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Chapter 1

Introduction

1.1 Magnetically confined fusion

Nowadays, an energy problem has attracted much attention. Fossil fuels, like

coal or oil, are known to be exhausted in about 100 years. Since energy demands

in developing countries increases, greenhouse gas is also increasing, which leads

to global warming. In Japan, an energy self-sufficiency rate is very low, and most

of fuels are imported from foreign countries. In addition, people in Japan are get-

ting more interested in safety energy source due to the big accidents in nuclear

fission plants by Great East Japan earthquake in 2011. Therefore, large scale,

renewable, carbon-free and safety alternative energy source is required. Nuclear

fusion is one of the alternatives of future energy sources and particularly promis-

ing. Fuels of nuclear fusion such as deuterium and tritium are almost limitless,

which can be obtained from seawater. Furthermore, nuclear fusion can produce

large amount of energy from little fuels, e.g., the energy generated from 1g of

deuterium and tritium is equivalent to that from 8 tons of oil. Nuclear fusion is

also clean and safety. Fusion power plant can produce carbon-free energy and has

no risk of a nuclear catastrophe, which is a weak point of nuclear fission plant.
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To realize the nuclear fusion energy generation, confinement of plasma, which is

ensemble of charged particles, is necessary. The condition of the fusion reactor

to reach ignition is that the triple product of density, temperature and confinement

time should be above a certain value (density ∼ 1020 [m−3], temperature ∼ 1 billion

degree, confinement time ∼ 1 [s]), which is known as Lawson criterion [1].

There are two methods of confining plasmas [2]; one is inertial confinement,

in which high power leasers are used to compress the fuel strongly to cause fusion

reactions. Another is magnetic confinement; plasmas are subjected to the Lorentz

force to gyrate around the magnetic field line. Since plasma can move freely

along the magnetic field, the magnetic field is designed to torus-shaped form.

Then torus-shaped plasma confinement device have been developed and is widely

studied to realize nuclear fusion plant. One of the advantage of the magnetically

confinement fusion, compared to the inertial fusion, is continuous energy output.

The magnetic field confinement has been studied more than 70 years. To in-

vestigate burning plasma continuously, International Thermonuclear Experimen-

tal Reactor (ITER) [3] is now under construction. A schematic view of ITER

is shown in Fig. 1.1. ITER is based on the tokamak concept as to demonstrate

that the power amplification factor Q = Pfusion/Pheat close to 10, where Pfusion and

Pheat are power obtained by fusion and that injected externally for plasma heating,

respectively. However, to keep the fusion ignition is difficult, since turbulence dis-

turb plasma confinement. In hot and high density plasma, inhomogeneities of such

pressure drive various instabilities, which finally develop into the turbulence. As

is mentioned in the next section, turbulent transport causes degradation of plasma

performance. Thus, a lot of researches have been focused on the turbulence and

turbulent transport.
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FIG. 1.1: Schematic view of ITER. The figure is cited from
http : //www.mext.go.jp/a menu/shinkou/iter/021/005.html.

1.2 Turbulent transport

The degradation of energy confinement is due to the cross field transport, i.e.,

loss of particles and heat across the magnetic field. The energy confinement time,

τE, is roughly described as, τE ∝ a2/χ, where a and χ denote the radius of the

plasma and heat diffusion coefficient. In general, the heat diffusivity is predicted

as random walk process based on collisions (called as neo-classical theory), writ-

ten as,

χ ∼ λ2/τc, (1.1)

where λ and τc denote the step size and the collision time, respectively [2]. For

the collisional process, the step size is almost determined as Larmor radius of ions

or electrons. In typical tokamak plasma (T ∼ 1 keV, ne ∼ 1019 m−3 and B ∼ 1 T),

6



the coefficient is roughly estimated as ∼ 10−2 m2/s.

FIG. 1.2: The diffusivity coefficients of neo-classical transport and actual transport
in TFTR [4].

However, experimental results dose not agree with that collisional transport,

as shown in Fig. 1.2. The experimentally estimated transport coefficient is much

larger than prediction based on the collisional process. At that time, that unex-

pected large transport process was called anomalous transport. Nowadays, it is

revealed that the anomalous transport is mainly caused by the turbulence. Turbu-

lent transport coefficient based on the quasi-linear theory is expressed as,

χ ∼ L2
turb./τturb., (1.2)

where Lturb. and τturb. represent the turbulence correlation length and correlation

time, respectively [5]. For drift wave case, the correlation length is Larmor ra-

dius, and the correlation time is the inverse of drift frequency, respectively. Thus,

transport coefficient is written as,

χ ∼
ρ

Ln

T
eB
, (1.3)
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where ρ and Ln are Larmor radius and density gradient length, respectively. Then,

the transport coefficient in typical tokamak plasma is roughly 1 m2/s. Therefore,

the coefficient described in Eq. (1.3) is much larger than that in Eq. (1.1). Thus, it

is obvious that the plasma confinement is mainly governed by turbulent transport.

