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Chapter 1

Preface



1.1. Preface

The multi-armed bandit problem, the origin of the word is from bandit machines in

gambling, is a mathematical model for optimizing in sequential manner allocating between

a number of competing projects. The well-known example is :

(a)

Goldmining : A man owns n goldmines and a gold-miming machine. Each day he
must assign the machine to one of the mines. When the machine is assigned to mine
¢ there is a probability p; that it extracts a proportion ¢; of the gold left in the mine,
and a probability 1 — p; that it extracts no gold and breaks down permanently. To
what sequence of mines on successive days should the machine be assigned so as to

maximize the expected amount of gold mined before it breaks down?

Further the multi-armed-bandit model has many examples and applications :

(b)

()

(f)
()

Scheduling : There are n jobs which are waiting to be processed on a single industrial
machine. A problem is to determine the order of the jobs to be processed so as to

minimize the total costs.

Search : A stationary object is hidden in one of n boxes. The probability that a
search of ¢ finds the object if it in box ¢ is ¢;. The probability that the object is in
box is p;. The cost of a single search of box z is ¢;. A problem is to minimize the

expected costs of finding the objects in a sequential search of boxes.

Industrial research : The manager of a team of industrial scientists has n research
projects which may be carried out in any order. Loss of time to switch from project
to project is negligible, and a project has been successfully completed or not in some
probability. The time which the team would need to spend on project ¢ in order
to complete it has a distribution function F;(¢). What policy should the manager

follow in order to maximize the expected total value generated by the n projects?

A problem is to choose a job when a man is faced with a number of opportunities

for employment which he can investigate at a rate of one per day.
A problem regarding a sequence of patients and alternative treatments in a clinic.

A sever with a queue of customers; and so on.

The multi-armed bandit problem has been studied by many authors. Time may be

discrete or continuous and the processes themselves may be discrete or continuous. The

classical type of the multi-armed bandit problem is studied in the case of several Bernoulli

processes, and later the study is extended to the case of Markov processes (see [PreSonl],
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[BerFril]). Most of the literature deals with discrete time. In such a setting, each of d

arms generates an infinite sequence of random variables. An observation on a particular

sequence is made by selecting the corresponding arm. The tth member of a sequence is

observed if the corresponding arm is selected at time t. The classical object in bandit

problems is to maximize the expected value of the payoft "2, a;Z,;, where Z,, the reward

process, is the variable observed at time ¢t and «y, the discount rates, are non-negative

numbers (0 < a; < 1). A strategy is called optimal if it yields the maximal expected

payoff. The maximal expected payoff is called the optimal payoff.

Several methods have been studied in order to solve the multi-armed bandit problem.

They are classified as follows :

(1)

(iii)

Bayesian approaches (see [BJK1], [Bell], [Fell]) : Using Bayes’s theorem, the multi-
armed bandit problem becomes a typical dynamic programming. Dynamic program-
ming is introduced by [Bel2] and is a general technique devised for sequential opti-
mization problems. The optimal strategies and the optimal payoffs are calculated
by a backward induction on time t. The backward induction is called Bellman’s

equation.

Comparison (see [Robl], [Isbl]) : The second approach taken in the literature is to
consider particular strategies and compare their payoffs. Taking one of the strategies

optimal, certain conditions for the optimality are studied.

Dynamic allocation indices (DAI) (see [Gitl]) : The third approach is to solve by
use of DAL The DAI was introduced by [GitJonl] and is an effective method for
numerical calculation regarding the problem. DAI gives a forward induction method
differently from Bayesian approach. [Whil] rewrote the proof of [GitJonl] elegantly
with the dynamic programming. The early literature regarding the DAI was studied

for Markov reward processes. Recently [VWBI] relaxed the Markov property.

Minimaz approach (see [Vogl]) : This approach is a technique in non-cooperative
two-person zero-sum games. Each player selects strategies so as to maximize his own
payoff, however both player’s payoffs are competing since the sum of both player’s

payoffs is assumed to be 0 in mathematical models.

This thesis deals with three kinds of themes regarding multi-armed bandit processes.

One is the optimal stopping problem for discrete-time multi-armed bandit processes with

independence of arms (see Chapter 2). Another is the optimal stopping problem for

continuous-time multi-armed bandit processes (see Chapter 3). We deal with the problem



on the basis of [Yos3]. The other is the multi-armed bandit game (see Chapter 4). We deal
with the problem in a general form, combining the results of [Yos4] and [Yos5]. In order

to analyse multi-armed bandit processes, we use the theory of multi-parameter processes.

The study of multi-parameter processes are started by [McK1]. [McKk1] studied Wiener

sheet in the potential theory of Markov processes :

{BS}SER?'_ is a family of random variables, where R, is the set of all non-negative
real numbers. A partial order > is induced on the time space R% : r > s iff
> s (i =1,2) forr = (r',r?),s = (s!,s?) € RL. Then {Bs}ser is called

Wiener sheet if it satisfies

S R IRD kg L
B =0 and E[BTBS]:M +M2 ki (r,seRi),

|2_ 2

where |r|* = 37, (7"')2 for r = (r',7?) € R%. This means that maps r' — B 2

and r? — B(;1 2y are Brownian motions for r = (r',r?) € R2+.

Recently the optimization problem for multi-parameter processes are studied by several
authors. It is to find a stochastic time-sequence on the partial ordered time space so as
to maximize the total expected value of the processes. [Wall] introduced a mathematical

formulation for the time-sequence, which is called an optional increasing path :

N is the set of all non-negative integers, d is a positive integer and e; is the ¢’th
unit vector in N9 {Z(s)}sena = {(Z(s'), 1 Z%(5%))}s=(s ... s)ene denotes a d-
parameter process with the partial order > on N¢ and {F,},en« denotes a family of
sub-o-fields. An optional increasing path 7 = {7(¢)}ien = {(7'(¢), -+, 7%(¢)) }ren

is a N¢-valued stochastic process satisfying (d.i) — (d.iii):

(d.i) =(0) = (0,0,---,0) € N
(d.ii) For all t € N it holds that #(t + 1) = n(t) + ¢; for some : = 1,---,d.
(d.iii) For all t € N and all » € N? it holds that {x(t) =r} € F,.

The time spaces of multi-parameter processes are called discrete or continuous if they
are N or R} respectively. [ManVanl], [LawVanl], [KreSucl] and [DTW1] have studied
the case where the time space is a more general partial ordered set. [ManVanl] has
also studied the optimal stopping problem for multi-parameter processes. The problem
is to decide the optimal optional increasing paths and the optimal stopping times along
the paths, and then the pairs of optional increasing paths and stopping times are called

tactics. [ManVanl] has studied the problem from the dynamic programming approach.



[Manl] has studied the relation between multi-armed bandit processes and multi-
parameter processes, taking optional increasing paths as strategies for the bandit pro-
cesses. In Chapter 2 this thesis deals with the optimal stopping problem for multi-armed
bandit processes and analyses it by use of the DAI. Regarding the optimal stopping prob-
lem for d-armed bandit processes under the assumption of independence of arms, we show
that the optimal strategies and the optimal stopping times are expressed by the DAI for
each arm. The advantage to analyze the optimal strategies and the optimal stopping times
by use of the DAI is that we can reduce the original problem to d independent classical
one-parameter optimization problems. The computation efficiency of the solutions for the
reduced problem, which is represented by the linear programming, is better than to solve
directly Bellman’s equation derived by the dynamic programming (see [CheKat1,Section
2] and [VWBI1,Section 4]).

In Chapter 3 we extend the results of Chapter 2 to the case where the reward pro-
cesses are one-dimensional diffusions. Then the formulation itself of multi-armed bandit
processes has difficult problems. We utilize continuous multi-parameter processes in or-
der to solve the problem. [Wall] has defined optional increasing paths for continuous
multi-parameter processes in a different form from the discrete-time. Because in the
continuous-time we cannot find optimal optional increasing paths in the family of paths
satisfying the condition (d.ii). [Wall] has given the definition in the continuous-time as

follows :

In continuous-time bandit processes an optional increasing path 7 = {r(t)}.er,

{(x(t),- -, ®%(t)) }ser, is a R}-valued stochastic process satisfying (c.i) — (c.iv):

x(0) = (0,0,---,0) € R?.

YL r(t)=t forallte Ry.

)
(c.ii) {r*(t)}ier, is a non-decreasing process for each ¢ = 1,-- -, d.
)
) {r(t) <r} € F forallt € Ry and r € RY.

The conditions (c.ii) and (c.iii) are weaker than (d.ii). (d.ii)) models that at every time
we may select one of i’s, however (c.ii) means that we are allowed to select plural 2’s
simultaneously under the condition (c.iii), which means that the total sum of time when
selecting each 7 always increases constantly. Th continuous multi-parameter process has
been studied by [Merl], [Mill], [Maz2] and some authors. [Maz2] has formulated them as
multi-parameter Markov processes, which is constructed by the product of independent
usual one-parameter Markov processes. [Mazl] deals with the optimal stopping problem

of multi-parameter Markov processes from the dynamic programming approach. This
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thesis deals with the problem by use of DAI and obtains th extended results of Chapter
2 to the continuous-time. We show that the optimal stopping time for the original problem
equals to the sum of the smallest optimal stopping times of the one-parameter optimal
stopping problems for reward processes corresponding each arm. We reduce Bellman’s
equation, which is represented by a free boundary problem, to a fixed boundary problem

when solutions of the optimal stopping problems for each arm are known.

Chapter 4 deals with zero-sum games where in every time two players alternately either
select only one of arms of bandit machines or stop them. We call these games bandit games
for abbreviation. Player A has two kinds of decisions, i.e. selecting arms and stopping
the games. We represent the former with player A’s strategies 74 and the latter with his
stopping times 74. Therefore player B also has his strategies 75 and stopping times 7g.
In the game each player A (player B) alternately selects strategies 74 (wg) or stop the
game with 74 (7g) so as to maximize his own payoff under the condition that the sum of
both player’s payoffs is 0.

The discrete-time optimal stopping games have been introduced by [Dyn2] and gener-
alized by [Nev1,SectionVI-6] and some authors. Various types of continuous-time optimal
control problems and optimal stopping problems have been developed by [BenFril], [Stel]
and some authors. The purpose of this chapter is to formulate the bandit game with a
generalized discount and to solve them as control problems. The multi-armed bandit
problems with time-dependent discount rates are studied by [BerFril]. [BerFril] intro-
duced the regularity condition for discount rates as one of conditions such that myopic
strategies are still optimal. In this chapter we introduce a discount rate which vary to-
gether with not only time but also strategies selected by players. We introduce backward
value iterations in order to analyse multi-armed bandit games and show their convergence
to Bellman’s equation. We construct each player’s optimal Markov strategies and optimal
stopping times on the basis of Bellman’s equation. Finally this chapter shows that the
game has a unique optimal value and that the optimal tactics are saddle points for the

game.

!



Chapter 2

The Optimal Stopping Problem
for Discrete-Time
Multi-Armed Bandit Processes



2.1. Introduction

The chapter deals with the optimal stopping problem for d-armed bandit processes
under the assumption of independence of arms. We analyze optimal strategies and optimal
stopping times by use of the DAI and we reduce the original problem to d independent
one-parameter optimization problems.

The construction and the results at each section are as follows: In Section 2.2 we
describe formulations of the optimal stopping problem for d-armed bandit processes, re-
ferring [Manl]. In Section 2.3 we investigate the optimal strategies and the optimal

stopping times by use of the DAI for each arm and we prove the following results (a) —

(d):

(a) By the different approach from [Glal], Theorem 2.1 shows that the DAI for each
arm give the optimal strategy and the optimal stopping time. Therefore we see that
in order to solve the original problem it is sufficient to calculate the DAI for each

ar.

(b) Theorem 2.2 shows that the optimal stopping time given by Theorem 2.1 is expressed
explicitly as the sum of d smallest optimal stopping times for one-parameter classical
optimal stopping problems. In the Markov case in order to calculate the optimal
stopping region it is sufficient to solve individually d one-parameter optimal stopping

problems (see also Section 2.5).

(c) We give a necessary and sufficient condition for the finiteness of the optimal stop-
ping times given by Theorem 2.1. This condition results in the finiteness of the
smallest optimal stopping times of d independent one-parameter stopping problems

(see Theorem 2.2(iii) and Section 2.5).

(d) Theorem 2.3 shows that the optimal stopping time given by Theorem 2.1 is the
smallest optimal stopping time in the family of stopping times along the optimal

strategy of Theorem 2.1.

In Section 2.4 we show that the results of Section 2.3 still hold for the extended case

.5 we investigate the Markov case and we characterize the

with constraints. In Section 2
optimal strategies and the optimal stopping times on the basis of Theorems 2.1 and 2.2.
Moreover we investigate the linear programming calculation of optimal strategies and

stopping times.
2.2. Multi-armed bandit processes
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We let d, the number of arms, be a positive integer. In this section we shall formu-
late the optimal stopping problem for d-armed bandit processes and show fundamental
lemmas. This thesis deals with the case where arms are mutually independent. There-
fore we regard that d-armed bandit processes consists of d mutually independent reward
processes. First we shall define reward processes, following [Manl].

Let (2, F, P) denote a probability space. Set the time space by N = {0,1,2,---}. For
each arm ¢ = 1,---,d, F* = {F}}ien denotes an increasing family of completed sub-o-
fields of F and a bounded F'-adapted process Z' = {Z}},cnx means a reward process with
arm i. Moreover for i = 1,---,d we put o-fields F'., = VienFi * and we let M* denote
the family of all Fi-adapted stopping times. Hence we assume independence of reward

processes:
Assumption (F). F! (i =1, ---,d) are mutually independent.

