- f3L_j=1p(i I j)(UU) + M) � f(i) for all i E {1, · · · ,m}- {k}; 

(ii) M- (3 L-7=1 p(k I j)(UU) + M) � f(k); 

(iii) U(i) = 0 for all i = m + 1, · · · ,n. 

Theorem 2.5. For each k = 1, · · · , 1n, LP p(k) has optimal solutions {Vij} I j 
1, · · · , n; M} satisfying the following (a) and (b): 

(a) U(k) = 0; 

(b) M = vi; ) . 

Then we have: 

(i) The dynamic allocation index a,t is vg) = (1 - (J)M for k = 1, · · · , m. 

(ii) The optimal value is vi;). 

Proof. By modifying LP P ( M), we obtain LP( k). Then we obtain this theorem in the 
similar way to [CheKat1], by using Lemn1a 2.4 and the equivalent relation between (2.42) 
and (2.43). 0 

2.6. Appendix for Section 2.4 

The following lemmas are used in Theorem 2.4 of Section 2.4. Let (A, Q, P) denote 

a probability space and let {9dtEN be an increasing family of sub-a-fields of 9. Let 
T be the family of all {9dtEN-stopping ti1nes. Let {Y ( t) }tEN be a bounded {9dtEN
adapted process satisfying E[L:rEN IY ( r) IJ < 00 . By considering sets r( t) = { 0" 2 t} n 
{E9t[L:�::-l a(r)Y(r)] > 0} (t E N), we can easily check the following len1mas in the same 
line as [VWB1,Appendix B]. 

Lemma 2.11. Let {a(t)}tEN be an {9t}tEN-adapted pTocess satisfying 1 � a(t) > 

a( t + 1) � 0 a.s. foT all t E N. For a- E T, it holds that 

(T-1 T/\(T-1 
E90[L a(r)Y(T)] :S a(O) ess supTE7E90[ L Y(r)]. 

r=O 
(2.44) 

Lemma 2.12. Let {(J(t)}tEN be an {9t}tEN-adapted process sa,tisfying 0 :S (J(t) < 

(3( t + 1) :S 1 a.s. for all t E N and let a- E T. If there exists a stopping time T* E T 
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satisfying that T* :S fJ a.s. and that 

Then it holds that 

T• -1 T/\a-1 

E90[ L Y(r)] = ess sup7E7E90[ L Y(r)]. 
r=O 

T•-1 T•-1 

r=O 

,B(O)E90[ L Y(r)] :S E90[ L ,B(r)Y(r)]. 
r=O r=O 
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Chapter 3 

The Optimal Stopping Problem 
for Multi-Armed 

Diffusion Bandit Processes 



3.1. Introduction 

The purpose of this chapter is to extend the bandit processes to multi-armed Markov 

processes which is constructed by the product of mutually independent one-parameter 

diffusion processes, which is given by a solution of stochastic differential equation (3.1) 

in Section 3.2, using the results of Chapter 2. A difficult problem in the continuous-time 

case is that in general we cannot find the optimal strategies such that player selects one 

of arms at every time. Therefore we should find the optimal strategies in the class where 

we are allowed to move plural arms simultaneously. The definition is given in Section 3.2. 

This chapter shows the existence of the optimal tactic, the pair of the optimal strategy 

and the optimal stopping time such that the tactic expressed by the DAI for reward pro

cesses. We give the representation of the optimal stopping time for the original problem 

by th smallest optimal stopping times of the one-parameter optimal stopping problems 

for reward processes corresponding each arn1. On the basis of this fact we give a certain 

necessary and sufficient condition concerning the finiteness of the smallest optimal stop

ping time for the original problem. By deriving that the optimal stopping region of the 

original problem is equal to the Cartesian product of the optin1al stopping regions for each 

arm we reduce Bellman's equation, which is represented by a free boundary problem, of 

the original problem to a fixed boundary problem when solutions of the optimal stopping 

problems for each arm ar known 

Regarding the optimal stopping problem for ad-parameter Markov processes, [Maz1] 

has studied the case of d = 2 and fi = 0 in (3.13) of Section 3.2. However we investigate 

the case of g = 0 in (3.13). Referring [Maz1,Section2], in Section 3.2 we formulate 

the optimal stopping problem for multi-anned Markov processes and optin1al stopping 

problems for the reward process Xi for each arm i. Section 3.3 extends the results of 

Chapter 2 to the continuous-tin1e case. In Section 3.4 we discuss the optimal stopping 

region and Bellman's equation. 

3.2. Multi-armed diffusion bandit processes 

We let d be a positive integer and we set R+ = [0, oo ). In Section 3.2 we shall formulate 

three kinds of optimization problems, na1nely, the optimal control problem ford-parameter 

Markov processes, the opti1nal stopping problem for d-parameter Markov processes, and 

the optim(!,l stopping problem for the reward process Xi. The first problem and the third 

problem will be utilized in order to analyse the second problem in Section 3.3. 

We shall formulate d-param ter difuusion processes and their optimal control prob

lems, referring [Mazl ,Section 2]. For i = (1, ···,d) (D,i, :F\ Pi) denote probability spaces 

and Xi = (Xf, Ff, px; ) tER+, which ar call d r ward processe , denote one-parameter mu-
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tually independent diffusion processes with their state spaces Ei := R, which is a unique 
solution to the stochastic differential equation (3.1) on R: 

(3.1) 

where bi is a bounded Lipschitz continuous real-valued function on R and ai is a bounded 

Lipschitz continuous real-valued function on R such that ai = aiai is uniformly positive; 
and for each i = 1, · · · , d we let Wi = { W/ }tER+ be a one-dimensional Brownian motion 
such that W1, · · · , Wd are independent. 

Hence {Ff}tER+ is an increasing right continuous family of completed sub-a-fields 
of Fi and pxi is a probability measure on (Di, Fi) with an initial state xi E Ei. For 
i = (1, · · · , d) we set 

(3.2) 

Next we shall introduce a d-parameter Markov process by their products as follows. We 
set its time space T = R� and introduce the partial order in T by 

And we set its path space n = flf=1 ni and its state space E = Tif=1 Ei. Then we define 
a d-parameter Markov process X with the state space E by 

(3.4) 

Moreover we put a right continuous family { Fs} sET of d-parameter sub-a-fields, which are 
increasing with respect to the partial order (3.3), by 

Especially Ex denotes the expectation induced by the probability measure P = flf=1 pi 
with an initial state x E E, and for i = ( 1, · · · , d) Exi denotes the expectation by the 
probability measure pi with an initial state xi E Ei. Hence a strategy 1r = { 1r( t) }tE� = 

{(1r1(t), · · ·, 7rd(t))}tER+ is aT-valued stochastic process on (D, F) satisfying (i)- (iv): 

(i) 1r(O) = 0. 

(ii) {7ri(t)}tER+ is a non-decreasing process for each i = 1, ···,d. 

(iii) I:f=1 1ri(t) = t for all t E R+. 

(iv) {1r(t) � r} EFT for all t E R+ andrE T. 
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Moreover we denote 11(0) the family of all strategies. 

Remark. We note that 

(a) These strategies are called optional increasing paths in [Wall]. 

(b) Note that 0::; 1ri(t') -1ri(t)::; t'- t for all t,t' E R+ satisfying t::; t'. 

For i( = 1, · · · , d) we let fi be a fixed bounded continuous, strictly increasing function on 

Ei and we define an expected value function R7r of total rewards over the infinite horizon 

R+ associated with a strategy 7r E 11(0) by 

for x E E, (3.10) 

where a(> 0) is a discount factor, i( = 1, ···,d) is a reward process number, for each 

i( = 1, ···,d) fi is a running reward function on the current state. Hence we define the 

optimal value function R* of total rewards of the optimal control problem of d-parameter 

Markov process X by 

R*(x) = sup R1r(x) for x E E. (3.11) 
1rETI(O) 

Then the optimal control problem for d-parameter Markov process X is to find a strategy 

7r* E 11(0) satisfying 

R1r
• 

( x) = R* ( x) for all x E E. (3.12) 

Lemma 3.1. ([Karl,Theorem6.1]) TheTe exist an optimal stTategy 1r* of the optimal 

contTol problem (3.12) of d-paTameteT Markov pTocess X. Then for the optimal stTategy 

7r*, (X�•(t), F�•(t)' pxi ) tER+ becomes a standard Markov pTocess. 

We shall formulate the optimal stopping proble1n for d-parameter Markov processes. 

For a strategy 1r E IT( 0), Fr denot s the infonnation which is available at time t( E R+) 

along the strategy 1r and Mg d notes the family of all {Fr}tER+- stopping times: 

.rr ={rEF I r n {7r(t)::; r} E ;::. for all t E R+ and rE T}; and 

Mg = { T I [0, oo) -valued rando1n variables satisfying 

{ T ::; t} n { 1r( t) ::; r} E FT for all t E R+ and r E T}. 

Hence the following lemma is ti·ivial from the continuity of 7r and the right-continuity of 

{Fs} sET· 

Lemma 3.2. For a strategy 1r E 11(0), {Fr}tER+ 1s a non-decTeasing and right 

continuous family of sub-a-fields of F. 

29 



For strategies 1r E II(O) and stopping times T E Mg, the pair ( 1r, T ) are called tactics. 

Further for sET we denote by T(O) the family of all tactics (see [Maz1,Section1]). Next 

for a tactic ( 7r' T ) E T(O) we define a value function v?TT of the optimal stopping problem 

for d-parameter Markov process X by 

for x E E. 

We define functions V?T* ( 1r E IT(O)) and V** by 

and 

V?T*(x) = sup v?TT(x) for X E E, 
TEMg :Px{ T<oo }=1 

V** ( x) = sup V?T* ( x) for x E E. 
1rEO(O) 

(3.13) 

(3.14) 

(3.15) 

Hence we have the following lemn1a, which is proved in similar way as Le1nma 2.1, re

garding the finiteness of stopping times in (3.14). 