The Eq. (1.3) is called as Gyro-Bohm scaling. In simple drift waves case, the

Gyro-Bohm scaling is quite consistent [6, 7]. However, in strong turbulent states,

nonlinear process deforms turbulent correlation length as ∼
√
ρLn. In this case,

transport coefficient becomes,

χ ∼
T
eB
, (1.4)

which is called as Bohm scaling. Compare to the Gyro-Bohm, such a Bohm

scaling induces large transport. Indeed, transports described as Bohm scaling are

widely observed, and often accompanies a ballistic transport, which ejects heat

and partilces instantaneously from core to edge [8–11]. Therefore, understanding

of such transport mechanism and its turbulence process is important.

One of the reason of long correlated structure is due to the nonlinear process

of turbulence. In plasma, micro-scale turbulence produce a number of convective

cells [12], which have meso-scale structure. The convective cell is generated via

Reynolds force of turbulnce, which is similar to the inverse cascade in quasi two-

dimensional neutral fluid [13,14]. One of the most famous examples of convective

cells is zonal flow [15, 16]. Zonal flow is azimuthally elongated and radially lo-

calized convective cell [17–20]. Due to the such sturcture, zonal flow decorrelates

turbulence radially via shearing effect [21–24]. Thus, turbulence transport is re-

duced [25–27]. Zonal flows are also known as a key for the transition from the

low confinement mode to high confinement mode (L-H transition) [28–31].

Turbulence also can generate radially elongated and azimuthally localized

structure, which is called streamer [32–35]. Similar to the zonal flow, turbu-

lence can forms streamer via Reynolds stress [36, 37]. Streamer is expected to
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enhance the transport due to its elongated correlation length. However, compare

to the zonal flows, the experimental observation of the streamer is few and par-

tial. In practical, the controlling of streamer is important for plasma confinement,

e.g., the streamer suppression contributes confinement improvement, while the

streamer enhancement contributes releasing extra stored energy and impurities

before disruption. Thus, basic understanding of streamer is required.

1.3 Streamer formation

FIG. 1.3: The contour plot of potential vorticities. The horizontal axis shows
radial direction [33].

The study of streamer has progressed in simulation and theory. The various

simulation results show that the turbulence, such as collisional drift waves [38],

ITG (Ion Temperature Gradient mode) [32], ETG (Electron Temperature Gradient

mode) [33, 34, 39] and ballooning mode [40], can nonlinearly excite large scale

secondary vortex, which enhances radial transport. The famous example is ob-

served in the ETG turbulence, as is shown in Fig. 1.3 [33]. The gyrokinetic simu-

lation is performed for the ETG turbulence in toroidal geometry, and it is revealed

that the electron heat flux was increased from ordinal ETG inducing heat flux. In

the increased heat flux case, the radially elongated convective cells are formed.

The convective E × B drifts can transfer plasma energy and particles from core

region to edge. The resultant diffusion coefficient is thus above the gyro-bohm

9



diffusion.

From theoretical approach, streamer is also described as nonlinear wave. It is

known that the streamer is a formed from the Hasegawa-Mima equation [35–37,

41]. The equation is finally expressed as nonlinear Schrodinger equation [35,41],

which has a soliton solution. Following Ref. [41], there are two solutions, fast

mode and slow mode. The structure of the fast and slow mode are described in

Fig. 1.4 (a) and (b), respectively [41]. For the fast mode, amplitude of convective

cells are localized in x direction, and elongate in y direction (x and y axes indicate

azimuthal and radial directions). Thus, the fast mode can become a streamer. On

the other hand, the slow mode has a node in y direction. This mode is called a

mediator, which is nonlinearly interacted with turbulence to excite the streamer.

r!

θ!

FIG. 1.4: Stream lines of (a) fast mode and (b) slow mode, obtained from the
solution of the nonlinear Schrodinger equation [41].

In this way, the study of streamer has been performed through simulation and

theory. However, as mentioned before, experimental observations in hot confined

plasmas are very few. Since the streamer has radially elongated and azimuthally

localized structure, simulatneous fluctuation measurements from core to edge and

low-field side to high-field side are necessary. This is quite difficult in high tem-

perature torus plasmas. There are only few experimental observations that the
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fluctuations have long radial correlations [42], but it is not clear about the streamer

excitation and their impact on transport.

On the other hand, in cylindrical plasmas, since plasma temperature is rela-

tively low, direct fluctuation measurements from core to edge are possible. There-

fore, cylindrical plasmas help us to understand basic physics of the nonlinear pro-

cess, structure and transport driven by streamer. The cylindrical device, LMD-U

(Large Mirror Device Upgrade), which was in Kyushu University, is a linear mag-

netized plasma with low temperature [43]. Besides, in LMD-U plasma, large den-

sity gradient can be formed, and can excite drift wave instability. These diagnostic

advantages enable to observe streamer for the first time [44].