We put its time space T = N9, a d-parameter process Z(s) = (Z'(s'), -+, Z%(s%))
and sub-o-fields Fy = FL V.-V fsdd for s = (s',---,s%) € T. Let e; denote the 2’th
unit vector in T'. Hence we shall define strategies. For s = (s!,---,s%) € T we define a
strategy 7 starting from the state where each reward process with arm ¢ has already been
selected s times.

Such a strategy @ = {7(t)}ien = {(7'(t),--,7%(t))}1en is a T-valued stochastic
process on (2, F) satisfying (i) — (ii):

(i) =(0) = s. (2.1)
(ii) For all t € N it holds that n(t + 1) = n(t) + ¢; for somez =1,---,d. (2.2)
(iii) For allt € N and all » € T it holds that {x(t) =r} € F,. (2.3)

Here 7'(t) denotes the number of selection of arm ¢ up to time ¢ and S(s) denotes the
family of all the strategies starting from s. (These strategies are called optional increasing
paths.) Let 3, a discount rate, be a constant (0 < # < 1). Let O be the zero vector in 7'
For a strategy m € §(0), the total expected value of the (d-armed) bandit process based

on the strategy = (without stopping) is defined by
d . . . .
R™=E[)_ ) BZ(x ()= (t + 1) — ='(1))]. (2.4)
teN i=1

Next we formulate the optimal stopping problem for d-armed bandit processes. For

s € T and a strategy # € S(s), {F] }ien denotes the information available at time

*This denotes the est sub-o-field containing {F} |t € N}.
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t corresponding to the strategy m and M7 denotes the family of all {F] },cn-stopping

times along the strategy :

F = (Ne

I'Nn{n(t) =5} € Fy for s € T},
MT = {71 | N U {oco}-valued random variables satisfying
{r=t}n{r(t)=s'} € Fofort € N and s' € T}.

)

Then for s = (s',---,s%) € T, a strategy 7 € S(s) and a stopping time 7 € MT, the

expected value of the bandit process (which is starting from the state where each reward
process with arm 7 has already been selected s’ times and which is using a strategy = and

stopped at time 7 — 1) is denoted by

7—-1 d

VT(s) = B7[30 Y B2 (x ())(x' (¢ + 1) = ()] (2.5)

= 0=l

For s € T and a strategy m € S(s) the optimal expected values of the bandit process

(starting from s and using a strategy ) are defined by
(2.6)

Then for s € T and a strategy 7 € S(s) the optimal expected values of the optimal

stopping problem for d-armed bandit processes (starting from s) are defined by

Here we have the following lemma regarding the finiteness of stopping times in (2.6):
Lemma 2.1. For s € T and a strategy = € S(s) it holds that
(2£7)

Proof. Fix any s € T' and any strategy m € S(s). Then we can easily check this lemma,
by noting that 7 At € MT holds for each stopping time 7 € M7 and t € N. a

Next we shall introduce the DAT in order to analyze the optimal stopping problem for
d-armed bandit processes. For each arm ¢ = 1,---,d the DAI (for the reward process)

with arm 7 is the process v* = {v'(t)}.en defined by

(2.8)
tWe deal with the case without terminal rewards.
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Hence we define the maximum index. The maximum index is the family of the largest
DAI v = {v(s)}ser which is defined by

(2.9)

Regarding DAI, the following lemma is well-known.

Lemma 2.2. ([Manl,Theorem?2]) The essential supremum in (2.8) is attained by 1(t):
(2.10)
In multi-armed bandit problems, the DAI gives us an optimal strategy.

Lemma 2.3. ([Manl,Theoreml]) For a strategy = € §(0), 7 is optimal for the d-armed
bandit problem of (2.4) if and only if 7 is an index strategy *,i.e., forallt € N

(2.11)

2.3. The optimal strategies and the optimal stopping times

In this section we investigate the optimal stopping problem for d-armed bandit pro-
cesses and give optimal strategies and optimal stopping times for this problem, by the
method of embedding this problem into a d+1-armed bandit problem. In order to em-
bed this problem into a d+1-armed bandit problem we shall add one more arm 0 to the
d-armed bandit process defined in Section 2.2 and define an extended d+1-armed bandit

process. Let (Z°, F°) denote the reward process with arm 0 satisfying (i) and (ii):
1) 2%y =0fex 2l FEV,

(i) F° = {FP}ien is a non-decreasing family of sub-o-fields of F such that F2 (=
Vien F?) is independent to each o-field Fi (i =1, -,d).

Therefore the extended d+1-armed bandit process also satisfies the mutual indepen-
dence of F!_ (z = 0,---,d). For the reward processes {(Z',F') |+ = 0,---,d} we shall
introduce notations of the extended d+1-armed bandit problem. Take its time space
N4 and let 0 be the zero vector in N%*t'. We consider a d + l-parameter process
((Z°(s%),-- -, Z4(s%)), F, - - ,fdd)(so’_,_,sd)ejvdi»l. Strategies for the extended d + 1-armed

S

'An index strategy means that we select (the reward process corresponding to) one of the largest
dynamic allocation indices at every time.



bandit problem are N¢t!-valued processes which is defined in the same manner as those
for d-armed bandit problems in Section 2.2. Then we denote the family of all the strate-
gies (for the extended d + 1-armed bandit problem) starting from 0 by S. For a strategy
T € S we express the total expected value R” and the optimal expected value R of the

extended d + 1-armed bandit processes by

B = E[Y Y BZ(F )t +1) —7(1)), (2.12)

teN =0

and

® = supﬁf. (2.13)

We define the DAI »° for arm 0 in the same way as (2.8). Hence it is trivial that v°(¢) = 0
for all t € N. Moreover we put the maximum index in arms ¢ = 0,---,d by

7((s°, -, 8%) = _max dl/i(si) for (s%---,s%) € N¥+1,

Then the following lemma holds regarding the relation between the optimal stopping

problem for d-armed bandit processes and the extended d + 1-armed bandit problem.

Lemma 2.4. For a strategy m € S(0) and a stopping time 7 € MJ we define a

N?*t1_valued stochastic process 7: fort € N,
T(t) = ((t—7)VO,m(tAT)). (2.14)
Then (i) and (ii) hold:
(i) T €S,
(i) " = E[V™(0)).

Proof. (i) Fix any strategy = € S(0) and any stopping time 7 € MJ. It is sufficient to
show that the strategy 7, which is defined by (2.14), satisfies {7(t) = (s°,s)} € Fo V F;
for all t € N and all (s° s) € N+, Fix any t € N and any (s%,s) € N x N¢. If s° > 0,
then {7(¢) = (s% )} N{t < 7} is empty. While if s° = 0, then {7(¢) = (s°,s)}N{t <7} =
{r(t)=sIn{t <7} € FO&VF,. And {7(t) = (s°,8)}N{t > 7} = {7 =t=$"}n{r(7) = s}
€ F V F,. Thus we obtain (i). (ii) Since Z°%t) = 0 for all t € N we have

R™ = E[Q_Y Bm@)@*(t) - 7(1))]
teN =0
T—1 d

B[y 3 A ()™ (1) — w'(1))]

=0N=0

E[V™"(0)).
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Therefore we obtain this lemma. a
For a strategy m € S(0) we define a stopping time 7™ by
" =inf{t € N | v(n(t) < 0}. (2.15)
Then regarding the stopping times 7™ we have the following properties.

Lemma 2.5. The following (i) and (i1) hold:
(1) 77 € MJ for each ™ € 5(0).

(ii) For a strategy m € S(0) we define a stopping time 7™ by (2.15) and we define a

strategy T in the same way as (2.14), replacing 7 with ™. Then we have T € S.

Proof. (i) is trivial from the definition of 7™. (ii) is obtained from (i) and Lemma 2.4(i).
0O

Now we shall construct optimal strategies for the extended d+ 1-armed bandit problem.
In Chapter 2 we take 7*, 77" and 7" as follows: We take an index strategy 7> € S(0)
(for a d- armed bandit problem) and define a stopping time 7™ by (2.15) with the index
strategy m*. Next we define a strategy 7 in the same way as (2.14), replacing = and 7

with 7* and 7™ respectively. Then we have the following lemma.

Lemma 2.6. For allt € N it holds that v(7"(¢)) = v(7"(¢)) - {y<,=), where [ denotes

the indicator function.

Proof. We note v°(t) = 0 for all t € N. Fix any t € N. Then since v(r*(t)) > 0 on
{t < ™"}, we have 7(7*(t)) = v°(0) V v(7*(t)) = v(7*(¢)) on {t < 7™ }. Next since
v(m*(7™")) < 0, the definition of 7™ implies #(7*(¢)) = v°(t — 7™ ) V v(7*(7™)) = 0 on

{t > 7™"}. Thus we obtain this lemma. 0
Hence we obtain the following property of the strategy 7.

Proposition 2.1.  The strategy 7™ is an index strategy for the extended d + 1-armed

bandit problem.

Proof. From (2.14) and Lemmas 2.6 and 2.3, for all t € N and ¢ =1, --,d we obtain

On the other hand for all t € N we have

14



Consequently 7 is an index strategy for the extended d + 1-armed bandit problem. O

Now we obtain the following theorem.

Theorem 2.1. [t holds that

Therefore if P{t™ < oo} = 1, then an index strategy m* is an optimal strategy and 7™

=inf{t € N | v(7*(t)) < 0} is an optimal stopping time.

Remark.  An optimal stopping time 7™ = inf{t € N | v(7*(¢)) < 0} means that we
should continue to select on the basis of 7* and quit this game when all DAI for each arm

become non-positive.

Proof. From Proposition 2.1 ¥ is an index strategy for the extended d + 1-armed bandit
problem. Moreover, by considering LLemma 2.3 for the extended d + 1-armed bandit
problem instead of d-armed bandit problems, we obtain that 7* is an optimal strategy for

the extended d + 1-armed bandit problem. Therefore we obtain

(2.16)
While from Lemma 2.4 we have = E[V"‘T".(O)] < E[V*(0)] < K. Consequently this
inequality and (2.16) complete the proof of this theorem. a

Next we shall characterize the optimal stopping time 7™ = inf{t € N | v(7*(t)) <0}
by classical potential theory. We would like to express the optimal stopping time 7™ by
the sum of the optimal stopping times for d one-parameter optimal stopping problems for
reward processes. Therefore we shall introduce one-parameter optimal stopping problems
for the reward process with each arm 1.

For each arm ¢ = 1,---,d w consider a one-parameter optimal stopping problem for
the reward process {Z'(t)}wen. For t € N and F'-adapted stopping times 7 (7 > t) we
define the expected value V7 (t) (from time ¢ to time 7 — 1) of the reward process with

arm ¢ by
V() = BT (Y B Z(r)), (2.17)

where in (2.17) we define that the sum takes zero if 7 = t. Then for t € N we defin the

optimal expected value V*(t) of the reward process with arm z by

(2.18)
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Hence for i(=1,---,d) we put an F'-adapted stopping time o’ by
o' =inf{t € N | V*(t) = 0}.
Then the following lemma is well-known (see [Nevl]).

Lemma 2.7. If P{o} < oo} = 1, then ¢! is the smallest optimal stopping time for

(2.18).

Moreover we have the following relation between the optimal expected value V*(t)
and the DAI v*(¢) with arm 1.

Lemma 2.8. Fort e N andi=1,---,d we have (i) and (ii):
(i) Vi=(t) >0,
(ii) {v'(1) <0} = {V¥*(t) = 0}.
Proof. (i) is trivial, since V™*(t) > V*(t) = 0 for every t € N and ¢ = 1,---,d. (ii) Fix

anyt € Nand i =1, --,d. Then for all F*-adapted stopping times 7 (7 > ¢+ 1) we have

0 2 l/i(t) Z }-,V T(fz

E l[Zr:l ﬂr]
Therefore we obtain {V*(¢) < 0} D {v'(t) < 0}. Together with (i) this follows that
{V*(t) = 0} D {v'(t) < 0}. The reverse inclusion is obtained similarly. Therefore (ii)
holds. 0

on {v'(t) <0}.

Hence we obtain the following theorem.

Theorem 2.2.  Regarding the relation between the optimal stopping time ™ of the
optimal stopping problem for d-armed bandit processes and the optimal stopping times

o of independent optimal stopping problems (i = 1,---,d), (i) — (iii) hold:

(i) 7 =4 o,
(iii) P{r™ < oo} =[IL, P{o} < oo}
Remark. We note (a) and (b):

(a) Regarding the condition P{r™ < oo} = 1 in Theorem 2.1, Theorem 2.2(iii) gives
a necessary and sufficient condition P{o! < oo} =1 for all i = (1,---,d), which is

from one-parameter stopping problems (2.18) for ¢ = (1,---,d) (see Section 2.5).
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(b) Theorem 2.2(ii) shows that in order to calculate the optimal stopping time it is also
sufficient to solve individually d one-parameter optimal stopping problems (2.18)
(see Section 2.5).

