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Abstract

This doctoral dissertation is based on the three paper: [44], [43], and [62]. Throughout
this dissertation, we look on Lévy driven stochastic differential equation (SDE) models
based on high-frequency samples. The models are used for modeling various time
varying phenomena. However, due to the complexity of small-time activity of driving
Lévy noises, even their estimation theory is still under development, which motivates
us to work on this dissertation.

In this dissertation, we propose two estimation method for Lévy driven SDE models.
The first one is the stepwise Gaussian quasi-likelihood method which enables us to deal
with various kind of driving noises, and to reduce the computational load of calculating
compared with the ordinary Gaussian quasi-likelihood method. In deriving the asymp-
totic behavior of the stepwise Gaussian quasi-likelihood estimator, we consider model
misspecification. Model misspecification is essentially inevitable in statistical modeling,
but it has not been cared in the estimation theory of Lévy driven stochastic differential
equation models. By utilizing the concept of the extended generator of Feller Markov
process, we correct the misspecification bias and give the consistency and asymptotic
normality of the estimator.

The second one is based on the iterative Jarque-Bera normality test for the esti-
mation of the continuous component of jump diffusion models being included in Lévy
driven SDE models. Compared with the existing estimation methods, the method
has an advantage in that there is not any sensitive tuning parameter. We will show
that our estimator has the same asymptotic behavior as the estimator constructed by
non-observed continuous part fluctuation.

In addition to the above two theoretical result, we will give the specification of
the functions qmleLevy implemented in the YUIMA package on R and snr under
development. They execute our proposed estimation methods, and some example codes
will be exhibited.
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Chapter 1

Introduction

Recent development of observation techniques and computers enables us to obtain huge
amounts of time series data. To extract beneficial information from such data, a num-
ber of statistical models and methods have been proposed up to present. Among them,
stochastic differential equation (SDE) models are regarded as good candidates in the
sense that they can incorporate the frequency of observed data into modeling by con-
sidering (virtual) continuous time axis behind the observations. In this dissertation, we
especially focus on SDE models driven by Lévy processes. Lévy processes are defined
as stochastically continuous time processes which have stationary and independent in-
crements, and they can be regarded as continuous time random walk. It is known
that for a Lévy process Y , there exists an infinitely divisible distribution µ satisfying
Y1 ∼ µ. The importance of infinitely divisible distributions in statistical analysis is
mentioned by [58], and the comprehensive theoretical review of them is sumarized for
instance in [52] and [59]. The class of infinitely divisible distributions contain many
widely used distributions, for example, normal distribution, stable distribution, Poisson
distribution, generalized hyperbolic distribution, to mention few. Hence changing the
corresponding infinitely divisible distribution, we can get a Lévy process well describing
non-Gaussian fluctuation (jumps) often seen in time series data. For the theoretical
accounts of Lévy processes, we refer to [52], [3], [8], and so on.

By the aforementioned reasons, the estimation theory of Lévy driven SDE models
especially based on high-frequency samples has been studied so far, for instance, the
threshold based estimation for jump diffusion models by [48] and [57], the least abso-
lute deviation (LAD)-type estimation for Lévy driven Ornstein-Uhlenbeck models by
[38], the non-Gaussian stable quasi-likelihood estimation for locally stable driven SDE
models by [42], the least square estimation for small Lévy driven SDE models by [33],
the Gaussian quasi-likelihood (GQL) for ergodic Lévy driven SDE models by [39] and
[43], and so on. These are on parametric methods, and concurrently, nonparametric
methods have been investigated, for example, the functional estimation and adaptive
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estimation for jump diffusion models by [4] and [54], Nadaraya-Watson estimation for
stable driven SDE models by [54], and the Fourier based method for Lévy process and
Lévy type model by [9].

The primary objective of this dissertation is to further develop the estimation theory
of Lévy driven SDE models. The rest of this dissertation is organized as follows. In
Chapter 2, the estimation theory under model misspecification is considered. Model
misspecification cannot be avoided in statistical modeling, but in Lévy driven SDE
models, it has been ignored. In the chapter, we especially reflect on the Gaussian quasi-
likelihood estimation which is robust against the distribution of the driving noise. We
will give the asymptotic behavior of the corresponding estimator by using the theory of
extended Poisson equation proposed by [64]. In Chapter 3, we consider the estimation
problem of the continuous part of jump diffusion models being one of the most important
subclasses of the Lévy driven SDE models. Although the estimation of the models is
often done by threshold based approach ([34], [57]), the approach has an annoying
tuning parameter. Our method is the iterative Jarque-Bera normality test based on
the self-normalized residual, and we do not have to choose a sensitive quantity. We will
show that our estimator has the same distribution as the estimator which is constructed
by non-observed continuous part fluctuation. Chapter 4 gives the specification of the R
function qmleLevy conducting the Gaussian quasi-likelihood estimation of Lévy driven
SDE models and snr under development for Some example codes will also be presented.

In the end, we table some notations used through this dissertation.

• For any vector v, we describe v(l) as its l-th element.

• For any matrix S, |S| denotes its Frobenius norm.

• Ip represents the p-dimensional identity matrix.

• C denotes a universal positive constant which may vary in each context.

• xn ≲ yn implies that there exists a positive constant C being independent of n
satisfying xn ≤ Cyn for all large enough n.

• S̄ denotes the closure of any set S.

• ⊤ denotes the transpose operator, and we write x⊗2 = x⊤x for any vector x.

• For any vector variable x = (x(i)), we write ∂x =
(

∂
∂x(i)

)
i
. Here, ∂(i)

x is referred to
as a differential operator for any variable x(i).

• The convergence in probability and in distribution are denoted by p−→ and L−→,
respectively. All limits appearing below are taken for n → ∞ unless otherwise
mentioned.
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Chapter 2

Statistical inference for misspecified
ergodic Lévy driven SDE models

2.1 Introduction
In statistical modeling, we always face the risk of model misspecification. The statistical
theory under model misspecification tells us how close an estimated model is to the
data-generating model, and such interpretation is important, for example, in ensuring
the reliability of estimation methods, and comparing candidate description models by
information criterions. Historically, following pioneering works by [10], [23], and [68],
the theory has been investigated up to the present for such reasons. Especially about
SDE models, for instance, [45], [60] and [32, Section 3] focus on misspecified diffusion
models; [32, Section 4] deal with the misspecification with respect to the intensity
function of Poisson processes; [35] considers the situation where the given model is
diffusion but the data-generating model has jumps. However, the theory does not seem
to be well developed in the context of Lévy driven SDE models whose coefficients take
various non-linear form, and indeed the parametric methods introduced above are not
discussed under model misspecification.

In this chapter, the data-generating process X which is defined on the complete fil-
tered probability space (Ω,F , (Ft)t∈R+ , P ) is supposed to be the solution of the following
Lévy driven SDE:

dXt = A(Xt)dt+ C(Xt−)dZt, (2.1.1)

where:

• Z is a one-dimensional càdlàg Lévy process without Wiener part. It is independent
of the initial variable X0 and satisfies

E[Z1] = 0, V ar[Z1] = 1, E[|Z1|q] < ∞,
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for all q > 0;

• The coefficients A : R 7→ R and C : R 7→ R are Lipschitz continuous;

• Ft := σ(X0) ∨ σ(Zs; s ≤ t).

We suppose that the discrete but high-frequency observations (Xt0 , . . . , Xtn) are ob-
tained from X in the so-called “rapidly increasing experimental design", that is,

tj ≡ tnj := jhn, Tn := nhn → ∞, nh2
n → 0.

For the observations (Xt0 , . . . , Xtn), we suppose that the following parametric one-
dimensional SDE model is allocated:

dXt = a(Xt, α)dt+ c(Xt−, γ)dZt, (2.1.2)

where the functional forms of the coefficients a : R × Θα 7→ R and c : R × Θγ 7→ R are
supposed to be known except for a finite-dimensional unknown parameter θ := (γ, α)
being an element of the bounded convex domain Θ := Θγ × Θα ⊂ Rp. We note that
the true coefficients (C,A)(·) may not belong to the parametric family {(c, a)(·, θ) :
θ ∈ Θ}, namely, the misspecification of the coefficient possibly occurs. Hereinafter, the
terminologies “misspecified" and “misspecification" will be used for the misspecification
with respect to the coefficients unless otherwise mentioned.

To estimate an optimal parameter θ⋆ of θ, we utilize the GQL procedure used in [43].
Concerning misspecified ergodic diffusion models, it is shown in [60] that although the
misspecification with respect to their diffusion term deteriorates the convergence rate
of the scale (diffusion) parameter, the Gaussian quasi-maximum likelihood estimator
(GQMLE) still has asymptotic normality. We will show that asymptotic normality of
the GQMLE holds in the misspecified ergodic Lévy driven SDE models as well. To
handle the misspecification effect, we will invoke the theory of the extended Poisson
equation (EPE) for homogeneous Feller Markov processes established in [64]. Applying
the result of [64] for (2.1.1), the existence and weighted Hölder regularity of the solution
of EPEs will be shown under a mighty mixing condition on X. Building on the result
and martingale representation theorem, we will be able to get the asymptotic normality
of our estimator and its tail probability estimates under sufficient regularity and moment
conditions on the ingredients of (2.1.1) and (2.1.2). We note that the absence of Wiener
part in (2.1.1) is essential while it is not in the correctly specified case, for more details,
see Remark 2.3.10.

It will turn out that the convergence rate of the scale parameters is
√
Tn, and it is

the same as the correctly specified case. This is different from the diffusion case (cf.
Table 2.1). Such difference may be caused from applying the GQL to non-Gaussian
driving noises, that is, the efficiency loss of the GQMLE may occur even in the correctly
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Table 2.1: GQL approach for ergodic diffusion models and ergodic Lévy driven SDE
models

Model Rates of convergence Ref.
drift scale

correctly specified diffusion
√
Tn

√
n [27], [61]

misspecified diffusion
√
Tn

√
Tn [60]

correctly specified Lévy driven SDE
√
Tn

√
Tn [40], [43]

misspecified Lévy driven SDE
√
Tn

√
Tn this chapter

specified case. Indeed, the non-Gaussian stable quasi-likelihood is known to estimate
the drift and scale parameters faster than the GQMLE in correctly specified locally
β-stable driven SDE models (cf. [42]); each of their convergence rates are

√
nh1−1/β

n

and
√
n, respectively. Further, for correctly specified locally β-stable driven Ornstein-

Uhlenbeck models, the LAD-type estimators of [38] tend to the true value at the speed
of

√
nh1−1/β

n and it is also faster than that of the GQMLE. However, in exchange for
its efficiency, the GQL approach is worth considering by the following reasons:

• It does not include any special functions (e.g. Bessel function, Whittaker function,
and so on), infinite expansion series and analytically unsolvable integrals, thus
computation based on it is not relatively time-consuming.

• It focuses only on the (conditional) mean and covariance structure, thus it does
not need so much restriction on the driving noise and is robust against the noise
structure. In other words, we can construct reasonable estimators of the drift and
scale coefficients in the unified way if only the driving Lévy noise has moments of
any order.

Our result ensures that even if the true coefficients are misspecified and take non-
linear forms, the staged GQL estimation still works for Lévy driven SDE models and
completely inherits its merit written in above.

The rest of this chapter is organized as follows: In Section 2.2, we introduce as-
sumptions and our estimation procedure. Section 2.3 provides our main results in the
following turn:

1. the tail probability estimates of the GQMLE (Theorem 2.3.1);

2. the existence and weighted Hölder regularity of the solution of EPEs for Lévy
driven SDEs (Proposition 2.3.5);
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3. the asymptotic normality of the GQMLE at
√
Tn-rate (Theorem 2.3.7).

A simple numerical experiment is presented in Section 2.4. We give all proofs of our
results in Section 2.5.

2.2 Assumptions and Estimation scheme
Before we introduce technical assumptions, we additionally introduce some notations.
The part of them will be shared with Chapter 3.

• Pt(x, ·) denotes the transition probability of X.

• We write Yj = Ytj
and ∆jY = Yj − Yj−1 for any stochastic process Y .

• ν0 represents the Lévy measure of Z.

• Ej[·] denotes the conditional expectation with respect to Ftj
.

• η stands for the law of X0.

• For any matrix valued function f on R× Θ, we write fs(θ) = f(Xs, θ); especially
we write fj(θ) = f(Xj, θ). We sometimes write fs and fj−1 instead of fs(θ0)
or fs(θ⋆), and fj−1(θ0) or fj−1(θ⋆) just for simplicity where θ0 and θ⋆ are the
true value and the optimal value of θ, respectively (the definition of θ⋆ will be
introduced later).

To derive our asymptotic results, we introduce some assumptions with some tech-
nical comments. Most of them are almost the same as in [40], [43], and [44], except for
Assumption 2.2.1-(2).

Assumption 2.2.1. 1. E[Z1] = 0, V ar[Z1] = 1, and E[|Z1|q] < ∞ for all q > 0.

2. The Blumenthal-Getoor index (BG-index) of Z is smaller than 2, that is,

β := inf
γ

{
γ ≥ 0 :

∫
|z|≤1

|z|γν0(dz) < ∞
}
< 2.

From [52, Theorem 25.3], it is easy to observe that Assumption 2.2.1 holds if the
Lévy measure ν0 admits a density g with respect to Lebesgue measure satisfying that
g(z) = O(|z|−2−δ) as |z| → 0 for some δ ∈ (0, 1), and that there exist positive constants
K0, K1 and K2 such that

g(z) ≤ K0(1 + |z|K1)e−|z|K2 ,
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for all large enough |z|. Via standardization, various Lévy processes fulfill them, for
example, bilateral gamma process, normal tempered stable process, normal inverse
Gaussian process, and variance gamma process.

In the derivation of the asymptotic normality of our estimator, we will evaluate the
small time L2−ϵ-moment of X for some ϵ > 0 (cf. Lemma 2.5.3) to handle the solution of
extended Poisson equations which are essential to deal with the misspecification effect;
thus the additional condition Assumption 2.2.1-(2) is imposed.

Assumption 2.2.2. 1. The coefficients A and C are Lipschitz continuous and twice
differentiable, and their first and second derivatives are of at most polynomial
growth.

2. The drift coefficient a(·, α⋆) and scale coefficient c(·, γ⋆) are Lipschitz continuous,
and c(x, γ) ̸= 0 for every (x, γ).

3. For each i ∈ {0, 1} and k ∈ {0, . . . , 5}, the following conditions hold:

• The coefficients a and c admit extension in C(R × Θ̄) and have the partial
derivatives (∂i

x∂
k
αa, ∂

i
x∂

k
γc) possessing extension in C(R × Θ̄).

• There exists nonnegative constant C(i,k) satisfying

sup
(x,α,γ)∈R×Θ̄α×Θ̄γ

1
1 + |x|C(i,k)

{
|∂i

x∂
k
αa(x, α)| + |∂i

x∂
k
γc(x, γ)| + |c−1(x, γ)|

}
< ∞.

(2.2.1)

We note that the first part of Assumption 2.2.1 and Assumption 2.2.2 ensures the
existence of a unique càdlàg adapted strong solution of SDE (2.1.1) (cf. [3, Theorem
6.2.3 and Theorem 6.2.9]), that is, there exists a measurable function g such that
X = g(X0, Z).

Given a function ρ : R → R+ and a signed measure m on a one-dimensional Borel
space, we write

||m||ρ = sup {|m(f)| : f is R-valued, m-measurable and satisfies |f | ≤ ρ} .

Assumption 2.2.3. 1. There exists a probability measure π0 such that for every
q > 0, we can find constants a > 0 and Cq > 0 for which

sup
t∈R+

exp(at)||Pt(x, ·) − π0(·)||hq ≤ Cqhq(x), (2.2.2)

for any x ∈ R where hq(x) := 1 + |x|q.

2. For any q > 0, we have
sup
t∈R+

E[|Xt|q] < ∞. (2.2.3)
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The former property of this assumption is so-called “f -exponentially ergodic" prop-
erty (cf. [46]), and putting together with the latter condition and the argument in [27,
Lemma 8] and [40, Lemma 4.3], it ensures the ergodic theorem, and its moment bound:
for any f being differentiable with derivatives of polynomial growth, we have

1
n

n∑
j=1

fj−1
p−→
∫
R
f(x)π0(dx), (2.2.4)

and for any positive constant K > 0,

E


∣∣∣∣∣∣
√
Tn

 1
n

n∑
j=1

fj−1 −
∫
R
f(x)π0(dx)

∣∣∣∣∣∣
K
 < ∞. (2.2.5)

The first convergence in probability (2.2.4) is a standard condition assumed in the
statistical theory of the ergodic processes, while the second moment bound (2.2.5) is
not and is relatively strong. It will be utilized for evaluating the tail probability of the
staged GQL random field introduced later. Such evaluation gives the tail probability
estimates of our estimator (Theorem 2.3.1), and in turn, the convergence of moments
of any order for it (Remark 2.3.9).

The sufficient conditions of the “f -exponentially ergodic" property for (2.1.1) are
investigated by many papers such as [31], [36], and [40]. Among them, we introduce a
handy one given in [40, Section 5] in the following:

Condition 1 The coefficients A and C are of class C1, and globally Lipschitz, and
the scale coefficient C is bounded.

Condition 2 The drift coefficient A satisfies

lim sup
|x|→∞

sgn(x)A(x) < 0, (2.2.6)

and the scale coefficient C(x) ̸= 0, for every x ∈ R.
Condition 3 The Lévy measure ν0 of Z can be decomposed as: ν0 = ν⋆

0 +ν♯
0 for the

two Lévy measure, where the restriction of ν⋆
0 to some open set of the form (−ϵ, 0)∪(0, ϵ)

with some ϵ > 0 admits a continuously differentiable positive density g⋆.
Condition 4 E[Zt] = 0 and

∫
exp(q|z|)ν0(dz) < ∞ for some q > 0.

Under Condition 1-Condition 4, Assumption 2.2.3 holds true and for its proof,
see [40, Proposition 5.4]. We here note that this sufficient condition still allows the
nonlinearity of the coefficients. For example, given a Lévy process Z fulfilling Condition
3 and Condition 4, the following SDEs satisfy Condition 1, Condition 2, and Assumption
2.2.2-(1):
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1. dXt = −Xtdt+ 1√
1+X2

t−
dZt;

2. dXt = − Xt√
1 +X2

t

dt+ dZt;

3. dXt = −(Xt + 2 sinXt)dt+
3 +X2

t−
1 +X2

t−
dZt.