FIG. 1.5: The modulation of the fluctuation can be seen in time evolution of
ion saturation current fluctuation. The vertical axis of the contour indicates the
poloidal angle, where its direction is electron diamagnetic. Under the contour
plot, ion saturation current fluctuation at poloidal angle θ = 0 is shown [44].

As is shown in Fig. 1.5, streamer was observed as a modulation of the fluctu-
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ations. In the contour plot, thin line of drift wave components rotates in electron

diamagnetic direction, while envelope of the Drift waves rotates in ion diamag-

netic direction. This bunching structure, or amplitude modulation of fluctuations,

is the streamer. The amplitude modulation is carried out through low frequency

flute type mode, which is called as mediator. Nonlinear coupling between the drift

waves and the mediator generates the radially elongated structures. Such structure

is experimentally confirmed by bi-phase analysis, which clarifies the phase rela-

tionship among nonlinear couplings [45]. The observed components of mediator

and streamer are predicted with slow and fast mode in ref. [41]. In addition, the

fluid simulation code, which is called as NLD (Numerical Linear Device) code, is

performed for the varidation [38]. The code is based on the reduced fluid model in

the cylindrical geometry. In the nonlinear saturation phase, the drift waves form

long radial wavelength and azimuthally localized structures. Figure 1.6 shows

the result of NLD. Snapshots of the contour plot of the electrostatic potential are

shown in the figure. The amplitude of radially elongated vortex is localized in az-

imuthal direction, and also extended in the axial direction. The vortex is sustained

for much longer duration than the drift wave oscillation period. It is also con-

firmed that the vortex is come from the nonlinear couplings between drift waves

and mediator.

The radial phase relation and nonlinear process of streamer formation have

been studied in LMD-U, however, there are still some tasks. In the previous re-

sults, the real structure of streamer, which might be a nonlinear waves, are not yet

observed. More important point is that it is not confirmed that whether streamer

really enhances transport. The causality between radially elongated structure and

enhanced transport is still not revealed. In addition, the streamer control is nec-

essary for confinement plasmas. One of the candidates for streamer suppression

is electric field shear. Therefore, the understanding the relation between streamer
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FIG. 1.6: Counter plot of the potential fluctuation in the r-θ and θ-z plane. The
bunching of drift waves are localized in azimuthal and elongate in radial [38].

and electric field is required.

1.4 Purpose of this thesis

The purpose of this thesis is focused on the basic understand of streamer struc-

ture and its impact on transport. As is already mentioned, streamer is a key for

large magnitude of turbulence transport, degradation of confinement and expelling

extra energy and impurities, thus the understanding of their structure, inducing

transport and the controlling are important. Up to know, the streamer is identified

in linear plasma machine, PANTA, by observing the structure of the streamer are

radially extended, azimuthal localized and formed by nonlinear couplings. Thus,

important studies of streamer are remained that (i) how the spatio-temporal struc-

ture of the streamer determined and what is their associated transport and (ii) the

controlling of streamer and its transport by inducing electric field.

To achieve the purpose, the data analysis and experimental methods are devel-
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oped. The observation of streamer structure and its transport should be performed

in quantitative and dynamical ways. Hence, the conditional averaging technique

is developed, and the dynamics of streamer are reconstructed qualitatively. For in-

vestigating the electric field dependence on streamer, the external voltage source is

necessary. Thus, an end-plate biasing experiment is performed to induce electric

field perturbation to the streamer.

This thesis is organized as follows: in Chapter 2, linear machine PANTA and

main measurement tools are explained. Basic idea of Langmuir probes, which

are the main diagnostics in this thesis, are introduced. In Chapter 3, data anal-

ysis techniques are reviewed. In addition to the conventional spectral analysis,

conditional averaging techniques are explained and discussed. Experimental re-

sults are shown from Chapter 4. In Chapter 4, the streamer structure, including its

nonlinearity, and associated transport are mentioned. The spatio-temporal struc-

ture of streamer is revealed by the conditional averaging technique. In Chapter 5,

the biasing experiment is conducted to observe the effect of the electric field on

the streamer. The changes of nonlinear interaction and transport degradation are

discussed. The conclusion of the thesis is in Chapter 6.
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Chapter 2

Experimental device and diagnostics

In magnetically confined hot plasmas, instabilities can develop into the fully

turbulent states, which are composed of wide range of frequency and wave number

components. In such hot plasmas, because of restriction of access of diagnostic

tools, the experimental investigation of turbulence is difficult. Even if accessibility

of the diagnostics is possible, the interruption of obtained data is very complicated

due to lots of factors, e.g., high energy particles and bent magnetic field effects.