Proof of Theorem 2.2. (i) Fix any ¢ = 1,---,d. Set p' = inf{t € N | v*(x*(t)) < 0}. Then
we have
pt <inf{t e N | v(s*(t)) <0} =+

Hence for all ¢ € N, it holds that

This shows that the arm 7 is not selected at any time ¢t on {p* <t < 7™ }. Therefore we
obtain
o ) st (ot (2.19)

On the other hand by using Assumption(F) and Lemma 2.8, we obtain

'(inf{t € N | z/i 7*(t)) < 0})
inf{x'(t) | v'(x*'(t)) < 0}
inf{r € N | v'(r) 0}

[

Together with (2.19) we obtain (i). (ii) and (iii) are trivial from (i). Thus this theorem
holds. O

Finally we shall show that 7™ is the smallest optimal stopping time in the family M7’
of all {F },en-stopping times along 7*. For an index strategy =" € S(0) we define a

one-parameter process {Y;, F7 },cn along the strategy 7™ and its Snell’s envelope by

|
=

T

d
Z T ()7 (r + 1) = 7*'(r)) fort € N, (2.20)

||M

Y, = ess sup,epqrt.,, B0 (Y] fort € N. (2.21)

Therefore we consider a one-parameter optimal stopping problem:
To find stopping times 7 € M7  maximizing E[Y;]. (2.22)
Then we have the following results concerning the smallest of optimal stopping time 7™

Theorem 2.3.  The optimal stopping time 7™ is the smallest optimal stopping time

in the family M2 of stopping times along an index (i.e. optimal) strategy m*.
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Proof. It is well-known (see [Nevl]) that the smallest optimal stopping time for the
optimal stopping problem (2.22) is inf{t € N | Y* = Y3} (say p). Since Theorem 2.1
implies that 7™ is an optimal stopping time for the optimal stopping problem (2.22), we

have

(2.23)

On the other hand, following Lemma 2.2, for t € N and 7« = 1,---,d we define stopping

times ¢*(t) and 7'(t) as follows: for each s = (s',---,s%) € T

(2.24)

and

‘ (2.25)

Hence fix any t € N and : = 1,---,d. Since 7™ is an index strategy, the arm ¢ is selected
at every time r on {7*(t + 1) — 7*(t) = &;} N {7*(t) < r < ¢(t)}. Therefore we have

T (t) € MZ" and then together with Lemma 2.2 and Assumption(F) we obtain

EX (S T T, B2 () (n7i (r + 1) — 7 (7))
EZ [ 07 ]

B A

r='58

o2 il

=St

=V (s') = w(s) >0

on {r*(t+1)—7*(t) =&} N{t <™} N {r*(t) = s} for all s = (s!,---,5%) € T. So we

have

= . A
GES PR g [Z Zﬂ’ M) (" (r+1) = 77(r))] > 0

on {m*(t+ 1) —7*(t) = e;} N {t < 7™ }. Since this inequality holds for each : = 1,---,d
and t € N, we obtain
Yy>Y,on {t<r™} forallte N.

Together with (2.23) and the definition of p, we obtain 7™ = p. Thus we obtain this

theorem. O

2.4. The extended case with time constraints

We shall investigate the extended case with time constraints, referring [ManVanl,Section
4]. Let C* be a random subset of N U {oo} satisfying {t € C*} € F} for all t € N. (This
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is called a random stopping set in [ManVanl,Section 4].) Here C*' denotes a time con-
straint in which we must stop the reward process with arm #(= 1,---,d). Then oL(t)
=inf{r >t |r € C'} denotes the smallest time at which we must stop the reward process
with arm ¢ (In Markov case o5 may be represented by the entry time to a state constraint
in which we must stop the reward process with arm 7 (see [ManVanl,Section 4.3]). Hence

we introduce the following time constraints:
Time constraint (C). We can not select the arm i any more after the time o5 (t).

Under Time constraint(C), we deal with d-armed bandit problems to maximize the values
defined as (2.4). Hence in order to analyze the d-armed bandit problems with time

constraints we introduce the DAI with time constraints and its maximum index:

(2.26)
and
ve(s) = ,_xpzaxdug(si) fors=(s',---,s) eT (2.27)
Next we define a stopping time 74 (¢):
i [ inf{r>t+ 1| () 2 vE(t)}) iftgC
Tolt) = { 0 otherwise. (2.28)
Then we have the following results.
Lemma 2.9. The following (i) and (ii) hold:
(i) t < 18(t) < ob(t) a.s. foreveryt & C".
(i) vi(t) = ' FZ0N foy every t & C'.
Fia A7)
Proof. (i) is trivial from the definitions. By considering an adapted process
A tAok(t)-1 ; :
Yiy= S B(ZHr) = ve(0) fort=1,2.--,
r=0
we can easily check (ii) in the same line as the proof of [Manl,Section 6.3]. 0O

Theorem 2.4. Ior a strategy = € S(0), 7 is optimal for the multi-armed bandit

problem with time constraints if and only if © satisfies that for all t € N it holds that
vo(n(t)) = vi(r'(t)) on {n(t + 1) = n(t)+ e;} forsomei=1,---,d. (2.29)
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Proof. For a strategy 7 € S(0) and 2 = 1,---,d we put

Then we obtain this theorem similarly to [Man,Sections 5.4 and 5.5] by use of Lemmas

2.11 and 2.12, since 74(t) < 0&(t) and o'(t) < Zle ol (t) for all t € N. |

Under Time constraint(C), we may also deal with the optimal stopping problem for
d-armed bandit processes by similar approach to Section 2.3. Then owing to Theorem 2.4
we may develop the same arguments as Section 2.3. Consequently we see that Theorems
2.1—2.3 still hold, by replacing DAI »* and index strategies 7* with v and strategies
satisfying (2.29) respectively.

2.5. The Markov case and the linear programming

In this section we shall formulate and investigate the Markov case of Section 2.3. For
arms ¢ = 1,---,d let (0, F', P*) denote probability spaces and let X* = (X}, F}, P')ien
denote homogeneous Markov chains, which are mutually independent, with the state
space E'. Next we introduce a d-parameter process by their products. Set its time space
T = N, its path space Q = [[L, Q' and its state space £ = [[%, E'. Then we define a

d-parameter Markov process X with the state space £ and its o-fields by

Then Assumption(F) is satisfied. Hence E* denotes the expectation induced by the
probability measure P = [[4, P* with an initial state * € E, and for arm i(= 1,---,d)
E*" denotes the expectation induced by the probability measure P* with an initial state
2t € E'. For arm i(= 1,---,d) let f* be a bounded measurable function on E. Then a

reward process with arm ¢ is given by

Moreover we express strategies and stopping times in the same manner as in Section 2.2,
Now the expected value function on E (for a strategy # € S(0) and a stopping time

7 € MZ") and the optimal value function are denoted by
-1 d

V() = E°[3_ D AU f (X))@' (t+ 1) = 7'(1))],

=0 =
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and

V™>(z) = sup V™(z) forz=(z!,---,2%)€E,
TES(0),TEMT*:PF{r<00}=1

Next the DAI function with arm (= 1,---,d) and the maximum index function are

expressed by

E®[720 B f1(X})]

vi(z') = sup g (2.30)
TEMU:T>] g [Zr:(; ﬁr]
and
(2.31)
Hence for arm 7 = (1,---,d) the optimal value function on £* of the reward with
arm 7 and its optimal stopping time ar
VE[ 3 o potipr TF [Z Brf )] oow '€ £, (2.82)
TEM! =()
ol =inf{t € N | V*(X]) =0}. (2.33)
Now an index strategy 7 € S(0) is represented by : For each t € N, 7* satisfies
(2.34)

Then the smallest optimal stopping time 7™ given at the beginning of Section 2.3 is

(2.35)

Remark. In the extended case of time constraints, the time o&(0) (of Section 2.4)
which is expressed by the entry time to a state constraint to stop the reward process with
arm ¢ (see [ManVanl,Section 4.3]). Therefore we put ot =inf{t € N | Xi € C'}, where
a Borel subset C* of E' denotes a stop constraint. Then by replacing (2.30) and (2.31)

respectively with th following (i) and (ii): if = € C, then we put

' =

| Il g Tl

(1) vo(a') = sup,epprss P o
152 [Zr:()c ﬁr]

(i) ve(z) = maxizi .4 ve(a’) for z = (2',---,2% € E.

We may represent an index strategy 7 of (2.34) and an optimal stopping time 7 of
(2.35) similarly. Then the optimal value function (2.32) of the reward process with arm ¢

is given by

t

TAo-—1
Sap B | Y. D for z* € E*.
TEM! =0
21
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We shall investigate the results of Section 2.3 in the Markov case and illustrate the
optimal strategies 7* and the optimal stopping times 7™ more explicitly. Set a Borel

subset B' = {2' € E' | V*(2') = 0} forarm ¢ = 1,---,d. From Lemma 2.8 we obtain
(2.36)

We call B' the optimal stopping region for one-parameter stopping problem (2.32) for
i=(1,---,d), since oi = inf{t € N | X; € B'}. Hence we put B = [[%, B* and then we
obtain

B={zcE|V™2)=0}={z € E|v(z) <0} (2.37)

We call B the optimal stopping region for the optimal stopping problem for d-armed

bandit processes. Then Theorem 2.2 are described as follows:

(2.38)
v & Tl ol =af i NP N9 B, (2.39)
P{r™ < o} =[1%, P{o! < o0}. (2.40)

Hence on the basis of the results of Theorems 2.1 and 2.2, we obtain the following

characterization of optimal strategies and stopping times:

Characterization (C).  We should continue to select one of the largest DAI in all
arms at every time (l.e. on every state, since index strategies are stationary in Markov
case) (see (2.34) and Theorem 2.1). If the reward process X' with an arm i entries the
optimal stopping region B' of (2.36), then we should not select the arm i any more (see
(2.38)). Finally we should quit this game when all reward processes X entry the optimal
stopping region B of (2.37) (see (2.39)). Moreover 7™ is the smallest optimal stopping
time in the family MZ" of stopping times along the optimal strategy = (see Theorem
2.3). The condition P{r™ < oo} = 1 is equivalent to the condition P{s. < oo} =1 for
all i(=1,---,d). Regarding this condition we may refer to [Shil,Theorem23 in p.94] or

[Yos2], since it is not essential that reward processes (2.32) are bounded from below.

We shall investigate the linear programming (LP) calculation of optimal strategies
and optimal stopping times. From Characterization(C) we see that in order to solve the
optimal stopping problem for d-armed bandit processes it is sufficient to calculate the
DAI v* (¢ = 1,---,d) and the optimal stopping regions B* (¢ = 1,---,d). The LP
calculation of the optimal stopping regions B is well-known in one-parameter optimal
stopping problems (see [Derl,pp.109-116]). Next we shall investigate the LP calculation

of the DAI v} with boundary constraints more generally than the DAI v'. Following

8]
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[CheKatl], we shall investigate LP to calculate the DAI with time constraints when the
state space is finite. Here we deal with the time o5 (of Section 2.4) which is expressed
by the entry time to a state constraint to stop the reward process with arm ¢ (see
[ManVanl,Section 4.3]). Moreover we fix an arm number 7 and we concentrate on only
the reward process with arm ¢ Therefore in the rest of this section we shall omit the arm

number 2 for simplicity.

For one reward process, we let the finite state space £ = {z() 2 ... z(™} and
we put a state constraint C = {z(m*V) 2m+2) ... oM} (;m < n). p(i | j) denotes
the transition probability from a state z(*) to a state z\) for ¢,7 = 1,---,n. We put

f@ = f(z)) for j = 1,---,n. Then we have

Pfa®) = E*°[f(X0)] = S pli | )9 fori=1,---,n.

J=1

Hence for : = 1,---,n. and real numbers M we set optimal values V]g) by (2.41) and we
set the DAI with a state constraint by ug):

TAac -1

Vi = sup B2V S BTF(X,) + 700 M) (2.41)
=0

TEM

Then we can easily check that for any constant M and any ¢ 1,---,n, the following
(2.42) and (2.43) are equivalent:

v < (1= B)M. (2.42)
Vi < M. (2.43)

Now in order to calculate the optimal values VA(,;) of one-parameter optimal stopping

problem (2.41) we consider the following LP.

LP P(M). Minimize ¥_}_, UY such that
(DU = Gy Bt | DUD > 1O foralli=1,--,m;
(i) UD >M foralli=1,---,m;

(i) U =M foralli=m+1,--,n.

We can easily check the following lemma, by noting that {V,é,j) |j=1,---,m} is the

smallest #-superharmonic majorant of a constant function M.
Lemma 2.10. LP P(M) has solutions {V3 | j =1,--- n}.
Therefore we consider the following LI in order to calculate the DAI.

LP P®) (k=1,---,m). Minimize e U + mM such that
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(i) UD 4+ M = B2 pli | )UD + M) > 1O foralli € {1,---,m} — {k);
(i) M = B377_, p(k | )UYW + M) > fl,

(iii) U =0 foralli=m+1,---,n.

Theorem 2.5. For each k = 1,---,m, LP P"® has optimal solutions {V,f})

l,---,n; M} satisfying the following (a) and (b):

| Jj

(a) W% =1
(b) M=V
Then we have:
(i) The dynamic allocation index at is z/ék) =(1—-B)M fork=1,---,m.

(ii) The optimal value is V§.

Proof. By modifying LP P(M), we obtain LP{k). Then we obtain this theorem in the
similar way to [CheKatl], by using Lemma 2.4 and the equivalent relation between (2.42)
and (2.43). O

2.6. Appendix for Section 2.4

The following lemmas are used in Theorem 2.4 of Section 2.4. Let (A, G, P) denote
a probability space and let {G;};en be an increasing family of sub-o-fields of G. Let
T be the family of all {G;}ien-stopping times. Let {Y(¢)},en be a bounded {G,};en-
adapted process satisfying E[Y,en Y (7)|] < co. By considering sets I'(t) = {¢ > t} N
{E9 (T2 a(r)Y (r)] > 0} (t € N), we can easily check the following lemmas in the same
line as [VWBI1,Appendix B].