Lerruna 3.3. The following (i) and (ii) hold: 

(i) V?T*(x) = supTEMg v?TT(x) for X E E a.nd 7r E IT(O); 

(ii) V**(x) = sup(?T , T)ET(O ) v?TT(x) foT X E E. 

The optimal stopping problen1 for d-parameter Markov process X is to find a tactic 

( 1r, T ) E T(O) attaining th supremum of Lemma 2.3(ii). Then V** is called the optimal 

value function for the problem. 

We shall formulate the optimal stopping problem for each reward process Xi ( i = 

1, ···,d). For each i( = 1, ···,d) we put an opti1nal value function Vi* of a one-parameter 

optimal stopping problem for the reward process xi by 

V;*(x;) = sup Ex
' l{ e-at t r(X;)dt] for x; E E;. 

rEMi:pxi {T<oo}=l 0 i=l 
(3.16) 

Then the one-parameter optimal stopping problem for the reward proc ss Xi is to find a 

finite stopping time T ( E Mi) which attains the supremum in (3.16), where Mi denotes 

the family of all { Ff hER+ -stopping ti1nes. Hence the following lemma is well-known (see 

[Shi1]). 

Le1n1na 3.4. We put a stopping time CJb by 
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If px'{ a-b < 00} 
(3.16). 

1 for all xi E Ei, then a-b is the smallest optimal stopping time for 

We introduce dynamic allocation index functions in continuous time bandit processes. 

For each i = 1, · · · , d the following dynamic allocation index function for the reward 

process Xi is given by 

sup 
Ex' [J; e-at Ji(X;)dt] 

£xi [J; e-atdt] (3.18) 

By utilizing dynamic allocation indices and the related results, we analyse the optimal 

stopping problem for d-parameter Markov processes X. 

3.3. The opti1nal tactics 

In Section 3.4 we shall investigate the opti1nal tactics for the optimal stopping prob

lem for d-parameter Markov processes, by the method of embedding this problem into 

an optimal control problem of d + 1-paramet r Markov processes in similar way as the 

arguments in Section 2.3. 

We shall add one more reward process X0 to a d-parameter Markov process X in the 

original optimal stopping problem for d-paran1eter Markov process X defined in Section 

3.2. Hence we define an optimal control problem of an extended d + 1-parameter Markov 

process. Following Section 2.3, we shall define notations of an optimal control problem 

of the extended d + 1-parameter Markov process by using the signature bar as follows. 

Then strategies for the optimal control problem of the extended d + 1-parameter Markov 

process X are T-valued processes which are defined in the same manner as those for the 

optimal control problem for d-paran1eter Markov process X in Section 2.3. We let II(O) 
denote the family of all strategies for the opti1nal control problem of the extended d + 1-

parameter Markov process X. Then the following lemma, the proof is si1nilar to Lemma 

2.4, implies the relation between the original opti1nal stopping problem for d-parameter 

Markov process X and the opti1nal control problem of the extended d + !-parameter 

Markov process X. 

Le1nma 3.5. For a tactic (1r, T ) E T(O) we define a T-va.lued processes 7f by 

1f( t) : 
= { ( 0' 7r ( t)) 

(t- T,7r ( T ) )  

Then (i) and (ii) hold: 

(i) 7f E II(O), 

on { t < T } 
otherwise 
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(ii) F ("x) = v1rT ( X ) for every X = ( x0' X ) E E : = E0 X E. 

Now we shall construct optimal tactics for the optimal stopping problem for the d

parameter Markov process X. 

We take 7f*, 1r*, T1r• and ir* as follows: By applying Lemmas 3.1 and 3.5 to the 

extended d + 1-parameter Markov process X, we may take a strategy 7f* E II(O) which 

has the maximum index property (3.19) and is optimal for the optimal control problem 

of the extended d + 1-parameter Markov process X. Hence we consider a stopping time 

7 = inf { t E R+ I v( X n• (t)) :::; 0}. Then since 1f* has the maximum index property for 

Markov process X (see [Man2,Th oreml5]) and v0 = 0, we may put a strategy 1r* by 

fortE R+· (3.20) 

Then we have 

7 = inf{t E R+ lv(X7r•(t)):::; 0} (therefore we represent it by T1r•). (3.21) 

Moreover we define a strategy ii-* in the same way as (3.19), replacing 1r and T with 1r* 
and T1r• respectively. Hence we have the following lemma, which is proved in similar to 

Lemma 2.6: 

Lemma 3.6. The following (i) - (iii) hold: 

(.) _(X ) ·- { v(X7r•(t)) 
1 v n•(t) .- 0 

(ii) (1r*,T1r•) E T(O); 

(iii) ii-* E II (0). 

on {t < T1r•} 
otherwise for every t E R+; 

Now we shall introduce a few tools in order to analyse the local time behavior of 

standard Markov process {X n• (t)} tER+, referring [Manl]. For a maximum index strat

egy 7f* = {7r*(t)}tER+ = {(1f*0(t), · · · , 1f*d(t))}tER+ ( E II(O)) we represent the inverses of 

processes {?f*j ( t) }tER+ (j = 0, · · · , d) by 

· ;\J(t) = inf{t E R+ j7f*j(t) > T} forTE R+ and j = 0, · · · , d . 

Next forTE R+ and j = 0,· · · ,d w put 
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where �j(t) denotes the inverse of { ir*J (t) }tER+ (j = 0, ···, d) . Then we have the following 

lemmas. 

Lemma 3.7. The following (i)- (v) hold: 

(i) � 0 ( s) = T 7r • + s :::; ,\ 0 ( s) for s E R+ . 

(ii) �j(s) = oo?:: _\J(s) for s > 7f*j(T7r•) a.nd j = 1, · · · , d; 
�j(s) = ,\J(s) for s:::; 1f*j(T1r•) and j = 1, ···, d. 

(iii) ,\J(s')- ,\J(s)?:: s'- s for s, s' E R+ (s:::; s') and j = 0, ···, d. 

(iv) -ej ( r) = EPa®···®F�®···®Fg [ e-a(..\l (r}-r) . I{r�n·J (r1r· nJ for r E R+ and j = 1' ... ' d. 

(v) eo(r) = EFO ®FJ®···®Fg[e-O'T1r.- e-a(..\o(r)-1')] for 1' E R+· 

Proof. (i) and (ii) are trivial from the definitions. (iv) and (v) are trivial from (i) and 

(ii). (iii) Fix any s,s' E R+ (s:::; s') and j = 0, ···, d. Due to the definition of 1r we have 

(3.24) 

Hence for s,s' E R+ (s::; s') we putt= ,\J(s) and t' = _\J(s'), then we haves= 1f*j(t) 
and s' = 1f*j(t') . By substituting these in (3.24) we obtain (iii). 0 

Lemma 3.8. The following (i) and (ii) hold: 

(i) For j = 1, · · · , d, { -tj(r)}7·ER+ is a non-increasing, {Fg ® · · · ®F/. ® · · · ®Fg}rER+
adapted and right continuous process for all r > EF8® .. ·®F�®· .. ®Fg [1f*j ( T1r•) ]  and 

satisfies 0 :::; -�j ( r) ::; 1. 

(ii) {�0(r)}rER+ is a non-decrea.sing, {�® Fe} ® · · · ® Fg}rER+- adapted and right 

continuous process satisfying 0::; �0(r):::; 1 for all r E R+. 

Proof. The right-continuity of {tj(r)}rER+ (j = 1, · · · , d) is trivial from the definitions. 

The measurability of {�j(r)}rER+ (j = 1, · · · , d) is due to (3.8). Finally we shall show the 

monotony of processes {�j(r)}rER+· From Lemma 3.7 (v) for fixed any r r' E R+ (r:::; r') 
we have 

(3.25) 

Fro1n Lemrria 3.7(iii) we have _\J(r')-r'?:: _\J(r)-r?:: 0 and 0:::; e-a(AJ(r)-r)_e-a(.AJ(r')-r') 
for r E R+ and j = 0, ···, d. Together with (3.25) we obtain �0(r') :::; �0(r ). Similarly 

from Lemma 3.7 (iii), (iv), for r' > r > EF8®· .. ®F�® .. ·®Fg[1f*j(T7r•) ] we obtain 

( -�j(r') )  _ ( -tj(r)) = EPa® .. ·®F�0···®Fg[e-a(AJ(r')-r') _ e-a(.AJ(r)-r)]:::; O. 
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Thus we obtain this lemma. 

Proposition 3.1. It holds that 

Proof. Fix any y E E satisfying v(y) = 0. Then since f0 = 0 and v0 = 0, we have 

It. (y) - It. (y) 

t E" lf" e-at J' (X�., (t) )dii*' ( t) ] - fooo 
e-at f' ( x;., (t) )d?F'' ( t )] 

t E"[loo 
e (rVar J'(X;.)dr]. 

j=l 0 

Next, by using Lemma 3.8, similarly to [VWB1,Appendix] we have that 

Therefore we obtain this proposition. 

0 

0 

Now the following theorem implies the existence of an optimal tactic, which is defined 
on the basis of dynamic allocation indices, of the optimal stopping problem for a d

parameter Markov process in Section 3.2. 

Theorem 3.1. It holds that 

Therefore if px[Tn• < oo] = 1 for all x E E, then ('1r*,Tn•) is an optimal tactic of the 

optimal stopping problem ford-parameter Markov process X. 

Proof. Fix any x = ( x0, x ) E E. Since 7f* is an optin1al strategy of the optimal control 
problern for the extended d + 1-pararneter Markov process X, we have 

While from Lemma 3.5 we have 

--=-* --;;r• 
R (x) = R (x). 

R* (x) � V** (x). 
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Moreover since v(Xg,X11".(T,.•)) = 0 a.s., due to Proposition 3.1 we have 

d ,.• L Ex[l
T 

e-atfj(X�
•J(t)

)d7r*j(t)] + Ex[e-aT,.•Jt• (Xg,X11".(T,.•))] j=l 0 

< F. (x) = v1!"·T,.• (x) :s; V**(x). 