Therefore, for studying basic physics of nonlinear interaction of plasma instabili-

ties, a relatively low temperature plasma and a simple magnetic field configuration

is appropriate. The experimental device, PANTA (Plasma Assembly for Nonlin-

ear Turbulence Analysis), successor device of LMD-U, is a linear magnetized

plasma, and produces various type of instabilities through radial inhomogeneities.

These instabilities nonlinearly interact with each other, and can generate meso-

scale structures. In PANTA, because of the relatively low temperature, Langmuir

probe measurement is possible with fine time and space resolutions. In addition

to the probes, a tomography system is developed in PANTA to investigate fluc-

tuations with various scales simultaneously. In this way, the experimental device

PANTA and the methodology of these diagnostics tools are introduced in this
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chapter.

2.1 PANTA

PANTA is a cylindrical device and can produce a linear magnetized plasma. For

studying the basic processes of turbulence [46–48], nonlinear interaction [49,50],

turbulent transport [51,52], etc., such a small simple device has lots of advantages

as shown in the following.

• Accessibility of diagnostics from core to edge

• Measurements with fine time and space resolutions

• Good reproducibility, easy to obtain large ensembles of data for statistical

analysis

• Simple interpretations of data because of simple magnetic field geometry

• Easy to try new experiments and diagnostics

A lot of works, which are focusd on plasma turbulence, are carried out in various

linear device, i.e., CSDX [53,54], LAPD [55,56], MIRABELLE [57], KIWI [58],

VINETA [59], COLLOMBIA [60], MISTRAL [61], LMD-U [62,63], Q-Machine

[64, 65] and HYPER-II [66]. Compare to these device, PANTA is constructed

especially focused on turbulence studies.

The vacuum vessel configuration of PANTA is shown in Fig. 2.1. The cylin-

drical vacuum vessel has the diameter of 457 mm and the length of 4050 mm,

and is composed of 16 modular chambers for frexiblility of diagnostics. Axial

magnetic field is produced by 17 coils and can be set in the range up to ∼0.15 T.

Mainly, Argon gas is injected to produce plasmas at the source region and its fill-

ing pressure is controlled by mass-flow controller. The filling neutral pressure is
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kept constant around the 0.45 ∼ 5 mTorr. The vessel is continuously pumped out

with five turbo-molecular pumps, where their exhaust capability is around 1400

L/s. In addition, two baffle plates with inner diameter of 150 mm are installed

to prevent the neutral gas from being released to main plasma region [67]. The

plasma is produced by helicon wave (1.5k ∼ 6 kW, 7 MHz) with a double loop

antenna. The double-loop antenna is equipped on the surface of quartz tube with

the inner diameter of 100 mm, and it is connected with the matching circuit box

and RF power supply. A pair of capacitors in the matching box can be adjusted

before experiment to minimize the ratio of reflection power to input power. The

stainless flange, called end plate, is installed at the end of the device to terminate

the plasma.

The characteristics of fluctuations depend on neutral gas pressure, magnetic

field and RF input power [68]. The radial pressure gradient can change with mod-

ifiying these external parameters. In addition to the radial pressure inhomogen-

ity, the velocity shear and axial pressure inhomogenity, which are candidate for

free energy source of the fluctuations, are observed in PANTA [46]. These in-

homogenities also can be controled by changing the external parameters. Note

that the collisonal parameter, e.g. ion-neutral collison frequency, is also modified

by changing the external parameter. The collisonal parameter is important for

the growth and damping of the instabilities. In adition to the experiments, vari-

ous simulation studies have been done in PANTA for varidation and prediction of

fluctuations [69–71].

The streamer is observed in relatively low gas pressure, at around 0.06 ∼ 0.13

Pa (or 0.45 ∼ 1 mTorr) [68]. Typical central density and electron temperature

are 0.5 × 1019m−3 and 2 eV, respectively. The electron density gradient is steep

in the region of r = 30 - 40 mm, where drift wave instabilities are excited [72].

The linearly excited drift waves form self-focused (bunching) structure through
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FIG. 2.1: Configuration of linear cylindrical plasma device, PANTA.

Parameters Streamer condition Available range
Background Pressure 1.0 × 10−4 Pa 1 × 10−4 − 5 × 10−3 Pa
Filling Gas Pressure 6.0 × 10−2 Pa 6.0 × 10−2 - 6.7 × 10−1 Pa

Magnetic Field 0.09 T up to 0.15 T
RF Power for Helicon 3 kW 1.5 − 6 kW
Peak Electron Density 5 × 1018 m−3 1018 − 1019 m−3

Electron Temperature 2 eV 1 − 6 eV
Ion Temperature 0.1 eV 0.1 − 0.3 eV

Table 2.1: Typical values of plasma parameters in the streamer condition and
available ranges for various experiments.

amplitude modulations by the mediator. Operation conditions and typical plasma

parameters in the streamer condition are summarized in Tab. 2.1.