Lemma 2.11. Let {a(t)}ien be an {G,}ien-adapted process satisfying 1 > a(t) >
a(t+1)>0as. forallt € N. For o € T, it holds that

TAO—1

a5l
E%[S" a(r)Y (1)) < a(0) ess sup, 7 E%[ > Y(r)). (2.44)

Lemma 2.12. Let {B(t) }ien be an {G;}ien-adapted process satisfying 0 < 3(t) <
B(t+1) <1 as. forallt € N and let o € T. If there exists a stopping time 7 € T



satisfying that 7* < o a.s. and that

EQO[TZ_ Y(r)] = ess sup,eTEg"[Ti Vs (2.45)
Then it holds that o .
BOIESY ¥(r)] < E®(S A(r)Y(r)] (2.46)



Chapter 3

The Optimal Stopping Problem
for Multi-Armed
Diffusion Bandit Processes



3.1. Introduction

The purpose of this chapter is to extend the bandit processes to multi-armed Markov
processes which is constructed by the product of mutually independent one-parameter
diffusion processes, which is given by a solution of stochastic differential equation (3.1)
in Section 3.2, using the results of Chapter 2. A difficult problem in the continuous-time
case 1s that in general we cannot find the optimal strategies such that player selects one
of arms at every time. Therefore we should find the optimal strategies in the class where
we are allowed to move plural arms simultaneously. The definition is given in Section 3.2.

This chapter shows the existence of the optimal tactic, the pair of the optimal strategy
and the optimal stopping time, such that the tactic expressed by the DAI for reward pro-
cesses. We give the representation of the optimal stopping time for the original problem
by th smallest optimal stopping times of the one-parameter optimal stopping problems
for reward processes corresponding each arm. On the basis of this fact we give a certain
necessary and sufficient condition concerning the finiteness of the smallest optimal stop-
ping time for the original problem. By deriving that the optimal stopping region of the
original problem is equal to the Cartesian product of the optimal stopping regions for each
arm, we reduce Bellman’s equation, which is represented by a free boundary problem, of
the original problem to a fixed boundary problem when solutions of the optimal stopping
problems for each arm ar known

Regarding the optimal stopping problem for a d-parameter Markov processes, [Mazl]
has studied the case of d = 2 and f* = 0 in (3.13) of Section 3.2. However we investigate
the case of ¢ = 0 in (3.13). Referring [Mazl,Section2], in Section 3.2 we formulate
the optimal stopping problem for multi-armed Markov processes and optimal stopping
problems for the reward process X' for each arm ¢. Section 3.3 extends the results of
Chapter 2 to the continuous-time case. In Section 3.4 we discuss the optimal stopping

region and Bellman’s equation.

3.2. Multi-armed diffusion bandit processes

We let d be a positive integer and we set R, = [0,00). In Section 3.2 we shall formulate
three kinds of optimization problems, namely, the optimal control problem for d-parameter
Markov processes, the optimal stopping problem for d-parameter Markov processes, and
the optimal stopping problem for the reward process The first problem and the third
problem will be utilized in order to analyse the second problem in Section 3.3.

We shall formulate d-parameter difuusion processes and their optimal control prob-
lems, referring [Mazl,Section 2. For i = (1,---,d) (', F*, P*) denote probability spaces

and X* = (X}, Fi, P* )ier,, which ar called reward processes, denote one-parameter mu-
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tually independent diffusion processes with their state spaces E* := R, which is a unique

solution to the stochastic differential equation (3.1) on R:
(3.1)

where &' is a bounded Lipschitz continuous real-valued function on R and ¢* is a bounded
Lipschitz continuous real-valued function on R such that «' = o'c* is uniformly positive;
and for each ¢ = 1,---,d we let W* = {W},er, be a one-dimensional Brownian motion
such that W' ... W are independent.

Hence {F;}iwcr, is an increasing right continuous family of completed sub-o-fields
of F* and P* is a probability measure on (9, F*) with an initial state z* € E'. For
1= (1,---,d) we set

(3.2)

Next we shall introduce a d-parameter Markov process by their products as follows. We

set its time space T' = R% and introduce the partial order in T by

And we set its path space Q = [[%, Q' and its state space £ = [12, Ei. Then we define

a d-parameter Markov process X with the state space E by
(3.4)

Moreover we put a right continuous family {F;}ser of d-parameter sub-o-fields, which are
increasing with respect to the partial order (3.3), by

Especially E* denotes the expectation induced by the probability measure P = [%, P
with an initial state * € E, and for i = (1,---,d) E* denotes the expectation by the
probability measure P’ with an initial state @' € E*. Hence a strategy = = {7(t) }eer, =

{(=2(t)," - ,7rd(t))}t€mr is a T-valued stochastic process on (§2, F) satisfying (i) — (iv):

(i) =(0) = 0. (3.6)
(ii) {7(t)}sen, is a non-decreasing process for each i = 1,--,d. (3.7)
(i) T, #i(t) =t for all t € R,. (3.8)
(iv) {r(t)<r} € F, forallt € Ry andreT. (3.9)
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Moreover we denote II(0) the family of all strategies.

Remark. We note that
(a) These strategies are called optional increasing paths in [Wall].
(b) Note that 0 < 7*(t') — n'(¢t) < t' —t for all t,t' € R, satisfying t < t'.

For i(=1,---,d) we let f' be a fixed bounded continuous, strictly increasing function on
E' and we define an expected value function R™ of total rewards over the infinite horizon

R4 associated with a strategy m € 11(0) by
for z € E, (3.10)

where a(> 0) is a discount factor, i(= 1, ---,d) is a reward process number, for each
i(=1,---,d) f'is a running reward function on the current state. Hence we define the
optimal value function R” of total rewards of the optimal control problem of d-parameter
Markov process X by

R*(z) = sup R"(x) forz € E. (3.11)

r€ll(0)
Then the optimal control problem for d-parameter Markov process X is to find a strategy
7™ € 11(0) satisfying
R™(z)=R*(z) forallz€E. (3.12)

Lemma 3.1. ([Karl,Theorem6.1]) There exist an optimal strategy ©* of the optimal

control problem (3.12) of d-parameter Markov process X. Then for the optimal strategy
™, (X,’.,.(t), ;.(t), P )ier, becomes a standard Markov process.

We shall formulate the optimal stopping problem for d-parameter Markov processes.
For a strategy 7 € 11(0), F] denotes the information which is available at time t(€ R;)

along the strategy = and Mg denotes the family of all {7 },cr, - stopping times:

Fr={TeF|I'n{rt)<r}eF forallte R, and r € T'}; and

&= {7 ][0, 00] — valued random variables satisfying

{r<t}n{rx(t)<r}eF, foralte R, andr e T}.

Hence the following lemma is trivial from the continuity of = and the right-continuity of

{fs}SET-

Lemma 3.2. For a strategy = € 11(0), {F] }wer, 1s a non-decreasing and right

continuous family of sub-o-fields of F.
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For strategies 7 € I1(0) and stopping times 7 € M, the pair (7, 7) are called tactics.
Further for s € T" we denote by 7(0) the family of all tactics (see [Mazl,Sectionl]). Next
for a tactic (7, 7) € 7(0) we define a value function V™" of the optimal stopping problem

for d-parameter Markov process X by

forxz € F. (3.13)
We define functions V™ (7 € I1(0)) and V** by
V™(z) = sup VT(xz) forz € F, (3.14)
TEMJ:PT{r<o0}=1
and
V)= sip V™ (s) fei s & B (3.15)

m€ll(0)
llence we have the following lemma, which is proved in similar way as Lemma 2.1, re-

garding the finiteness of stopping times in (3.14).
Lemma 3.3. The following (i) and (ii) hold:
@ V™ (c= sup,epmz V() for x € E and m € T1(0);
(ii) V**(x) = sup (s ryer(0) V™" (2) forz € E.

The optimal stopping problem for d-parameter Markov process X is to find a tactic
(m,7) € T(0) attaining the supremum of Lemma 2.3(ii). Then V** is called the optimal
value function for the problem.

We shall formulate the optimal stopping problem for each reward process X' (i =
1,---,d). For each i(= 1,---,d) we put an optimal value function V** of a one-parameter

optimal stopping problem for the reward process X* by
Vir(z') = sup B [/ e'S" fi(X{)dt] for 2t € EF. (3.16)
TEM': P {1<c0}=1 2 i=1

Then the one-parameter optimal stopping problem for the reward process is to find a
finite stopping time 7(€ M?) which attains the supremum in (3.16), where M* denotes

the family of all {F; },cr, -stopping times. lence the following lemma is well-known (see

[Shil)).
Lemma 3.4. We put a stopping time o}y by

(3.17)
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If P {0} < 0o} 1 for all z* € E*, then o} is the smallest optimal stopping time for
(i L6Y

We introduce dynamic allocation index functions in continuous time bandit processes.
For each = 1,---,d the following dynamic allocation index function for the reward

process X" 1s given by

B (f§ e F{(X{)dd

(7 e-otdt] (3.18)

sup
By utilizing dynamic allocation indices and the related results, we analyse the optimal

stopping problem for d-parameter Markov processes X.

3.3. The optimal tactics

In Section 3.4 we shall investigate the optimal tactics for the optimal stopping prob-
lem for d-parameter Markov processes, by the method of embedding this problem into
an optimal control problem of d 4+ 1-parameter Markov processes in similar way as the
arguments in Section 2.3.

We shall add one more reward process X® to a d-parameter Markov process X in the
original optimal stopping problem for d-parameter Markov process X defined in Section
3.2. Hence we define an optimal control problem of an extended d + 1-parameter Markov
process. Following Section 2.3, we shall define notations of an optimal control problem
of the extended d + 1-parameter Markov process by using the signature bar as follows.
Then strategies for the optimal control problem of the extended d 4+ 1-parameter Markov
process X are T'-valued processes which are defined in the same manner as those for the
optimal control problem for d-parameter Markov process X in Section 2.3. We let I1(0)
denote the family of all strategies for the optimal control problem of the extended d + 1-
parameter Markov process X. Then the following lemma, the proof is similar to Lemma
2.4, implies the relation between the original optimal stopping problem for d-parameter
Markov process X and the optimal control problem of the extended d + 1-parameter

Markov process X.
Lemma 3.5. For a tactic (7, 7) € T(0) we define a T-valued processes T by

g { E(t)’jg-t,))r(r)) th,]hg';is‘;} fon Sry (2'48)
Then (i) and (ii) hold:
(i) © € [1(0),
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(i) R°(z) = V™ (2) for every T = (2°,2) € E := E° x E.

Now we shall construct optimal tactics for the optimal stopping problem for the d-

parameter Markov process X.

™

We take 7, 7%, 7™ and #* as follows: By applying Lemmas 3.1 and 3.5 to the

extended d + 1-parameter Markov process X, we may take a strategy 7 € I1(0) which
has the maximum index property (3.19) and is optimal for the optimal control problem
of the extended d + 1-parameter Markov process X. Hence we consider a stopping time
7 = inf{t € R}y | ¥(X7+) < 0}. Then since T has the maximum index property for

Markov process X (see [Man2,Theorem15)) and +° = 0, we may put a strategy =* by
fort € Ry. (3.20)

Then we have
7 =inf{t € Ry | v(X,+y) < 0} (therefore we represent it by ™). (3.21)

Moreover we define a strategy 7* in the same way as (3.19), replacing 7 and 7 with 7*
and 77" respectively. Hence we have the following lemma, which is proved in similar to

Lemma 2.6:

Lemma 3.6. The following (i) — (iii) hold:

u)wY%my:{gﬂwm)0ﬂU<T }

. rd 8 L :
otherwise or every t € Ry;

(i) Gr*irT ) €TI0
(iii) 7= € 11(0).
Now we shall introduce a few tools in order to analyse the local time behavior of
standard Markov process {X#+()}wer,, referring [Manl]. For a maximum index strat-

egy ™ = {7*(t) }eer, = {(T°(1), - ,f*d(t))}tem (€ T1(0)) we represent the inverses of

processes {7 (t)}wer, ( =0,---,d) by
CM(t)=inf{t € Ry |T(t) > 7} forr€ Ryand j=0,---,d. (3.22)

Next forr € Ry and j =0,---,d w put
(3.28)
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where A’ (t) denotes the inverse of {7~ (t)}ter, (j =0,---,d). Then we have the following

lemmas.

Lemma 3.7. The following (i) — (v) hold:
(i) No(s) =7 +s < \(s) fors€R,.
(ii) 51‘(3) =00 > MN(s) fors>7I(r" )and j=1,--,d;
M(s)=M(s) fors <7 (™ )andj=1,---,d.
(iii) M(s') = A(s)>s'—s fors,s’ € Ry (s<s)andj=0,--,d.
(iv) —€i(r) = BT @F&8-@F[e=aN()=n) . [ ., .e)\] forr € Ry and j=1,---,d.

(V) 60(7’) = E}'O ®fg®~-®fg[e—ar”‘ o e—a(,\o(r)—r)] forr € R+.

Proof. (i) and (ii) are trivial from the definitions. (iv) and (v) are trivial from (i) and

(i1). (iii) Fix any s,8' € Ry (s < ') and j =0,---,d. Due to the definition of 7 we have
(3.24)

Hence for s,s" € Ry (s < §') we put t = M(s) and t' = M (s'), then we have s = T/(t)

and s' = 7 (t'). By substituting these in (3.24) we obtain (iii). O

Lemma 3.8. The following (i) and (ii) hold:

(i) Forj=1,---,d, {—€&(r)},er, is a non-increasing, {Fg @ - QF] @ - ® Fd}rer, -
adapted and right continuous process for all r > E73® ©F@8%d(7=i(+7")] and
satisfies 0 < —&7(r) < 1.