We introduce a p× p-matrix Γ :=
(

Γγ O
Γαγ Γα

)
whose components are defined by:

Γγ := 2
∫
R

∂⊗2
γ c(x, γ⋆)c(x, γ⋆) − (∂γc(x, γ⋆))⊗2

c4(x, γ⋆)
(C2(x) − c2(x, γ⋆))π0(dx)

− 4
∫
R

(∂γc(x, γ⋆))⊗2

c4(x, γ⋆)
C2(x)π0(dx),

Γαγ := 2
∫
R
∂αa(x, α⋆)∂⊤

γ c
−2(x, γ⋆)(a(x, α⋆) − A(x))π0(dx),

Γα := −2
∫
R

∂⊗2
α a(x, α⋆)
c2(x, γ⋆)

(a(x, α⋆) − A(x))π0(dx) − 2
∫
R

(∂αa(x, α⋆))⊗2

c2(x, γ⋆)
π0(dx).

Assumption 2.2.4. Γ is invertible.

We define an optimal parameter θ⋆ := (γ⋆, α⋆) of θ by

γ⋆ ∈ argmax
γ∈Θ̄γ

G1(γ), α⋆ ∈ argmax
α∈Θ̄α

G2(α),

where G1 : Θγ 7→ R and G2 : Θα 7→ R are defined as follows:

G1(γ) = −
∫
R

(
log c2(x, γ) + C2(x)

c2(x, γ)

)
π0(dx), (2.2.7)

G2(α) = −
∫
R
c(x, γ⋆)−2(A(x) − a(x, α))2π0(dx). (2.2.8)

Note that since we impose the extension condition in Assumption 2.2.2, Y(θ) :=
(Y1(γ),Y2(α)) admit extension in C(Θ̄) as well. Recall that the parameter space Θ
is supposed to be a bounded convex domain. We assume the following identifiability
condition for G1(γ) and G2(α):

Assumption 2.2.5. θ⋆ ∈ Θ, and there exist positive constants χγ and χα such that for
all (γ, α) ∈ Θ,

Y1(γ) := G1(γ) − G1(γ⋆) ≤ −χγ|γ − γ⋆|2, (2.2.9)
Y2(α) := G2(α) − G2(α⋆) ≤ −χα|α− α⋆|2. (2.2.10)
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(2.2.9) and (2.2.10) ensure the separability of the models which will also be used for
the tail probability estimates of the staged GQL random fields, and the next remark
provides a sufficient and non-stringent condition for them.

Remark 2.2.6. If the optimal parameter θ⋆ ∈ Θ is unique, and −Γγ and −Γα are
positive definite, (2.2.9) and (2.2.10) hold true for all (γ, α) ∈ Θ under Assumption
2.2.2-2.2.3. Let I1 : Θγ 7→ Rpγ ⊗ Rpγ and I2 : Θα 7→ Rpα ⊗ Rpα be

I1(γ) = 2
∫
R

∂⊗2
γ c(x, γ)c(x, γ) − (∂γc(x, γ))⊗2

c4(x, γ)
(C2(x) − c2(x, γ))π0(dx)

− 4
∫
R

(∂γc(x, γ))⊗2

c4(x, γ)
C2(x)π0(dx),

I2(α) = −2
∫
R

∂⊗2
α a(x, α)
c2(x, γ⋆)

(a(x, α) − A(x))π0(dx) − 2
∫
R

(∂αa(x, α))⊗2

c2(x, γ⋆)
π0(dx).

From Assumption 2.2.2 and 2.2.3, the Lebesgue dominated convergence theorem implies
that these functions are continuous. Thus, for sufficiently small ϵ > 0, we can pick a
positive constant δ satisfying Uδ(γ⋆) ⊂ Θγ and

inf
γ∈Uδ(γ⋆)

λmin(−I1(γ)) > ϵ

where Uδ(γ⋆) denotes the open ball of radius δ centered at γ⋆, and λmin(−I1(γ)) is a
minimum eigenvalue of −I1(γ). Then, for every γ ∈ Uδ(γ⋆), we have

Y1(γ) < −ϵ|γ − γ⋆|2,

by Taylor’s formula. Concerning γ ∈ Θγ \ Uδ(γ⋆), it follows that

Y1(γ) < −
G1(γ⋆) − supγ∈Θγ\Uδ(γ⋆) G1(γ)

supγ1,γ2∈Θγ\Uδ(γ⋆) |γ1 − γ2|2
|γ − γ⋆|2.

Hence (2.2.9) holds true for all γ ∈ Θγ with

χγ = ϵ ∨
G1(γ⋆) − supγ∈Θγ\Uδ(γ⋆) G1(γ)

supγ1,γ2∈Θγ\Uδ(γ⋆) |γ1 − γ2|2
.

(2.2.10) can be shown as well.

From now on, we mention our estimation scheme. Recall that we assume that the
observation (Xt0 , . . . , Xtn) is obtained from X with tj ≡ tnj := jhn, Tn := nhn → ∞,
and nh2

n → 0. We define our staged GQMLE θ̂n := (γ̂n, α̂n) in the following manner:
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1. Drift-free estimation of γ. Define the Maximizing-type estimator (so-called M -
estimator) γ̂n by

γ̂n ∈ argmax
γ∈Θ̄γ

G1,n(γ),

for the R-valued random function

G1,n(γ) := − 1
Tn

n∑
j=1

{
hn log c2

j−1(γ) + (∆jX)2

c2
j−1(γ)

}
.

2. Weighted least square estimation of α. Define the least square type estimator α̂n

by
α̂n ∈ argmax

α∈Θ̄α

G2,n(α),

for the R-valued random function

G2,n(α) := − 1
Tn

n∑
j=1

(∆jX − hnaj−1(α))2

hnc2
j−1(γ̂n)

.

Remark 2.2.7. Although our estimation method ignores the drift term in the first
stage, the effect of it asymptotically vanishes. This is because the scale term dominates
the small time behavior of X in L2-sense. Specifically, we can derive

Ej−1

(∫ tj

tj−1
fs−dZs

)2
 ≲ hnf

2
j−1, Ej−1

(∫ tj

tj−1
gsds

)2
 ≲ h2

ng
2
j−1,

for suitable functions f and g. Indeed, it has already been shown that the asymptotic be-
havior of the scale estimator constructed by our manner is the same as the conventional
GQL estimator in the case of correctly specified ergodic diffusion models (cf. [61]) and
ergodic Lévy driven SDE models (cf. [43]). Such ignorance should be helpful in reduc-
ing the number of simultaneous optimization parameters, thus our estimator is expected
to numerically be more stabilized and their calculation should be less time-consuming.
Moreover, by choosing appropriate functional forms, each estimation stage is reduced to
a convex optimization problem. For example, if a(·, ·) and c(·, ·) are linear and log-linear
with respect to parameters, respectively, then the above argument holds. As for other
candidates of their functional form and details, see [43, Example 3.8].

Remark 2.2.8. We defined the optimal parameter of θ as the argmax point of G1(γ)
and G2(α) and, the two functions are the probability limit of the Gaussian quasi-
likelihoods G1,n(γ) and G2,n(α), respectively. Thus, −G1(γ) and −G2(α) can be re-
garded as Kullback-Leibler (KL) divergence like quantities between the data-generating
model and the parametric model

dXt = a(Xt, α)dt+ c(Xt−, γ)dZt.
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Here we first consider the correctly specified case, that is, there exists an element θ0 :=
(γ0, α0) ∈ Θ such that C(x) = c(x, γ0) and A(x) = a(x, α0) for π0 a.s. x. Fix a positive
constant b > 0. Then, it can readily be checked that for all x > 0,

log x+ b

x
≥ log b+ 1,

and that both sides are equivalent when x = b. Hence, by Assumption 2.2.5,
argmaxγ∈Θ̄γ

G1(γ) and argmaxα∈Θ̄α
G2(α) coincide with γ0 and α0, respectively. In

other words, this asserts that the data-generating model certainly attain the mini-
mization of −G1(γ) and −G2(α). By taking these insight into consideration, we can
intuitively interpret the optimality of θ⋆ as the parameter value which yields the closest
model to the data-generating model measured by the Kullback-Leibler (KL) divergence
like quantities −G1(γ) and −G2(α).

2.3 Main results
In this section, we state our main results only for the fully misspecified case, that is,
both of the true coefficients C and A do not belong to the parametric family {(c, a)(·, θ) :
θ ∈ Θ}. Concerning the partly misspecified case (i.e. either of C and A is correctly
specified), similar results can be derived just as the corollaries (see, Remark 2.3.8). All
of their proofs will be given in Appendix.

The first result provides the tail probability estimates of the normalized θ̂n which
is theoretically essential such as in the deviation of an information criterion, residual
analysis, and the measurement of Lq-prediction error.

Theorem 2.3.1. Suppose that Assumptions 2.2.1-2.2.4 hold. Then, for any L > 0 and
r > 0, there exists a positive constant CL such that

sup
n∈N

P
(∣∣∣∣√Tn(θ̂n − θ⋆)

∣∣∣∣ > r
)

≤ CL

rL
. (2.3.1)

In the correctly specified case, such estimates are already shown in [43] under a
sufficient moment and regularity conditions, and strong identifiability conditions, and
this theorem extends the results to the misspecified case.

Before we state the asymptotic normality of θ̂n, we roughly explain how the mis-
specification effect arises in its derivation process, and introduce the useful tool to deal
with it. Except for op(1) term, each scaled quasi-score function can be decomposed as:

(scaled quasi-score function) = (stochastic integral) + (misspecification effect term),
(2.3.2)
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where the misspecification effect term is expressed as:√
hn

n

n∑
j=1

gj−1(θ⋆) = 1√
Tn

∫ Tn

0
gs(θ⋆)ds+ op(1), (2.3.3)

with a specific measurable function g satisfying π0(g) = 0. The celebrated CLT-type
theorems for such single functional integration of Markov processes have been reported
in many literatures, for example, [11, Theorem 2.1], [24, Theorem VIII 3.65], [29, The-
orem 2.1], [65, Corollary 4.1], and the references therein. However the combination
with the stochastic integral makes it difficult to clarify the asymptotic behavior of the
left-hand-side. To handle this difficulty, we invoke the concept of the extended Poisson
equation (EPE) introduced in [64]:

Definition 2.3.2. [64, Definition 2.1] We say that a measurable function f : R → R
belongs to the domain of the extended generator Ã of a càdlàg homogeneous Feller
Markov process Y taking values in R if there exists a measurable function g : R → R
such that the process

f(Yt) −
∫ t

0
g(Ys)ds, t ∈ R+,

is well defined and is a local martingale with respect to the natural filtration of Y and
every measure Px(·) := P (·|Y0 = x), x ∈ R. For such a pair (f, g), we write f ∈
Dom(Ã) and Ãf EP E= g.

Remark 2.3.3. In the previous definition, the terminology “Feller" means that the
corresponding transition semigroup Tt is a mapping Cb(R) into C(R). When it comes
to X, its homogeneous, Feller and (strong) Markov properties are guaranteed by the
argument in [3, Theorem 6.4.6] and [36, 3.1.1 (ii)].

Remark 2.3.4. When we consider the misspecified ergodic diffusion models, we also
encounter the annoying integral term like (2.3.3). In that case, [60] utilized the theory
of the second order differential equations endowed with their infinitesimal generator (cf.
[49]) and Itô’s formula to derive the asymptotic normality of the GQMLE. However,
in our case, the same method cannot be applied since the infinitesimal generator of X
contains the integro-operator with respect to the Lévy measure of Z and it is difficult to
verify the existence and regularity of the corresponding equation.

Hereinafter y(i) is referred to as the i-th component of any vector y. We consider
the following EPEs:

Ãf (j1)
1 (x) EP E= −

∂γ(j1)c(x, γ⋆)
c3(x, γ⋆)

(c2(x, γ⋆) − C2(x)), (2.3.4)
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Ãf (j2)
2 (x) EP E= −∂α(j2)a(x, α⋆)

c2(x, γ⋆)
(A(x) − a(x, α⋆)), (2.3.5)

for the extended generator Ã of X, j1 ∈ {1, . . . , pγ} and j2 ∈ {1, . . . , pα}. The right-
hand-side of each EPE corresponds to g in (2.3.2), and it is trivial that they identically
0 when the coefficients are correctly specified.

From now on, Ex is referred to as the expectation operator with the initial condition
X0 = x, that is,

Ex[g(Xt)] =
∫
R
g(y)Pt(x, dy),

for any measurable function g. The next proposition ensures the existence of the solu-
tions of (2.3.4) and (2.3.5) and verifies their weighted Hölder continuity:

Proposition 2.3.5. Under Assumption 2.2.1-2.2.3, there exist unique solu-
tions of (2.3.4) and (2.3.5), and the solution vectors f1 :=

(
f

(j1)
1

)
j1∈{1,...,pγ}

and

f2 :=
(
f

(j2)
2

)
j2∈{1,...,pα}

satisfy

sup
x,y∈R,x ̸=y

|fi(x) − fi(y)|
|x− y|1/pi(1 + |x|qiKi + |y|qiKi)

< ∞, for i ∈ {1, 2},

where any pi ∈ (1,∞), qi = pi/(pi − 1), and some positive constants K1 and K2.
Furthermore,

f1(Xt) +
∫ t

0

∂γc(Xs, γ
⋆)

c3(Xs, γ⋆)
(c2(Xs, γ

⋆) − C2(Xs))ds,

and
f2(Xt) +

∫ t

0

∂αa(Xs, α
⋆)

c2(Xs, γ⋆)
(A(Xs) − a(Xs, α

⋆))ds

are L2-martingale with respect to (Ft, Px) for every x ∈ R, and their explicit forms are
given as follows:

f1(x) =
∫ ∞

0
Ex

[
∂γc(Xt, γ

⋆)
c3(Xt, γ⋆)

(c2(Xt, γ
⋆) − C2(Xt))

]
dt,

f2(x) =
∫ ∞

0
Ex

[
∂αa(Xt, α

⋆)
c2(Xt, γ⋆)

(A(Xt) − a(Xt, α
⋆))
]
dt.

Remark 2.3.6. Thanks to the result of the previous theorem and assumptions on the
coefficients,

f1(Xt) +
∫ t

0

∂γc(Xs, γ
⋆)

c3(Xs, γ⋆)
(c2(Xs, γ

⋆) − C2(Xs))ds,
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and
f2(Xt) +

∫ t

0

∂αa(Xs, α
⋆)

c2(Xs, γ⋆)
(A(Xs) − a(Xs, α

⋆))ds

have finite second-order moments. Thus, slightly refining the argument in [51, the
proof of Proposition VII 1.6] with the monotone convergence theorem, the L2-martingale
property of them with respect to (Ft, Px) can be replaced by the L2-martingale property
with respect to (Ft, P ) in the previous proposition.

Building on the previous proposition, now we can obtain the asymptotic normality
of

√
Tn(θ̂n − θ⋆):

Theorem 2.3.7. Under Assumptions 2.2.1-2.2.4, there exists a nonnegative definite
matrix Σ ∈ Rp ⊗ Rp such that√

Tn(θ̂n − θ⋆) L−→ N(0,Γ−1Σ(Γ−1)⊤),

and the form of Σ :=
(

Σγ Σαγ

Σ⊤
αγ Σα

)
is given by:

Σγ = 4
∫
R

∫
R

(
∂γc(x, γ⋆)
c3(x, γ⋆)

C2(x)z2 + f1(x+ C(x)z) − f1(x)
)⊗2

π0(dx)ν0(dz),

Σαγ = −4
∫
R

∫
R

(
∂γc(x, γ⋆)
c3(x, γ⋆)

C2(x)z2 + f1(x+ C(x)z) − f1(x)
)

(
∂αa(x, α⋆)
c2(x, γ⋆)

C(x)z + f2(x+ C(x)z) − f2(x)
)⊤

π0(dx)ν0(dz),

Σα = 4
∫
R

∫
R

(
∂αa(x, α⋆)
c2(x, γ⋆)

C(x)z + f2(x+ C(x)z) − f2(x)
)⊗2

π0(dx)ν0(dz).

Remark 2.3.8. If either of the coefficients is correctly specified, the right-hand side of
the associated EPE (2.3.4) or (2.3.5) is identically 0. Let γ0 and α0 be the elements of
Θγ and Θα whose definitions are introduced in Rem 2.2.8. Then we have

Σγ = 4
∫
R

(
∂γc(x, γ0)
c(x, γ0)

)⊗2

π0(dx)
∫
R
z4ν0(dz),

Σαγ = −4
∫
R

∫
R

(
∂γc(x, γ0)
c(x, γ0)

z2
)(

∂αa(x, α⋆)
c(x, γ0)

z + f2(x+ c(x, γ0)z) − f2(x)
)⊤

π0(dx)ν0(dz),

Σα = 4
∫
R

∫
R

(
∂αa(x, α⋆)
c(x, γ0)

z + f2(x+ c(x, γ0)z) − f2(x)
)⊗2

π0(dx)ν0(dz),
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in the case that the scale coefficient is correctly specified and

Σγ = 4
∫
R

∫
R

(
∂γc(x, γ⋆)
c3(x, γ⋆)

C2(x)z2 + f1(x+ C(x)z) − f1(x)
)⊗2

π0(dx)ν0(dz),

Σαγ = −4
∫
R

∫
R

(
∂γc(x, γ⋆)
c3(x, γ⋆)

C2(x)z2 + f1(x+ C(x)z) − f1(x)
)

(
∂αa(x, α0)
c2(x, γ⋆)

C(x)z
)⊤

π0(dx)ν0(dz),

Σα = 4
∫
R

(
∂αa(x, α0)
c2(x, γ⋆)

C(x)
)⊗2

π0(dx),

in the case that the drift coefficient is correctly specified.

Remark 2.3.9. Let Y be a random variable which obeys N(0,Γ−1Σ(Γ−1)⊤). As a
consequence of Theorem 2.3.1 and Theorem 2.3.7, we have

E
[
f
(√

Tn(θ̂n − θ⋆)
)]

→ E[f(Y )], (2.3.6)

for any polynomial growth function f . It can be shown in the following way: For any
q > 1, it follows from [15, Lemma 2.2.8] and Theorem 2.3.1 that

E
[∣∣∣∣√Tn(θ̂n − θ⋆)

∣∣∣∣q] =
∫ ∞

0
qxq−1P

(∣∣∣∣√Tn(θ̂n − θ⋆)
∣∣∣∣ > x

)
dx

≲
∫ 1

0
xq−1dx+

∫ ∞

1
x−qdx < ∞.