In PANTA, data acquisition is performed through Analogue-to-Digital con-

verters (ADC) called ”WE7000”, which was manufactured by YOKOGAWA. The

192 channels are used for obtaining basic parameters and probe diagnostics. The

sampling rate of the ADC at the experiment is 1 MHz. Figure 2.2 shows the data

acquisition and network in the experimental room. Every channel data is stored

in a data server through FTP transmission. It is noted that the data acquisition of

tomography system is different. The details are shown in the later section.
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FIG. 2.2: The data acquisition and network system in PANTA.

2.2 Diagnostics

To measure plasma fluctuations, Langmuir probe is a suitable tool for its ac-

cessibility and wide variety of measurable parameters. The advantages of probes

are simple design mechanism and feasibility with fine spatio-temporal resolution

measurements, while the disadvantages are that the probes disturb plasma and

could not access to the hot plasma. Therefore, measurement tools, which are

not disturbing plasma, are also developed in PANTA. The tomography system is

now developed and could detect wide spatio-temporal range of fluctuation simul-

taneously. In the following section, the methodology of probes and tomography

system in PANTA are introduced.

2.2.1 Basics of Langmuir probe

Langmuir probe was invented by Langmuir and Mott-Smith in 1926, as a plasma

measurement facilitate tools [73]. The probe tip is composed by tungsten or

molybdenum to withstand high heat flux. Langmuir probe can measure follow-

ing quantities; plasma density, electron temperature, floating and plasma potential

and their fluctuations. The probe measurement is simple, however, the interrup-
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tion of the data is not straightforward. The basic idea of the probe measurement

is mentioned here.

!"#$!

%&#$'#!

()$$)&*+#&&!

,-.!

/
!

,-.!

FIG. 2.3: Typical circuit for single probe measurement. The bias voltage ampli-
tude is 50 V, and the sweeping frequency of the triangle wave is 100 Hz. A shunt
resistance is set to R = 20 Ω.

• Single probe measurement

The single probe measurement is the most basic and essence of the probe mea-

surement [74]. The typical circuit for the single probe is shown in Fig. 2.3. The

probe tip is biased sweepingly by probe voltage Vp, and the probe current Ip is

measured by a shunt resistor. In PANTA, the triangle waveform with amplitude of

50 V and frequency of 100 Hz is applied to the probe tip. The obtained Ip-Vp curve

contains an information of density, electron temperature and plasma potential of

bulk plasma.

Figure 2.4 shows the typical Ip-Vp curve. When the bias voltage equals to the

plasma potential Vs, the plasma is not affected by the biasing. In this case, thermal

motion of ion and electron flow into the probe as,

I j =
1
4

Aq jn jv̄ j ≡ I j0, j = i, e, (2.1)
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where A is the collective area of probe tip, q j, n j and v̄ j indicate charge, density

and mean thermal speed of ion and electron. Here, the mean thermal speed is

defined as,

v̄ j =

√
8T j

πm j
, j = i, e, (2.2)

where T j and m j are temperature and mass of ion and electron. Therefore, in the

Vp = Vs case, the probe current is represented as,

Ip = Ie0 + Ii0. (2.3)

Since the electron mean thermal speed is much larger than ions, the probe current

is mostly dominated by the electron current.

Vp!

-Ip!

Vf!

0
!

(3)!

(2)!

(1)!

FIG. 2.4: Schismatic of typical Ip − Vp curve.

According to the bias voltage, the characteristic of probe current changes and

can be categorized in three domains; (1) electron saturation region (electron sheath

region), (2) electron deceleration region and (3) ion saturation region (ion sheath

region).
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(1) Electron saturation region

When the bias voltage is beyond the plasma potential, i.e., Vp > Vs, ions are

repelled and electrons are accelerated to the probe tip. The probe tip is surrounded

by the electrons, which is called electron sheath. In this case, the probe current is

dominated by the electron current as,

Ip � Ie0. (2.4)

(2) Electron deceleration region

When the bias voltage is less than the plasma potential, i.e., Vp < Vs, ions are

accelerated and electrons are repelled from the probe tip. Then the probe tip is

start to surrounded by the ions, which is called ion sheath. However, since the

electron thermal speed is large, the probe current is still dominated by the electron

current. The decrease of the electron density can be followed with Boltzmann

relation as,

ne = ne0 exp
(
−

e(Vp − Vs)
Te

)
. (2.5)

Therefore, electron current is written as,

Ie = Ie0 exp
(
−

e(Vp − Vs)
Te

)
. (2.6)

For ions, at the sheath edge, the Bohm’s ion sheath criterion indicates that the

ions are accelerated to the sound speed by the sheath potential drop Vsheath = Te/2e

(relative to the plasma potential) as,

vi =

√
2eVsheath

mi
=

√
Te

mi
≡ cs. (2.7)