(ii) {€°(r)}ren, is a non-decreasing, {F? ® Fy @ -+ ® fg}T€R+— adapted and right
continuous process satisfying 0 < £%(r) <1 for all r € Ry.

Proof. The right-continuity of {{j(1‘)}T€R+ (7 = 1,---,d) is trivial from the definitions.
The measurability of {{j(7')}T€R+ () =1,---,d) is due to (3.8). Finally we shall show the
monotony of processes {fj(7‘)}reR+- From Lemma 3.7 (v) for fixed any r,7' € Ry (r < 7')
we have

(3.25)
From Lemma 3.7(iii) we have M) =7" > M(r)—r > 0and 0 € e~V {r)=7) <=~ A AW
for r € Ry and j = 0,---,d. Together with (3.25) we obtain £°(+') < £°(r). Similarly

from Lemma 3.7 (iii), (iv), for # > r > EZ0®8%7@ @73 [73(1™")] we obtain

(—ﬁj(’l’,)) = (_é.j(r)) _ Ef8®'"®fg°®“'®}_g[6_0('\J(Tl)_r') - e-—cx(,\J(r)—r)] S 0.
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Thus we obtain this lemma.

Proposition 3.1. It holds that

Proof. Fix any y € E satisfying ¥(y) = 0. Then since f© = 0 and v° = 0, we have
()~ ()
d - - ‘
v —at £y N —at £ i el
38 [ e P (XL (0] = [T e XL, am (1)

d ' - .
Z_TE?’[/0 E(r)e " f1(X?)dr).

Next, by using Lemma 3.8, similarly to [VWBI1,Appendix| we have that

Therefore we obtain this proposition. a

Now the following theorem implies the existence of an optimal tactic, which is defined
on the basis of dynamic allocation indices, of the optimal stopping problem for a d-

parameter Markov process in Section 3.2.

Theorem 3.1. [t holds that

Therefore if P*[r™ < oo] = 1 for all 2 € E, then (x*,7™" ) is an optimal tactic of the

optimal stopping problem for d-parameter Markov process X .

Proof. Fix any T = (2%, z) € E. Since T is an optimal strategy of the optimal control

problem for the extended d 4 1-parameter Markov process =~ we have

While from Lemma 3.5 we have



Moreover since 7(XJ, X,r.(,,,ro)) = 0 a.s., due to Proposition 3.1 we have

] ZEI[/ e FI(X3.,  )dr (O] + E¥[e™ B (XQ, X pe(rne))]

.

< B @E=V"" (z) < V™).
Together with (3.26) and (3.27), this inequalty completes the proof of this theorem. O

Next we shall characterize the optimal stopping time 7™ = inf{t € R, | v(x*(t)) < 0}
of the optimal stopping problem for d-parameter Markov process X by Markov potential
theory. We shall express the optimal stopping point 7*(7™") by the optimal stopping
times for d one-parameter optimal stopping problems for reward processes X*. Therefore
according to Section 3.2, for = 1,-- -, d we shall utilize one-parameter optimal stopping
problems for reward processes X*. Hence similarly to Lemma 2.8 we have the following

relation between the optimal expected value V** and the dynamic allocation index v*:
Lemma 3.9. Fori=1,---,d we have (i) and (1i):

(i) Vi* > 0.

(ipfmclii | v'e) < D) = i e BNV (') = D)

For each ¢ = 1,---,d we put a subset B' = {z' € E' | V*(2') = 0}, which is a closed

set for process X'. Then from Lemma 3.9 we obtain
(3.28)

Here we call B' an optimal stopping region for one-parameter stopping problem (3.21),
because of = inf{t € R, | X; € B'} (see (3.22)). Hence we define B = [[%_, B* and then

={t'e Hluiz] <0}. (3.29)

We call B an optimal stopping region for the optimal stopping problem for d-parameter
Markov process X, because 7™ = inf{t € Ry | X .y = 0}. Then we obtain the following

theorem.

Theorem 3.2. Regarding the relation between the optimal tactics (7*,7™ ) of the
optimal stopping problem for d-parameter Markov process X ( in Theorem 3.1 ) and the
optimal stopping times o} of independent one-parameter optimal stopping problems of

reward processes X', (i) — (iv) hold:
(i) of =inf{t € Ry'| Xi € B} =n*(r™") foreveryi=1,---,d;
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(iv) B={z € E|V=(x) = 0}.

Proof. (i) Fix any ¢ = 1,---,d. Set 7 = inf{t € Ry | I/i(AX;.‘(t)) < 0}. Then we have
(3.30)
Hence for all t € R, it holds that
(3.31)

Hence the strategy 7* does not move X' at any time ¢t on {7° < t < 7™ } due to

[Man2,Theorem15]. Therefore we obtain
(3.32)

On the other hand due to the continuity of 7* we obtain

Together with (3.33) and (3.34) we obtain (i). (ii) and (iii) are trivial from (i) since
X' (i =1, --,d) are independent. (iv) We put D = {@ € E | V**(2) = 0} and 7 =
inf{t € Ry | X;+) € D}. Then 7 is the smallest optimal stopping time of the classical
one-parameter optimal stopping problem (3.17) concerning the standard Markov process
{ Xre@t), Fret)}eer, (for example, see [Shil]). Therefore since 7™ is an optimal stopping
time in M7, from Theorem 3.1 we have 7 < ™. On the other hand for arbitrary but
fixed (= 1,---,d), we define a strategy n(t) = e; -t for t € Ry. Then due to Lemma
3.9(i) we have V**(z) > V™(z) = V™(a') > 0 for every = = (a!,---,2%) € E. Therefore

d
D={z € E|V*(z)=0} C [[{z' € E' | V*(z*) = 0}. (3.34)
=1
So due to Lemma 3.9( ii ) we obtain
d . . . .
DcC[[{a* € E'|vi(z') <0} ={z € E|v(z) <0} =B. (3.35)

1=

Thus we obtain 7 = inf{t € Ry | Xsoy € D} > inf{t € Ry | Xpoy € B} = 77

Consequently we obtain 7 = 77°. Especially we fix any * € B — D and any 2° € E°.
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Then we have 77" = 0 a.s. P%. Since #* does not move X° on the set {(2%,z) € E° x E |
V*(m) > 0= f{s%a)ie £° X E | B (2% =z) > 0}, it is an open set for standard
Markov process (X z+(t), Fr+(¢t))ter, . 1herefore we obtain P*[r > 0] = 1. This contradicts

7 =77 =0 a.s. P®. Thus we obtain (iv). <

3.4. The Bellman’s equation

[Mazl,Section3] has studied the Bellman’s equation to the optimal stopping problem
for a two-parameter Markov process in the case of f* = 0 for ¢ = 1,2 in (3.13). Here
we shall consider it in the case of ¢ = 0 in (3.13). For each i(= 1,2) £ denotes an
infinitesimal generator of a diffusion process X' = {‘\,ti}tER+3 which is a unique solution

to the stochastic differential equation (3.1):

(3.36)

Moreover for each i(= 1,2) D' denotes the domain of the generator £':
D' = {h are bounded twice continuously differentiable functions on E}. (3.87)

Then the following theorem implies Bellman’s equation for the optimal value function
V==,

Theorem 3.3.  Suppose V** € D' N D?. Then (i) — (iii) hold:

(i) V* >0 on E;

Proof. (i) is trivial. (ii) Fix any ¢ = 1,2 and T € E. For ¢ > 0 we define a strategy # by

#(t) = { :ﬁ;(tﬁ ) for t € [O,e) | (3.38)

Then we have 7 € 11(0) and

Namely

y (3.40)
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Due to the relation between the generators and the infinitesimal operators of diffusions

in [Dyn1,Chapter5] we obtain
_I_T%)a,lx2{L’iR* —aR +f}<0 onkE.

Together with Theorem 3.1 this inequality implies (ii). (iii) Fix any @ € F satisfying
V**(x) > 0. Hence since {Xg+()}:er, has the strong Markov property (see Lemma 3.1),

we have

(3.41)

for all stopping times 7(€ M7 ") satisfying 0 < 7 < 7™ (a.s. P*). Hence Dynkin’s formula
for two-parameter processes holds for all functions of D' N D? since in the proof of [Mazl,
Proposition 2.2.4 ] he does not use p-biexcessivity itself. In the case where X' are one-
dimensional diffusions, we refer to [Karl,Theorem6.1]. By applying the formula to (3.41),
there exist one-parameter {FJ }.cr,- adapted processes {\*'(¢)},er, and {A**(t)}wer,,
non-vanishing simultaneously and taking values [0,1], such that for all stopping times
T(€ MJ) satisfying 0 < 7 < 7™ (a.s. P® ) it holds that

Ly Bl et X T (0] Eo eV (X)) = Vo (e)
E*(r] E*(r]
L EEf(LV™ — aV=)(XE ) A (¢)di]
Ex(r]
Due to the way to construct {/\"l(t)}tER+ and {)\"‘2('t)}teR+ in the proof of [Maz1, Proposi-
tion2.2.4], we have {%'?@ >0} = {A*(t) > 0} a.s. P* for almostallt € Ry and i = 1,2.

Therefore as letting 7 | 0, the previous eouality follows (iii) (see [Dyn2]). O
Regarding the optimal stopping region B we have the following proposition.’

Proposition 3.2. The optimal stopping region B = {V** = 0}, which is a free

boundary of Bellman’s equation (3.41), has the following representations:
2
B={zeE|V™(x)=0} = [[{z'€E'|V"(a")=0)
=1l
2 y . . .
[I{e' € B | () < 0}
=il

{z € F|v(z) <0}.

Proof. It is trivial from (3.29), (3.35) and Theorem 3.2(iv). O

38



Chapter 4

The Multi-Armed Bandit Game



4.1. Introduction

This chapter deals with two-person zero-sum games where in every time players alter-
nately either select only one of arms of bandit machines or stop them. The purpose of
this chapter is to formulate bandit games and solve them as control problems.

Now we shall sketch bandit games, referring to Mandelbaum[7]. We regard that a
discrete-time d-armed bandit process consists of d independent arms, which evolve ac-
cording to {F;}ien-adapted Markov chains X* = {X{},eny (1 = 1,---,d), where N is the
set of all non-negative integers. If one player A selects arm ¢, then he obtains some re-
wards and arm 2 evolves one-step according to the transition probability of Markov chain
for arm 7 and the next is another player B’s turn. However if one of players stops arms,
then both players must stop selecting arms and settle accounts. Both players alternately
continue to select arms until either player stops the games. Here we assume that player
A may either select or stop at even time and at odd time may do player B (This case
is called first-type in Section 4.2). Let 0 and e; denote the zero vector and the ’th unit
vector in N¢ respectively. Put Fy = FLH @ - ® Fo for s = (8*,-+-,8%) € N, and
N(e,r) = {event |0 <t < r} and N(o,r) = {odd ¢t |0 <t <7} for r € N U {+0o0}.
Player A has two kinds of decisions, i.e. selecting arms and stopping the games. We
represent the former with player A’s strategies 74 and the latter with his stopping times
7a. Therefore player B also has his strategies 7g and stopping times 75. Both players’
strategies (7 4; mg)% are defined as follows. 7,4 = {ma(t)}teN(o,00) and g = {TB(1) }teN(e,00)

are N%valued stochastic sequences on (£, F) satisfying the following (i) — (iii):
(i) 74(0) = 0 and 75(0) = 0.

(ii) Players alternately select only one of arms. Namely,
for all t € N(e,00) it holds that m4(t + 1) = 7wg(t) + ¢; for some 2 =1,---,d, and
for all t € N(o,00) it holds that mg(t + 1) = m4(t) + €; for somes =1,---,d.

(iii) Players’ strategies are adapted to the imformation until the present time. Namely,
for all t € N(0,00) and all s’ € N? it holds that {m4(t) = s'} € Fy, and
for all t € N(e,00) and all s' € N% it holds that {rp(t) = s'} € F,.

Then player A’s stopping times 74 (player B’s 7g) are N(e,o0) (N(0, 00))-valued random

variables on (2, F) satisfying the adaptation :

(iv) For t € N(e,o00) it holds that {r4 =t} € Frp(), and
for t € N(o,00) it holds that {rp =t} € Fr ()

$The definition of strategies is referred from Mandelbaum(7,2.2.A 2.2.C].
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where {F (1) }ten(o,00) and {Frp(e) }een(e,0) denote informations until time ¢:

Fraty ={T € F | N7a(t) =s€ F, fors e N4} fort € N(o,00), and
Fepy ={L € F|TNnp(t)=s€ F, forse N¢} fort e N(e, 0).