Together with (3.26) and (3.27), this inequalty completes the proof of this theorem. 0 

Next we shall characterize the optimal stopping time T1r• = inf {t E R+ I v(1r*(t)) :s; 0} 
of the optimal stopping problem for d-parameter Markov process X by Markov potential 

theory. We shall express the optimal stopping point 1r* ( T1r•) by the optimal stopping 

times for d one-paran1eter opti1nal stopping problems for reward processes Xi. Therefore 

according to Section 3.2, fori = 1, · · · , d we shall utilize one-parameter optimal stopping 

problems for reward processes Xi. Hence similarly to Lemma 2.8 we have the following 

relation between the optimal expected value Vi* and the dynamic allocation index vi: 

Le1nn1.a 3.9. Fori = 1, · · · , d we have (i) a.nd (ii): 

(i) Vi* � 0. 

(ii) {xi E Ei I vi(xi) :s; 0} = {xi E Ei I Vi*(xi) = 0}. 

For each i = 1, · · ·, d we put a subset B·i = {xi E Ei I Vi*( xi)= 0}, which is a closed 

set for process Xi. Then from Le1nma 3.9 we obtain 

(3.28) 

Here we call Bi an optimal stopping region for one-parameter stopping problem (3.21), 

because ab = inf{t E R+ I Xf E Bi} (see (3.22)). Hence we define B = f1f=1 Bi and then 

B = {x E E I v(x) :s; 0}. (3.29) 

We call B an optimal stopping r gion for the optimal stopping problem for d-parameter 

Markov process X' because T 1!". = inf { t E R+ I x1!". (t) = 0}. Then we obtain the following 

theorem. 

Theorem 3.2. Regarding the relation between the optima.] tactics ( 1r*, T1r•) of the 

optimal stopping problem for d-para.1neteT Markov process X ( in Tl1eorem 3.1 ) and the 

optimal stopping times ab of independent one-parameter optimal stopping problems of 

Teward processes Xi, (i) - (iv) hoJd: 

(i) ab = inf { t E R+ I x; E Bi} = 7r*i(T1!".) for every i = 1, . . . ' d; 
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(iv) B = {x E E I V**(x) = 0}. 

Proof. (i) Fix any i = 1 , · · ·  , d. Set�= inf {t E R+ I vi(X�.i(t))::; 0}. Then we have 

(3.30) 

Hence for all t E R+, it holds that 

(3.3 1) 

Hence the strategy 1r* does not move Xi at any time t on fri ::; t < T1r•} due to 

[Man2, Theorem15]. Therefore we obtain 

(3.32) 

On the other hand due to the continuity of 1r* we obtain 

Together with (3.3 3 ) and (3.34) we obtain (i). (ji) and (iii) are trivial from (i) since 

xi (i = 1, ... ' d) are independent. (iv) We put D = {x E E I V**(x) = 0} and T = 

inf { t E R+ I x1r•(t) E D}. Then T is the smallest optimal stopping time of the classical 

one-parameter optimal stopping problen1 (3.17) concerning the standard Markov process 

{X1r•(t)l F1r•(t)}tER+ (for exa1nple, see [Shi1] ). Therefore since T1r• is an optimal stopping 

time in M0•, from Theorem 3.1 we have T ::; T1r•. On the other hand for arbitrary but 

fixed i( = 1 , · · · , d), we define a strategy 1r(t) = ei · t for t E R+. Then due to Lemma 

3.9(i) we have V**(x) � V1r*(x) = Vi*(xi) � 0 for every x = (x\ · · · ,xd) E E. Therefore 

d 
D = {x E E I V**(x) = 0} CIT {xi E Ei I Vi*(xi) = 0}. (3.34) 

i=l 

So due to Lemma 3.9( ii ) we obtain 

d 
DC IT {xi E Ei I vi(xi)::; 0} = {x E E I v(x)::; 0} =B. (3.3 5) 

i=l 

Thus we obtain T = inf{t E R+ I X7r•(t) E D} � inf{t E R+ I x7r.(t) E B }  = T1r •. 
Consequently we obtain T = T1r•. Especially we fix any x E B - D and any x0 E E0. 
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Then we have T1r• 
= 0 a.s. px. Since 7r* does not move X0 on the set { ( x0, x) E E0 x E I 

V** ( x) > 0} = { ( x0, x) E E0 x E I K ( x0, x) > 0}, it is an open set for standard 

Markov process (X?r•(t), F?r•(t))tER+. Therefore we obtain px[T >OJ = 1. This contradicts 

T = T1r• 
= 0 a.s. Px. Thus we obtain (iv). 0 

3.4. The Bell1nan's equation 

[Maz1 ,Section3] has studied the Bellman's equation to the optimal stopping problem 

for a two-parameter Markov process in the case of fi = 0 for i = 1, 2 in (3.13). Here 

we shall consider it in the case of g = 0 in ( 3.13). For each i ( = 1, 2) [,i denotes an 

infinitesimal generator of a diffusion process Xi = { Xf }tER+, which is a unique solution 

to the stochastic differential equation (3.1): 

(3.36) 

Moreover for each i( = 1, 2) 1Ji denotes the domain of the generator £i: 

Vi = { h are bounded twice continuously differentiable functions on E}. (3.37) 

Then the following theorem implies Bellman's equation for the optirnal value function 

V**. 

Theorem 3.3. Suppose V** E 1J1 n 1J2. Then (i) - (iii) hold: 

(i) V** � 0 on E; 

Proof. (i) is trivial. (ii) Fix any i = 1,2 and x E E. ForE> 0 we define a strategy 7r by 

{ ei · t for t E [0, c ) 
7r(t) := 

-:n=-* i ( t - .c ) " '- for tE[c,oo). 

Then we have 7r E IT(O) and 

Namely 
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Due to the relation between the generators and the infinitesimal operators of diffusions 

in [Dynl,Chapter5] we obtain 

.rnax {£iR*- aK + fi} :::; 0 on E. t=0,1,2 
Together with Theorem 3.1 this inequality implies (ii). (iii) Fix any x E E satisfying 

V**(x) > 0. Hence since {X7r•(t)}tER+ has the strong Markov property (see Lemma 3.1), 

we have 

(3.41) 

for all stopping ti1nes T( E M�·) satisfying 0 < T :::; T1r• ( a.s. px). Hence Dynkin's formula 

for two-parameter processes holds for all functions of D1 n D2 since in the proof of [Mazl, 
Proposition 2.2.4 ] he does not use p-biexcessivity itself. In the case where Xi are one

dimensional diffusions we refer to [Karl ,Theorem6.1]. By applying the formula to (3.41 ) , 

there exist one-parameter {F;*}tER+- adapted processes {,\*1(t)}tER+ and {,\*2(t)}tER+' 
non-vanishing simultaneously and taking values [0,1], such that for all stopping times 

T( E M�·) satisfying 0 < T :::; Tn• ( a.s. px ) it holds that 

2::::7=1 Ex[J; e-atfi(X�•'(t))d7r*i(t)] Ex[e-arV**(X7r•(r))]- V**(x) 
£x[T] £x[T] 

2::::7=1 Ex[J;(£iV**- aV**)(X�.i(t)),\*i(t)dt] 
£x[T] 

Due to the way to construct {,\*1(t)}tER+ and {,\*2(t)}tER+ in the proof of [Mazl, Proposi

tion2.2.4], we have{ � > 0} = {,\*i(t) > 0} a.s. px for ahnost all t E R+ and i = 1,2. 

Therefore as letting T 1 0, the previous eouality follows (iii) (see [Dyn2]). 0 

Regarding the optimal stopping r gion B we have the following proposition.· 

Proposition 3.2. The optima,l stopping region B = {V** = 0}, which is a free 

boundary of Bellman's equation (3.41), has the following representa.tions: 

2 
B = {x E E I V**(x) = 0} = Il{xi E Ei I Vi*(xi) = 0} 

i=1 
2 

IT {xi E Ei lvi(xi):::; 0} 
i=1 
{ x E E lv( x) :::; 0}. 

Proof. It is trivial from (3.29), (3.35) and Theorem 3.2(iv). 
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Chapter 4 

The Multi-Armed Bandit Game 



4.1. Introduction 

This chapter deals with two-person zero-sum games where in every time players alter

nately either select only one of arn1s of bandit machines or stop them. The purpose of 

this chapter is to formulate bandit games and solve them as control problems. 

Now we shall sketch bandit games, referring to Mandelbaum[?]. We regard that a 

discrete-time d-armed bandit process consists of d independent arms, which evolve ac

cording to {Fj}tEN-adapted Markov chains xi= {Xf}tEN (i = 1, ... 
'
d), where N is the 

set of all non-negative integers. If one player A selects arm i, then he obtains some re

wards and arm i evolves one-step according to the transition probability of Markov chain 

for arm i and the next is another player B's turn. However if one of players stops arms, 

then both players 1nust stop selecting arms and settle accounts. Both players alternately 

continue to select arn1s until either player stops the ga1nes. Here we assume that player 

A may either select or stop at even tin1e and at odd time may do player B (This case 

is called first-typ in Section 4.2). Let 0 and ei denote the zero vector and the i'th unit 

vector in Nd respectively. Put Fs = F;1 0 · · · 0 F:d for s = ( s1, · · · , sd) E Nd, and 
N(e,r) ={event I 0 :s; t < r} and N(o,r) ={odd t I 0 :s; t < r} for r E NU {+oo}. 

Player A has two kinds of decisions, i.e. selecting arms and stopping the games. We 

represent the former with player A's strategies 7rA and the latter with his stopping times 

T A. Therefore player B also has his strategies 7rB and stopping ti1nes TB. Both players' 

strategies (7rAi 7rB)§ are defined as follows. 7rA = {7rA(t)}tEN(o,oo) and 7rB = {7rB(t)}tEN(e,oo) 

are Nd-valued stochastic sequences on (D, F) satisfying the following (i) - (iii): 

(i) 7rA(O) = 0 and 7rB(O) = 0. 