At the sheath edge, where the quasi-neutrality is preserved, ions flow into the
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probe tips with the density given as,

ni = ne = ne0 exp
(
eVsheath

Te

)
= ne0 exp

(
−

1
2

)
. (2.8)

Thus, the ion current is represented as,

Ii = Ii0 + Aqinics = Ii0 + Aqine0cs exp
(
−

1
2

)
. (2.9)

Since the ion thermal motion is sufficiently small, the heat diffusion current Ii0 is

negligible. Finally the probe current is obtained as,

Ip = Aqine0cs exp
(
−

1
2

)
− Ie0 exp

(
−

e(Vp − Vs)
Te

)
. (2.10)

This formula provides to measure the electron temperature by subtracting the ion

current components and then calculate the slope of the semi-logarithmic plot. In

addition, when Ip becomes 0, the ion and electron current is equivalent. Such a

bias voltage is called floating potential V f .

(3) Ion saturation current region When the bias voltage is much smaller than the

plasma potential, electrons are almost repelled from the probe tip and complete

ion sheath is created. The probe current is dominated in the ion current as,

Ip = Aqine0cs exp
(
−

1
2

)
. (2.11)

This is called ion saturation current. The electron density ne0 is easily calculated

by substituting Te.
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FIG. 2.5: Typical circuit for double probe measurement. The bias amplitude is 50
V, and the sweeping frequency of the triangle wave is 100 Hz. The bias current is
monitored by the Shunt resistance of R1 = 51.1 Ω and current probe. Bias voltage
is traced directly from probe tips. Parallel resistance is R2 = 500 Ω.

• Double probe measurement

Single probe measurement is attained through biasing the probe tips against refer-

ence potential ground, which is often set by the vessel ground. When the plasma

potential changes temporally from the vessel ground (e.g. in the situation of bias-

ing experiment), the appropriate Ip-Vp curve do not be obtained.

Double probe measurement is performed by using two probe tips with floated

circuit relative to the vessel ground, as shown in Fig. 2.5. Since the circuit is

floated, the appropriate probe current is obtained even if the plasma potential

changes temporally. The typical Ip-Vp curve is shown in Fig. 2.6. Here, the

bias current is restricted to the ion saturation current. The electron temperature is

deduced from the Ip-Vp current as,

Te

e
= −

ΣIi

A1

(
dIp

dVp

)
Vp=0
− A2

(
dIp

dVp

)
Vp=sat.

, (2.12)
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FIG. 2.6: Schematic of typical Ip-Vp curve for double probe measurement.

where ΣIi indicates summation of ion saturation current for each probe tip (see

Fig. 2.6), and coefficients A1 = 4 and A2 = 3.28 for laboratory plasmas. In prac-

tical way, the slopes and ΣIi are obtained from Ip-Vp curve by fitting linear ( for( dIp

dVp

)
Vp=sat.

) and tangent hyperbolic function ( for
( dIp

dVp

)
Vp=0

and ΣIi) simultane-

ously.

• Fluctuation measurement : Ion saturation current

When the bias voltage is sufficiently negative to the plasma, ion saturation current

flowing into the probe tips. The fluctuation of ion saturation current is measured

with a constant biasing. The bias voltage of Vp = -90 V is applied for the ”black”

circuit box (used for 64ch probe and 5ch probe, which will mention in the section

2.2.2), and Vp = -60 V is applied for the ”silver” circuit box (used for RS probe,

which is also introduced in the section 2.2.2). The circuit is indicated in Fig.

2.7. The fluctuation components of ion saturation current, which is described

in Eq. (2.11), could be represented when the electron temperature fluctuation is
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FIG. 2.7: Schematic of typical circuit for fluctuation measurement of ion satura-
tion current. Shunt resistance of R = 20 Ω is provided.

negligibly small,

Ĩis ∝ ñe, (2.13)

where fluctuation components of signal x is defined as x̃ = x − x̄ (x̄ indicates long

time average of signal x). The validity of the assumption that the electron temper-

ature fluctuation can be neglected is confirmed that the temperature fluctuations

are small compared with the density fluctuations as T̃e
〈Te〉

/ ñe
〈ne〉
≤ 1

12 [75].

• Fluctuation measurement : Floating potential

The floating potential is obtained by connecting a high impedance resistor so that

the probe current becomes negligible relative to the ion saturation current. Figure

2.8 shows schematic view of floating potential measurement circuit. The pickup

resistor R2 is set to 50 kΩ for black box and 50 Ω for silver box. Floating potential

is obtained by substituting Ip = 0 into Eq. 2.10, and is given as,

V f = Vp + α
Te

e
, (2.14)
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FIG. 2.8: Schematic of typical circuit for fluctuation measurement of floating
potential. The resistance for voltage divider is set as R1 = 1 MΩ and R2 = 50 kΩ

(for black circuit box) or R2 = 50 Ω (for silver circuit box).

where α is given as,

α = ln
[
exp

(
−

1
2

)√
2π

me

mi

]
. (2.15)

For Argon plasmas, α is approximately -4.8. Here, the same assumption, that

the electron temperature fluctuation is small compared to the plasma potential

fluctuation, is applied and thus,

Ṽ f ' Ṽp. (2.16)

2.2.2 Probe arrays

The combination of Langmuir probe can provide to measure a lot of quantities,

i.e., wave number, electric field fluctuations, fluctuation induced particle flux and

Reynolds stress. In this thesis, following three probe arrays are used.