Here we need not to assume that strategies (7 4;7g5) are stopped by times 74 and g,
differently from the definition in Lawler-Vanderbei[6,p.643(b)]. (The reason is trivial from
representations of expected rewards in Section 4.2.) Then player A’s expected gain¥ to
be paid from player B at an initial state x is represented as sums of gains when player A

stops the games and gains when does player B :

d A _ .
VESTATETE(2) = B[ 3T BY FA(Xp ) (ma(t+ 1) = mh(1) + B ha(Xrp(ra)

tEN(e,T4) =il

¥y # Z.le(‘X':rb(t+1))(7rlB(t = U= )= e ( X s inn) : e < TH]

te (o,74) =1

where 3 is a constant discount rate (0 < 8 < 1), 7 (= 1,---,d) are arm numbers, f}
(f5) models player A’s (player B’s) running rewards obtained at current states when
he selects arm ¢, and h (hg) models player A’s (player B’s resp.) rewards obtained
at states where he stops. Further E* denotes the expectation with an initial state z.
Hence player A’s aim is to maximize his gains VZA™ 7872 by controlling his strategies
and stopping times, however player B’s is to minimize V24747872 However one player’s
admissible strategies and admissible stopping times generally depend on another player’s
option of strategies and stopping times. In order to solve this problem we introduce one-
step Markov strategies and two-steps Markov stopping times. Next by the use of them we
show existence of the optimal Markov strategies and the optimal stopping times under
the assumption of independence of arms. While we present a certain value iteration
(see Iteration 4.2) and show the iteration converges to Bellman’s equation. By using
Bellman’s equation, the present thesis gives the optimal values. Further we classify the
state space into selection regions for each arm and a stopping region on the basis of the
derived Bellman’s equations. Finally this chapter gives optimal Markov strategies and

TThese descriptions are referred from the value of the reward process in Mandelbaum [8,(2.2)], by
shifting time.
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optimal stopping times, by constructing concatenations of one-step Markov strategies
and concatenations of two-steps Markov stopping times, which are defined on the selection
regions and the stopping region. We also show the uniqueness of optimal values of bandit
games. This chapter is structured as follows.

In Section 4.2 we reformulate multi-armed Markov processes, strategies and stopping
times for bandit games. We introduce Markov strategies and Markov stopping times,
referring to [LawVanl,p.645(3.1)], and show a few fundamental lemmas regarding to their
concatenations. We formulate players’ expected rewards and bandit games. We provide
a proposition to guarantee existence of the optimal Markov strategies and the optimal
Markov stopping times. In Section 4.3 we give a backward value iteration and demonstrate
its convergence and construct optimal Markov strategies and optimal Markov stopping
times on the basis of Bellman’s equation. Finally the remainder of this chapter is devoted

to show the uniqueness of the optimal values.

4.2. Strategies and stopping times for bandit processes

In this section we shall formulate zero-sum bandit games. Let N be the set of all non-
negative integers. Let d, the number of arms, be a positive integer. Let 0 and ¢; denote the
zero vector and the 2’th unit vector in N¢ respectively. Put N(e,r) = {event |0 <t < r}
and N(o,7) ={odd t |0 <t <7} forr € NU{+o00}. We deal with the case where arms
are mutually independent. Therefore we regard that d-armed bandit processes consist of
d mutually independent reward processes. First we shall define bandit processes, referring
to [Manl].

For arms 7 (= 1,---,d), let (Q',F', P') denote probability spaces and let X' =
(X!, Fi,0:, P)en denote (F})en-adapted time-homogeneous Markov chains, which are
mutually independent, with Borel state spaces E'. Here (F}),cn is an increasing family
of completed sub-o-fields of F* and 0! is the time-shift operator on Q'. Next we define
a d-parameter process by their products. Set its time space T' = N9, its path space
Q= Hf:l Q' and its state space £ = I'[f=1 E*. Hence we introduce the usual partial order
into T. Forr = (r',---,7%),s = (s',---,s%) € T, r < s means that r* < s' for all
1 =1,---,d. Then we define a d-parameter process X with the state space E, its o-fields

F, and its time-shift operators 6, by
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Further £* denotes the expectation induced by probability measure P = [T, P* with
an initial state z € E. We also use notations |s| = Y%, s* for s = (s',---,s%) € T.

As for games in this chapter, strategies with stopping times are called tactics. Here
we shall define tactics when player A moves first and second does player B. We shall call
them first-type tactics. We give the definition in the more general form than in Section
4.1. Such a tactic is constructed from player A’s strategy 74 and stopping time 74 and
player B’s strategy mg and stopping time 7g. First-type strategies (74;7g) are defined as
follows. For s = (s!,---,s%) €T,

and
TR = {WB(|5| A t)}tEN(e,oo) B (n-lB(|S| T t)a % 0 71'EJB(ISl + t))teN(e,oo)

are T-valued stochastic sequences on (§2, F) satisfying the following (i) — (111) and player
A’s stopping times 74 (player B’s 7g) are N(e,o00) (N(0,00))-valued random variables on

(Q, F) satisfying the adaptation (iv):
(i) ma(|s]) = s and 7g(|s|) = s.

(ii) Forallt € N(e,o0) it holds that m4(|s|+t+1) = 7g(|s|+t)+e; forsomei =1,---,d,
and
for all t € N(o,00) it holds that wg(|s|+t+1) = m(|s|+t)+e; forsomei =1,---,d.

(ii1) For all t € N(o,00) (N(e,00)) and all s’ € T" it holds that
{ralls|+t) =5} € Fo ({mB(|s|+t) = s} € Fur resp.).

(iv) Fort € N(e, o) it holds that {r4 =t} € Fr,(,, and
for t € N(o,00) it holds that {rg =t} € F,, (),

where {Fr () }teN(o,00) and {Fr (1) Jren(e,00) denote informations until time t:

Pty =AL€ F | F (17 4(t) ='s.6 F, for 8 & N?} fork.€ Nioyod)
Fesy = {L € F|TN7p(t) =s € F, for s € N4} fort € N(e,00).

We similarly define strategies and stopping times when player B moves first and second
does player A, which will be called second-type, by exchanging N(e,o0) with N(o,00).

Then we define families of first-type (second-type resp.) strategies and tactics. For s € T,

S(F;s) (S(S;s)) ={ first (second)-type strategies (w4;7g) starting at s};
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T(F;s) (T(S;s)) = { first (second)-type tactics (74,7a; 7B, TB) starting at s};

S(F) (5(5)) = S(F;0) (5(5;0)); and T(F) (T(S5)) = T(£;0) (7(5;0)).

Hence when one player’s tactic is fixed, the other player’s admissible tactics are denoted

as follows. For s € T', we respectively define

D(F;s;7g,78) (S(S;8;,78,78)) = {(74,74) | (74,7578, 7B) € T(F;5) (T(S;5))};
D(F;s;ma,74) (S(S;8;74,74)) = {(78,78) | (74, 7a;78,78) € T(F;s) (T(S;s))};
D(F;7g,78) (S(S;78,78)) = {(74,74) | (Ta,7Ta; 7B, 78) € T(F) (T(S))};

D(F;ma,7a) (S(S;7a,74)) = {(7B,78) | (ra,Ta;7B,7B) € T(F) (T(S))}.

We shall introduce the definition of Markov strategies, referring to [LawVanl]. For a

first-type strategy w4 (7wp) is called Markov if it satisfies the following (1) ((i1) resp.):
(1) ma(t + 1) are Gy, ()-measurable for all ¢ € N(e, c0);
(i) mp(t + 1) are G, ,(-measurable for all t € N(o,0);

where G o) = o{Xipw,m8(¢)}  and Gryy = o{Xr.),7a(t)}. Further a first-type

stopping time 74 (7g) is called a Markov stopping time if it satisfies (a) ((b) resp.):
(a) T4 A(t+2) are Gry(roar)-measurable for all t € N(e, o0).
(b) 78 A (t +2) are G, ,(rpar)-measurable for all t € N(o, c0).

Hence it is known from [LawVanl,p.645] that (a) ((b)) is equivalent to the following

conditions (a’) ((b’) resp.):
(a’) For any t € N(e,o0), there exists I'y € Gy () such that {74 =t} = {rqa 2t} NT,.
(b’) For any ¢t € N(0,00), there exists I'; € G, () such that {rg =t} = {rg > t} NT.

Regarding second-type strategies and stopping times, we similarly define Markov
strategies and Markov stopping times, by exchanging N(e,oco) with N(o,00). Hence

we put families of first-type (second-type resp.) Markov strategies and Markov tactics by

MS(F) (MS(S)) = { Markov strategies (m4;75) € S(F) (S(5))};

IThis denotes the minimum completed sub-o-field generated by the random variables Xag(ry and
Tg(t).
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MT(F) (MT(S)) = { Markov tactics (14,74;75,78) € T(F) (T(S5)),

i.e. (ma;mpg) are Markov strategies, and 74 and 75 are Markov stopping times }.

Regarding Markov strategies (Markov tactics, Markov stopping times), when we focus on
only the options from time 0 to time r(€ N), we shall call them r-steps Markov strategies
(r-steps Markov tactics, Markov stopping times resp.). Hence we put families of first-type

(second-type resp.) r-steps Markov strategies and r-steps Markov tactics by

MS(F;r) (MS(S;r)) = {r-steps Markov strategies (m4;75) € S(F) (S(95))};

MT (F;r) (MT(S;r)) = {r-steps Markov tactics (74,74;75,78) € T(F) (7(S))}

forr € N. Especially since (14 7g) € MS(F;1) (MS(S;1)) does not depend on g (74),
we shall represent it only 74 € MS([I;1) (g € MS(S-1) resp.). From the same reason
we also write (m4,74) € MT(F;1) ((rg,78) € MT(S;1) resp.).

Hence we shall prepare fundamental lemmas concerning concatenations of Markov
strategies and concatenations of Markov stopping times. In the rest of Section 4.2 we
shall deal with the first-type game. Regarding second-type cases, similar results hold, by

exchanging N(e,00) with N(o,0).
Lemma 4.1. The following (i) and (ii) hold:

(i) Forr € N(e,00)(N(0,00) resp.), (ma;7g) € MS(F;r) and 7'y € MS(F;1) (7 €
MS(S;1) resp.), we define a concatenated strategy (n'y; ) of (1 4; 7g) and @'y (7g):
Th(t,w) = Ta(t,w) fort € N(o,7+1) and w € Q;
T(t,w) =7mpg(t,w) forte N(e,r+1) and w € §); and
™ (r 4 1,w) = 1p(t,w) + 74 (1,0, 5(rw) forw € Q
(rh(r+ l,w) = ma(t,w) + 75(1,0x ,(yw) forw € Q).

Then (t'y;75) € MS(Fir +1).

(1) For r € N(e,00)(N(0,00) resp.), (ta;7g) € MS(F;r) and a non-increasing se-
quence {Ta}ien(es)({TB,t}teN(or)) Of first-type 2-steps Markov stopping times, we
inductively define a stopping time 7’4 ,.(7'g,) by

T'40(w) = Tapw) forw € Q; and
T’A.H-Z(w) = TIA,t(w) S TA,t+2(()7rB(T’A,,)w) for t (E N((j,?‘) and w € Y/

(t'Bi(w) =1+ 181(0r,yw) forw € Q; and
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Thent's, (7', ) s a first-type r-steps Markov stopping time and furtherlim,_ , 7’4,

(lim,_ 7'B ) becomes player A’s (player B’s) first-type Markov stopping time.

Proof. (i) are trivial due to the definitions of Markov strategies. (ii) Fix any » € N(e, 00),
(ra;7m8) € MS(F;7r) and a non-increasing sequence {74,:}ien(er) of first-type 2-steps

Markov stopping times. Since {TA',}teN(e,T) is non-increasing, we have
(4.1)

Hence since 7’4, is G, 5(0)-measurable, we can easily check (a’), by taking the measurable
sets I'y = {74,¢(0rp)) =0} € Gy for t € N(e,r). Thus we obtain (ii). The proofs of

the other cases in (ii) is similar. 0

A typical example of Markov stopping times is as follows. Let (74;78) € MS(F;r)
and let a sequence {D 4, }ieN(e,00) Of Borel subsets of E such that D442 D Da, for each

t € N(e,00). Hence we define the following stopping times (4.2):

]2 on {Xo¢&Da,} ' )
b il { 0 on {Xp € Dy} Ll (4:2)

Then we have the following result. Similar results also hold for player B.
Lemma 4.2. In Lemma 4.1(ii) if we give T4 by (4.2), then we have
T'ar =inf{t € N(e,00) | Xrpt) € Day} A(r+2) forr € N(e,00), (4.3)

and

Proof. This lemma is trivial from the definitions. (W

From Lemma 4.1, we have the following representations for Markov tactics: For player

A’s (player B’s) first-type tactics (ma,74)((7p, TB) resp.) we write them as

4.3. Expected rewards and bandit games

First we shall define player A’s expected values and player B’s when player A moves

first. For arm (= 1,---,d) let fi (fg), player A’s (player B’s resp.) running rewards
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for arm 7, be bounded measurable functions on E* and let hy (hg), player A’s (player
B’s resp.) terminal rewards, be bounded measurable functions on E. Put h = hy — hg.
Hence for the sake of a convenient representation we shall introduce the following notation
(+,+), referring to the inner product of d-dimensional real vector spaces: For example, we

describe

d
(FalXma)small) = mp(0)) = 3 fa(Xos ) (ma(1) = w5(0)). (4.5)

€ be a constant satisfyin < < 1. For arm i(=1,---, et ', a instantanous
Let 3 | tant satisfying 0 < By < 1. F (=1 d) let G, tant

discount rate for arm ¢, be a bounded measurable function on E* satisfying that

(4.6)

Then for a strategy (m4;7g)(€ S(F')), we define a discount rate at odd (even resp.) time
t + 1, which depends on a state of arms selected by player A’s strategy m4(t + 1) (player
B’s mg(t +1)):

and

Using these, a discount rate at time t is given by their product:
t
@ A" B =r and «™"Ef)= H FATE(r) fert =12 & (4.9)
=il

Expecially since a™7"5(1) = g7478(1) = (8(Xx, 1)), Ta(1)) does not include 7, we write
it simply as 74(1). When a first-type tactic (74,74;7,78)(€ T ([F')) is taken, player
A’s expected gain to be paid from player B at an initial state x is represented as sums of

gains when player A stops the games and gains when does player B :