(ii) Players alternately select only one of arms. Namely, 

for all t E N(e ,oo ) it holds that 7rA(t + 1) = 7rB(t) + ei for some i = 1, · · · ,d, and 

for all t E N(o, oo) it holds that 7rB(t + 1) = 7rA(t) + ei for some i = 1, ···,d. 

(iii) Players' strategies are adapted to the imfonnation until the present time. Namely, 

for all t E N(o,oo) and all s' E Nd it holds that {1rA(t) = s'} E Fs'' and 

for all t E N(e ,oo) and all s
' E Nd it holds that {1rB(t) = s'} E Fs'· 

Then player A's stopping times T A (player B's TB) are N ( e, oo) ( N ( o, oo) )-valued random 

variables on (D, F) satisfying the adaptation : 

(iv) FortE N(e,oo) it holds that {TA = t} E F7rB(t), and 

for t E N( o, oo) it holds that { TB = t} E F1rA(t) 

§The definition of strategies is referred from Mandelbaum(7,2.2.A 2.2.C]. 
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where {F7rA(t)}tEN(o,oo) and {F7rB(t)}tEN(e,oo) denote informations until timet: 

F1r A ( t) = { r E F I r n 7r A ( t) = s E Fs for s E N d} 
F7rB(t) ={rEF I r n 7rB(t) = s E Fs for sENd} 

fortE N(o, oo ), and 
for t E N( e, oo ). 

Here we need not to assume that strategies ( 1r A ;1r B) are stopped by times T A and TB, 
differently from the definition in Lawler- Vanderbei[6,p.643(b )] . (The reason is trivial from 

representations of expected rewards in Section 4. 2.) Then player A's expected gain 1f to 

be paid from player B at an initial state x is represented as sums of gains when player A 

stops the games and gains when does player B : 

d 
v;ArA1rBTB(x) =Ex[ L (3t 2:J�(X��(t+l))(7r�(t + 1)- 7rk(t)) + (3rAhA(X7rB(rA)) 

d 

tEN(e,rA) l=l 

L f3
t 
L J1(X�k(t+l))(7rk(t + 1)- 7r�(t))- (3rAhB(X7rB(rA)): TA < TB] 

tE (o,rA) i=l 

where (3 is a constant discount rate ( 0 < (3 < 1), i ( = 1, · · · , d) are arm nurnbers, f� 
(fl:J) models player A's (player B's) running rewards obtained at current states when 

he selects arm i, and hA ( hB) rnodels play r A's (player B's resp.) rewards obtained 

at states where he stops. Furth r Ex denot s the expectation with an initial state x. 

Hence player A's aim is to rnaxirnize his gains v;ATA1rBTB' by controlling his strategies 

and stopping times, however play r B's is to minin1ize v;ATA1rBTB. However one player's 

admissible strategies and admissible stopping tin1es generally depend on another player's 

option of strategies and stopping tin1es. In order to solve this problem we introduce one
step Markov strat gies and two-steps Markov stopping times. Next by the use of them we 

show existence of the optimal Markov strategies and the optimal stopping times under 

the assumption of independence of arn1s. While we present a certain value iteration 
(see Iteration 4.2) and show the iteration converges to Belln1an's equation. By using 

Bellman's equation, the present thesis gives the optimal values. Further we classify the 

state space 'into selection regions for each arm and a stopping region on the basis of the 
derived Bellman's equations. Finally this chapter gives optimal Markov strategies and 

1TThese descriptions are referred from the valu of the reward process in Mandelbaum [8,(2.2)], by 
shifting tim . 
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optimal stopping tiines, by constructing concatenations of one-step Markov strategies 

and concatenations of two-steps Markov stopping times, which are defined on the selection 

regions and the stopping region. We also show the uniqueness of optimal values of bandit 

gaines. This chapter is structured as follows. 

In Section 4.2 we reformulate multi-armed Markov processes, strategies and stopping 

times for bandit games. We introduce Markov strategies and Markov stopping times, 

referring to [LawVan1,p.645(3.1)], and show a few fundamental lemmas regarding to their 

concatenations. We formulate players' expected rewards and bandit games. We provide 

a proposition to guarantee existence of the optimal Markov strategies and the optimal 

Markov stopping times. In Section 4.3 we give a backward value iteration and demonstrate 

its convergence and construct optimal Markov strategies and optin1al Markov stopping 

times on the basis of Bellman's equation. Finally the ren1ainder of this chapter is devoted 

to show the uniqueness of the optimal values. 

4.2. Strategies and stopping tin'les for bandit processes 

In this section we shall formulate zero-sum bandit gaines. Let N be the set of all non

negative integers. Let d, the number of arms, be  a positive integer. Let 0 and ei denote the 

zero vector and the i'th unit vector in Nd respectively. Put N( e, r) = {even t I 0 :::; t < 1} 

and N(o,1) ={odd t I 0:::; t < r} for r E NU {+oo}. We deal with the case where arms 

are mutually independent. Therefore we regard that d-armed bandit processes consist of 

d n1utually independent reward processes. F irst we shall define bandit processes, referring 

to [Man1]. 

For arms i ( = 1, · · · , d), let ( ni, Fi, pi) denote probability spaces and let Xi = 

(X;' F!' e�, pi)tEN denote (Fn tEN-adapted time-homogeneous Markov chains, which are 

mutually independent, with Borel state spaces Ei. Here (Ff)tEN is an increasing family 

of completed sub-a-fields of Fi and B� is the time-shift operator on ni. Next we define 

a d-parameter process by their products. Set its time space T = Nd, its path space 

n = Ilf=I ni and its state space E = Ilf=I Ei. Hence we introduce the usual partial order 

into T. For 1 = (1I,···,rd),s = (si, ... ,sd) E T, 1:::; s means that 1i :::; si for all 

i = 1, · ··,d. Then we define a d-parameter process X with the state space E, its a-fields 

Fs and its time-shift operators B s by 
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Further Ex denotes the expectation induced by probability measure P = Df=1 
pi with 

an initial state x E E. We also use notations lsi = L.,f=1 
si for s = (s1, · · · , sd) E T. 

As for games in this chapter, strategies with stopping ti1nes are called tactics. Here 

we shall define tactics when player A moves first and second does player B. We shall call 

them first-type tactics. We give the definition in the more general form than in Section 

4.1. Such a tactic is constructed from player A's strategy 1r A and stopping time T A and 

player B's strategy 7rB and stopping ti1ne TB. First-type strategies ( 1r A; 7rB) are defined as 

follows. For s = ( s1, · · · , sd) E T, 

and 

1rB = {7rB(Isl + t) }tEN(e,oo) = (7r1(1sl + t), · · · ,7r�(lsl + t)) tEN(e,oo) 

are T-valued stochastic sequences on (D, :F) satisfying the following (i)- (iii) and player 

A's stopping times TA (player B's TB) are N(e, CXJ) (N(o, CXJ))-valued random variables on 

(D,:F) satisfying the adaptation (iv): 

( i) 1r A ( Is I) = s and 1r B ( Is I ) = s. 

(ii) For all t E N(e, CXJ) it holds that 7rA(Isl+t+l) = 7rB(Isl+t)+ei for some i = 1, · · · , d, 

and 

for all t E N(o, CXJ) it holds that 7rB(Isl+t+l) = 7rA(Isl+t)+ei for some i = 1, · ··,d. 

(iii) For all t E N(o, CXJ) (N(e, CXJ)) and all s' E T it holds that 

{7rA(Isl + t) = s'} E Fs' ( {7rB(Isl + t) = s'} E Fs' resp.). 

(iv) For t E N( e, CXJ) it holds that { T A = t} E :F7rB(t), and 

fortE N(o,CXJ) it holds that {TB = t} E :F7rA(t), 

where {:F7rA(t)}tEN(o,oo) and {:F7rB(t)}tEN(e,oo) denote informations until tin1e t: 

:F 7r A ( t) = { r E :F I r n 7r A ( t) = s E fs f 0 r s E N d} 
:F1rB(t) = {r E :F I r n 7rB(t) = s E fs for s E Nd} 

fortE N(o,CXJ); 

fortE N(e,CXJ). 

We similarly define strategies and stopping times when player B moves first and second 

does player A, which will be called second-type, by exchanging N(e,CXJ) with N(o,CXJ). 

Then we define families of first-type (second-type resp.) strategies and tactics. For s E T, 

S(F; s) (S(S; s)) = {first (second)-type strategies (1rA; 7rB) starting at s }; 
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T(F; s) (T(S; s ) )  = {first (second)-type tactics (7rA, TA; 7rB, TB) starting at s }; 

S(F) (S(S)) = S(F; 0) (S(S; 0) ); and T(F) (T(S)) = T(F; 0) (T(S; 0)). 

Hence when one player's tactic is fixed, the other player's admissible tactics are denoted 

as follows. For s E T, we respectively define 

V(F; s; 7rB, TB) (S(S; s; 7rB, TB)) = {(7rA, TA) I (1rA, TA; 7rB, TB) E T(F; s) (T(S; s))}; 

1J(F; s; 7rA, TA) (S(S; s; 7rA, TA)) = {(7rB, TB) I (1rA, TA; 7rB, TB) E T(F; s) (T(S; s))}; 

1J(F;7rB,TB) (S(S;1rB,TB)) = {(7rA,TA) I (7rA,TA;7rB,TB) E T(F) (T(S))}; 

1J(F;7rA,TA) (S(S';7rA,TA)) = {(7rB,TB) I (7rA,TA;7rB,TB) E T(F) (T(S))}. 

We shall introduce the definition of Markov strategies, referring to [LawVanl]. For a 

first-type strategy 7rA (1rB) is called Markov if it satisfies the following (i) ((ii) resp.): 

(i) 7rA(t + 1) are 97rB(ttmeasurable for all t E N(e,oo); 

(ii) 7rB(t + 1) are 97rA(ttmeasurable for all t E N(o, oo); 

where Q7rB(t) = o-{X 7rB(t),1rB(t) } II and 97rA(t) = o- {X7rA(t),1rA(t)}. Further a first-type 

stopping time TA (TB) is called a Markov stopping tin1e if it satisfies (a) ((b) resp.): 

(a) T A /\ ( t + 2) are 97rB(TAAttmeasurable for all t E N ( e, oo). 