Hence
∣∣∣√Tn(θ̂n − θ⋆)

∣∣∣q is asymptotically uniformly integrable from Markov’s inequality,
and [63, Theorem 2.20] implies (2.3.6).

Remark 2.3.10. In this remark, we suppose that the data-generating model defined on
the probability space (Ω,F , (Ft)t∈R+ , P ) is supposed to be

dYt = A(Yt)dt+B(Yt)dWt + C(Yt−)dZt, (2.3.7)

where W is a standard Wiener process independent of (Y0, Z),

Ft := σ(Y0) ∨ σ((Ws, Zs); s ≤ t),

and B : R → R is a measurable function. We look at the following parametric model:

dYt = a(Yt, α)dt+ b(Yt, γ)dWt + c(Yt−, γ)dZt,
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where b : R × Θγ → R is a measurable function. Here other ingredients are similarly
defined as above and we use the same notations for its transition probability, invariant
measure, and so on. When the true coefficients (A,B,C) are correctly specified, the
GQMLE still has asymptotic normality and the sufficient conditions for it are easy to
check (cf. [39]). However, we note that it is difficult to give such conditions when they
are misspecified. This is because our methodology using the martingale representation
theorem becomes insufficient due to the presence of Wiener component in the devia-
tion of the asymptotic variance (see, the proof of Theorem 2.3.7). To formally derive
a similar result to Theorem 2.3.7, we may additionally have to impose the following
condition:

Condition A: There exists a unique C2-solution f on R of

Af(x) = A(x)∂xf(x) + 1
2
B(x)∂2

xf(x) +
∫
R
(f(x+ C(x)z) − f(x) − ∂xf(x)C(x)z)ν0(dz)

= g(A(x), B(x), C(x)), (2.3.8)

where g(A(x), B(x), C(x)) is a specific function satisfying∫
R
g(A(x), B(x), C(x))π0(dx) = 0.

Furthermore, the first and second derivatives of f are of at most polynomial growth.

Under Condition A, the limit distribution of the GQMLE can be derived by com-
bining the proof of [61] and Theorem 2.3.7. It is known that the theory of viscosity
solutions for integro-differential equations ensures the existence of f in limited situa-
tion, for instance, see [5], [6], [21] and [22]. However, it is not so for the regularity of
f . As another attempt to confirm Condition A, the associated EPE Ãf̃ EP E= g may
possibly be helpful. This is because the existence and uniqueness of the solution f̃ of the
EPE can be verified in an analogous way to Theorem 2.3.5, and if f̃ admits C2-property
and growth conditions in Condition A, then f̃ satisfies (2.3.8). The latter argument
can formally be shown as follows:

It is enough to check Af̃ = g. Since f̃(Yt) −
∫ t

0 g(A(Ys), B(Ys), C(Ys))ds is a mar-
tingale with respect to (Ft, Px) for all x ∈ R, we have

Ex
[
f̃(Yt) −

∫ t

0
g(A(Ys), B(Ys), C(Ys))ds

]
= f̃(x).

Hence it follows from Itô’s formula that as t → 0,∣∣∣∣∣Ex[f̃(Yt)] − f̃(x)
t

− g(A(x), B(x), C(x))
∣∣∣∣∣
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=
∣∣∣∣1t
∫ t

0
(Ex[g(A(Ys), B(Ys), C(Ys))] − g(A(x), B(x), C(x))) ds

∣∣∣∣
=
∣∣∣∣1t
∫ t

0

∫ s

0
Ex[Ag(A(Yu), B(Yu), C(Yu))]duds

∣∣∣∣
≲ t → 0.

In this sketch, we implicitly assume suitable regularity and moment conditions on
each ingredient, but they are reduced to be conditions on the true coefficients (A,B,C).
Thus, verifying the behavior of

f̃(x) =
∫ ∞

0
Ex[g(A(Yt), B(Yt), C(Yt))]dt =

∫ ∞

0

∫
R
g(A(y), B(y), C(y))Pt(x, dy)

leads to Condition A. Just for Lévy driven Ornstein-Uhlenbeck models, we can observe
the property of f̃(x) =

∫∞
0 Ex[g(A(Yt), B(Yt), C(Yt))]dt based on the explicit form of the

solution (cf. Example 2.3.11). Although, for general Lévy driven SDEs, the gradient
estimates of their transition probability making use of Malliavin calculus have been
investigated lately (cf. [66], [67], and the references therein), the property of f̃(x) =∫∞

0 Ex[g(A(Yt), B(Yt), C(Yt))]dt is still difficult to be checked as far as the author knows.
Since these are out of range of this chapter, we will not treat them later.

Example 2.3.11. Here we consider the following Ornstein-Uhlenbeck model:

dXt = −αXtdt+ dZt,

for a Lévy process Z not necessarily being pure-jump type and a positive constant α.
Applying Itô’s formula to exp(αt)Xt, we have

Xt = X0 exp(−αt) +
∫ t

0
exp(α(s− t))dZs

and
Ex[f(Xt)] =

∫
R
f(x exp(−αt) + y)pt(dy)

for a suitable function f . Here pt is the probability distribution function of
∫ t

0 exp(α(s−
t))dZs whose characteristic function p̂t(·) is given by:

p̂t(u) = exp
{∫ t

0
ψ(exp(α(s− t))u)ds

}
, (2.3.9)

for ψ(u) := logE[exp(iuZ1)] (cf. [53, Theorem 3.1]). In this case, X fulfills Assumption
2.2.3 provided that Assumption 2.2.1-(1) holds, and that the Lévy measure ν0 of Z has
a continuously differentiable positive density g on an open neighborhood around the
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origin (for more details, see [39, Section 5]). Then, the characteristic function p̂(·) of
the invariant measure π0 is given by

p̂(u) = exp
{∫ ∞

0
ψ(exp(−αs)u)ds

}
.

Under such condition, if f is differentiable and itself and its derivative are of at most
polynomial growth, we have∣∣∣∣∂x

(∫ ∞

0
Ex[f(Xt)]dt

)∣∣∣∣
=
∣∣∣∣∫ ∞

0

(∫
R
∂xf(x exp(−αt) + y)pt(dy)

)
exp(−αt)dt

∣∣∣∣
≲
∫ ∞

0

{
1 + |x|K + (1 + |x|2K) exp(−at)

}
exp(−αt)dt

≲ 1 + |x|2K ,

for a positive constant K. We can derive similar estimates with respect to its higher-
order derivatives in the same way.

Let J be a Lévy process such that its moments of any-order exists and its triplet
is (0, b, νJ) (cf. [3]). Here b is allowed to be 0. Mimicking the previous example, we
write pJ

t as the probability distribution function of
∫ t

0 exp(α(s − t))dJs for a positive
constant α > 0 and ψJ(u) stands for logE[exp(iuJ1)] below. Combining the argument
in Remark 2.3.10 and Example 2.3.11, we obtain the following corollary:

Corollary 2.3.12. For a natural number k ≥ 2, let f be a polynomial growth Ck-
function whose derivatives are of at most polynomial growth. Suppose that the integral
of f with respect to the Borel probability measure π0 whose characteristic function is
exp

{∫∞
0 ψJ(exp(−αs)u)ds

}
is 0, and that νJ has a continuously differentiable positive

density on an open neighborhood around the origin. Then, the function

g(x) : =
∫ ∞

0
Ex

[
f
(
x exp(−αt) +

∫ t

0
exp(α(s− t))dJs

)]
dt

=
∫ ∞

0

∫
R
f(x exp(−αt) + y)pJ

t (dy)dt

on R is the unique solution of the following (first or second order) integro-differential
equation

− αx∂xg(x) + 1
2
b∂2

xg(x) +
∫
R

(g(x+ z) − g(x) − ∂g(x)z) νJ(dz) = f(x), (2.3.10)

and moreover, g is also a polynomial growth Ck-function.
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Remark 2.3.13. If the Lévy measure νJ is symmetric (i.e. the imaginary part of ψJ

is 0), the equation (2.3.10) is solvable for many odd functions f as a matter of course.
More specifically, for k ∈ N and f(x) = x2k+1, the solution g is

g(x) =
∫ ∞

0

∫
R
(x exp(−αt) + y)2k+1pJ

t (dy)dt

=
∫ ∞

0

∫
R

2k+1∑
i=0

(2k + 1)!
i!(2k + 1 − i)!

(x exp(−αt))iy2k+1−ipJ
t (dy)dt.

By observing the derivatives of the characteristic function,
∫
R y

2k+1−ipJ
t (dy) can be ex-

pressed by the moments of J , hence the explicit expression of g is available.

Remark 2.3.14. Beside the estimation of θ, what is of special interest is the inference
for ν0 which may often be an infinite dimensional parameter. Even for (A,C) being
constant and specified (i.e. X is a Lévy process with drift), it may be interest in its
own right and enormous papers have addressed this problem so far. We refer to [41] for
comprehensive accounts under Z being assumed to have a certain parametric structure.
As for the situation where just a few information on Z is available, one of plausible
attempts is the method of moments proposed in [17], [18], and [47], for example. Es-
pecially [47] established a Donsker-type functional limit theorem for empirical processes
arising from high-frequently observed Lévy processes. When the coefficients A and C
are nonlinear functions but specified, the residual based method of moments for ν0 by
[44] is effective: using the GQMLE θ̂n := (γ̂n, α̂n), we have

1
Tn

n∑
j=1

φ

(
∆jX − hnaj−1(α̂n)

cj−1(γ̂n)

)
P→
∫
R
φ(z)ν0(dz),

D̂n

√
Tn

 θ̂n − θ0
1

Tn

∑n
j=1 φ

(
∆jX−hnaj−1(α̂n)

cj−1(γ̂n)

)
−
∫
φ(z)ν0(dz)

 L→ N(0, Ip+q),

for an appropriate Rq-valued function φ and a (p + q) × (p + q) matrix D̂n which can
be constructed only by the observations. For instance, we can choose φ(z) = zr and
φ(z) = exp(iuz)−1−iuz (to estimate the r-th cumulant of Z and the cumulant function
of Z, respectively) as φ; see [44, Assumption 2.7] for the precise conditions on φ. As
for misspecified case, if the misspecification is confined within the drift coefficient, then
this scheme is still valid thanks to the faster diminishment of the mean activity in small
time (cf. Remark 2.2.7).
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Figure 2.1: The plot of the density functions of (i) NIG(10, 0, 10, 0) (black dotted
line), (ii) bGamma(1,

√
2, 1,

√
2) (green line), (iii) NIG(25/3, 20/3, 9/5,−12/5) (blue

line), and N(0, 1) (red line).
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2.4 Numerical experiments
We suppose that the data-generating model is the following Lévy driven Ornstein-
Uhlenbeck model:

dXt = −1
2
Xtdt+ dZt, X0 = 0,

and that the parametric model is described as:

dXt = α(1 −Xt)dt+ γ√
1 +X2

t

dZt, α, γ > 0.

The functional form of the coefficients is the same in [60, Example 3.1]. We conduct
numerical experiments in three situations:

(i) L(Zt) = NIG(10, 0, 10t, 0);
(ii) L(Zt) = bGamma(t,

√
2, t,

√
2);

(iii) L(Zt) = NIG(25/3, 20/3, 9/5t,−12/5t).
NIG (normal inverse Gaussian) random variable is defined by the normal mean-variance
mixture of inverse Gaussian random variable, and bGamma (bilateral Gamma) random
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Figure 2.2: The boxplot of case (i); the target optimal values are described by dotted
lines.
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2.
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variable is defined by the difference of two independent Gamma random variables.
For their technical accounts, we refer to [7] and [30]. To visually observe their non-
Gaussianity, each density function at t = 1 is plotted with the density of N(0, 1) in
Figure 2.1 altogether. By taking the limit of (2.3.9), the characteristic function p̂(·) of
the invariant measure π0 is given by

p̂(u) = exp
{∫ ∞

0
ψ
(

exp
(

−s

2

)
u
)
ds
}
, (2.4.1)

where ψ(u) := logE[exp(iuZ1)]. Differentiating p̂, we have κ̃j = 2κj/j for the j-th
cumulant κ̃j (resp. κj) of Y ∼ π0 (resp. Z1). Hence we obtain

G1(γ) = −2 log γ − 2
γ2 +

∫
R

log(1 + x2)π0(dx),

G2(α) = − 1
γ⋆

{1
4

∫
R
x3π0(dx) + α

(
1 −

∫
R
x3π0(dx) +

∫
R
x4π0(dx)

)
+α2

(
3 − 2

∫
R
x3π0(dx) +

∫
R
x4π0(dx)

)}
.
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Figure 2.3: The boxplot of case (ii); the target optimal values are described by dotted
lines.
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By solving the estimating equations, the target optimal values are given by

γ⋆ =
√

2, α⋆ = 1 −
∫
R x

3π0(dx) +
∫
R x

4π0(dx)
2(3 − 2

∫
R x

3π0(dx) +
∫
R x

4π0(dx))
.

In the calculation, we used
∫
R xπ0(dx) = 0 and

∫
R x

2π0(dx) = 1. Thus, in each case, the
optimal parameter θ⋆ := (α⋆, γ⋆) is given as follows:

(i) θ⋆ =
(
803/2406,

√
2
)

≈ (0.3337, 1.4142);
(ii) θ⋆ =

(
11/30,

√
2
)

≈ (0.3667, 1.4142);
(iii) θ⋆ =

(
609/1658,

√
2
)

≈ (0.3673, 1.4142).
Here, we write approximated values obtained by rounding off θ⋆ to four decimal places.
Solving the corresponding estimating equations, our staged GQMLE are calculated as:

α̂n = −
∑n

j=1(Xj−1 − 1)(Xj −Xj−1)(X2
j−1 + 1)

hn
∑n

j=1(Xj − 1)2(X2
j−1 + 1)

,
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Figure 2.4: The boxplot of case (iii); the target optimal values are described by dotted
lines.
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γ̂n =
√√√√ 1
nhn

n∑
j=1

(Xj −Xj−1)2(X2
j−1 + 1).

We generated 10000 paths of each SDE based on Euler-Maruyama scheme and con-
structed the estimators along with the above expressions, independently. In generating
the small time increments of the driving noises, we used the function rng equipped
to YUIMA package in R [12]. Together with the diffusion case (the optimal param-
eter isθ⋆ =

(
1/3,

√
2
)

≈ (0.3333, 1.4142)), the mean and standard deviation of each
estimator is shown in Table 2.2 where n and hn = 5n−2/3 denote the sample size and
observation interval, respectively. We also present their boxplots to enhance the visi-
bility. We can observe the followings from the table and boxplots:

• Overall, the estimation accuracy of θ̂n improves as Tn and n increase and hn

decrease, and this tendency reflects our main result.

• The result of case (i) is almost the same as the diffusion case. This is thought
to be based on the well-known fact that NIG(δ, 0, δt, 0) tends to N(0, t) in total

27



Table 2.2: The performance of our estimators; the mean is given with the standard
deviation in parenthesis. The target optimal values are given in the first line of each
items.

Tn n hn (i) (0.33,1.41) (ii) (0.37, 1.41) (iii) (0.37, 1.41) diffusion (0.33, 1.41)
α̂n γ̂n α̂n γ̂n α̂n γ̂n α̂n γ̂n

50 1000 0.05 0.38 1.41 0.40 1.39 0.40 1.39 0.38 1.41
(0.12) (0.11) (0.16) (0.29) (0.15) (0.19) (0.13) (0.10)

100 5000 0.02 0.37 1.41 0.39 1.39 0.38 1.39 0.36 1.41
(0.09) (0.08) (0.11) (0.23) (0.11) (0.15) (0.09) (0.08)

100 10000 0.01 0.36 1.41 0.37 1.39 0.38 1.40 0.36 1.41
(0.08) (0.07) (0.09) (0.22) (0.10) (0.15) (0.08) (0.07)

variation norm as δ → ∞ for any t > 0. Indeed, Figure 2.1 shows that the density
functions of NIG(10, 0, 10, 0) and N(0, 1) are virtually the same.

• Concerning case (ii), the standard deviation of γ̂n is relatively worse than the other
cases. This is natural because the asymptotic variance of γ̂n includes the forth-
order-moment of Z, and bGamma(1,

√
2, 1,

√
2) has the highest kurtosis value as

can be seen from Figure 2.1.

• In case (iii), the performance of α̂n is the worst in this experiment. This may
cause from the fact that only NIG(25/3, 20/3, 9/5,−12/5) is not symmetric.

2.5 Appendix
Proof of Theorem 2.3.1 In light of our situation, it is sufficient to check the
conditions [A1”], [A4’] and [A6] in [69] for G1,n and G2,n, respectively. For the sake of
convenience, we simply write

Y1,n(γ) = G1,n(γ) − G1,n(γ⋆),
Y2,n(α) = G2,n(α) − G2,n(α⋆).

Without loss of generality, we can assume pγ = pα = 1. First we treat G1,n(·). The
conditions hold if we show

sup
n∈N

E
[
|
√
Tn∂γG1,n(γ⋆)|K

]
< ∞, (2.5.1)

sup
n∈N

E
[
|
√
Tn(∂2

γG1,n(γ⋆) − Γγ)|K
]
< ∞, (2.5.2)
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sup
n∈N

E

[
sup
γ∈Θγ

|∂3
γG1,n(γ)|K

]
< ∞, (2.5.3)

sup
n∈N

E

[
sup
γ∈Θγ

|
√
Tn (Y1,n(γ) − Y1(γ)) |K

]
< ∞, (2.5.4)

for any K > 0. The first two derivatives of G1,n are given by

∂γG1,n(γ) = − 2
Tn

n∑
j=1

{
∂γcj−1(γ)
cj−1(γ)

hn − ∂γcj−1(γ)
c3

j−1(γ)
(∆jX)2

}
,

∂2
γG1,n(γ) = − 2

Tn

n∑
j=1

{
∂2

γcj−1(γ)cj−1(γ) − (∂γcj−1)2

c2
j−1(γ)

hn

−
∂2

γcj−1(γ)cj−1(γ) − 3(∂γcj−1(γ))2

c4
j−1(γ)

(∆jX)2
}
.

We further decompose ∂γG1,n(γ⋆) as

∂γG1,n(γ⋆) = − 2
n

n∑
j=1

∂γcj−1

c3
j−1

(
c2

j−1 − C2
j−1

)
+ 2
Tn

n∑
j=1

∂γcj−1

c3
j−1

{
(∆jX)2 − hnC

2
j−1

}
.