Yo o™ () {(fa(Xepuan), TB(E + 1) — ma(t))

teEN(0,7ANTR)

+ a8 (14 A TB)R( Xeg(raynma(ea)))s

where we define a A b = min{a, b} for a,b € N and a Ab= (a* Ab',a®> A2, -+, a? A b?) for
a=(a',a?---,a%),b=(b',b% ---,b%) € T. Hence player A’s aim is to maximize his gains

VR ATATETE () by controlling his strategies and stopping times, however player B’s is to
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minimize it. Therefore when one player’s tactic is fixed, the values optimized by another

player are as follows:

VimeTE (1) = sup VpATATETE () for z € E; (4.10)
(ra,7A)ED(F;mB,7B)
V@)=, al VETTR(@) fora € B (4.11)

(B, 7TB)ED(FiTA,m4)
When player A moves first, we shall call the following game first-type bandit game: To
find tactics

(4.12)

Next we shall similarly define values of games when player A moves second. We put,

for a second-type tactic (w4, 74;7g,78)(€ T(5)) and z(€ F),

tEN(0,ToNTR)

Z CYﬂA"BU)(./.B(‘YrrB(tJrl))v ma(t+1) = ma(l))

tEN(e,rA/\rB)

+ @™ B (T A TR (X s giminr alre)) )

v;?rBTB(:E) L sup VS{rA‘rmrB‘rB(l.) forz € E; (4_13)
(ra,7A)ED(S;TB,7B)
Vga™* (z) = inf V5A™™5"2(z) for z € E. (@13)

(rB,7B)ED(S;7A,7A)
Then second-type bandit games are to find

Tttt

(T4, Tt gs TRE T (S) sueh that: Vi '3 78 = Y702 = Y gAT4%, (4.15)
Finally we note that

and (4.16)

We need some more notations in order to prove existence of Markov tactics attaining
the supremum (the infremum) in (4.10) and (4.11) ((4.13) and (4.14) resp.). Set s =
(s',-++,s%) € T such that |s| is even (odd). After observations that each arm : has
already been selected s' times and that we adopt a tactic (m4,74;7g,78) € T(F;s),

values of first-type bandit games are denoted by

ER|. Z a™ "B ([s], [s| + ) (fa( Xnasl4t41))s Talls| + ¢ + 1) — 75(|s| + 1))

tEN(e,tanTB—|s|)

z a5 (|s], IS‘ + t)(./‘B(‘X-rB(ISHHI))v mp(ls| +t+1)— 7r‘4(’3| + t)>

tEN(0,7TanTB—|s])
F CY“"B(OaTA N TB)II'(XWB(TA)AM(TB)) : |S' STaA TB]’
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where a™758(|s|,|s| +t) is a product of discount rates from time |s| to time |s| + t:

t
o™ B(r,r) =1, and o@™"2(r,t)= [[ B4"E(r) forrt=1,2,(r <t). (4.17)

r'=r+1

Hence referring to (4.10) and (4.11), we put
for s € T} (4.18)

and
(4.19)

Regarding the second-type bandit games, we define Zg*™ "7 (s), 25" (s) and Zg*™"(s)

similarly. Now we obtain the following fundamental lemmas.
Lemma 4.3.  The following (1) and (ii) hold:
(i) For (ma,7a;78,78) € T(F) and r € N (e, 00), it holds that

Z;;ATA"BTB(T(B(T))
EFrs0[( fa( Xryran))s Talr + 1) — w5(r))
BB (r 4 1) ZFATATEE (ma(r + 1)) i+ 1 < 74 A Tp]
+EF 8 [A(Xrpry) : 7 = Ta A TB).

(ii) For (ma,7a;7B,78) € T(F) and r € N(o,00), it holds that

Z;VATA"BTB(WA(T))
EZr a0 (= fB(Xnpirtn)s Ta(r + 1) = wa(r))
+B™ATE(r + 1) ZEATATETE (np(r + 1)) 7+ 1 < 74 A7)
+ET"A(')[/1(X,,A(T)) b &y Al

Proof. We can easily check it from the definitions. O
Lemma 4.4. The following (i) and (ii) hold:
(i) For player B’s first-type Markov tactics (rg,7g) and r € N(e,0), it holds that

Zg P8 (mp(r))
max {ess sup(“,TA)ED(F;WB(T_);”B,TB)E}_"B(’)[(fA(X“(T“)), Ta(r + 1) — ng(r))

+B7ATE(r 1) Z5P (walr +1)) 7+ 1 < 74 A 78] h(Xop(r))}-
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(i1) For player A’s first-type Markov tactics (7 4,74) and v € N(o0,00), it holds that

ZgA ™ (wa(r))
min{ess inf(rp 5D p.,rA(T);,,A‘TA)EfM(r) (=fB(Xrger+1)), TB(T + 1) — ma(7))
+B7ATE(r 4+ 1) ZEAT N (mp(r 1)) 7+ 1< 4 ATl A(Xr ().

Proof. Fix any Markov tactics (7g,78). We shall show only this case of (i), because
the other case is similar. Let any r € N(e,00) and any (74,74) € D(F;7g(r); 7B, 7B).
The definition of the essential supremum (see [Nevl,p.121]) implies that there exists a
sequence {(T4n,Tan; 78, 7B) € T(F)}.en of tactics satisfying the following conditions

which they are equal to (74, 74) until tim »+1:

Tan(t) = m4(t) for all odd t satisfying 0 <t <r +1; (4.20)

Tan N(r+1)=74A(r+1);and (4.21)

Fra( D fak K x girwry)s Taly + 1) — ma(r))

= 1”nn—>oo{E}-wB(r)[(fA(‘X,rA',,(r+l))7 WA.n(T + 1) - 7!'3(7‘)). (422)
Then we have the previous term = lim,_ o Z“ B "WBTB(W'B(T)) < ZFP™8(wg(r)). How-
ever since {r +1 < 74 A7} N {r =74 A 7B} is empty, we obtain

Zg?™® (mp(r))
> max{ess SUP (1 4,74)€D(F;mp(r);mB, TB)ET"B(')[UA Xraer+1)), ma(r + 1) — mp(r))
+B™ATB(r+ 1) Z5TE B (ma(r+ 1)) ir+ 1 <74 ATl A(Xrpn) )

On the other hand Lemma 4.3 implies

Zgt™A e (rg(r))
EZ s [(fa(Xrar41))s Ta(r + 1) — 78(7))
+BTATE(r + 1) ZEATATEE ( (v 4+ 1)) i 7+ 1 < T4 ATg] + EZ" 8O [h(Xap(r) 1 7 = Ta A 78]
< max{ess sup,, . ep(Firprrrnrs) . B fa(Xe oan))s Talr + 1) — 75(r))

+BTATE(r + 1) ZS"EE (ma(r + 1)) i 7+ 1 < 74 A 18] A(Xnp(n) }-
Therefore we obtain the equality of (i). o

*TBTHB

Hence in order to check the measurability of Z and Z3"87P | we define, for m =

1,2,--- and fixed player B’s first-type Markov tactics (7g,78), {Yrm(3)}seT:|sleN(e,m+1)

and {Ys.,(8)}seT:s|eN(o,m+1) In m-step first-type bandit game successively:

Iteration 4.1.
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(m.0) For s € T satisfying |s| = m, put Yem(s) = Ysm(s) =0.
(m.F.s) For s € T satisfying |s| € N(e,m), put
Yva(S) — max{ess Sup(WA,TA)ED(F;s;WByTB)E}-s[<fA(‘X"A(|S|+1))vWA(lsl %+ 1) = 5)
H(B(Xrasi+1))» Talls| +1) = 8) Ysm(ma(ls| +1)) : |s| +1 < 74 A 78], A(X,)}.

(m.S.s) For s € T satisfying |s| € N(o,m), put

d
Ys'm(s) - ZE}-S[(_fB(‘Xs-Fe.)vei)
=1
H(B( Xste, )r€:) YEm(s + €)1 s+ e =7g(ls| +1),|s| +1 < 75]
Hh(Xs) - Lyjg)rg} -

Then we have the following lemma.
Lemma 4.5. The following (i) and (ii) hold:

(i) For player B’s first-type Markov tactics (mg,7g) and r € N(e,00), it holds that

Zp"?(mp(r))

max{ sup EX"B“)KfA(‘XW’A(I))’7r.,4(1)>
L EMS(F;1)

+B74(1) 2572 (xy (1)) 1 < 7l h(Xap(r)
where we take (73, T5) by (75, Th) = [TB,r42, TBr+2) TBr+4> TBr+43 TBr+6: TB,r 46 ")
for (7p,TB) = [TB,2,TB,2i B4, TB,4: TB,6, TB,6; " * i
(i1) For player A’s first-type Markov tactics (r4,74) and r € N(o0,00), it holds that

Z5* ™ (ma(r))

min{ﬁ,}gex}g(s;l)EX”A")[(—fB(Xwg(l))’Wﬁa(l))

4B (L)) g,

where we take (7'y,74) by (7, 14) = [T PPRIC JILE JPINS TRWIL M P ]

for (Ta,Ta) = [Ta1,TA1; TA3:TA3 TA5, TAs; )

Proof. We shall show (i), because the other cases are similar. Fix any Markov tactics

(g, 7). First we shall show Yg,.(s) € G, ™ for all s € T satisfying |s| € N(e,m +

**(,-measurable functions
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1) (Ysm(s) € Gs for all s € T satisfying |s| € N(o,m + 1)). Put H,y;) = o{X, :
s > mg(r),mp(r)} for r € N(e,00). Then from the independency of Markov chains X*
(1 =1,---,d) (cf. [LawVanl,Theorem 5(b)]), o{ X : & > s} and F; are conditionally
independent, given G; for s € T'. So from the definition of strategies, we can easily check
that the future H,,(,) and the past F, ) are conditionally independent, given G, () for
r € N(e,o00). Hence from Iterationl(m.0) we have that Yr,.(s) = Ysn(s) =0fors €T
(Is| = m). Further in Iterationl(m.F.s)((m.S.s) resp.) if Ysn(s +¢€;) € Gsye, for some
s € T satisfying |s| € N(e,m) and all j(=1,---,d) ( Yrm(s+¢€;) € Gsve, for some s € T
satisfying |s| € N(o,m) and all j(=1,---,d)), then the term

(fa( X gsi+1)s ma(ls|+1) = 8) + (B(Xay(ist+1) ), Talls|+1) =) Ysm(ma(ls|+1)) € Hrps))

(<_fB(Xs+e.)vei> s <5(‘\,s+e.)>ei> YF,m(S + 6,‘) € 7-{7r,4(|.s|))'

Further since (7g,7g) is Markov, we have {s +e; = mg(|s|+ 1)} € Gr, s (e =1,--+,d),
{Isl =78} € Grsi)s {I8|+1 < TanTB} € Heyqspy and {[s|+1 < 78} € Hyy(is)). Therefore
from Iterationl(m.F.s), we obtain Yr,,(s) € Gs for s € T satisfying |s| € N(e,m) (from
Iterationl(m.S.s), Ys.(s) € Gs for s € T satisfying |s| € N(o,m)). Thus inductively
we can check backward that Yr,.(s) € Gs for all s € T satisfying |s| € N(e,m + 1)
(Ys.n(s) € G, for all s € T satisfying [s| € N(o,m + 1)).

Next define a norm ||| - ||| on the space of bounded d-parameter processes on E:
[||W]l| = sup,er ess supgeqlWs(s,w)|. for bounded d-parameter processes W = {W,} e
on F. By using the norm ||| - ||| instead of the norm || - || of Section 4.3, in similar line as

Lemmas 4.5 and 4.6 and Theorem 4.1 (see Section 4.3), Iteration 1 converges:

Yp(s) = lim Yrmn(s) € G, for all s € T' satisfying |s| € N(e,00), (4.23)
and

Ys(s) = nll_l}go Ysm(s) € G, for all s € T satisfying |s| € N(o,00). (4.24)
Further the pair of Yr and Ys is a unique solution of the following (4.25) and (4.26):

Y'F(S) = max{ess Sup(?rA,TA)G'D(F';s;nB,'rB)E}—S[(fA(‘\fvrA(|s|+l))a WA(l‘Sl S 1) - S>
+<ﬁ(XﬂA(|S|+1))7ﬂ-A(’S| o 1) - 3) }5(7‘-/4(|S| ar 1)) : ‘Sl 4 1 _<_ TA N TB]’h'(‘\,s)}' (425)
for all s € T satisfying |s| € N(e, ), and
d

}S(S) = Z E}_s[<_fB(4Ys+e. )7 ei>
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for all s € T satisfying |s| € N(e,00). Hence since player B’s tactic (75, 7g) is fixed, by
using Lemmas 4.3(ii) and 4.4(i), Zy 2% and Z5"?'"? also satisfies (4.25) and (4.26). From
the uniqueness of solutions, we obtain that Yr = Z 2" and Ys = Z5"?". Therefore in
(4.25) by using the Markov property and the measurability of (4.23), we obtain that for

each r € N (e, 00),

Zg " (7p(r))

max {ess sup(”',A)ED(F;,,B(,);WB,TB)EF”B(")[(fA(Xw,,(rH))a ma(r +1) — mp(r))
+61m7r5(r + 1) Z;ﬂBTE(TrA(T e 1)) r+1 <714 A TB]ah(‘YﬂB(T))}’

Inax{ sup EX”B(”[(fA(‘\fﬂ" (1))77714(1» + ﬂ”%(l) Z;NBTB(W,I4(1)) 11 < T,B]ah()‘/ma(r))}a
! EMS(F;1) .