(b) TB /\ (t + 2) are 97rA(TBAttmeasurable for all t E N(o, oo). 

Hence it is known from [LawVanl,p.645] that (a) ((b)) is equivalent to the following 

conditions (a') ((b') resp.): 

(a') For any t E N(e,oo), there exists rt E g7rB(t) such that {TA = t} = {TA � t} n rt. 

(b') For any t E N( o, 00 ), there exists r� E g7rA(t) such that { TB = t} = { TB � t} n r�. 

Regarding second-type strategies and stopping times, we similarly define Markov 

strategies and Markov stopping times, by exchanging N(e, oo) with N(o, oo). Hence 

we put families of first-type (second-type resp.) Markov strategies and Markov tactics by 

MS(F) (MS(S)) = { Markov strategies (1rA; 7rB) E S(F) (S(S))}; 

IIThis denotes the minimum completed sub-(1-field generated by the random variables X1T8(t) and 
7rB(t). 
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MT(F) (MT(S)) = { Markov tactics (7rA,TA;1rB,TB) E T(F) (T(S)), 

i.e. ( 1r A; 1rB) are Markov strategies, and T A and TB are Markov stopping times } . 

Regarding Markov strategies (Markov tactics, Markov stopping times), when we focus on 

only the options from time 0 to tirne T( E N), we shall call then1 T-steps Markov strategies 

(T-steps Markov tactics, Markov stopping times resp.). Hence we put families of first-type 

(second-type resp.) T-steps Markov strategies and T-steps Markov tactics by 

MS(F; T) (MS(S; 1· ) )  = {T-steps Markov strategies (1rA; 7rB) E S(F) (S(S))}; 

MT(F; T) (MT(S; T)) = {T-steps Markov tactics (1rA, TA; 7rB, TB) E T(F) (T(S))} 

for TE N. Especially since (1rA· 7rB) E M S(F; 1) (MS(S; 1)) does not depend on 7rB (7rA), 

we shall represent it only 7rA E MS( F; 1) (1rB E MS(S·1) resp.). From the same reason 

we also write (7rA, TA) E MT(F; l) ( ( 7rB, TB) E MT(S; 1) resp.). 

Hence we shall prepare fundamental lernmas concerning concat nations of Markov 

strategies and concatenations of Markov stopping times. In the rest of Section 4.2 we 

shall deal with the first-type game. Regarding second-type cases similar results hold, by 

exchanging N(e,CXJ) with N(o,CXJ). 

Lemma 4.1. The following (i) and (ii) hold: 

(i) For 1' EN( ,CXJ)(N(o,CXJ) resp.), (1rA;1rB) E MS(F;T) and 1r� E MS(F; 1) ( 1r8 E 

MS(S; 1) resp.), we define a concatena.ted strategy ( 1r�; 1r�) of ( 1r A; 7rB) and 1r� ( 1r8 ): 

7r A ( t' w) = 7r A ( t' w) for t E N ( 0' T + 1 ) and w E n; 

7r�(t,w) = 1rB(t,w) fortE N(e, T + 1) and wEn; and 

1r�(T + 1,w) = 7rB(t,w) + 7r�(1,Bna(r)w) forw ED, 

(7r�(T + 1,w) = 1rA(t,w) + 7r8(1,BnA(r)w) forw En). 

Then ( 1rA; 1r.B) E M S ( F; T + 1). 

(ii) ForT E N(e,CXJ)(N(o,CXJ) resp.), (1rA;1rB) E MS(F;r) and a non-increasing se

quence { T A,dtEN(e,r) ( { TB,dtEN(o,r)) of first-type 2-steps Markov stopping times, we 

inductively define a stopping time T1A,r(T1B,r) by 

T1 A,o(w) = TA,o(w) for W E D; and 

T I A' t + 2 ( w) = T I A' t ( w) + T A ,t+ 2 ( e 7r B ( T I A' t)W ) for t E N ( e' T) and w E n 

(T1B,l(w) = 1 + TB,l(BnA(l)w) foT wEn; and 

45 



Then T1 A,r ( T1 B,r) s a  first-type r-steps Markov stopping time and further limr-oo T1 A,r 

(limr-oo T1 B,7.) becomes player A's (player B's) first-type Markov stopping time. 

Proof. (i) are trivial due to the definitions of Markov strategies. (ii) Fix any r E N(e, oo), 

(1rA; 7rB) E MS(F; r ) and a non-increasing sequence {TA,dtEN(e,r) of first-type 2-steps 

Markov stopping times. Since { T A,t} tEN(e,r) is non-increasing, we have 

( 4.1) 

Hence since T1 A,t is Q7r B(otmeasurable, we can easily check (a'), by taking the measurable 

sets rt = {TA,t(e1rB(t)) = 0} E g7rB(t) fortE N(e,r). Thus we obtain (ii). The proofs of 

the other cases in ( ii) is similar. D 

A typical example of Markov stopping times is as follows. Let (1rA; 7rB) E MS(F;r) 

and let a sequence { D A,t }tEN(e,oo) of Borel subsets of E such that D A,t+2 ::) D A,t for each 

t E N(e,oo). Hence we define the following stopping times (4.2): 

- { 2 on{Xotf-DA,t} 
TA,t

- 0 on { XoEDA,t} 
fortEN(e,oo). 

Then we have the following result. Sin1ilar results also hold for player B. 

Lemma 4.2. In Lemma. 4.1(ii) if we give TA,t by (4.2), then we have 

(4.2) 

T1A,1· = inf{t E N(e, oo) I x1rB(t) E DA,t} !\ (r + 2) for r E N(e, oo), (4.3) 

and 

( 4.4) 

Proof. This lemma is trivial from the definitions. D 

From Lemma 4.1, we have th following representations for Markov tactics: For player 

A's (player B's) first-type Markov tactics (7rA, TA)((7rB, TB) resp.) w write them as 

4.3. Expected rewards and bandit gan'les 

First we shall define player A's expected values and player B's when player A moves 

first. For arm i( = 1, · · · , d) 1 t f� (!1), player A's (player B's resp.) running rewards 
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for arm i, be bounded measurable functions on Ei and let hA (hB), player A's (player 

B's resp.) terminal rewards, be bounded measurable functions on E. Put h = hA - h8. 

Hence for the sake of a convenient r presentation we shall introduce the following notation 

(- , 
·
), referring to the inner product of d-dimensional real vector spaces: For example, we 

describe 
d 

(fA(X7rA(1)),7rA(1)- 7rB(0)) = Lf�(X!�(l))(7r�(1)- 1rk(O)). (4.5) 
t=l 

Let (30 be a constant satisfying 0 < (30 < 1. For arm i ( = 1, · · · , d) let (3i, a instantanous 

discount rate for ann i, be a bounded n1easurable function on Ei satisfying that 

( 4.6) 

Then for a strategy (7rA;7rB)(E S(F)), we d fine a discount rate at odd (even resp.) time 

t + 1, which depends on a state of arms selected by player A's strategy 1r A ( t + 1) (player 

B's 1r B ( t + 1)): 

and 

Using these, a discount rate at ti1ne t is given by their product: 

t 
a1rA1rB(O) = 1, and a1rA1rB(t) =IT (31rA1rB(r) fort= 1, 2, · · · . 

(4.9) 
r=l 

Expecially since a7rA7rB(1) = (37rA7rB(1) = ((3(X
7rA(l)), 7rA(l)) does not include 7rB, we write 

it simply as (37rA(l). When a first-type tactic (7rA,TA;7rB,TB)(E T(F)) is taken, player 

A's expected gain to be paid fron1 player Bat an initial state x is represented as sums of 

gains when player A stops the games and gains when does play r B : 

L arrA7rB(t)(fB(X7rB(t+I)), 7rB(t + 1)- 7rA(t)) 
tEN(o,TAI\Ta) 

+ a1rA1rB(TA 1\ TB)h(X7rB(TA)I\7rA(TB))], 

where we define a 1\6 = 1nin{a, 6} for a, 6 EN and a 1\6 = (a1/\ 61, a21\ 62, ···,ad 1\ 6d) for 

a= ( a1, a2, ···,ad), 6 = (b1, 62, · · ·, 6d) E T. Hence player A's aim is to 1naxi1nize his gains 

v;ATA1rBTB(x), by controlling his strategies and stopping times, however player B's is to 
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minimize it. Therefore when one player's tactic is fixed, the values optimized by another 

player are as follows: 

V*1rBTB( ) - V1rATA1rBTB( ) F X - sup F X 

(1r A ,r A)EV(Fi1rB ,TB) 
for x E E; (4.10) 

v;ATA*(x) = inf v;ATA1rBTB(x) for X E E. (4.11) 
( 7r B ,rB )EV(F;r A ,1r A) 

When player A moves first, we shall call the following game first-type bandit game: To 

find tactics 

(4.12) 

Next we shall sin1ilarly define values of games when player A moves second. We put, 

for a second-type tactic (7rA,TA;7rB,TB)(E T(S)) and x(E E), 

tEN(o,rA ATE) 

L a1rA1rB(t)(JB(X1r8(t+l)), 7rB(t + 1)- 7rA(t)) 
tEN(e,rAI\TB) 

+ 0'1rA1rB(TA (\ TB)h(){1rB(rA)A7rA(rB))]; 

v;1rBTB(x) = sup v;ATA1rBTB(x) for X E E; 
(1r A ,r A )EV(5;7r B ,TB) 

v;ATA*(x) = inf v;ATA1rBTB(x) for X E E. 
(1r B1TB )EV(S;r A ,1r A) 

Then second-type bandit games are to find 

( 1r �, T � ; 1r .8 , T 8) E T ( S) such that V; � r � 7r � r .8 = V; 7r 8 r 8 = V; A r A*. 