• 64ch probe

An azimuthal aligned Langmuir probe is one of the methods to investigate the

azimuthal wave number and the frequency of fluctuations simultaneously and ap-
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FIG. 2.9: (a) Picture of the 64ch probe array. (b) Extended view.

plied in many devices, such as KIWI [76], VINETA [57] and TJ-K [78]. A view of

the 64-channel azimuthal probe array (64ch probe) is shown in Fig. 2.9 (a). Each

probe consists of a tungsten tip with the diameter of 0.8 mm and the length of 3

mm. The 64ch probe is locatted at z = 1885 mm, almost middle of the PANTA.

The alternatingly arranged 32 probes of the array measure ion saturation current,

and the other neighboring 32 probes measure floating potential. The radial posi-

tion of probe tips are 40 mm, as shown in Fig. 2.9 (b). The accurate alignment of

the probe tip is demonstrated for reducing errors of azimuthal mode number [79].

After install to the PANTA, the center of the array can be adjusted to be the center

of the plasma within a precision much less than few mm. The detail of alignment

is referred in [79]. The 64ch probe is connected to the black circuit box. For

floating potential measurement, the stray capacitance of co-axial cable could dis-

tort the high frequency power and phase. The black box includes a compensating

capacitance, which is possible to measure the fluctuation with the frequency less

than 20 kHz.
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FIG. 2.10: Picture of 5ch radial probe. Distance between neighbouring two probe
tips is 10 mm.

• 5ch probe

Another basic tool in PANTA is 5-channel radial probe array (5ch probe) as shown

in Fig. 2.10. The radial interval of the probe tips is 10 mm. It measures a ion

saturation current or floating potential. In the experiment, 5ch probe is mostly

located at z = 1375 mm (in front of the 64ch probe array). The radial position of

5ch probe is calibrated by using the position of most strong correlation between

5ch probe and 64ch probe.

• RS probe

r!

θ!
B!

!""!

(a)! (b)!

FIG. 2.11: (a)RS probe tips. (b)The resistance of 1 MΩ is prepared just before the
long co-axial cable.
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Reynolds stress probe (RS probe) is composed of 6 tungsten tips, as shown in

Fig. 2.11 (a). Each probe tips have a distance of 5 mm from the center probe tip,

except the one of tip [80, 81]. In the experiment, the center probe measures ion

saturation current, and the other probe measure floating potential. The combina-

tion of potential fluctuation measurement allows to deduce radial and azimuthal

electric field fluctuations. Then, Reynolds stress or particle flux is derived from

the RS probe.

For the floating potential measurement, the circuit of RS probe is different

from 64ch probe and 5ch probe. As shown in Fig. 2.11 (b), the large resistance

of 1 MΩ is installed just after the probe system, before the long co-axial cable.

This system reduces the effect of stray capacitance of the co-axial cable. Then, the

co-axial cable installed to the ”silver” circuit box, which has 50 Ω pick-up resistor

and the signal is transmitted to the ADC through 40 dB amplifiers.

2.2.3 Tomography

For measuring multi-scale fluctuations structure, tomography system is now on

developed in PANTA [82]. The emissions from Argon lines are measured through

collimator at the detector, as shown in Fig. 2.12. The 4 detectors are set in the

module, and each detector has 33 channels of sight. Thus, totally 132 channels are

prepared to measure the integrated line of sight simultaneously. The optical filter

is installed to detect the ArI (810 ± 30 nm) or ArII (476.5 ± 30 nm). In PANTA,

the observation revealed that the emission intensity of ArI is stronger than that of

ArII. Finally, the photons are converted to the electric signals by photo-diode and

digitized by the ADC, which has the sampling rate of 1 MHz.
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FIG. 2.12: (a) Schematic of tomography system in PANTA. (b) Picture of detec-
tors and fibers.

•Maximum Likelihood-Expectation Maximization method

Tomography is a method to reconstruct the local emission profile from a set

of line integrated emission signals. There are a number of algorithms for the re-

construction, however, maximum likelihood-expectation maximization (MLEM)

method is preferable for the turbulence measurement [83]. MLEM has two ad-

vantages; (1) assumption of any basis function is not required and (2) returning

only positive values. MLEM has been developed in medical application fields,

as known for iterative algorithm. The goal of the reconstruction is that the esti-

mation of the local emissions from the j-th grid, ε j, as shown in the Fig. 2.13.