Since the optimal parameter θ⋆ is in Θ, the interchange of the derivative and the integral
implies that the function ∂γc(x, γ⋆)(c2(x, γ⋆) −C2(x))/c3(x, γ⋆) is centered in the sense
that its integral with respect to π0 is 0. Thus [40, Lemma 4.3] and [44, Lemma 5.3]
lead to (2.5.1) and (2.5.4). We also have

∂2
γG1,n(γ)

= − 2
n

n∑
j=1

{
∂2

γcj−1(γ)cj−1(γ) − (∂γcj−1)2

c2
j−1(γ)

−
∂2

γcj−1(γ)cj−1(γ) − 3(∂γcj−1(γ))2

c4
j−1(γ)

C2
j−1

}

+ 2
Tn

n∑
j=1

∂2
γcj−1(γ)cj−1(γ) − 3(∂γcj−1(γ))2

c4
j−1(γ)

{
(∆jX)2 − hnC

2
j−1

}
.

Again applying [40, Lemma 4.3] and [44, Lemma 5.3], we obtain (2.5.2). Via simple
calculation, the third and fourth-order derivatives of G1,n can be represented as

∂i
γG1,n(γ) = 1

n

n∑
j=1

gi
j−1(γ) + 1

Tn

n∑
j=1

g̃i
j−1(γ)

{
(∆jX)2 − hnC

2
j−1

}
, for i ∈ {3, 4},

with the matrix-valued functions gi(·, ·) and g̃i(·, ·) defined on R× Θγ, and these are of
at polynomial growth with respect to x ∈ R uniformly in γ. Hence (2.5.3) follows from
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Sobolev’s inequality (cf. [1, Theorem 1.4.2]). Thus [69, Theorem 3-(c)] leads to the tail
probability estimates of γ̂n. We write

υj = 2∆jX(aj−1(α) − aj−1(α⋆)) + hn(a2
j−1(α⋆) − a2

j−1(α)).

From Taylor’s expansion, we get

Y2,n(α)

= 1
Tn

n∑
j=1

υj

c2
j−1(γ⋆)

+

∫ 1

0

1
(Tn)3/2

n∑
j=1

υj∂γc
−2
j−1(γ⋆ + u(γ̂n − γ⋆))du

(√Tn(γ̂n − γ⋆)
)

:= Ỹ2,n(α) + Ȳ2,n(α)
(√

Tn(γ̂n − γ⋆)
)
.

Sobolev’s inequality leads to

E

[∣∣∣∣√TnȲ2,n(α)
∣∣∣∣K
]

≤ E

 sup
γ∈Θγ

∣∣∣∣∣∣ 1
Tn

n∑
j=1

υj∂γc
−2
j−1(γ)

∣∣∣∣∣∣
K


≲ sup
γ∈Θγ

E

∣∣∣∣∣∣ 1
Tn

n∑
j=1

υj∂γc
−2
j−1(γ)

∣∣∣∣∣∣
K
+ E


∣∣∣∣∣∣ 1
Tn

n∑
j=1

υj∂
2
γc

−2
j−1(γ)

∣∣∣∣∣∣
K

 ,

for K > 1. The last two terms of the right-hand-side are finite from [44, Lemma
5.3], and the moment bounds of the three functions

√
Tn∂

i
αȲ2,n(α) (i ∈ {1, 2, 3}) can

analogously be obtained. Thus combined with the tail probability estimates of γ̂n and
Schwartz’s inequality, it suffices to show the conditions for

Ỹ2,n(α) := 1
Tn

n∑
j=1

υj

c2
j−1(γ⋆)

,

G̃2,n(α) := − 1
Tn

n∑
j=1

(∆jX − hnaj−1(α))2

hnc2
j−1(γ⋆)

,

instead of G2,n(α) and Y2,n(α), respectively. Since their estimates can be proved in a
similar way to the first half, we omit the details. □

To derive Proposition 2.3.5, we prepare the next lemma. For L1 metric d(·, ·) on R,
we define the coupling distance W (·, ·) between any two probability measures P and Q
by

W (P,Q) : = inf
{∫

R2
d(x, y)dµ(x, y) : µ ∈ M(P,Q)

}
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= inf
{∫

R2
|x− y|dµ(x, y) : µ ∈ M(P,Q)

}
,

where M(P,Q) denotes the set of all probability measures on R2 with marginals P and
Q. W (·, ·) is called the probabilistic Kantrovich-Rubinstein metric (or the first Wasser-
stein metric). The following assertion gives the exponential estimates of W (Pt(·, ·), π0):

Lemma 2.5.1. If Assumption 2.2.3 holds, then for any q > 1, there exists a positive
constant Cq such that for all x ∈ R,

W (Pt(x, ·), π0) ≤ Cq exp(−at)(1 + |x|q).

Proof. We introduce the following Lipschitz semi-norm for a suitable real-valued func-
tion f on R:

||f ||L := sup{|f(x) − f(y)|/|x− y| : x ̸= y in R}.

From Kantorovich-Rubinstein theorem (cf. [14, Theorem 11.8.2]) and Assumption 2.2.3,
it follows that for all x ∈ R,

W (Pt(x, ·), π0)

= sup
{∣∣∣∣∫

R
f(y){Pt(x, dy) − π0(dy)}

∣∣∣∣ : ||f ||L ≤ 1
}

= sup
{∣∣∣∣∫

R
(f(y) − f(0)){Pt(x, dy) − π0(dy)}

∣∣∣∣ : ||f ||L ≤ 1
}

≤ sup
{∣∣∣∣∫

R
h(y){Pt(x, dy) − π0(dy)}

∣∣∣∣ : |h(y)| ≤ 1 + |y|q
}

≤ Cq exp(−at)(1 + |x|q).

Proof of Proposition 2.3.5 It is enough to check the conditions of [64, Theorem
3.1.1 and Theorem 3.1.3] for pγ = pα = 1. As was mentioned in the proof of Theorem
2.3.1,

g1(x) := −∂γc(x, γ⋆)(c2(x, γ⋆) − C2(x))/c3(x, γ⋆),

and
g2(x) := −∂αa(x, α⋆)(A(x) − a(x, α⋆))/c2(x, γ⋆)

are centered. In the following, we give the proof concerning g1 and omit its index 1 for
simplicity. The regularity conditions on the coefficients imply that there exist positive
constants L and D such that

|g(x) − g(y)| ≤ D(2 + |x|L + |y|L)|x− y|.
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Making use of the trivial inequalities |x − y|l ≤ |x|l + |y|l and |x|l ≤ 1 ∨ |x|L+l for any
L > 0, l ∈ (0, 1) and x, y ∈ R, we have

sup
x,y∈R,x̸=y

|g(x) − g(y)|
(2 + |x|L+1−1/p + |y|L+1−1/p)|x− y|1/p

< ∞,

for any p > 1. Recall that we put hL(x) = 1 + |x|L in Assumption 2.2.3. The inequality
(2.2.2) gives ∫

R
hL(y)Pt(x, dy)

≤ ||Pt(x, ·) − π0(·)||hL
+
∫
R
(1 + |y|L)π0(dy)

≤
(
CL +

∫
R
(1 + |y|L)π0(dy)

)
hL(x).

We write L′ = L+ 1 − 1/p for abbreviation. Building on this estimate and the previous
lemma, the conditions of [64, Theorem 3.1.1 and Theorem 3.1.3] are satisfied with

p = p, q = p

p− 1
, d(x, y) = |x− y|, r(t) = exp(−at), ϕ(x) = 1 + |x|L′

,

ψ(x) = 2q−1
(
CqL′ +

∫
R
hqL′(y)π0(dy)

)
hqL′(x),

χ(x) = 2q2−1
(
CqL′ +

∫
R
hqL′(y)π0(dy)

)q (
Cq2L′ +

∫
R
hq2L′(y)π0(dy)

)
hq2L′(x),

and here these symbols correspond to the ones used in [64]. As for g2, the conditions
can be checked as well. Hence the desired result follows. □

To derive the asymptotic normality of θ̂n, the following CLT-type theorem for
stochastic integrals with respect to Poisson random measures will come into the picture:

Lemma 2.5.2. Let N(ds, dz) be a Poisson random measure associated with one-
dimensional Lévy process defined on a stochastic basis (Ω,F , (Ft)t>0, P ) whose Lévy
measure is written as ν0. Assume that a continuous vector-valued function f on
R+ × R × R and a Ft-predictable process Ht satisfy:

1. For all T > 0 and k = 2, 4,

E

[∫ T

0

∫
R

|f(T,Hs, z)|kν0(dz)ds
]
< ∞,

and their exists a positive definite matrix Σ such that

E

[∫ T

0

∫
R
f(T,Hs, z)⊗2ν0(dz)ds

]
→ Σ,

as T → ∞;
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2. there exists δ > 0 such that

E

[∫ T

0

∫
R

|f(T,Hs, z)|2+δν0(dz)ds
]

→ 0,

as T → ∞.

Then, for the associated compensated Poisson random measure Ñ(ds, dz), we have∫ T

0

∫
R
f(T,Hs, z)Ñ(ds, dz) L−→ N(0,Σ),

as T → ∞.

Proof. By Cramer-Wold device, it is sufficient to show only one-dimensional case. This
proof is almost the same as [13, Theorem 14. 5. I]. For notational brevity, we set

X1(t) :=
∫ t

0

∫
R
f(T,Hs, z)Ñ(ds, dz),

X2(t) :=
∫ t

0

∫
R

|f(T,Hs, z)|2ν0(dz)ds,

Introduce a stopping time S := inf{t > 0 : X2(t) ≥ Σ}. Note that X2(S) = Σ because
X2(t) is continuous. Define a random function ζ(u, t) and Ψ(u, t) by

ζ(u, t) = exp
{
iuX1(t ∧ S) + u2

2
X2(t ∧ S)

}
,

Ψ(u, t) = exp {iuf(T,Ht, z)} − 1 − iuf(T,Ht, z) + u2

2
|f(T,Ht, z)|2.

Applying Itô’s formula, we obtain

ζ(u, T )

= 1 + iu
∫ T ∧S

0
ζ(u, s−)dX1(s) + u2

2

∫ T ∧S

0
ζ(u, s−)dX2(s)

+
∑

0<s≤T ∧S

(ζ(u, s−) exp {iu∆X1(s)} − ζ(u, s−) − iuζ(u, s−)∆X1(s))

= 1 +
∫ T ∧S

0

∫
R
ζ(u, s−) (exp {iuf(T,Hs, z)} − 1) Ñ(ds, dz)

+
∫ T ∧S

0

∫
R
ζ(u, s)Ψ(u, s)ν0(dz)ds.

For later use, we here present the following elementary inequality (cf. [15]): for all
u ∈ R and n ∈ N ∪ {0},∣∣∣∣∣∣exp(iu) −

n∑
j=0

(iu)j

j!

∣∣∣∣∣∣ ≤ |u|n+1

(n+ 1)!
∧ 2|u|n

n!
. (2.5.5)
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By the definition of S, we have

|ζ(u, T )| ≤ exp
{
u2Σ

2

}
.

Since ∫ T

0

∫
R
ζ(u, s−) (exp {iuf(T,Hs, z)} − 1) Ñ(ds, dz)

is an L2-martingale (cf. [3, Section 4]) from these estimates, the optional sampling
theorem implies that

E

[∫ T ∧S

0

∫
R
ζ(u, s−) (exp {iuf(T,Hs, z)} − 1) Ñ(ds, dz)

]
= 0.

Next we show that

E

[∫ T ∧S

0

∫
R
ζ(u, s)Ψ(u, s)ν0(dz)ds

]
→ 0.

Again using the above estimates, we have∣∣∣∣∣E
[∫ T ∧S

0

∫
R
ζ(u, s)Ψ(u, s)ν0(dz)ds

]∣∣∣∣∣
≤ E

[∫ T ∧S

0

∫
R

exp
{
u2

2
Σ
}(

|uf(T,Hs, z)|3

6
∧ |uf(T,Hs, z)|2

)
ν0(dz)ds

]

≤ Cδ exp
{
u2

2
Σ
}
E

[∫ T

0

∫
R

|uf(T,Hs, z)|2+δν0(dz)ds
]

→ 0,

where Cδ is a positive constant such that

|x|3

6
∧ |x|2 ≤ Cδ|x|2+δ

for all x ∈ R. At last we observe that

X1(T ∧ S) −X1(T ) P→ 0.

In view of Lenglart’s inequality and the isometry property of stochastic integral with
respect to Poisson random measure (cf. [3, Section 4]), it suffices to show

E

[∫ T

T ∧S

∫
R

|f(T,Hs, z)|2ν0(dz)ds
]

→ 0.

However the latter convergence is clear from Assumption (1). Hence the proof is com-
plete.
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Next we show the following lemma which gives the fundamental small time moment
estimate of X:
Lemma 2.5.3. Under Assumptions 2.2.1-2.2.3, it follows that

Ej−1[|Xs −Xj−1|p] ≲ hn(1 + |Xj−1|p), (2.5.6)

for any positive constant p ∈ (1 ∨ β, 2) and s ∈ (tj−1, tj].
Proof. Recall that

∫
|z|pν0(dz) < ∞ from Assumption 2.2.1. By Lipschitz continuity of

the coefficients and [17, Theorem 1.1], it follows that

Ej−1[|Xs −Xj−1|p]

≲ Ej−1

[∣∣∣∣∣
∫ s

tj−1
(Au − Aj−1)du+

∫ s

tj−1
(Cu− − Cj−1)dZu

∣∣∣∣∣
p]

+ hp
n|Aj−1|p + hn|Cj−1|p

∫
R

|z|pν0(dz) + op(hn)

≲ Ej−1

[∣∣∣∣∣
∫ tj

tj−1
(Cs− − Cj−1)dZs

∣∣∣∣∣
p]

+ hp−1
n

∫ tj

tj−1
Ej−1[|Xs −Xj−1|p]ds

+ hn (1 + |Xj−1|p + op(1))

Applying Burkholder-Davis-Gundy’s inequality (cf. [50, Theorem 48]), we have

Ej−1

[∣∣∣∣∣
∫ tj

tj−1
(Cs− − Cj−1)dZs

∣∣∣∣∣
p]

≲ Ej−1

(∫ tj

tj−1

∫
R
(Cs− − Cj−1)2z2N(ds, dz)

)p/2


= Ej−1


 ∑

tj−1≤s<tj

(Cs− − Cj−1)2(Zs − Zs−)2

p/2


≤ Ej−1

 ∑
tj−1≤s<tj

|Cs− − Cj−1|p|Zs − Zs−|p


=
∫ tj

tj−1
Ej−1[|Xs −Xj−1|p]ds

∫
R

|z|pν0(dz),

for the Poisson random measure N(ds, dz) associated with Z. Hence Gronwall’s in-
equality gives (2.5.6).

Proof of Theorem 2.3.7 According to Cramer-Wold device, it is enough to show
for pγ = pα = 1 . From a similar estimates used in Theorem 2.3.1, we have√

Tn∂γG1,n(γ⋆) (2.5.7)
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= − 2√
Tn

n∑
j=1

{
∂γcj−1

c3
j−1

(
hnc

2
j−1 − (∆jX)2

)}

= − 2√
Tn

n∑
j=1

{
∂γcj−1

c3
j−1

(hnc
2
j−1 − C2

j−1(∆jZ)2)
}

+ op(1)

= − 2√
Tn

n∑
j=1

{
∂γcj−1

c3
j−1

C2
j−1(hn − (∆jZ)2)

}
− 2√

Tn

∫ Tn

0

∂γcs

c3
s

(c2
s − C2

s )ds

− 2√
Tn

n∑
j=1

∫ tj

tj−1

{
∂γcj−1

c3
j−1

(c2
j−1 − C2

j−1) − ∂γcs

c3
s

(c2
s − C2

s )
}
ds+ op(1)

=: F1,n + F2,n + F3,n + op(1). (2.5.8)
We evaluate each term separately below. Rewriting F1,n in a stochastic integral form
via Itô’s formula, we have

F1,n = − 2√
Tn

n∑
j=1

∫ tj

tj−1

∫
R

∂γcs−

c3
s−

C2
s−z

2Ñ(ds, dz)

− 2√
Tn

n∑
j=1

∫ tj

tj−1

∫
R

(
∂γcj−1

c3
j−1

C2
j−1 − ∂γcs−

c3
s−

C2
s−

)
z2Ñ(ds, dz)

− 4√
Tn

n∑
j=1

∂γcj−1

c3
j−1

C2
j−1

∫ tj

tj−1
(Zs− − Zj−1)dZs.

for the compensated Poisson random measure Ñ(ds, dz) associated with Z. Using
Burkholder’s inequality and the isometry property, it follows that for a positive constant
K,

E


 1√

Tn

n∑
j=1

∫ tj

tj−1

∫
R

(
∂γcj−1

c3
j−1

C2
j−1 − ∂γcs−

c3
s−

C2
s−

)
z2Ñ(ds, dz)

2


≲ 1
Tn

n∑
j=1

E

(∫ tj

tj−1

∫
R

(
∂γcj−1

c3
j−1

C2
j−1 − ∂γcs−

c3
s−

C2
s−

)
z2Ñ(ds, dz)

)2


≲ 1
Tn

n∑
j=1

∫ tj

tj−1
E

[(∫ 1

0
∂x

(
∂γc

c3 C
2
)

(Xj−1 + u(Xs −Xj−1))du
)

(Xs −Xj−1)
]
ds

≲ 1
Tn

n∑
j=1

∫ tj

tj−1

√
sup
t∈R+

E[1 + |Xt|K ]
√
E[(Xs −Xj−1)2]ds

≲
√
hn,

and that

E

∣∣∣∣∣
∫ tj

tj−1
(Zs− − Zj−1)dZs

∣∣∣∣∣
2
 ≲

∫ tj

tj−1
E[|Zs−tj−1 |2]ds ≤ h2

n.
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Hence
F1,n = − 2√

Tn

n∑
j=1

∫ tj

tj−1

∫
R

∂γcs−

c3
s−

C2
s−z

2Ñ(ds, dz) + op(1).

Let us turn to observe F2,n. Let fi,t := fi(Xt) for i = 1, 2, and especially, let fi,j :=
fi(Xtj

). From Proposition 2.3.5, we obtain

F2,n = − 2√
Tn

n∑
j=1

(
f1,j − f1,j−1 +

∫ tj

tj−1

∂γcs

c3
s

(c2
s − C2

s )ds
)

− 2√
Tn

(f1,n − f1,0)

= − 2√
Tn

n∑
j=1

(
f1,j − f1,j−1 +

∫ tj

tj−1

∂γcs

c3
s

(c2
s − C2

s )ds
)

+ op(1).