Finally we note that 

and 

(4.13) 

(4.14) 

( 4.15) 

(4.16) 

We need some more notations in order to prove existence of Markov tactics attaining 

the supremum ( the infremum ) in (4.10) and (4.11) ((4.13) and (4.14) resp.). Sets = 

(s1, · · · , sd) E T such that lsi is ev n (odd ) . After observations that each arm i has 

already been selected si times and that we adopt a tactic (7rA,TA;7rB,TB) E T(F;s), 

values of first-type bandit games are denoted by 

EFs[. L a1rA1rB(Isl, I I+ t)(JA(X1rA(isi+t+I)), 7rA(Isl + t + 1)- 7rB(Isl + t)) 
tEN(e,rAI\rB-isl) 

I: a
1rA1rB(Isl, lsi+ t)(fB(X1rB(isi+t+l)), 7rB(Isl + t + 1)- 7rA(Isl + t)) 

tEN(o,r AATB-isi) 

+ a
1rA1rB(0, TA /\ TB)h(X1rB(rA)A1rA(r8)): lsi� TA /\ TB], 
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where a1rA1rB(isi, lsi+ t) is a product of discount rates from titne lsi to time lsi+ t: 
t 

ot A 7r 8 ( 1, 1) = 1 , and a 7r A 7r 8 ( T, t) = IJ {31r A 7r 8 ( 11) for 1, t = 1 , 2, · · · ( 1 < t). ( 4.1 7) 
r'=r+l 

Hence referring to (4.10) and (4.11), we put 

for sET; (4.18) 

and 

( 4.19) 

Regarding the second-type bandit games, we define Z�ATA1rBTB(s), z;1rBTB(s) and Z�ATA*(s) 

sitnilarly. Now we obtain the following fundatnental letntnas. 

Lemma 4.3. The following (i) and (ii) hold: 

(i) For (7rA,TA;7rB,TB) E T(F) and T E N(e,oo), it holds that 

z;A T A 7r BT B ( 7r B (I) )  

EF 7r 
B( r) [ ( J A (X 7r A ( 1' + 1) ) 1 7f A ( I + 1) -7f B ( I) )  

+f31rA1rB(1 + 1) Z�ATA1rBTB(7rA(T + 1)): T + 1 :s; TA 1\ TB] 

+EF7rB(r)[h(X7rB(r)): T = TA 1\ TB]· 

(ii) For (7rA,TAi7rB,TB) E T(F) a.nd T E N(o,oo), it holds that 

z;ATA1rBTB(7rA(T)) 

EF7rA(r)[(-JB(X7rB(r+1))17rB(1 + 1) -1rA(1)) 

+f31rA1rB(T + 1) z;ATA71'BTB(7rB(r + 1) ) : I+ 1 :s; TA 1\ TB] 

+EF7rA(r)[h(X7rA(r)): I= TA 1\ TB]· 

Proof. We can easily check it from the definitions. 

Lemma 4.4. The following (i) and (ii) hold: 

(i) For player B's first-type Markov ta.ctics (1r8,T8) and 1 E N(e,oo), it holds that 

z;1rBTB(7rB(1)) 

max {ess SUp(7rA,TA)EV(F;7rB(1·);7rB,TB)EF7rB(r)[(fA(X7rA(1·+l)), 7rA(1 + 1)- 1rB(1)) 

+f31rA1rB(T + 1) z;1rBTB(7rA(r + 1)): I+ 1 :s; TA 1\ TB], h(X7rB(r))}. 
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(ii) For player A's first-type Markov tactics (7rA,TA) an d r E N(o,CXJ) , it holds that 

z� AT A* ( 7f A ( T)) 

min{ess inf(7rB,TB)EV(F;7rA(7')i7rA,TA)£F,.A(r)[(-fB(X7rB(r+1)),7rB(r + 1)- 7rA(r)) 
+(37rA7rB(r + 1) z;ATA*(7rB(r + 1)): T + 1:::; TA 1\ TB], h(X7rA(r))}. 

Proof. Fix any Markov tactics ( 7rB, TB). We shall show only this case of (i), because 
the other case is similar. Let any r E N(e, CXJ) and any (7rA, TA) E D(F; 7rB(r); 7rB, TB)· 
The definition of the essential supremum (see [Nev1,p.121]) i1nplies that there exists a 
sequence {(1fA,n,TA,n;1fB,TB) E T(F)}nEN of tactics satisfying the following conditions 
which they are equal to (1rA, TA) until tim r + 1 : 

1fA,n(t) = 1fA(t) for all odd t satisfying 0:::; t:::; r + 1; 

TA,n 1\ (r + 1) = TA 1\ (r + 1); and 

EF,.B<•·)[(JA(_,\'"7rA(1·+1)), 7rA(r + 1)- 7rB(r)) 
= limn--+oo{EF,.B(r>[(JA(X11"A,n(r+l)), 1fA,n(r + 1)- 7rB(r)). 

(4.20) 

( 4.21) 

(4.22) 

Then we have the previous term= limn-oo z;A,nTA,n11"BTB(7rB(r)) :::; z�1T"BTB(7rB(r)). How
ever since {r + 1:::; TA 1\ TB} n {r = TA 1\ TB} is empty we obtain 

z;:BTB(7rB(r)) 
> max{ess SUp(7rA,TA)EV(F;7rB(r);7rB,TB)£F,.B(r)[(fA(X7rA(1·+1)), 7rA(r + 1)- 7rB(r)) 

+f37rA7rB(r + 1) Z�7rBTB(7rA(r + 1)): T + 1 :::; TA 1\ TB], h(X7rB(r))}. 

On the other hand Lemma 4.3 implies 

z;,ATA7rBTB ( 7rB(r)) 

EF,.B(r)[(JA(X7rA(r+1)),7rA(r + 1)- 7rB(r)) 
+f31T"A1T"B(r + 1) Z�ATA1T"BTB(7rA(r + 1)): r + 1:::; TA 1\ TB] + EF,.B(r)[h(X7rB(r)): r = TA A TB] 

< max{ess SUp(7rA,TA)EV(F;7rB(r);7rB,TB)£F,.B(r)[(fA(X7rA(r+1)),7rA(r + 1)- 7rB(r)) 

+(37rA7rB(r + 1) Z�7rBTB(7rA(r + 1)): T + 1:::; TA 1\ TB], h(X7rB(r))}. 

Therefore we obtain the equality of (i). 0 

Hence in order to check the measurability of z;:BTB and z�1T"BTB' we define, for 7TI = 
1, 2, · · · and fixed player B's first-type Markov tactics (7rB, TB), {YF,m(s)}sET:IsiEN(e,m+l) 
and {Ys,m ( s)} sET:IsiEN(o,m+l) in m-step first-type bandit game successively: 

Iteration 4.1. 
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(m.O) ForsE T satisfying lsi= m, put YF,m(s) = Ys,m(s) = 0. 

(m.F.s) ForsE T satisfying lsi E N(e, m ) , put 

YF,m(s) = max{ ess sup(7rA,TA)EV(F;s;7rB,TB)EFs[(JA(X7rA(isi+1)), 7rA(isi + 1)- s) 

+(J3(X7rA{isl+l)), 7rA(isi + 1)- s) Ys,m(7rA(isi + 1)): lsi+ 1 � TA A TB], h(Xs)}. 

(m .S .s) ForsE T satisfying lsi E N(o, m ) , put 

d 

Ys,m(s) = L EFs[(-JB(Xs+e;), ei) 
i=l 
+(J3(Xs+e.),ei) YF,m(s + ei): s + ei = 7rB(isi + 1), lsi+ 1 � TB] 

+h(Xs) · J{isi=TB}' 

Then we have the following lemma. 

Len1ma 4.5. The following (i) a.nd (ii) hold: 

(i) For player B's first-type Markov tactics (?TB, TB) andrE N(e, CX> ) , it holds that 

z;,7r BTB ( 7r B ( r)) 

max { sup Ex7rB(r)[(JA(X7r�{1)),7r�(l)) 
1r� EMS{F;l) 

+J37r�(l) z;1r�T�(1r�(l)): 1 � T�],h(X7rB(T))}, 

where We take (?T�, T�) by (7r�1 T�) = [7rB,T+21 TB,1·+2; 7rB,T+41 TB,T+4; 7rB,T+61 TB,T+6;.' ·] 

for (7rB, TB) = (7rB,2, TB,2; 1TB,4, TB,4; 7rB,6, TB,6; .. ·). 

(ii) For player A's first-type !v!arkov tactics (7rA,TA) andrE N(o,CXJ), it holds that 

Z�ATA*(?TA(r)) 

min{ inf EX1rA(r)[(-JB(X1r' (t)),?T�(l)) 
7r�EMS(S;l) B 

+J37r�(l) z;�T�*(7r�(l)): 1 � T�], h(X7rA(T))}, 

where We take (1r�, T�) by (1r�, T�) = [1rA,1·+21 TA,T+2; 7rA,T+41 TA,T+4; 7rA,T+6, TA,r+6;' '·] 

for (7rA1 TA) = [7rA,11 TA,1; 1TA,31 TA,3; 7rA,5, TA,s;'' ·]. 