. i} / / ' 70N : . 4 5
where we take (75, 75) by (75,75) = [TBr+2, TBir+2 TB,r44s TByr+4; TBr+6, TBr46; " *) fOI

(78,7B) = [*B.2,TB.2; TB4,TBA; TB,6, TBe: - ). Lhus we conclude this lemma. 0
Hence we obtain the following results regarding (4.10), (4.11), (4.13) and (4.14).

Proposition 4.1. For player B’s (player A’s) first-type Markov tactic (7g,7g)
((x4,74)), there exist Markov tactics (7 an,Tanm) € D(F;7B,78) ((7B.M,TBM) €
D(F;ma,Ta)) satisfying the following (1) ((i1) resp.):

Remark. Similar facts holds for the second-type tactics.

Proof. (i) Fix any player B’s first-type Markov tactic (7g,75). Lemma 4.5 implies that

for each » € N(e, o0)

Zg" "8 (mp(r))

B max{ sup EX"B(r)KfA(X’W'A(I))v71{4(1)) + ﬂ"'%(l) Z;WBTB(THA(I)) 1< TIIB]a h(‘YWB(T))}’
'  EMS(F;1)

i / ' / Dy . : b %o o .
where we t’al\e (TrB’TB) by (ﬂ’BaTB) - [7TB,7'+27TB,7‘+2a7rB,T+47 TBr+4; TB,r+65 TB,r+6; ] for

(7B, 7B) = [TB2,TB,2; "B 4, TB,4; TB6, TB6; - - -|. llence it holds that

(4.27)
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Here for : = 1,---,d we define
N = { max E¥oo[f3(X]) + B (XDZ572(e;) 1 1 < 7
= EXon[f4(X1) + B(X])Z5T5 P (e) 11 < mpl}.

Further we set '} = Py and!Fa, = Loy — (B V-0 i) for =1, - - - . d = L. "By pupting
T m(1,0zpryw) = e for r € N(e,00),i =1,---,d and w € T}, we have 7% y € MS(F;1)
and then the supremum of (4.27) is attained by 7/
Zp "™ (mp(r))

= Inax{EX"B(T)[(fA(‘\,vrf.;,M(l))’WX,M(1)> + 5”1’;"”(1) sﬂBTB( mam(1) 1 1 < 7], h(Xrpin))

for each r € N(e,o0). Hence from Lemmas 4.1 and 4.2, we may inductively define a

Markov tactic (w4 ar, Ta.m) by
Tam(r +1,w) = mp(r,w) + T4 pr(1, 075 mw) for w € Q and each r € N(e,00), (4.28)
and
Tam = inf{r € N(e,00) : A,}, (4.29)

where for r € N(e,00) we define A, =

{EX s [(fa( X 1)y wapr(1)) + BT44(1) ZG88(xy p(1)) : 1 < 7] < h(Xrpin))}-

Then we obtain

max{E’\'”B(’)[(fA(wa;,M(l))v”ﬁ,M(U) + BT (1) Zg BB (w (1)) 1 1 < 75, M(Krpiny) }
E}-"B(’")[(fA ‘X/ﬂ',q M(T+1)) 7TA'M(T il 1) - 7TB(7‘)>
+8TAMTB(r 1) Zg T (ma sl & L3 s v+ 1 £ 7400 AT] & ( Xeam)) Fr=rauians)

Therefore we conclude that for all » € N(e, 00)

2878 (wg(r))
EFrs((fa(X ran(r+1))s Tam(r + 1) — mp(r))
+87AMTE(r + 1) ZGEE (mam(r +1)) i v+ 1 < Tapm A7)+ h(Xagr) - Iir=ra mars}-

On the other hand from Lemmas 4.5 and 4.3(ii), we have that for all »r € N(e, co)

ZgE (mam(r +1))
E}-”A'M(r“)[( fB( TB( r+2)) B(r+ 2) - "TAvM(T . 1)>
+B™AMTE(p +2) ZEBB(wp(r+2)) it +2< Tam A 8] + I 41=r 4 pAT5)-
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H ™ 7
Hence from these two equations, we conclude the results that Vz** TR T A Ve

and (Tgopm,Tam;7,78) € F(F'). We can also check the other equations similarly. 0O

4.4. The optimal values and the optimal tactics

Now from Proposition 4.1, the families

are non-empty, therefore we may respectively define the lower bound V and the upper

bound V r of values in the first-type bandit games by

In the second-type we similarly define 7 (S;lower), T(S;upper), Vg and Vg. In this
section we investigate the following backward iteration in order to find the optimal values
in both type bandit games. Further we shall show that the lower bounds and the upper

bounds of values coincide and that the iteration converges to the unique optimal value.

Let us consider the following value iteration. For r € N we define successively as

follows.
Iteration 4.2.
(0) Put Upp=Usp = h.

(Fr) Forz = (2}, ---,z% € E, put

(Sr) Forz = (z',---,2% € E, put

Usri(z) = min{ min B*[=[p(X}) + B'(X]) Ur,(a',---, X],- -+, 2%)], h(z)}.
First we shall prove convergence of sequences {Ug, },en and {Us, },en in Iteration 2.
Let || - || denote the supremum norm on the space of bounded measurable functions on F.

For i = 1,---,d we shall introduce the following semi-linear operators S and S on the

space of all bounded measurable functions on E:
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Shoz) = B¥[=f | +A(Xi) e Xl ad)]
for bounded measurable functions ¢ on E. Then we have the following lemmas.
Lemma 4.6. Let u;, u,, v; and v, be bounded measurable functions on E such that
iy == ma'x{,'g}?‘.).(,d Btk ) dor j 2= 1,2,

where max{¢,v} denotes max{¢,}(z) = max{¢p(z),y(x)} for functions ¢ and ¢ on E.
Then it holds that

Proof. We can easily check this lemma. ]
Lemma 4.7. For each r,v" € N, the following (i) and (ii) hold:
(1) HUF,T+T’+1 == UF,1‘+1 ” S ﬁO”US,r-}—r’ - US,?'”'

(11) HUS,T+T’+1 - US,T+1” S ﬂO“UF.T-H" - UFvTH'

Proof. It is trivial from Lemma 4.6 and [teration 4.2. O
Then we obtain the following results regarding Iteration 2.
Theorem 4.1. [teration 2 converges:
Urp(z) = Tli{gj Ur.(x) and Ug(z) = rl_ig]o Us,(z) forz e E.

Further the pair of Up and Us is a unique solution of the following equations (4.30) and
(4.31):
Ur = max{_g}axd S4Us, h}; (4.30)

(4.31)

Proof. From Lemma 4.7, we have for each r,7" € N

We inductively obtain
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for all » € N and all even r. As letting » and r’ infinite, we obtain the existence of
lim, oo Up,. Similarly lim,_ ., Us, exists. We obtain (4.30) and (4.31), by applying the
bounded convergence theorem to Iteration 2. Finally the uniqueness of solutions Ug and

Us is easily checked, by using Lemma 4.6. a

For Markov tactics (1 4,74) € MT(F; 1), (rg,78) € MT(S;1) we shall introduce the

S?\'BTB TATA TBTB

following semi-linear operators S3*™ ( , Q™. QFFP resp.) on the space of all

bounded measurable functions on E:
SH T (a) = E*[(fa(Xna), ma(1)) + B™4(1) $(Xry)) 1 T4 > 0] (2 € E);
S ¢(z) = E*[(=f8(Xrp)), m8(1)) + B72(1) (Xrp)) : 78 > 0] (z € E);
@) = SAA Pl = E*[h(Xo) : T4 = 0] (z € E);
QE " d(x) = SEP™P¢(x) + E¥[h(Xo) : 78 = 0] (z € E)

for bounded measurable functions ¢ on E. Then we obtain the following results.

Corollary 4.1.

Proof. They are trivial from (4.30) and (4.31), by considering the definition of one-step

Markov strategies and one-step Markov tactics. 0

4.5. Construction of the optimal tactics and the uniqueness of
the optimal values

Now we shall construct the optimal tactics. First we define subsets of E as follows.
P S TL =), DR ¢ S S D) o [ T e
PES s sh);, D'y ={muils 2 pSel= S4UF) fory = 1,
Further we let {D% |i=1,---,d} and {D% |i=1,---,d} be partitions of E by
DY = Dl B =D"" (DA U...uD% ) for i =1, d—1;

DL.=D%: D =0 (D -0 B Mo ey oy dpl
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Hence DY (D%) mean player A’s (player B’s) selection regions for arms 7 and DY (D%)

mean his stopping regions. Then by putting
% = e (Ty =€) on {Xg € DYy (Dg)} fori=1,---,d; (4.32)
we have Markov strategies 74 € MS(F;1) ( 75 € MS(S;1) resp.). Further by setting

o | 2 on{Xo¢ D%} o | 2 on{Xo¢ D%}

4= { 0 on{Xoe D%} 9 B0 on{Xoe DY e
we have Markov tactics (75,73) € MS(F;1) ( (7g,15) € MS(S;1) resp.). From Lemma
4.1 we may give another representation of Markov strategies. For positive even (odd)

number r and (74;7g) € MS(F';r) we describe
(4.34)

where {m4, |t € N(o,7+ 1)} ({mBs|t € N(e,r+1)}) are player A’s (player B’s resp.)
one step Markov strategies. Hence the meaning of (4.34) is as follows. Player A selects an
arm, by using Markov strategy 74 ,. Next player B selects, by using Markov strategy mg ,.
Further player A does, by using Markov strategy m43. The game continues in this way,
and finally player B (player A) selects, by using Markov strategy mg, (7a,). Moreover
we have similar representations concerning second-type Markov strategies: For positive
even (odd) r and (m4;7mg) € MS(S; 1) we write

Hence by using these representations, we give the following Markov strategies (77%;7g5) €
MS(F) and (7";7'g) € MS(S) by
/*

(il wp = 5 iy % s -] and (" j;ip) = B ad; TR na % oyl

Further we define Markov stopping times 7; and 75 (7" and 7'g) in the same line as
Lemma 4.1(iii), (iv), by using Markov strategies (7%; 75) ((7';7'g)) and 2-steps Markov

stopping times 7§ and 75 respectively. Then from Lemma 4.2, we obtain
73 = inf{t € N(e,00) | Xry 1y € DY}; 75 = inf{t € N(0,00) | Xrs () € Dg};

% = inf{t € N(0,00) | Xps(y € D}}; 7' = inf{t € N(e,00) | Xprs () € D3}

Then we obtain the following results.

Theorem 4.2. (T4, Ta; T8, 75) € T(F) (7", 7"4;7'g,7'8) € T(S)) is an optimal

tactic and Up (Us) is an optimal value for the first-type (second-type resp.) bandit game:
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(1) TI'ATA’NBTB < Up V AR S V7r “TATBTB
for every (ma,7a) € D(F;7g,75) and (7g,7B) € D(F; 7%, 74).

Proof. First we shall show that the inequality of (i) holds for Markov tactics. From
Corollary 4.1(1) we have
(4.35)

f01 evely Markov tactic (74,74) € MT (F;1). Hence from Comllaly 4.1(i1) we have Ug =
TB)UF Together with (4.35) we obtain Up = (w" ")Q TB7B) Ur 2> Q(“ ey Q(B”%'TE)UF‘
f01 every Markov (74,74) € MT(F-1). Therefore we inductively obtain

(4.36)

for every » € N and every Markov (744,74¢) € MT(F;1) (t € N(o,2r)). Hence from
the definitions of Q4 and ) we have

for (ma,74) € MT(F;1), (rg,78) € MT(S;1) and bounded measurable functions ¢,, ¢,
on E. By letting r infinite in (4.36), from the definitions 7%, 75 and Lemmas 4.1 and 4.2

we obtain

(4.37)

where (7%;7g) = [r4; 787078 7 T - -] € MS(F), 75 and 75 are given by (3.8),
(Ta;7g) = [Ta1; T8 Tas; Ty Tas; Ty -] € MS(F) and Markov stopping times 74 are
defined by in the same line as Lemma 4.1(ii1), by using Markov tactics (74; 75) and non-
increasing sequences {74,}ien(oce) Of 2-steps Markov stopping times. Therefore (4.37)
hold for every Markov tactic (74, 74) € D(F';7g, 7g) defined in the type of Lemma 4.1(ii1).
Since the other Markov cases can be proved similarly, we obtain the inequalities (i) for
every Markov tactics (74,74) € D(F;7p,7g) and (7g,78) € D(S;7%,74) which are
defined in the type of Lemma 4.1(ii1). Next we shall show the non-Markov case. Hence
by the use of Proposition 4.1, there exists a Markov tactic (77} s, 74 ps) € D(F;7p, T5)

A)MAM BB

which satisfies that VF V;W”TB. Then we have
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On the other hand from the definitions (4.20) and (4.29) and Lemma 4.2, (7} 5,74 5/) €
D(F;ng,75) is a Markov tactic which are defined in the type of Lemma 4.1(i), (iii). There-

fore from the first part of this proof we obtain

Thus we conclude

Since the other inequalities can be proved similarly, the proof of this theorem is completed.
O

Finally we obtain the following results concerning the optimal values.
Corollary 4.2. The bandit games have the unique optimal value:
Lp =Mp =V g ~aptd~lis V"= Vs

Proof. From Theorem 4.2 we have

Since V < Vg is trivial, we obtain Upr =V = V. The other is similar. a
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