For abbreviation, we simply write

ξ1,j(t) = f1,t − f1,j−1 +
∫ t

tj−1

∂γcs(c2
s − C2

s )
c3

s

ds.

According to Proposition 2.3.5, the weighted Hölder continuity of f , and Lemma 2.5.3,
{ξ1,j(t),Ftj−1+t : t ∈ [0, hn]} turns out to be an L2-martingale. Thus the martingale
representation theorem [24, Theorem III. 4. 34] implies that there exists a predictable
process s 7→ ξ̃1,j(s, z) such that

ξ1,j(t) =
∫ t

tj−1

∫
R
ξ̃1,j(s, z)Ñ(ds, dz).

Hence the continuous martingale component of ξ1,j is 0. By the property of f1, we
can define the stochastic integral

∫ t
tj−1

∫
R (f1(Xs− + Cs−z) − f1(Xs−)) Ñ(ds, dz) on t ∈

[tj−1, tj] and this process is also an L2-martingale with respect to {Ftj−1+t : t ∈ [0, hn]}.
Utilizing [24, Theorem I. 4. 52] and [50, Corollary II. 6. 3], we have

E


∣∣∣∣∣∣ 1√
Tn

n∑
j=1

{
ξ1,j(tj) −

∫ tj

tj−1

∫
R

(f1(Xs− + Cs−z) − f1(Xs−)) Ñ(ds, dz)
}∣∣∣∣∣∣

2


≲ 1
Tn

n∑
j=1

E

∣∣∣∣∣ξ1,j(tj) −
∫ tj

tj−1

∫
R

(f1(Xs− + Cs−z) − f1(Xs−)) Ñ(ds, dz)
∣∣∣∣∣
2


= 1
Tn

n∑
j=1

E

[ξ1,j(·) −
∫ ·

tj−1

∫
R

(f1(Xs− + Cs−z) − f1(Xs−)) Ñ(ds, dz)
]

tj


= 0.

Here [Y·]t denotes the quadratic variation for any semimartingale Y at time t, and we
used Burkholder’s inequality for a martingale difference between the first line and the
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second line. By similar estimates above, we have F3,n = op(1). Having these arguments
in hand, it turns out that√

Tn∂γG1,n(γ⋆)

= − 2√
Tn

∫ Tn

0

∫
R

(
∂γcs−

c3
s−

C2
s−z

2 + f1(Xs− + Cs−z) − f1(Xs−)
)
Ñ(ds, dz) + op(1).

We can deduce from Assumption 2.2.2 and Proposition 2.3.5 that there exist positive
constants K,K ′, K ′′ and ϵ0 < 1 ∧ (2 − β) such that for all z ∈ R

sup
t

1
t

∫ t

0
E

(∂γcs

c3
s

C2
s z

2 + f1(Xs − Csz) − f1(Xs)
)2
 ds


≲ sup

t

{1
t

∫ t

0

(
|z|2−ϵ0 ∨ z4

)(
1 + sup

t
E
[
|Xt|K

]
+
(

1 + sup
t
E
[
|Xt|K

′]) |z|K′′
)
ds
}

≲ (|z|2−ϵ0 ∨ z4)
(
1 + |z|K′′)

,

and the last term is ν0-integrable. Then, there exist positive constants K and K ′

(possibly take different values from the previous ones) such that for any z ∈ R,∣∣∣∣∣∣1t
∫ t

0
E

(∂γcs

c3
s

C2
s z

2 + f1(Xs + Csz) − f1(Xs)
)2
 ds

−
∫
R

(
∂γc(y, γ⋆)
c3(y, γ⋆)

C2(y)z2 + f1(y + C(y)z) − f1(y)
)2

π0(dy)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1t
∫ t

0

∫
R

∫
R

(
∂γc(y, γ⋆)
c3(y, γ⋆)

C2(y)z2 + f1(y + C(y)z) − f1(y)
)2

(Ps(x, dy) − π0(dy))η(dx)ds

∣∣∣∣∣∣
≲ (|z|2−ϵ0 ∨ z4)

(
1 + |z|K′) 1

t

∫ t

0

∫
R

||Ps(x, ·) − π0(·)||hK
η(dx)ds

→ 0.

Thus the dominated convergence theorem and the isometry property give

lim
n→∞

E

( 1√
Tn

∫ Tn

0

∫
R

(
∂γcs−

c3
s−

C2
s−z

2 + f1(Xs− + Cs−z) − f1(Xs−)
)
Ñ(ds, dz)

)2


= lim
n→∞

1
Tn

∫ Tn

0

∫
R
E

(∂γcs

c3
s

C2
s z

2 + f1(Xs + Csz) − f1(Xs)
)2
 ν0(dz)ds

= 1
4

Σγ.
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It follows from Assumption 2.2.3 and Proposition 2.3.5 that

E

∫ Tn

0

∫
R

∣∣∣∣∣ 1√
Tn

(
∂γcs

c3
s

C2
s z

2 + f1(Xs + Csz) − f1(Xs)
)∣∣∣∣∣

2+K

ν0(dz)ds

 → 0.

From Taylor expansion around γ⋆, ∂αG2,n(α) is decomposed as:√
Tn∂αG2,n(α⋆)

= 2√
Tn

n∑
j=1

∂αaj−1

c2
j−1

(∆jX − hnaj−1) + 2
Tn

n∑
j=1

∂αaj−1(∆jX − hnaj−1)∂γc
−2
j−1

(√
Tn(γ̂n − γ⋆)

)

+

∫ 1

0

2
(Tn)3/2

n∑
j=1

∂αaj−1(∆jX − hnaj−1)∂2
γc

−2
j−1(γ⋆ + u(γ̂n − γ⋆))du

(√Tn(γ̂n − γ⋆)
)2

Sobolev’s inequality and the tail probability estimates of γ̂n imply that the third term
of the right-hand-side is op(1). Hence a similar manner to the first half leads to

√
Tn∂αG2,n(α⋆) − 2

Tn

n∑
j=1

∂αaj−1(∆jX − hnaj−1)∂γc
−2
j−1

(√
Tn(γ̂n − γ⋆)

)

= 2√
Tn

n∑
j=1

∂αaj−1

c2
j−1

(∆jX − hnaj−1) + op(1)

= 2√
Tn

n∑
j=1

∂αaj−1

c2
j−1

Cj−1∆jZ + 2√
Tn

∫ Tn

0

∂αas

c2
s

(As − as)ds+ op(1)

= 2√
Tn

n∑
j=1

(
f2,j − f2,j−1 +

∫ tj

tj−1

∂αas

c2
s

(As − as)ds
)

+ 2√
Tn

n∑
j=1

∫ tj

tj−1

∫
R

∂αas

c2
s−

Cs−Ñ(ds, dz) + op(1)

= 2√
Tn

∫ Tn

0

∫
R

(
∂αas

c2
s−

Cs−z + f2(Xs− + Cs−z) − f2(Xs−)
)
Ñ(ds, dz) + op(1),

and we have

lim
n→∞

E

( 1√
Tn

∫ Tn

0

∫
R

(
∂αas

c2
s−

Cs−z + f2(Xs− + Cs−z) − f2(Xs−)
)
Ñ(ds, dz)

)2
 = 1

4
Σα,

lim
n→∞

E

∫ Tn

0

∫
R

∣∣∣∣∣ 1√
Tn

(
∂αas

c2
s

Csz + f2(Xs + Csz) − f2(Xs)
)∣∣∣∣∣

2+K

ν0(dz)ds

 = 0.
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From the isometry property and the trivial identity xy = {(x+ y)2 − (x− y)2} /4 for
any x, y ∈ R, it follows that

lim
n→∞

E

[(
1√
Tn

∫ Tn

0

∫
R

(
∂γcs−

c3
s−

C2
s−z

2 + f1(Xs− + Cs−z) − f1(Xs−)
)
Ñ(ds, dz)

)

×
(

1√
Tn

∫ Tn

0

∫
R

(
∂αas

c2
s−

Cs−z + f2(Xs− + Cs−z) − f2(Xs−)
)
Ñ(ds, dz)

)]
= −1

4
Σαγ.

Hence the moment estimates in the proof of Theorem 2.3.1, Lemma 2.5.2 and Taylor’s
formula yield that

√
Tn

(
−∂2

γG1,n(γ⋆) 0
− 2

Tn

∑n
j=1 ∂αaj−1(∆jX − hnaj−1)∂γc

−2
j−1 −∂2

αG2,n(α⋆)

)(
γ̂n − γ⋆

α̂n − α⋆

)

=
√
Tn

(
∂γG1,n(γ⋆)
∂αG2,n(α⋆)

)
+ op(1) L−→ N(0,Σ).

To achieve the desired result, it suffices to show

∂2
γG1,n(γ⋆) P→ Γγ, ∂

2
αG2,n(α⋆) P→ Γα,

and
2
Tn

n∑
j=1

∂αaj−1(∆jX − hnaj−1)∂γc
−2
j−1

P→ Γαγ.

However the first two convergence are straightforward from the proof of Theorem 2.3.1,
and the last convergence follows from the ergodic theorem. Thus the proof is complete.
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Chapter 3

Estimation method for ergodic
jump diffusion models based on
iterative Jarque-Bera type test

3.1 Introduction
Suppose that we are given discrete-time but high-frequency observation (Xtn

j
)n

j=0 from
a solution to the one-dimensional ergodic stochastic differential equation (SDE) with
jumps

dXt = a(Xt, α)dwt + b(Xt, β)dt+ c(Xt−)dJt, (3.1.1)

defined on a complete filtered probability space (Ω,F , (Ft)t≥0, P ). Each ingredient is
supposed to be as follows:

• The coefficients a : R × Θα 7→ R and b : R × Θβ 7→ R are Lipschitz continuous
and known except for the p-dimensional parameter

θ := (α, β) ∈ Θα × Θβ = Θ,

where Θα and Θβ are bounded convex domains and subset of Rpα and Rpβ , re-
spectively.

• w is a standard Wiener process and J a compound Poisson process, that is, for
a Poisson process N whose intensity parameter is λ ∈ [0,∞) and i.i.d random
variables {ξi}i∈N, it is expressed as

Jt =
Nt∑
i=1

ξi.
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• The sampling times fulfill that for a positive sequence (hn), tnj can be written as

tj = tnj = jhn, (3.1.2)

and that the terminal sampling time Tn := tnn = nhn → ∞.

• (w, J) is Ft-adapted, and the initial variable X0 is F0-adapted and independent
of (w, J).

Throughout this chapter, we assume that there exists a true value θ0 := (α0, β0) ∈ Θ.
On the one hand, for diffusion models, many estimator of θ have been proposed,

such as Gaussian quasi-likelihood estimator [27], adaptive estimator [61], multi-step
estimator [26], to mention few. On the other hand, in the presence of the jump compo-
nent, elimination of the effect of J is apparently crucial for an accurate estimation of θ.
A well-known approach for it is the threshold based method independently proposed in
[34], [57], and [48]. In the method, we regard that the increment

∆jX := Xtj
−Xtj−1 ,

contains the jump component if |∆jX| > rn for a fixed jump-detection threshold rn > 0,
and estimate θ after removing such increments. For a suitably chosen rn > 0, it is shown
that the estimator of θ has asymptotic normality at the same rate as diffusion models,
while finite-sample performance of the threshold method strongly depends on the value
of rn. A data-adaptive and quantitative choice of the threshold in the jump-detection
filter is a subtle and sensitive problem, and still remains as an annoying problem in
practice; see [55], [56], as well as the references therein. This practical issue can also be
seen in other jump detection methods such as [2].

The primary objective of this chapter is to formulate an intuitively easy-to-
understand strategy, which can simultaneously estimate θ and detect jumps without
any precise calibration of a jump-detection threshold. For this purpose, we utilize the
approximate self-normalized residuals [39], which makes the classical Jarque-Bera test
[25] adapted to our model. More specifically, the hypothesis test whose significance
level is α ∈ (0, 1) is constructed by the following manner: let the null hypothesis be of
“no jump component" :

H0 : λ = 0,

against the alternative hypothesis of “non-trivial jump component":

H1 : λ > 0.

Then, if the Jarque-Bera type statistic introduced later is larger than a given percentile
of the chi-square distribution with 2 degrees of freedom, we reject the null hypothesis
H0; and otherwise, we accept H0. For such a test, we can intuitively regard that
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the largest increment contains at least one jump when the null hypothesis is rejected.
Following this inspection, our proposed method will goes as follows: we iteratively
conduct the test with removing the largest increments in the retained samples until
rejection of H0 is stopped; after that, we construct the modified estimator of θ by the
remaining samples. Our method enables us not only just to make a “pre-cleaning” of
diffusion-like data sequence by removing large jumps which collapse the approximate
Gaussianity of the self-normalized residuals, but also to approximately quantify jumps
relative to continuous fluctuations in a natural way.

This chapter is organized as follows: in Section 3.2, we give a brief summary of the
approximate self-normalized residuals, and the Jarque-Bera type test for jump diffusion
models. Section 3.3 provides our strategy and some remarks for its practical use. In
Section 3.4, we will focus on a least-squares type estimator and its one-step version for
the following model:

dXt =
( pα∑

l=1
α(l)a(l)(Xt)

)1/2

dwt +
pβ∑

k=1
β(k)b(k)(Xt)dt+ c(Xt−)dJt, (3.1.3)

with suitable functions {a(l)(x)}pα

l=1 and {b(k)(x)}pβ

k=1. It will be seen that in the calcula-
tion of the estimator we can sidestep optimization, and thus it is numerically tractable,
retaining high representational power of the nonlinearity in the state variable. More-
over, the estimator has not only consistency but also an asymptotic equivalence to an
good estimator based only on the unobserved continuous part of X. We show some nu-
merical experiments result in Section 3.5. Finally, Appendix 3.6 presents the technical
proofs of the result given in Section 3.4.

3.2 Jarque-Bera normality test for jump diffusion
models

To see whether a working model fits data well or not, and/or whether data in hand have
outliers or not, diagnosis based on residual analysis is often done. For jump diffusion
models, [39] formulated a Jarque-Bera normality test based on self-normalized residuals.
In this section, we briefly review the construction of the self-normalized residual, and
the Jarque-Bera statistics with its asymptotic behavior.

For each j ∈ {1, . . . , n}, introduce the function

ϵj(α) = ϵn,j(α) := ∆jX√
a2

j−1(α)hn

. (3.2.1)
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Then, following [39] we introduce the self-normalized residual and the Jarque-Bera type
statistic by

N̂j = Ŝ−1/2
n (ϵj(α̂n) − ¯̂ϵn),

JBn = 1
6n

 n∑
j=1

(N̂j)3 − 3
√
hn

n∑
j=1

∂xaj−1(α̂n)

2

+ 1
24n

 n∑
j=1

((N̂j)4 − 3)

2

,

where
¯̂ϵn := 1

n

n∑
j=1

ϵj(α̂n), Ŝn := 1
n

n∑
j=1

(ϵj(α̂n) − ¯̂ϵn)2.

The following theorem gives the asymptotic behavior of JBn, which ensures theoretical
validity of the Jarque-Bera type test based on JBn.

Theorem 3.2.1. ([39, Theorems 3.1 and 4.1])

1. Under H0 : λ = 0 and suitable regularity conditions, for any estimator α̂n of α
satisfying √

n(α̂n − α0) = Op(1), (3.2.2)

we have
JBn

L−→ χ2(2).

2. Under H1 : λ > 0 and suitable regularity conditions, we have

JBn
P→ ∞.

Remark 3.2.2. The residual defined by (3.2.1) is of the Euler type with ignoring the
drift fluctuation; under the sampling conditions in Assumption 3.4.1 given later, we can
ignore the presence of the drift term in construction of residuals. Indeed, as in [40],
instead of (3.2.1) we could consider

ϵj(θ) = ϵn,j(θ) := ∆jX − hnbj−1(β)√
a2

j−1(α)hn

.

This case may require more computation time, while we would then have a more or less
stabilized performance under H0 compared with the case of (3.2.1).

In the rest of this section, suppose that the null hypothesis H0 is true; namely the
underlying model is a diffusion process. Among choices of α̂n, the Gaussian quasi-
maximum likelihood estimator (GQMLE) is one of the most important candidates be-
cause it has the asymptotic efficiency. The GQMLE is defined as any maximizer of the
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Gaussian quasi-likelihood (GQL)

Hn(θ) :=
n∑

j=1
log

 1√
2πa2

j−1(α)hn

ϕ

∆jX − bj−1(β)hn√
a2

j−1(α)hn

 ,
where ϕ denotes the standard normal density. This quasi-likelihood is constructed
based on the local-Gauss approximation of the transition probability L(Xtj

|Xtj−1) by
N(bj−1(β)hn, a

2
j−1(α)hn). It is well known that the asymptotic normality holds true

under suitable regularity conditions [27]: For the GQMLE θ̃n = (α̃n, β̃n), we have(√
n(α̃n − α0),

√
Tn(β̃n − β0)

)
L−→ N

(
0, diag(I−1

1 (α0), I−1
2 (β0))

)
,

where

I1(α0) = 1
2

∫ (
∂αa

2

a2 (x, α0)
)⊗2

π0(dx),

I2(β0) =
∫ (

∂βb

a
(x, β0)

)⊗2

π0(dx).

Here π0 denotes the invariant measure ofX. We note that the GQMLE is asymptotically
efficient in Hájek-Le Cam sense (cf. [20]).

If the coefficients a and b are highly nonlinear and/or the number of the parameters
is large, then the calculation of the GQMLE can be quite time-consuming. To deal
with such a problem, it is effective to separate optimizations of α and β by utilizing the
difference of the small-time stochastic orders of the dt- and dwt-terms. To be specific
we introduce the following stepwise version of the GQMLE θ̌n := (α̌n, β̌n):

α̌n ∈ argmax
α∈Θ̄α

n∑
j=1

log

 1√
2πa2

j−1(α)hn

ϕ

 ∆jX√
a2

j−1(α)hn

 ,
β̌n ∈ argmax

β∈Θ̄β

n∑
j=1

log

 1√
2πa2

j−1(α̌n)hn

ϕ

∆jX − bj−1(β)hn√
a2

j−1(α̌n)hn

 .
Under suitable regularity condition, it is shown that the stepwise GQMLE has the
same asymptotic distribution as the original GQMLE θ̃n (cf. [61]). Hence its asymptotic
efficiency, and the same result of Theorem 3.2.1 holds for it as well. Although we have to
conduct two optimization for the stepwise estimation scheme, it reduces the numbers of
the parameters to be simultaneously optimized, thus relieving the computational time.
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3.3 Proposed strategy
Let q ∈ (0, 1) be a small number, which will later serve as the significance level. Based
on the Jarque-Bera type test introduced in the previous section, we propose an iterative
jump detection procedure. We implicitly suppose that we are given an estimator θ̂n of
θ defined to be any element θ̂n ∈ argmaxMn for some contrast function Mn of the from

Mn(θ) :=
n∑

j=1
mhn

(
Xtj−1 ,∆jX; θ

)
.