Proof. We shall show (i ) , because the other cases are similar. Fix any Markov tactics 

(7rB,TB)· First we shall show YF,m(s) E Ys **for all s E T satisfying lsi E N(e,rn + 

**9.,-measurable functions 
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1) (Ys,m(s) E 9s for all s E T satisfying lsi E N(o,m + 1)). Put h11B(r) = O"{Xs : 
s 2:: 7rB(r),7rB(r)} for r E N(e,oo). Then from the independency of Markov chains Xi 
(i = 1, ···,d) (c.f. [LawVan1,Theorem 5(b)]), O"{Xs': s' 2:: s} and Fs are conditionally 
independent, given 9s for s E T. So from the definition of strategies, we can easily check 
that the future h11B(r) and the past F11B(r) are conditionally independent, given 911B(r) for 
r E N ( e, oo). Hence fron1 Iteration1 ( rn.O) we have that YF,m ( s) = Ys,m ( s) = 0 for s E T 
( lsi = m). Further in Iteration1(m.F.s)((m.S.s) resp.) if Ys,m(s + ej) E 9s+e1 for some 
s E Tsatisfying lsi E N(e,m) and allj(= 1,···,d) ( YF,m(s+ej) E 9s+e1 for some s E T 
satisfying lsi E N(o,n�) and all j(= 1, ···,d)), then the term 

(JA(X7rA(isl+l)), 7rA(isi + 1)- s) + (,B(X7rA(isl+l)), 7rA(isi + 1)- s) Ys,m(7rA(isi + 1)) E H7rB(Isl) 

( (-JB(Xs+e,),ei) + (,B(Xs+e,) ei) YF,m(s + ei) E H7rA(isl))· 

Further since (7rB, TB) is Markov, we have {s + ei = 7rB(isi + 1)} E 971A(isl) (i = 1, ···,d), 

{lsi = TB} E 97rA(isl)l {isl+1::; TA!\TB} E H7rA(isl) and {isl+1::; TB} E H7rA(isl)· Therefore 
from Iteration1(m.F.s), we obtain YF,m(s) E 9s for sET satisfying lsi E N(e,m) (from 

Iteration1(m.S.s), Ys,m(s) E 9s for s E T satisfying lsi E N(o, m)). Thus inductively 
we can check backward that YF,m(s) E 9s for all s E T satisfying lsi E N(e, m + 1) 

(Ys,m(s) E 9s for all sET satisfying lsi E N(o,m + 1)). 
Next define a norm Ill · Ill on the space of bounded d-parameter processes on E: 

IIIWIII = supsET ess supwEniWs(s,w)j. for bounded d-parameter processes W = {Ws}sET 
on F. By using the norm I ll · Ill instead of the norm II · 

II of Section 4.3, in similar line as 
Lemmas 4.5 and 4.6 and Theorern 4.1 (see Section 4.3), Iteration 1 converges: 

and 

Yp( s) = ��00 YF,m( s) E 9s for all s E T satisfying lsi E N( e, oo ), ( 4.23) 

Ys(s) = �� Ys,m(s) E 9s for all sET satisfying lsi E N(o,oo). (4.24) 

Further the pair of YF and Ys is a. unique solution of the following ( 4.25) and ( 4.26): 

Yp(s) = max{ess sup(11A ,-rA)E1J(F;s;11B ,-rB)EFs[(fA(X7rA(lsl+1)),7rA(isi + 1)- s) 

+(,B(X7rA(IsJ+l)), 7rA(isi + 1)- s) Ys(7rA(isi + 1)): lsi +  1 ::; TA !\ TB], h(Xs)}. (4.25) 

for all s E T satisfying is I E N( e, oo), and 

d 

Ys(s) = L EFs [(-fB(Xs+eJ, ei) 
i=l 

52 



for all sET satisfying lsi E N(o,oo). Hence since player B's tactic (7rs,Ts) is fixed, by 

using Lemmas 4.3(i i) and 4.4(i), z�rrs,TB and z�rrs,TB also satisfies ( 4.25) and ( 4.26). From 

the uniqueness of solutions, we obtain that Y'F = z�rrs,TB and Ys = z�rrs,TB. Therefore in 

( 4.25) by using the Markov property and the measurability of ( 4.23), we obtain that for 

each r E N(e, oo), 

z�1fBTB(7rB(r)) 
max {ess SUP(rrA,TA)E'D(F;rrs(r);rrs,Ts)EF7rs(r)[(JA(XrrA(r+l)), 7rA(r + 1)- 7rs(r)) 
+f37rA7rB(r + 1) z;rrsTB(7rA(r + 1)): r + 1 � TA (\ TB], h(Xrr8(r))}, 
max { sup Exrrs(rl[(!A(Xrr�(1)),7r�(l)) + f37f�(1) z�7f�Tk(7r�(l)): 1 � T�], h(Xrrs(r))}, 

rr� EMS(F;l) 

where we take (1rB, T8) by (1rk, T8) = [7rB,T+2, TB,1·+2· 7rB,r+4, TB,r+4; 7rB,r+6, TB,r+6; · · ·] for 

(1rs, Ts) = [1rs,2, Ts,2; 7rB,4, Ts,4; 7rB,6, Ts,6; · ·l Thus we conclude this len1ma. D 

Hence we obtain the following results regarding (4.10), (4.1 1), (4.1 3) and (4.1 4). 

Proposition 4.1. For player B's (player A's) first-type Markov tactic (7rB,TB) 
((7rA,TA)), there exist Markov tactics (7rA,M,TA,M) E D(F;7rB,TB) ((7rs,M,TB,M) E 

D(F; 7rA, TA)) satisfying the following (i) ((ii) resp.): 

Remark. Similar facts holds for the second- type tactics. 

Proof. (i ) F ix any player B's first-type Markov tactic (7rs,TB)· Lemma 4.5 implies that 

for each r E N ( e, oo) 

z�rrBTB ( 7rB(r)) 
= max { sup Exrrs(r)[(fA(Xrr�(1)),7r�(1)) + f37f�(1) z�1fBTk(7r�(1)): 1 � T�],h(Xrrs(r))}, 

rr� EMS{F;l) 

where We take (1rB, TB) by (1rB, TB) = [7rB,T+2, TB,T+2; 1rB,r+4' TB,T+4; 1rB,T+6, TB,1·+6; .. ·] for 

(1rB, TB) = [1rs,2, Ts,2; 7rB,4, Ts,4; 7rB,6, Ts,6; · ·-]. Hence it holds that 

( 4.27) 
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Here for i = 1, · · ·, d we define 

fi = {
.j���d£XrrB(r)[j�(X{) + ,8j(Xf)z;1r�Tk(ej): 1 s; T�] 

= ExrrB(r)[J�(xn + ,Bi(xnz;1r�Tk(ei): 1 s; T�]}. 

Further we set r� = r 1 and r�+1 = ri+I - (r 1 U · · · U fi) for i = 1, · · ·, d- 1. By putting 
7r�,M(1, tJ1r8(r)w) = ei for r E N( e, oo ), i = 1, · · ·, d and w E r�, we have 1r�,M E MS(F; 1) 
and then the supremum of ( 4.27) is attained by 1r�,M: 

z;.1rBTB ( 7rB( T)) 

= max{£XrrB(r)((fA(X7r�,M{l)),7r�,M(1)) + ,87r�,M(1) z;7r�Tk(7r�,M(1)): 1 s; T�], h(X1rB(r))} 

for each r E N(e, oo). Hence from Lemmas 4.1 and 4.2, we may inductively define a 
Markov tactic ( 7r A,M T A,M) by 

7rA,M(r + 1,w) = 7rB(r,w) + 7r�.A1(1,B1rB(T)w) for wEn and each r E N(e,oo), (4.28) 

and 
T A ,M = inf { r E N ( e, oo) : Ar}, (4.29) 

where for r E N ( e, oo) we define i\r = 

{£XrrB(r)((fA(X7r�.M(I)), 7r�,M(1)) + ,87r�.M(1) z;7r�Tk(7r�,M(1)): 1 s; T�] s; h(X1r8(r))}. 
Then we obtain 

max{£XrrB(r)((fA(X7r�,M(l)), 7r�,M(1)) + ,87r�.M(1) z;7r�T�(7r�,M(1)): 1 s; T�], h(X1r8(r))} 
EFrrB(r)[(JA(X1rA,M(r+l)),7rA,M(r + 1)- 7rB(r)) 
+,81rA,M1rB(r + 1) z�1rBTB(7rA,M(r + 1)): r + 1 s; TA,M 1\ TB] + h(X1rB(r)) . I{r=TA,M/\TB}· 

Therefore we conclude that for all T E N ( e, oo) 

z;.1rBTB ( 7rB(r)) 
£FrrB(r)[(JA(X1rA,M(r+I)),7rA,M(T + 1)- 7rB(r)) 
+,81rA,M1rB(r + 1) z�1rBTB(7rA,M(1' + 1)): r + 1 s; TA,M 1\ TB] + h(X1rB(r)) . I{r=TA,M/\TB}· 

On the other hand from Lemmas 4.5 and 4.3(ii), we have that for all r E N( e, oo) 

z,;1rBTB(7rA,M(r + 1)) 
EFrrA,M(r+l)[(-JB(X1rB(r+2)), 7rB ( 7' + 2)- 7rA,M(r + 1)) 

+,81rA,M1rB(r + 2) z;:878(7rB(r + 2)): r + 2 s; TA,M 1\ TB] + h(X1rA,M(T+ l )) . I{r+l=TA,M/\TB}· 
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Hence from these two equations, w conclude the results that v;A,MTA,M1TBTB = v;1TBTB 
and ( 1rA,M, TA,M; 7rB, TB) E F(F). We can also check the other equations similarly. 0 

4.4. The optimal values and the optimal tactics 

Now from Proposition 4.1, the fa1nilies 

are non-empty, therefore we may respectively define the lower bound V F and the upper 

bound V F of values in the first-type bandit games by 

In the second-type we similarly define T(S; lower), T(S; upper), V 5 and V S· In this 

section we investigate the following backward iteration in order to find the optimal values 

in both type bandit games. Further we shall show that the lower bounds and the upper 

bounds of values coincide and that the iteration converges to the unique optimal value. 

Let us consider the following value iteration. For r E N we define successively as 

follows.  

Iteration 4.2. 

(0) Put U F,o = Us,o = h. 

(F.r) For x = (xi,···, xd) E E, put 

(S.r) For x =(xi,··· ,xd) E E, put 

Us,r+I(x) = min { 1nin Ex'[-f_�(X�) + ,Bi(xn UF,1.(x\· · · ,x;,. ·· ,xd)],h(x)}. 
t=I,···,d 

F irst we shall prove convergence of sequences { U F,r }rEN and { U s,r }rEN in Iteration 2. 

Let 11·11 denote the supremum norn1 on the space of bounded n1easurable functions on E. 