Then, our procedure is as follows. We denote by χ2
q(2) the q-percent critical value of

the chi-squared distribution with 2 degrees of freedom.

Step 0. Set k = kn = 0, and let Ĵ 0
n := ∅.

Step 1. Calculate the modified estimator θ̂k
n defined by

θ̂k
n ∈ argmax

θ∈Θ

∑
j≤n; /∈Ĵ k

n

mhn

(
Xtj−1 ,∆jX; θ

)
,

then let

¯̂ϵk
n := 1

n− k

∑
j /∈Ĵ k

n

ϵj(α̂k
n), Ŝk

n := 1
n− k

∑
j /∈Ĵ k

n

(ϵj(α̂k
n) − ¯̂ϵk

n)2,

and (re-)construct the following modified self-normalized residuals (N̂k
j )n

j=1 and
Jarque-Bera type statistics JBk

n:

N̂k
j := (Ŝk

n)−1/2(ϵj(α̂k
n) − ¯̂ϵk

n),

JBk
n := 1

6(n− k)

 ∑
j /∈Ĵ k

n

(N̂k
j )3 − 3

√
hn

∑
j /∈Ĵn

∂xbj−1(θ̂k
n)


2

(3.3.1)

+ 1
24(n− k)

∑
j /∈Ĵ k

n

((N̂k
j )4 − 3)


2

.

Step 2. If JBk
n > χ2

q(2), then pick out the interval number

j(k + 1) := argmax
j∈{1,...,n}\Ĵ k

n

|∆jX|
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(We here implicitly assume that there is no tie among the values |∆1X|, . . . , |∆nX|),
add it to the set Ĵ k

n :
Ĵ k+1

n := Ĵ k
n ∪ {j(k + 1)},

and then return to Step 1. If JBk
n ≤ χ2

q(2), then set an estimated the number of
jumps to be

k⋆ = k⋆(ω) := min
{
k ≤ n; JBk

n ≤ χ2
q(2)

}
and go to Step 3.

Step 3. If k⋆ = 0, regard that there is no jump; otherwise, we regard that each of
∆j(1)X, . . . ,∆j(k⋆)X contains one jump. Finally, set θ̂k⋆

n to be an estimator of
θ.

The above-described method enables us to divide the set of the whole increments
(∆jX)n

j=1 into the following two categories:

• “One-jump” group (∆jX)j∈Ĵ k⋆
n

= {∆j(1)X, . . . ,∆j(k⋆)X}, and

• “No-jump” group (∆jX)j /∈Ĵ k⋆
n

= (∆jX)n
j=1 \ {∆j(1)X, . . . ,∆j(k⋆)X}.

Automatically entailed just after jump removals is stopped is the estimator θ̂k⋆

n of the
drift and diffusion part of X, which is the maximizer of the modified Gaussian quasi-
likelihood defined by

θ 7→
∑

j /∈Ĵ k⋆
n

log

 1√
2πa2

j−1(α)hn

ϕ

∆jX − bj−1(β)hn√
a2

j−1(α)hn

 .

Remark 3.3.1. In the above-described procedure we simply remove the largest incre-
ments at each step, with keeping the positions of the remaining data. Note that in the
construction of the modified estimator θ̂k

n it is incorrect to use the “shifted" samples
(Ytj

)j /∈Ĵ kn
n

defined by
Ytj

= Xtj
−

∑
i∈Ĵ kn

n ∩{1,...,j}

∆iX.

This is because one-step transition density of the original process X is spatially different
from Y , so that the estimation result would not suitably reflect the information of data.

Remark 3.3.2. In practice, the size of “last-removed” increment would be used as the
threshold for detecting jumps for future observations: with the value rn(k) := |∆j(k)X|
in hand, for future observations (Ytn

j
)n

j=0 we regard that a jump occurred over [tj−1, tj]
if

|∆jY | > rn(k).
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Remark 3.3.3. When the jump coefficient is parameterized as c(x, γ) and a model
of the common jump distribution, say FJ , of the compound Poisson process J is
given, it might be possible to consider estimation of γ and FJ based on the sequence
{∆j(k)X/cj(k)−1(γ)}k, with supposing that they are i.i.d. random variables with common
jump distribution FJ . This is beyond the scope of this chapter, and we leave it as a
future study.

Remark 3.3.4. At k-th iteration, it can be regarded that we conduct the Jarque-Bera
type test for the trimmed data (Xtj−1 ,∆jX)j /∈Ĵ k

n
. Hence the null hypothesis Hk

0 and
alternative hypothesis Hk

1 of the test are formally written as follows:

Hk
0 : ♯ {j ∈ {1, . . . , n} | ∆jN ≥ 1} ≤ k,

Hk
1 : ♯ {j ∈ {1, . . . , n} | ∆jN ≥ 1} > k,

where ♯A denotes the cardinality of a set A. From this formulation, we have the inclu-
sion relation

H0 ⊂ H1
0 ⊂ H2

0 ⊂ · · · ⊂ Hk
0 ⊂ · · ·.

This inclusion relation implicitly suggests that we can “skip" first some redundant stages
when seemingly several jumps do exist. Such a situation may often occur because the
expected number of jumps of the compound Poisson process J up to time t is λt, namely,
number of the jumps becomes larger and larger as the terminal sampling time Tn in-
creases.

3.4 Asymptotic results
As was mentioned in the previous section, we have a choice of an estimator of θ. As
a matter of course, for each estimator θ̂n, we need to study asymptotic behavior of its
modified version θ̂k∗

n . In this section, we will derive asymptotic results for a numerically
tractable least-squares type estimator and the corresponding one-step improved version,
when the underlying SDE (3.1.1) is of the from:

dXt =
( pα∑

l=1
α(l)a(l)(Xt)

)1/2

dwt +
pβ∑

k=1
β(k)b(k)(Xt)dt+ c(Xt−)dJt,

where the real-valued functions a(1), . . . , a(pα) and b(1), . . . , b(pβ) are known. For simplic-
ity, we write

A(x) = (a(1)(x), . . . , a(pα)(x))⊤, B(x) = (b(1)(x), . . . , b(pβ)(x))⊤.

Then, we construct an estimator of θ in the following manner:
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• Diffusion parameter

1. Least square estimator (LSE):

α̃n := argmin
α

n∑
j=1

{
(∆jX)2 − hnA⊤

j−1α
}2
.

2. Scoring:

α̂n := α̃n −

 n∑
j=1

Aj−1A⊤
j−1

(A⊤
j−1α̃n)2

−1
n∑

j=1

(
1

A⊤
j−1α̃n

− (∆jX)2

hn(A⊤
j−1α̃n)2

)
Aj−1. (3.4.1)

• Drift parameter
Plug-in LSE:

β̂n := argmin
β

n∑
j=1

(∆jX − hnB⊤
j−1β)2

A⊤
j−1α̂n

.

From simple calculation, the estimators α̃n and β̂n are explicitly written as

α̃n = 1
hn

 n∑
j=1

Aj−1A⊤
j−1

−1
n∑

j=1
(∆jX)2Aj−1, (3.4.2)

β̂n = 1
hn

 n∑
j=1

Bj−1B⊤
j−1

A⊤
j−1α̂n

−1
n∑

j=1

∆jX

A⊤
j−1α̂n

Bj−1. (3.4.3)

However, α̃n is not asymptotically efficient while β̂n is in case where the underlying pro-
cess is a diffusion process. That is why we additionally consider the one-step estimator
α̂n based on the stepwise GQL:

Hn(α) := −1
2

n∑
j=1

{
log(2π) + log(A⊤

j−1α) + (∆jX)2

hnA⊤
j−1α

}
.

If J ≡ 0, it is easy to see that α̂n is asymptotic efficient under appropriate regularity
conditions.

Following Section 3.3, their modified versions are

α̃kn
n = 1

hn

 ∑
j /∈Ĵ kn

n

Aj−1A⊤
j−1


−1 ∑

j /∈Ĵ kn
n

(∆jX)2Aj−1, (3.4.4)
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β̂kn
n = 1

hn

 ∑
j /∈Ĵ kn

n

Bj−1B⊤
j−1

A⊤
j−1α̂

kn
n


−1 ∑

j /∈Ĵ kn
n

∆jX

A⊤
j−1α̂

kn
n

Bj−1, (3.4.5)

where α̂kn
n is the modified one-step estimator:

α̂kn
n = α̃kn

n −

 ∑
j /∈Ĵ kn

n

Aj−1A⊤
j−1

(A⊤
j−1α̃

kn
n )2


−1 ∑

j /∈Ĵ kn
n

(
1

A⊤
j−1α̃

kn
n

− (∆jX)2

hn(A⊤
j−1α̃

kn
n )2

)
Aj−1. (3.4.6)

What is important from these expressions is that we calculate the modified estimators
α̃kn

n , β̂kn
n , and α̂kn

n simply by removing the corresponding indices from the sums without
repetitive numerical optimizations, thus reducing the computational time to a large
extent. Further, it should also be noted that we may proceed only with α̂k

n without
the one-step version α̂k

n, if the asymptotically efficient estimator is not the first thing
to have and quick-to-compute estimator is more needed.

To obtain our main result, we introduce some assumptions below.

Assumption 3.4.1. (Sampling design). There exists a positive constant δ ∈ (0, 1) such
that

Tn := nhn → ∞,
log n
Tn

∨ n1+δh2+δ
n (log n)2 → 0.

Assumption 3.4.2. (Regularity).

1. For every x, y ∈ R, there exists a positive constant C being independent of x and
y such that∣∣∣∣√A(x)⊤α0 −

√
A(y)⊤α0

∣∣∣∣+ |B(x) − B(y)| + |c(x) − c(y)| ≤ C|x− y|.

2. The function A(x) and c(x) fulfill the following estimates:

0 < inf
x,α

A(x)⊤α ≤ sup
x,α

A(x)⊤α < ∞,

0 < inf
x

|c(x)| ≤ sup
x

|c(x)| < ∞.

3. The function A(x) has continuous derivatives satisfying that for every x ∈ R,

|∂i
xA(x)| ≤ C(1 + |x|C) (i ∈ {1, 2}),

where C is a positive constant independent of x.
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Assumption 3.4.3. (Stability).

1. There exists a unique invariant probability measure π0, and for any function f ∈
L1(π0), we have

1
T

∫ T

0
f(Xt)dt

p−→
∫
R
f(x)π0(dx), as T → ∞.

2. For any q > 0,
sup
t∈R+

E[|Xt|q] < ∞,
∫
R

|x|qπ0(dx) < ∞.

Hereafter for any x ∈ R, ⌊x⌋ denotes the maximum integer which does not exceed
x. Recall that the driving noise J can be expressed as

Jt =
Nt∑
i=1

ξi,

by a Poisson process N and i.i.d random variables (ξi) being independent of N . For
the variables (ξi), we assume the following.

Assumption 3.4.4. (Jump size).

1. We have E[|ξ1|q] < ∞ for any q > 0.

2. There exists a positive deterministic sequence (an) satisfying that for all M > 0,

max
1≤j≤⌊Tn⌋

|ξj| = Op(an), a3
n

√
hn log n = o(1),

P
(

|ξ1| ≤ M
(√

nhn ∨ a
3
4
n (hn log n)

1
8

))
= o

( 1
Tn

)
.

Here are some technical comments about each assumption.

• Assumption 3.4.1 is a bit stronger than the so-called “rapidly increasing de-
sign" nhn → ∞ and nh2

n → 0, which is one of standard conditions in the
literature of statistical inference for ergodic processes based on high-frequency
data; for example, it suffices that there exists a constant κ ∈ (1/2, 1) for which
0 < lim infn n

κhn ≤ lim supn n
κhn < ∞. This condition will be required for han-

dling the extreme value of the solution process X, and asymptotically allowing
the number of jump-removal operations to exceed the expectation of the number
of jump times; for more details, see the comment after Theorem 3.4.8.
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• Assumption 3.4.2 ensures the existence of the càdàg solution of (3.1.1), and its
Markovian property (cf. [3, Section 6]).

• Under Assumption 3.4.3, by mimicking the proof of [27, Lemma 8] we see that

1
n

n∑
j=1

fj−1(α) p−→
∫
R
f(x, α)π0(dx)

uniformly in α, for each f which is differentiable with respect to (x, α) and such
that each partial derivative is of at most polynomial growth uniformly in α. For
an easy-to-check sufficient condition for Assumption 3.4.3, see [37].

• Concerning Assumptions 3.4.4-(2), we note that such a sequence (an) does exist.
Here is an example.

– First let us remark that simply taking

an = T 1/q
n (3.4.7)

for a sufficiently large q ≥ 6 is enough for the first two conditions. For any
ϵ > 0 we have

P

(
a−1

n max
1≤j≤⌊Tn⌋

|ξj| > ϵ

)
= 1 − (1 − P (|ξ1| > anϵ))⌊Tn⌋ ,

the right-hand-side tending to 0 if

TnP (|ξ1| > anϵ) → 0.

Grant the moment condition Assumption 3.4.4-(2), the last condition holds
under (3.4.7). Hence we have max1≤j≤⌊Tn⌋ |ξj| = op(an), hence in particular
the first one in Assumption 3.4.4-(2). Furthermore, under Assumption 3.4.1,
the second one in Assumption 3.4.4-(2) follows from

a3
n

√
hn log n =

(
an

T
1/6
n

)3√
nh2

n log n → 0. (3.4.8)

– For the third one in Assumption 3.4.4-(1), which will be used for detecting
jumps, suppose that there exist constants ϵ, δ > 0 and C ≥ 0 such that

P (|ξ1| < x) ≤ Cx8+ϵ ∀x ∈ [0, δ).
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Suppose also that Tn(nh2
n)4+ ϵ

2 → 0, which, in particular, holds in case where
hn = cn−κ for some c > 0 with κ ∈

(
10+ϵ

2(9+ϵ) , 1
)
. Then, (3.4.7) and (3.4.8) lead

to

TnP
(

|ξ1| ≤
√
nhn ∨ a

3
4
n (hn log n)

1
8

)
≲ Tn(nh2

n)4+ ϵ
2 ∨ Tn

(
a3

n

√
hn log n

)2+ϵ/4

≲ Tn(nh2
n)4+ ϵ

2 ∨ T 1+3(2+ϵ/4)/q
n h1+ϵ/8

n (log n)1+ϵ/8 → 0,

upon taking q ≥ 6 large enough.

To investigate the asymptotic property of our estimators, we introduce the unob-
served continuous part of X defined by

Xcont
t = Xt −X0 −

∫ t

0
c(Xs−)dJs =

∫ t

0
a(Xs, α0)dwt +

∫ t

0
b(Xs, β0)dt.

Let α̌n be an estimator satisfying
√
n(α̌n − α0) = Op(1). (3.4.9)

Taking Remark 3.3.1 into consideration, we define its one-step estimator α̃cont
n by

α̂cont
n = α̌n −

 n∑
j=1

Aj−1A⊤
j−1

(A⊤
j−1α̌n)2

−1
n∑

j=1

(
1

A⊤
j−1α̌n

− (∆jX
cont)2

hn(A⊤
j−1α̌n)2

)
Aj−1.

We also define a plug-in LSE by

β̂cont
n := 1

hn

 n∑
j=1

Bj−1B⊤
j−1

A⊤
j−1α̂

cont
n

−1
n∑

j=1

∆jX
cont

A⊤
j−1α̂

cont
n

Bj−1.

The following theorem shows that (α̂cont
n , β̂cont

n ) has asymptotic normality, and that β̂cont
n

achieves the asymptotic efficiency.
Theorem 3.4.5. Suppose that Assumptions 3.4.1-3.4.3, and Assumption 3.4.4-(1) hold.
Then we have (√

n(α̂cont
n − α0),

√
Tn(β̂cont

n − β0)
)

L−→ N (0,Σ0) ,

where

Σ0 :=


2


∫ (

A(x)
(A(x))⊤α0

)⊗2

π0(dx)


−1

O

O

{∫ B⊗2(x)
A(x)⊤α0

π0(dx)
}−1

 .
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Remark 3.4.6. The asymptotic efficiency of β̂cont follows from [28, Theorem 2.2].
Concerning the diffusion parameter, we note that α̂cont has the same performance as
the estimator in [57] and [48] based on a jump filter.

The next theorem states that the modified LSE type diffusion estimator α̃kn
n has the√

n-consistency as long as the number of jumps does not exceeds that of the number of
jump removals.
Theorem 3.4.7. Suppose that Assumptions 3.4.1-3.4.4 hold. Then, for any ϵ > 0, and
non-decreasing deterministic sequence (kn) ⊂ N satisfying that

kn = o

( √
n

log n

)
, (3.4.10)

we can find a sufficiently large M > 0 and N ∈ N for which
sup
n≥N

P
({

|
√
n(α̃kn

n − α0)| > M
}

∩ {1 ≤ NTn ≤ kn}
)
< ϵ. (3.4.11)

For convenience, we redefine α̃kn
n as

α̃kn
n =

α̃kn
n on {1 ≤ NTn ≤ kn} ,
α0 on {1 ≤ NTn ≤ kn}c .

(3.4.12)

Then obviously α̃kn
n satisfies (3.4.9), and we can apply the result of Theorem 3.4.5 to

the estimators

α̂kn,cont
n := α̃kn

n −

 n∑
j=1

Aj−1A⊤
j−1

(A⊤
j−1α̃

kn
n )2

−1
n∑

j=1

(
1

A⊤
j−1α̃

kn
n

− (∆jX
cont)2

hn(A⊤
j−1α̃

kn
n )2

)
Aj−1,

β̂kn,cont
n := 1

hn

 n∑
j=1

Bj−1B⊤
j−1

A⊤
j−1α̂

kn
n

−1
n∑

j=1

∆jX
cont

A⊤
j−1α̂

kn
n

Bj−1.

Recall that we finish our procedure once we have JBkn
n ≤ χ2

q(2). The following theo-
rem gives the asymptotic equivalence between the estimator (α̂kn,cont

n , β̂kn,cont
n ), and the

modified estimator (α̂kn
n , β̂kn

n ) on the set
{
JBkn

n ≤ χ2
q(2)

}
.

Theorem 3.4.8. Suppose that Assumptions 3.4.1-3.4.4 hold. Then, for any ϵ > 0,
q ∈ (0, 1), and non-decreasing deterministic sequence (kn) ⊂ N fulfilling (3.4.10), we
have

P
({∣∣∣√n(α̂kn

n − α̂kn,cont
n )

∣∣∣ ∨ ∣∣∣∣√Tn(β̂kn
n − β̂kn,cont

n )
∣∣∣∣ > ϵ

}
∩
{
JBkn

n ≤ χ2
q(2)

})
→ 0.
(3.4.13)

Remark 3.4.9. We should note that the number of jump removals is automatically
determined by the iterative Jarque-Bera type test, and thus there is no need to choose
(kn) in practice.
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Table 3.1: The performance of our estimators is given in case (i). The mean is given
with the standard deviation in parenthesis. In this table, k⋆

n denotes the number of
jumps.

Tn n hn k⋆
n (i)Gamma distribution

α̂0
n β̂0

n α̂kn
n β̂kn

n α̂k⋆
n

n β̂k⋆
n

n

28.8 1000 0.03 15 18.80 0.62 3.38 0.99 3.38 1.00
(4.31) (0.13) (0.20) (0.09) (0.20) (0.09)

62.1 10000 0.006 30 17.7 0.63 3.07 1.00 3.08 1.00
(2.91) (0.09) (0.05) (0.06) (0.04) (0.06)

Table 3.2: The performance of our estimators is given in case (ii). The mean is given
with the standard deviation in parenthesis. In this table, k⋆

n denotes the number of
jumps.

Tn n hn k⋆
n (ii)Bilateral inverse Gaussian distribution

α̂0
n β̂0

n α̂kn
n β̂kn

n α̂k⋆
n

n β̂k⋆
n

n

28.8 1000 0.03 15 10.83 0.82 3.19 0.99 3.15 1.00
(3.70) (0.22) (0.17) (0.14) (0.16) (0.14)

62.1 10000 0.006 30 10.22 0.82 3.04 1.01 3.04 1.01
(2.46) (0.15) (0.06) (0.09) (0.05) (0.09)

3.5 Numerical experiments
In this section, we conduct Monte Carlo simulation in order to see the performance of
our method. First we consider the following statistical model:

dXt =
√

α

1 + sin2 Xt

dwt − βXtdt+ dJt X0 = 0, (3.5.1)

with the true value θ0 := (α0, β0) = (3, 1). As the jump size distributions, we set
(i) Gamma distribution Γ(4, 1) (one-sided positive jumps) and (ii) bilateral inverse
Gaussian distribution bIG(2, 1, 4, 1) (two-sided jumps). The bilateral inverse Gaussian
random variable X ∼ bIG(δ1, γ1, δ2, γ2) is defined as the difference of two independent
inverse Gaussian random variable X1 ∼ IG(δ1, γ1) and X2 ∼ IG(δ2, γ2). Here we set
number of jumps fixed just for numerical comparison purpose.

Based on independently simulated 1000 sample path, the mean and standard de-
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viation of our estimator (α̂kn
n , β̂kn

n ) are tabulated in Table 3.1 and Table 3.2 with the
estimators (α̂0

n, β̂
0
n) and (α̂k⋆

n
n , β̂k⋆

n
n ). The first estimator (α̂0

n, β̂
0
n) is constructed by the

whole data, and the latter estimator (α̂k⋆
n

n , β̂k⋆
n

n ) is constructed by the true no-jump
group.

These tables and figures indicate that:

• In both case, the modified estimators get closer and closer to the true value as
jump removals proceed.

• Since the performance of (α̂kn
n , β̂kn

n ) and (α̂k⋆
n

n , β̂k⋆
n

n ) is almost the same, the jump
detection by our method works well.

• Concerning the drift estimator, the degree of improvement is not large for (ii)
relative to (i). It may be due to the two-sided jump structure of bIG(2, 1, 4, 1);
thus the amount of improvement is generally expected to be much more significant
when the jump distribution is skewed.

• In the estimator (α̂0
n, β̂

0
n), the performance of α̂0

n is worse than β̂0
n. This is because

the diffusion estimator is based on the square of the increments (∆jX)j, thus
being heavily affected by jumps.

• Overall, the diffusion parameter are overestimated even by α̂k⋆
n

n . Taking into
consideration the fact that the mean-reverting point of X is 0, the magnitude of
the increment should be larger after one jump occurs. Thus, although jumps are
correctly picked, such overestimation can be seen.

3.6 Appendix
For abbreviation, we additionally use the following notations:

• R(x) denotes a differentiable matrix-valued function on R for which there exists
a constant C > 0 such that |R(x)| + |∂xR(x)| ≲ (1 + |x|)C , x ∈ R.

• We often write a(x, α) and b(x, β) instead of
√

(A(x))⊤α and (B(x))⊤β.

Throughout this section, Assumptions 3.4.1 to 3.4.4 are in force. To show our asymp-
totic result, we prove some fundamental lemmas. Let us recall that

Xcont
t := Xt −X0 −

∫ t

0
c(Xs−)dJs =

∫ t

0
a(Xs, α0)dwt +

∫ t

0
b(Xs, β0)dt.
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Lemma 3.6.1. We have 1√
n

n∑
j=1

(
1

A⊤
j−1α0

− (∆jX
cont)2

hn(A⊤
j−1α0)2

)
Aj−1,

1√
Tn

n∑
j=1

∆jX
cont − hnB⊤

j−1β0

A⊤
j−1α0

Bj−1

 L−→ N (0,Σ) ,

where

Σ :=


2
∫ (

A(x)
(A(x))⊤α0

)⊗2

π0(dx) O

O
∫ B⊗2(x)

A(x)⊤α0
π0(dx)

 .
Proof. By the Cramér-Wold device, it is enough to show the case where pα = pβ = 1.
From the martingale central limit theorem, the desired result follows if we show

1√
n

n∑
j=1

Ej−1
[(

1
a2

j−1
− (∆jX

cont)2

hna4
j−1

)
Aj−1

]
p−→ 0, (3.6.1)

1
n

n∑
j=1

Ej−1

{( 1
a2

j−1
− (∆jX

cont)2

hna4
j−1

)
Aj−1

}2
 p−→ 2

∫ (
A(x)

a2(x, α0)

)2

π0(dx), (3.6.2)

1
n2

n∑
j=1

Ej−1

{( 1
a2

j−1
− (∆jX

cont)2

hna4
j−1

)
Aj−1

}4
 p−→ 0, (3.6.3)

1√
Tn

n∑
j=1

Ej−1
[

∆jX
cont − hnbj−1

a2
j−1

Bj−1

]
p−→ 0, (3.6.4)

1
Tn

n∑
j=1

Ej−1

(∆jX
cont − hnbj−1

a2
j−1

Bj−1

)2
 p−→

∫ B2(x)
a2(x, α0)

π0(dx), (3.6.5)

1
(Tn)2

n∑
j=1

Ej−1

(∆jX
cont − hnbj−1

a2
j−1

Bj−1

)4
 p−→ 0 (3.6.6)

1
n

√
hn

n∑
j=1

Ej−1
[(

1
a2

j−1
− (∆jX

cont)2

hna4
j−1

)
∆jX

cont − hnbj−1

a2
j−1

Aj−1Bj−1

]
p−→ 0. (3.6.7)

By using the martingale property of the stochastic integral, Jensen’s inequality, the
Lipschitz continuity of b, and [40, Lemma 4.5], we have

Ej−1[∆jX
cont] = hnbj−1 +

∫ tj

tj−1
Ej−1[bs − bj−1]ds = hnbj−1 + h

3
2
nRj−1. (3.6.8)

Itô’s formula and Fubini’s theorem for conditional expectation yield that

Ej−1[(∆jX
cont)2]
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= Ej−1
[
2
∫ tj

tj−1
(Xcont

s −Xcont
j−1 )dXcont

s +
∫ tj

tj−1
(a2

s − a2
j−1)ds+ a2

j−1hn

]

= a2
j−1hn + 2

∫ tj

tj−1

(∫ s

tj−1
Ej−1 [bubs] du

)
ds+

∫ tj

tj−1
Ej−1[a2

s − a2
j−1]ds.

Again making use of the Lipschitz continuity of b(x, β0) and [40, Lemma 4.5], we get∣∣∣∣∣
∫ tj

tj−1

(∫ s

tj−1
Ej−1 [bubs] du

)
ds

∣∣∣∣∣
≲
∫ tj

tj−1

(∫ s

tj−1
Ej−1 [1 + |Xu| + |Xs| + |Xu||Xs|] ds

)
ds

≲ h2
n(1 + |Xj−1|2).

Since ∂xa
2(x, α) and ∂2

xa
2(x, α) are of at most polynomial growth with respect to x

uniformly in α, we can similarly deduce that∣∣∣∣∣
∫ tj

tj−1
Ej−1[a2

s − a2
j−1]ds

∣∣∣∣∣
≲
∣∣∣∣∣
∫ tj

tj−1
Ej−1

[
∂xa

2
j−1(Xs −Xj−1)

+ 1
2

∫ 1

0

∫ 1

0
∂2

xa
2(Xj−1 + uv(Xs −Xj−1), α0)dudv(Xs −Xj−1)2

]
ds

∣∣∣∣∣
≲
∣∣∣∣∣
∫ tj

tj−1

(∫ s

tj−1
Ej−1[bu]du

)
ds∂xa

2
j−1

∣∣∣∣∣
+
∫ tj

tj−1
Ej−1

[(
1 + |Xj−1|C + |Xs −Xj−1|C

)
(Xs −Xj−1)2

]
ds

≲ h2
nRj−1.

Hence
Ej−1[(∆jX

cont)2] = hna
2
j−1 + h2

nRj−1. (3.6.9)
For any q ≥ 2, Burkholder’s inequality for conditional expectation gives

Ej−1
[
|∆jX

cont|q
]
≲ h

q
2
nRj−1. (3.6.10)

Repeatedly using Itô’s formula and (3.6.10), we have

Ej−1[(∆jX
cont)4]

= Ej−1
[
4
∫ tj

tj−1
(Xcont

s −Xcont
j−1 )3dXcont

s + 6
∫ tj

tj−1
(Xcont

s −Xcont
j−1 )2a2

sds

]
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= 6Ej−1

 ∫ tj

tj−1

{
2
∫ s

tj−1
(Xcont

u −Xcont
j−1 )dXcont

u +
∫ s

tj−1
(a2

u − a2
j−1)du+ a2

j−1s

}
dsa2

j−1

+
∫ tj

tj−1

{
2
∫ s

tj−1
(Xcont

u −Xcont
j−1 )dXcont

u +
∫ s

tj−1
(a2

u − a2
j−1)du+ a2

j−1s

}
(a2

s − a2
j−1)ds


+ h

5
2
nRj−1

= 3h2
na

4
j−1 + h

5
2
nRj−1. (3.6.11)

In particular, it follows from (3.6.8), (3.6.9), (3.6.11) that

Ej−1

{( 1
a2

j−1
− (∆jX

cont)2

hna4
j−1

)
Aj−1

}2
 = 2

A2
j−1

a4
j−1

+ h
1
2
nRj−1. (3.6.12)

Now, the convergences (3.6.1)-(3.6.7) follow from the expressions (3.6.8)-(3.6.10) and
the ergodic theorem

1
n

n∑
j=1

ζ(Xj−1)
p−→
∫
ζ(x)π0(dx),

for each π0-integrable function ζ. Thus we obtain the desired result.

Proof of Theorem 3.4.5. Applying Taylor’s expansion, we have

1
n

n∑
j=1

Aj−1A⊤
j−1

(A⊤
j−1α̌n)2 = 1

n

n∑
j=1

Aj−1A⊤
j−1

(A⊤
j−1α0)2 +

 1
n

∫ 1

0

n∑
j=1

∂α

 Aj−1A⊤
j−1[

A⊤
j−1(α0 + u(α̌n − α0))

]2
 du

 [α̌n − α0].

The ergodic theorem implies that the first term of the right-hand-side converges to∫ ( A(x)
A(x)⊤α0

)⊗2
π0(dx) in probability. From Assumption 3.4.2 and

√
n(α̌n − α0) = Op(1),

the second term of the right-hand-side is op(1). We also have

1√
n

n∑
j=1

(
1

A⊤
j−1α̌n

− (∆jX
cont)2

hn(A⊤
j−1α̌n)2

)
Aj−1

= 1√
n

n∑
j=1

(
1

A⊤
j−1α0

− (∆jX
cont)2

hn(A⊤
j−1α0)2

)
Aj−1

+

 1
n

n∑
j=1

(
− 1

(A⊤
j−1α0)2 + 2 (∆jX

cont)2

hn(A⊤
j−1α0)3

)
Aj−1A⊤

j−1

 [
√
n(α̌n − α0)] + op(1).
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By (3.6.9), (3.6.11), and [19, Lemma 9], it follows that

1
n

n∑
j=1

(
− 1

(A⊤
j−1α0)2 + 2 (∆jX

cont)2

hn(A⊤
j−1α0)3

)
Aj−1A⊤

j−1
p−→
∫ (

A(x)
(A(x))⊤α0

)⊗2

π0(dx).

Hence we obtain

√
n(α̂cont − α0) = −


∫ (

A(x)
(A(x))⊤α0

)⊗2

π0(dx)


−1

1√
n

n∑
j=1

(
1

A⊤
j−1α0

− (∆jX
cont)2

hn(A⊤
j−1α0)2

)
Aj−1 + op(1).

In the same way, we have√
Tn(β̂cont

n − β0) =
(∫ B⊗2(x)

A(x)⊤α0
π0(dx)

)−1 1√
Tn

n∑
j=1

∆jX
cont − hnbj−1

A⊤
j−1α0

Bj−1 + op(1),

and the desired result follows from Slutsky’s lemma and Lemma 3.6.1.

We now turn to proving Theorems 3.4.7 and 3.4.8.
Lemma 3.6.2. Let {τi}i∈N denote jump times of N . Then we have

P
(

∃i ∈ N,∃ j ∈ {1, . . . , n} s.t. τi, τi+1 ∈ [tj−1, tj)
)

→ 0, n → ∞.

Proof. Since the random variables τ1, τ2 − τ1, τ3 − τ2, . . . independently obey the expo-
nential distribution with mean 1/λ, it follows that

P
(

∃i, j s.t. τi, τi+1 ∈ [tj−1, tj)
)

≤
∞∑

i=2
P
(

∃j ∈ {2, . . . , i} s.t. τj − τj−1 < hn

)
P (NTn = i)

≤ (1 − e−λhn)
∞∑

i=2

(λTn)i

(i− 1)!
e−λTn ≲ nh2

n → 0.

For convenience, we hereafter write

Bn =
{

∃i ∈ N,∃ j ∈ {1, . . . , n} s.t. τi, τi+1 ∈ [tj−1, tj)
}c
.

By Lemma 3.6.2 we have P (Bn) → 1.
Let

Ckn,n :=
{

∃i ∈ N, ∃j ∈ {1, . . . , n} s.t. τi ∈ [tj−1, tj) and j /∈ Ĵ kn
n

}c

=
{

∀i ∈ N, ∀j ∈ {1, . . . , n}, τi /∈ [tj−1, tj) or j ∈ Ĵ kn
n

}
.

The next lemma shows an asymptotic negligibility of the failure-to-detection rate: we
can correctly detect all jumps on {1 ≤ NTn ≤ kn} ∩Bn with probability tending to 1:
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Lemma 3.6.3. We have

P
(
C c

kn,n ∩ {1 ≤ NTn ≤ kn} ∩Bn

)
→ 0, n → ∞.

Proof. Hereafter we use the following notations:

Dn = {j ≤ n : ∃τi ∈ [tj−1, tj)},
Cn = {1, . . . , n} \ Dn.

Write ηj = ∆jw√
hn

for j ≤ n. Recalling that the set Ĵ kn
n of estimated jump times is

constructed through picking up the first kn-largest increments in magnitude, we have

P
(
C c

kn,n ∩ {1 ≤ NTn ≤ kn} ∩ Bn

)
≤ P ({∃j′ ∈ Dn, j

′′ ∈ Cn s.t. |∆j′X| < |∆j′′X|} ∩ {1 ≤ NTn ≤ kn} ∩Bn)

≤ P

({
∃j′ ∈ Dn, j

′′ ∈ Cn s.t. inf
x

|c(x)| min
1≤j≤NTn

|ξj|

<

∣∣∣∣∣
∫ tj′

tj′−1

bsds+
∫ tj′

tj′−1

asdws

∣∣∣∣∣+
∣∣∣∣∣
∫ tj′′

tj′′−1

bsds+
∫ tj′′

tj′′−1

asdws

∣∣∣∣∣
}

∩ {1 ≤ NTn ≤ kn} ∩Bn


≤ P

({
inf

x
|c(x)| min

1≤j≤NTn

|ξj| < 2
√
hn sup

x
|a(x)| max

1≤j≤n
|ηj|

+ 2 max
1≤j≤n

(∣∣∣∣∣
∫ tj

tj−1
bsds

∣∣∣∣∣+
∣∣∣∣∣
∫ tj

tj−1
(as − aj−1)dws

∣∣∣∣∣
)}

∩ {1 ≤ NTn ≤ kn} ∩ Bn


≤ P

{inf
x

|c(x)|2 min
1≤j≤NTn

|ξj|2 < r1,n + r2,n

}
∩ {1 ≤ NTn ≤ kn} ∩Bn

, (3.6.13)

where

r1,n := 4hn sup
x
a2(x) max

1≤j≤n
|ηj|2

r2,n := 8
n∑

j=1


(∫ tj

tj−1
bsds

)2

+
(∫ tj

tj−1
(as − aj−1)dws

)2


From extreme value theory (cf. [16, Table 3.4.4]), we have

max
1≤j≤n

|ηi|2 −
(

log n− 1
2

log log n− log Γ
(1

2

))
= Op(1).
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This together with Assumption 3.4.2 leads to

r1,n = Op(hn log n) = Op(nh2
n).

Jensen’s inequality leads to

E

(∫ tj

tj−1
bsds

)2
 ≤ hn

∫ tj

tj−1
E[b2

s]ds ≲ h2
n.