For i = 1, · · · d w shall in trod uc the following sen1i-linear operators S,4 and Sk on the 

space of all bounded measurable functions on E: 
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Si ""( ) _ Ex' [ fi ( Xi) + fJi(Xi) ""( .1 Xi d)] B'f'X - - B 1 1 <.pX ···, 1,···,X 

for bounded measurable functions ¢ on E. Then we have the following lemmas. 

Lemma 4.6. Let u1, u2, v1 and v2 be bounded measura.ble functions on E such that 

Vj =max{ _max S� Uj, h} for J = 1, 2, 
t=1,···,d 

where max{¢,�} denotes max{¢,� }(x) =max{ ¢(x ), �(x)} for functions ¢ and� on E. 

Then it holds that 

Proof. We can easily check this lemn1a. 

Lemma 4.7. For each r, r' EN, the following (i) and (ii) hold: 

(i) IIUF,r+r'+1- UF,,-+111 � fJoiiUs,T+r'- Us,1·11-

(ii) IIUs,r+r'+1- Us,r+111 � fJoiiUF,r+r'- UF,1·II· 

Proof. It is trivial from Lemma 4.6 and Iteration 4.2. 

Then we obtain the following results regarding Iteration 2. 

Theorem 4.1. Iteration 2 converges: 

UF(x) = lim UFr(x) and Us(x) = lim Us1·(x) for x E E. 
r-->oo ' r-->oo ' 

0 

0 

Further the pair of UF and Us is a unique solution of tlJe following equations (4.30) and 

(4.31): 

UF = lTiax{ _max s� Us, h }; 
t=1, .. ·,d 

Proof. From Lemma 4.7, we have for each 1·, r' E N 

We inductively obtain 
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for all r' E N and all even r. As letting r and r' infinite, we obtain the existence of 

limr·-oo UF,1· · Similarly lim1·-oo Us,T exists. We obtain (4.30) and (4.31), by applying the 

bounded convergence theorem to Iteration 2. Finally the uniqueness of solutions U F and 

Us is easily checked, by using Lernma 4.6. 0 

For Markov tactics (1rA, TA) E MT(F; 1), (1rs, Ts) E MT(S; 1) we shall introduce the 

following semi-linear operators S�ATA ( S�BTB, Q�ATA, Q�BTB resp. ) on the space of all 

bounded measurable functions on E: 

S�ATA</>(x) = Ex[(fA(X7rA(r)),7rA(1)) + j37rA(1) </>(X11'A(1)): TA > 0] (x E E); 

S�BTB</>(x) = Ex[(-fs(X7rB(I)),7rs(l)) + j311'B(1) </>(X7rB(I)): TB > 0] (x E E); 

Q�ATA</>(x) = S�ATA</>(x) + Ex[h(Xo): TA = 0] (x E E); 

Q�BTB</>(x) = S�BTB</>(x) + Ex[h(Xo): Ts = 0] (x E E) 

for bounded measurable functions </>on E. Then we obtain the following results. 

Corollary 4.1. 

Proof. They are trivial from ( 4.30) and ( 4.31), by considering the definition of one-step 

Markov strategies and one-step Markov tactics. 0 

4.5. Construction of the opti1nal tactics and the uniqueness of 

the opti1nal values 

Now we shall construct the optimal tactics. First we define subsets of E as follows. 

D� = {UF = h}; D'� = {maxi=1, ... ,dS�Us = S�Us} for j = 1,··· ,d; 

D� ={Us= h}; D'� = {mini=1, .. ·,d S.BUF = SbUF} for j = 1, .. ·,d. 

Further we let {D� I i = 1, · · · , d} and {DB I i = 1, · · ·, d} be partitions of E by 

Dl _ D'1. 
A- A' 

D1 - D,r. 
B- B' 

Di+l D'i+l (D,r u u D'i ) f . 1 d 1 A = A - A . . . A or l = ' . . . ' - ; 

D[t1 = D't
1 

- ( D'1 U · · · U D'k) for i = 1, · · · , d - 1. 

57 



Hence D� ( Dk) mean player A's (player B's) selection regions for arms i and D� ( D�) 
mean his stopping regions. Then by putting 

1r� = ei (1r'l3 = ei) on {Xo ED� (D8)} fori= 1, · · ·, d; (4.32) 

we have Markov strategies 1rA E MS(F; 1) ( 1r8 E MS(S; 1) resp.). Further by setting 

70 _ { 2 on {Xo (/ D�} 
A - 0 on {X o E D�} 

d 
o { 2 on {X o (/ D�} 

an T -B - 0 on {X o E D�}, ( 4.33) 

we have Markov tactics (1rA, T.4) E MS(F; 1) ( (1r8, T_8) E MS(S; 1) resp.). From Lemma 
4.1 we may give another representation of Markov strategies. For positive even (odd) 
number rand (1rA;1rB) E MS(F;r) we describe 

( 4.34) 

where {1rA,t It E N(o,T + 1)} ({7rB ,t It EN( ,r + 1)}) are player A's (player B's resp.) 
one step Markov strategies. Hence the rneaning of ( 4.34) is as follows. Player A selects an 
arn1, by using Markov strategy 7rA,I· Next player B selects, by using Markov strategy 7rB,2. 
Further player A does, by using Markov strategy 7r A,3. The garne continues in this way, 
and finally player B (player A) selects, by using Markov strategy 7r B,r ( 7r A,r). Moreover 
we have similar representations concerning second-type Markov strategies: For positive 
even (odd) r and ( 7r A; 7rB) E MS(S; r) we write 

Hence by using these representations, we give the following Markov strategies ( 1rA_; 1r8) E 
MS(F) and (1r'�; 1r';) E MS(S) by 

(1rA.; 1r�) = [1r�; 1r'l3; 1r�; 1r'l3; ···]and (1r'�; 7r1�) = [1r'l3; 1r�; 1r'l3; 1r�; · ·-]. 

Further we define Markov stopping times TA and TB ( T1� and T1�) in the same line as 
Lemma 4.1(iii), (iv), by using Markov strategies (1rA_; 1r8) ((1r'�; 7r1�)) and 2-steps Markov 
stopping times TA and T_8 r spectively. Then from Lemma 4.2, we obtain 

TA = inf{t E N(e,CXJ) I Xn3(t) ED�}; TB = inf{t E N(o,CXJ) I Xn�(t) ED�}; 

T1� = inf{t E N(o, CXJ ) I Xn'3(t) ED�}; T1; = inf{t E N(e, CXJ) I Xn'�(t) ED�}. 

Then we obtain the following results. 

Theorem 4.2. (1r:4.,TA;1r8,T8) E T(F) ((1r'�,T'�;7r'�,T1�) E T(S)) is an optima.l 

tactic and U F (U 5) is an optimal value foT tl1e first-type (second-type Tesp.) bandit game: 
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(i) v1rATA1rBT11 < u = v1r�T�1rBT11 < v1r�T�1rBTB F - F F - F 
for every (7rA, TA) E IJ(F; 1rB, TB) and (7rB, TB) E IJ(F; 1rA, TA_). 

Proof. F irst we shall show that the inequality of (i) holds for Markov tactics. From 

Corollary 4.l(i) we have 

( 4.35) 

for every Markov tactic (7rA, TA) E MT(F; 1). Hence from Corollary 4.1(ii) we have Us= 
Q(1rB,Tl;.)u T th · ·th (4 35) bt · u - Q(1r�,T�)Q(1rB,Tl;.)u > Q(1rA,TA)Q(1rB,Tl;.)u B F · oge er Wl . We 0 a1n F - A B F _ A B F 
for every Markov (7rA, TA) E MT(F·1). Ther fore we inductively obtain 

(4.36) 

for every r E N and every Markov (7rA,t, TA,t) E MT(F; 1) (t E N(o, 2r)). Hence from 

the definitions of QA and QB we have 

for (7rA, TA) E MT(F; 1), (1rB , TB) E MT(S; 1) and bounded measurable functions ¢;1, ¢;2 

on E. By letting r infinite in ( 4.36), from the definitions 1r.A, 1rB and Lemmas 4.1 and 4.2 

we obtain 

( 4.37) 

where (1r.A; 1rB) = [1rA.; 1r8; 1rA_; 1r8; 1rA.; 1r8; · · ·] E MS(F), TA_ and TB are given by (3.8), 

(1rA; 1rB) = [1rA,1; 1r8; 7rA,3; 1r8; 7rA,s; 1r8; · · ·] E MS(F) and Markov stopping times TA are 

defined by in the sa1ne line as Le1mna 4.1(iii), by using Markov tactics (1rA; 1rB) and non

increasing sequences { T A,t }tEN(o,oo) of 2-steps Markov stopping tim s. Therefore ( 4.37) 

hold for every Markov tactic (7rA, TA) E IJ(F; 1rB, T8) defined in the type of Lemma 4.1(iii). 

Since the other Markov cases can be proved similarly, we obtain the inequalities (i) for 

every Markov tactics (7rA, TA) E IJ(F; 1rB, Ts) and (1r8, TB) E IJ(S; 1r.A, TA_) which are 

defined in the type of Lemrna 4.l(iii). Next we shall show the non-Markov case. Hence 

by the use of Proposition 4.1, there exists a Markov tactic (1r�,M,TA,M) E 1J(F;7rB,Ts) 
• • 7r� MT� M1rBTB *1r. T . 

wh1ch satisfies that VF · · = Vp B B. Then we have 
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On the other hand fro111 the definitions ( 4.20) and ( 4.29) and Lemma 4.2, ( 1rA
,M

, TA
,M

) E 

D(F; 1r8, T8 ) is a Markov tactic which are defined in the type of Lemma 4.l(i), (iii). There

fore from the first part of this proof we obtain 

Thus we conclude 

Since the other inequalities can be proved similarly, the proof of this theorem is completed. 

0 

Finally we obtain the following results concerning the optimal values. 

Corollary 4.2. The bandit games have the unique optimal value: 

Up= V F = V F a.nd Us= V 5 = V S· 

Proof. From Theorem 4.2 we have 

Since V F :::; V F is trivial, we obtain U F = V F = V F· The other is sinlilar. 0 
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