Applying Burkholder’s inequality with [40, Lemma 4.5], we get

E

(∫ tj

tj−1
(as − aj−1)dws

)2
 ≲

∫ tj

tj−1
E[|Xs −Xj−1|2]ds ≲ h2

n,

so that
r2,n = Op(nh2

n).

Hence, for any ϵ ∈ (0, 1), we can pick sufficiently large N and K such that for all n ≥ N ,

P
(
r1,n + r2,n > Knh2

n

)
< ϵ.

It follows from these estimates and E[NTn ] = λTn that for every n large enough, the
upper bound in (3.6.13) can be further bounded by

P

{ min
1≤j≤NTn

|ξj|2 <
K

infx |c(x)|2
nh2

n

}
∩ {1 ≤ NTn ≤ kn} ∩Bn

+ ϵ

≤
kn∑
i=1

P

{min
1≤j≤i

|ξj|2 <
K

infx |c(x)|2
nh2

n

}
∩ {NTn = i}

+ ϵ

≤
kn∑
i=1

iP

(
|ξ1|2 <

K

infx |c(x)|2
nh2

n

)
P (NTn = i) + ϵ

≲ TnP

(
|ξ1|2 <

K

infx |c(x)|2
nh2

n

)
+ ϵ = o(1) + ϵ. (3.6.14)

Since the choice of ϵ is arbitrary, Assumption 3.4.4 implies the desired result.

Next, we show that on {NTn ≥ kn + 1}∩Bn, indices which belongs to Cn are asymp-
totically outside Ĵ kn

n :

Lemma 3.6.4.

P
(
{Cn ∩ Ĵ kn

n ̸= ∅} ∩ {NTn ≥ kn + 1} ∩Bn

)
→ 0, n → ∞.
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Proof. The lemma can be shown in a quite similar way to Lemma 3.6.3. Note that

{Cn ∩ Ĵ kn
n ̸= ∅} ⊂

{
∃j′ ∈ Dn, j

′′ ∈ Cn s.t. |∆j′X| < |∆j′′X|
}
.

Letting ϵ, N , and K be the same as in the proof of Lemma 3.6.3, as in (3.6.13) and
(3.6.14) we have

P
(
{Cn ∩ Ĵ kn

n ̸= ∅} ∩ {NTn ≥ kn + 1} ∩Bn

)
≤ P

({
min

1≤j≤NTn

|ξj|2 <
K

infx |c(x)|2
nh2

n

}
∩ {NTn ≥ kn + 1} ∩Bn

)

≲ TnP

(
|ξ1|2 <

K

infx |c(x)|2
nh2

n

)
+ ϵ = o(1) + ϵ

for any n ≥ N . Hence the proof is complete.

Proof of Theorem 3.4.7. Thanks to Lemma 3.6.2 and Lemma 3.6.3, it suffices to show
that for any ϵ > 0 there correspond sufficiently large M > 0 and N ∈ N for which

sup
n≥N

P
({

|
√
n(α̃kn

n − α0)| > M
}

∩Gkn,n

)
< ϵ, (3.6.15)

where
Gkn,n := {1 ≤ NTn ≤ kn} ∩ Bn ∩ Ckn,n.

For any q ≥ 2, Jensen’s inequality, Burkholder’s inequality and Assumption 3.4.2 imply
that

E[|∆jX
cont|q] ≲ E

(∫ tj

tj−1
a2

sds

) q
2

+ hq−1
n

∫ tj

tj−1
|bs|qds


≲ h

q
2
n sup

t
E[1 + |Xt|q] = h

q
2
n . (3.6.16)

Since ∆jX = ∆jX
cont for each j /∈ Ĵ kn

n on Gkn,n, we have

|α̃kn
n − α0|1Gkn,n

≤ (|κ1,n| + |κ2,n| + |κ3,n|)1Gkn,n
, (3.6.17)

where

κ1,n := 1
hn


 ∑

j /∈Ĵ kn
n

Aj−1A⊤
j−1


−1

−

 n∑
j=1

Aj−1A⊤
j−1

−1


∑
j /∈Ĵ kn

n

Aj−1(∆jX
cont)2,
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κ2,n := − 1
hn

 n∑
j=1

Aj−1A⊤
j−1

−1 ∑
j∈Ĵ kn

n

Aj−1(∆jX
cont)2,

κ3,n := 1
hn

 n∑
j=1

Aj−1A⊤
j−1

−1
n∑

j=1
Aj−1(∆jX

cont)2 − hn

 n∑
j=1

Aj−1A⊤
j−1

α0

 .
Below we look at these three terms separately.

1. Evaluation of κ1,n: From the ergodic theorem, we have

1
n

n∑
j=1

Aj−1A⊤
j−1

p−→
∫
A(x)(A(x))⊤π0(dx) > 0.

Hence we can suppose that the inverse matrix of 1
n

∑n
j=1 Aj−1A⊤

j−1 exists for large enough
n. Since A(x) is bounded, we can also obtain

1
n

∑
j /∈Ĵ kn

n

Aj−1A⊤
j−1 = 1

n

n∑
j=1

Aj−1A⊤
j−1 − 1

n

∑
j∈Ĵ kn

n

Aj−1A⊤
j−1 = 1

n

n∑
j=1

Aj−1A⊤
j−1 +Op

(
kn

n

)
,

∣∣∣∣∣∣∣
1
Tn

∑
j /∈Ĵ kn

n

Aj−1(∆jX
cont)2

∣∣∣∣∣∣∣ ≲
1
Tn

n∑
j=1

(∆jX
cont)2 = Op(1),

from (3.6.16). Hence it follows that

|
√
nκ1,n|1Gkn,n

≲
 1
n

n∑
j=1

Aj−1A⊤
j−1

−1
∣∣∣∣∣∣∣
√
n


 1
n

n∑
j=1

Aj−1A⊤
j−1


 1
n

∑
j /∈Ĵ kn

n

Aj−1A⊤
j−1


−1

− Ipα


∣∣∣∣∣∣∣

×

 1
Tn

n∑
j=1

(∆jX
cont)2


= Op

(
kn√
n

)
= op(1). (3.6.18)

2. Evaluation of κ2,n: Recall that ηj := ∆jw√
hn

. Under Assumption 3.4.2, we can derive
from the estimates of r1,n and r2,n in the proof of Lemma 3.6.3 that, on Gkn,n,∣∣∣∣∣∣∣

1
Tn

∑
j∈Ĵ kn

n

Aj−1(∆jX
cont)2

∣∣∣∣∣∣∣
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≲ 1
Tn


n∑

j=1

(∫ tj

tj−1
(as − aj−1)dws

)2

+
(∫ tj

tj−1
bsds

)2
+ knhn max

1≤j≤n
|ηj|2


= Op

( 1
Tn

(nh2
n ∨ knhn log n)

)
= Op

(
hn ∨ kn log n

n

)
= op(1). (3.6.19)

Thus we get

|
√
nκ2,n|1Gkn,n

= Op

(√
nh2

n ∨ kn log n√
n

)
= op(1). (3.6.20)

3. Evaluation of κ3,n: From (3.6.9), (3.6.11), (3.6.10), and the martingale central
limit theorem (see the proof of Lemma 3.6.1), it follows that

√
nκ3,n =

 1
n

n∑
j=1

Aj−1A⊤
j−1

−1
1√
n

n∑
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∆jX
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√
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 = Op(1).

(3.6.21)

Substituting (3.6.18), (3.6.20) and (3.6.21) into (3.6.17) now yields that∣∣∣√n (α̃kn
n − α0

)∣∣∣1Gkn,n
= Op(1),

followed by (3.6.15).

Proof of Theorem 3.4.8. By the Lindeberg-Feller theorem we have

NTn − λTn√
λTn

L−→ N(0, 1),

so that for any positive nondecreasing sequence (ln) satisfying ln−λTn√
λTn

→ ∞, we have

P (NTn ≥ ln) = P

(
NTn − λTn√

λTn

≥ ln − λTn√
λTn

)
→ 0; (3.6.22)

in particular, this implies that we may focus on the case where NTn ≤ (λ + 1)Tn − 1
and kn ≤ (λ+ 1)Tn − 1 without loss of generality.

Let
Dkn,n :=

{
Cn ∩ Ĵ kn

n = ∅
}
.

From (3.6.22) with ln = (λ+ 1)Tn + 1, Lemma 3.6.2, and Lemma 3.6.3, it follows that
for any ϵ > 0,

P
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We will complete the proof by showing that both of the first two terms in the upper
bound vanish as n → ∞.

First we verify
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Recall that for any j /∈ J kn
n , ∆jX = ∆jX

cont on Gkn,n. Making use of Assumption
3.4.2, (3.6.19), and a similar argument to the proof of Theorem 3.4.7, we get∣∣∣√n(α̂kn
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Let us turn to look at
√
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n − β̂kn,cont
n ). It follows from Itô’s formula that∣∣∣∣∣∣∣
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+ sup
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∫
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, (3.6.24)

where Ñ(·, ·) denotes the compensated Poisson random measure associated with J .
Applying Assumption 3.4.3 and Burkholder’s inequality to the last term, we get
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and thus
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Below, we show that∣∣∣∣∣∣∣
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(3.6.26)

Utilizing the Lipschitz continuity of b and [40, Lemma 4.5], we have
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From the elementary inequality

|x| ≤ C + |x|2

C
, (3.6.27)

for any positive constant C and real number x, we get∣∣∣∣∣∣∣
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Here we used the condition kn ≤ (λ + 1)Tn − 1 and Burkholder’s inequality. Under
Assumption 3.4.3, for any q > 2 we have
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[
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|Xt|q
]

= O (Tn)

through Itô’s formula as in (3.6.24). This combined with Jensen’s inequality gives
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n), (3.6.28)

for any ϵ > 0. With δ ∈ (0, 1) given in Assumption 3.4.1, let ϵ = δ
3 and δ′ = 4

3δ,
respectively. Then, making use of (3.6.28) with an application of (3.6.27), we have∣∣∣∣∣∣∣
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thus concluding (3.6.26). As in the proof of Theorem 3.4.5, it follows from (3.6.25) and
(3.6.26) that∣∣∣∣√Tn(β̂kn
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so that (3.6.23) holds true.

It remains to verify

P
({
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q(2)
}

∩Hkn,n

)
= o(1) (3.6.29)

where
Hkn,n := {kn + 1 ≤ NTn ≤ (λ+ 1)Tn} ∩ Bn ∩Dkn,n;

recall that we are assuming that kn ≤ (λ+ 1)Tn − 1 without loss of generality. In view
of the definition (3.3.1), (3.6.29) follows on showing that for any M > 0,
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recall the notation N̂k
j = (Ŝk

n)−1/2(ϵj(α̂k
n) − ¯̂ϵk

n).
First we will prove
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Decompose ¯̂ϵkn
n as
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 n∑
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∑
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 .
For any j ∈ N, we define the indicator function χj(·) as:

χj(t) :=

1 t ∈ (tj−1, tj],
0 otherwise.
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where J̃t := Jt − λE[ξ1]t, Assumption 3.4.2, Sobolev’s inequality and Burkholder’s
inequality imply that for any q > pα,
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It also follows from Assumptions 3.4.1 and 3.4.2 that
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This gives∣∣∣∣∣∣∣
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and (3.6.31) follows from (3.6.32) and (3.6.34).
Note that (3.6.31) under Assumption 3.4.4 entails
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From Assumption 3.4.2, the following relation holds:
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j /∈Ĵ kn

n

(∆jX)2 ≲ 1
n− kn

∑
j /∈Ĵ kn
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From Cauchy-Schwarz inequality, Burkholder’s inequality and [40, Lemma 4.5], we
derive
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Hence the rightmost side in (3.6.36) is Op(1). In a similar manner, we have
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where again we used an ≳ 1. Summarizing the last three displays leads to
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This combined with (3.6.31), (3.6.35) and (3.6.36) implies that for any ϵ > 0 there exist
a positive constant K > 1 and a positive integer N such that
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From Assumption 3.4.2, we have the following estimates with positive constants C =
C(a, c) and C ′ = C ′(a, c) only depending on the coefficient (a, c):
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Now we note that Assumption 3.4.4 implies that for any M > 0,
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=
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→ 1.

Hence, we conclude that on an event whose probability gets arbitrarily close to 1 as
n → ∞,
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followed by (3.6.30), hence (3.6.29) as well. The proof of Theorem 3.4.8 is thus complete.
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Chapter 4

Statistical Analysis on R

YUIMA package on R is for simulation and statistical analysis of stochastic processes,
and still under development. The author implemented his estimation methods as func-
tion qmleLevy and snr in the package. In this chapter, we illustrate its usage with R
codes.

4.1 Function qmleLevy
The function qmleLevy is for the Gaussian quasi-likelihood estimation of the parameter
θ := (α, γ) in the Lévy driven SDE models expressed as:

dXt = a(Xt, α)dt+ c(Xt−, γ)dJt.

It is defined by the following form:

qmleLevy(yuima, start, lower, upper, joint = FALSE, third = FALSE)

The inputs are as follows:

• yuima: a yuima object (including the form of coefficients, data, timestamps, ...);

• lower: a named list for specifying lower bounds of parameters;

• upper: a named list for specifying upper bounds of parameters;

• start: initial values to be passed to the optimizer;

• joint: perform joint estimation or two stage estimation? by default
joint=FALSE. If there exists an overlapping parameter, joint=TRUE does
not work for the theoretical reason;
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• third; perform adaptive estimation? by default third=FALSE. If there exists an
overlapping parameter, third=TRUE does not work for the theoretical reason,

and as the output, the function gives the estimated value of parameters.
Below we give an example with R code. Consider the following SDE model:

dXt = −θ0Xtdt+ θ1√
1 +X2

t

dZt,

where the driving noise Zt obeys bGamma(t,
√

2, t,
√

2). We set:

• Sample size: 10000;

• The size of observation interval: 0.01;

• Terminal time: 100;

• True value: (θ0,0, θ1,0) = (1, 2);

• Parameter space: (0.5, 4) × (1, 4).

The initial values of optimization are random variables from the uniform distribution
on the parameter space. The example code is shown below:

dri<-"-theta0*x" ## set drift

jum<-"theta1/(1+x^2)^(-1/2)" ## set jump

yuima<-setModel(drift = dri
,jump.coeff = jum
,solve.variable = "x",state.variable = "x"
,measure.type = "code"
,measure = list(df="rbgamma(z,1,sqrt(2),1,sqrt(2))"))

n<-100000 ## the number of total generation
tp<-0.1 ## the degree of thinning
N<-n*tp ## the number of samples
T<-100 ## terminal
hn<-T/N ## stepsize

sam<-setSampling(Terminal = T, n=n) ## set sampling scheme
subsam<-setSampling(Terminal = T, n=N)
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yuima<-setYuima(model = yuima, sampling = sam) ## model

true<-list(theta0 = 1,theta1 = 2) ## true values
upper<-list(theta0 = 4, theta1 = 4) ## set upper bound
lower<-list(theta0 = 0.5, theta1 = 1) ## set lower bound

set.seed(123)
yuima<-simulate(yuima, xinit = 0, true.parameter = true,sampling = sam,

subsampling = subsam) ## generate a path
start<-list(theta0 = runif(1,0.5,4),

theta1 = runif(1,1,4)) ## set initial values
qmleLevy(yuima,start=start,lower=lower,upper=upper, joint = FALSE,

third = TRUE)

## $first
## theta1
## 1.965757
##
## $second
## theta0
## 0.9774629
##
## $third
## theta1
## 1.964678

4.2 Function snr
For the jump diffusion models (3.1.1), the function snr under develpment conducts the
iterative Jarque-Bera normality test proposed in Chapter 3, and calculate the Gaussian
quasi-likelihood estimator of the drift and diffusion parameters. In YUIMA package,
snr is defined as

snr(yuima,start,upper,lower,q)

The inputs are as follows:

• yuima: a yuima object (jump diffusion models with data, time-stamps, ...);

• lower: a named list for specifying lower bounds of parameters;
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• upper: a named list for specifying upper bounds of parameters;

• start: initial values to be passed to the optimizer;

• q: significance level of the (iterative) Jarque-Bera test for jump detection.

As its output, the followings are given:

• sample path with jump points;

• plot of the original self-normalized residuals;

• histogram of the self-normalized residuals after jump detection;

• transition of estimators and Jarque-Bera statistics;

• ordered absolute-value of increments with threshold;

• the value of the initial estimator and jump-removed estimator with jump times
and sizes.

Below we demonstrate an example. Suppose that the following statistical model is
given:

dXt = θ√
1 +X2

t

dwt −Xtdt+ dJt,

where the intensity and jump distribution of the driving compound Poisson process are
0.3 and Γ(2, 1), respectively. We set:

• Sample size: 10000;

• The size of observation interval: 0.01;

• Terminal time: 100;

• True value:
√

2;

• Parameter space: (0.01, 100);

• Start value of the optimization: 0.5;

• Significance level: 0.01.

We can make use of the function snr by the following code, and the output is given
after it:
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mod <- setModel(drift="-x",
diffusion="theta/sqrt(1+x^2)",
jump.coeff="1",
measure=list(intensity="0.3",

df=list("dgamma(z, 2, 1)")),
measure.type="CP")

T <- 100
n <- 10000
samp <- setSampling(Terminal=T, n=n)
yuima <- setYuima(model = mod, sampling = samp)
set.seed(123)
yuima <- simulate(yuima, xinit=1,true.parameter=list(theta=sqrt(2)),
sampling = samp)
snr(yuima,start=list(theta=0.5),upper=c(theta=100),lower=c(theta=0.01),
q=0.01)
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$Removed
Jump time 98.19 91.63 1.96

"Jump size" "6.059" "5.21" "4.649"
58.91 28.5 54.63 5.13

"4.575" "3.445" "3.302" "3.177"
79.43 86.2 20.81 43.38

"3.156" "3.106" "2.592" "2.464"
38.28 40.8 87.12 15.74

"2.349" "2.279" "2.102" "2.042"
63.92 57.42 44.23 10.6

"2.025" "2.005" "1.968" "1.966"
83.96 48.8 48.86 27.8

"1.931" "1.875" "1.86" "1.741"
11.62 2.56 89.63 39.15

"1.735" "1.515" "1.341" "1.296"
48.88 79.53 16.06 19.8

"1.14" "1.135" "1.122" "1.042"
5.48 41.29 24.06 40.12

"0.885" "0.877" "0.86" "0.827"
82.19 78.04 82.31 75.25

"0.768" "0.717" "0.709" "0.699"

$OGQMLE
theta

2.54405

$JRGQMLE
theta

1.416278
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