The integrated emission yi is measured in the i-th detector and can be written as

yi = Σ jCi jε j, where Ci j indicates the contribution coefficient to the i-th line of sight

from the j-th grid. Assume that the detection of photons obey Poisson distribution,

the probability of the number of photons from the j-th grid xi j is calculated as,

P(xi j) = e−Ci jε j
Cxi j

i j ε
xi j

j

xi j!
. (2.17)
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Then, maximum likelihood method is applied to the probability density function

of the xi j for every j-th grid and i-th detector as,

∂

∂ε j
ln

(
ΠiΠjP(xij)

)
= 0. (2.18)

When the emission after the k-th iteration calculation is assumed as εk
j , the number

of photons from the j-th grid xi j is expected as,

E(xi j) = yi

Ci jε
k
j

ΣmCimεk
m
. (2.19)

Finally, the (k+1)th iterated local emission, εk+1
j is calculated by Eq. (2.18) and

Eq. (2.19) as,

εk+1
j =

ΣiE(xi j)
ΣiCi j

. (2.20)

εj!

xij!

i!
i-1!

i+1!
!"#"$#%&!

yi!

FIG. 2.13: Configuration of MLEM method.

The iteration is performed until the convergence of the emission is obtained as,

∣∣∣εk+1
j − εk

j

∣∣∣ < δ, (2.21)
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where δ is chosen as 10−5× (maximum value of εk
j ). For the practical calculation,

the initial emission distribution ε0
j is selected to 1 for every j-th grid.

• Fourier-Bessel expansion

For studying the fluctuations structure effectively, the reconstructed local emis-

sion distribution could be fitted to Fourier-Bessel function [84]. The decomposi-

tion to Fourier-Bessel function is given as,

ε (r, θ) = Σmn [amnJm (knr) cos (mθ) + bmnJm (knr) sin (mθ)] , (2.22)

where Jm(knr) indicates normalized m-th order Bessel function. For the boundary

condition, the Jm(knLmax) = 0 should be satisfied, where the Lmax is the radius of

the boundary.

Figure 2.14 shows examples of the tomography, ArI emission. The recon-

structed emission distribution at a certain time is obtained from the MLEM method.

The emission distribution is not azimuthally symmetric. It is suggested that the

fluctuations with several azimuthal mode number components are coexistent. The

Fourier-Bessel expansion is applied to the emission data, and the fluctuation com-

ponents of m = 0, 1 and 2 are extracted. The counter plots in Fig. 2.14 apparently

show that the fluctuations with different mode number and spatial scales coexist

in the plasma.
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(a) Reconstructed-emission!

(b) m = 0!

(c) m = 1!

(d) m = 2!

FIG. 2.14: Example of the tomography signal at a certain time. (a) Emission
distribution deduced form MLEM. (b)-(d) Fourier-Bessel expansion of fluctuation
components of m = 0, 1 and 2, respectively.
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Chapter 3

Methods of data analysis

In magnetized plasmas, turbulence behaviours are complex in time and space.

Undoubtedly, investigation of raw signals is crucial, however, the raw signals nor-

mally contain noises. Thus, statistical analysis is a strong tool to extract important

information from the signal quantitatively. Since the analyzed results change de-

pending on the process of data analysis, verification study is important. In this

chapter, the methods of data analysis with the check of validity of their process

are mentioned.

3.1 Spectral analysis

Idea of spectral analysis is based on the concept that the raw temporal sig-

nals are composed of superposition of fundamental waves. The decomposition of

the signals are performed by two practical ways, Fourier and wavelet transforms.

The decomposed complex coefficient represents the information of amplitude and

phase, which are used in various analysis process. In this section, Fourier and

wavelet transforms and their fundamental applications are explained.
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3.1.1 Fourier Transform

S
p

ec
tr

a!

Sinusoidal waves!Non-sinusoidal wave!

Fourier  

Transform!

FIG. 3.1: Image of Fourier transform.

Fourier transform is a well-known method to decompose complicated wave-

froms to sinusoidal waves, which contain amplitude and phase information [85].

A schematic of Fourier transform is described in Fig. 3.1. Fourier transform of

time series x(t) is defined as,

X( f ) =

∫ ∞

−∞

x(t)e−i2π f tdt, (3.1)

and inverse Fourier transform is defined as,

x(t) =

∫ ∞

−∞

X( f )ei2π f td f . (3.2)

Here X( f ) indicates Fourier component of x(t) at frequency f . Since X( f ) is

obtained from the real numbers of x(t), it becomes complex number, and satisfies

X( f ) = X∗(− f ). Fourier components of each frequency can be described as,

X( f ) = |X( f )| eiθ( f ), (3.3)

where |X( f )| and θ ( f ) indicate amplitude and phase of Fourier components. To

transform experimental discrete data, restriction of time resolution and finite time

series length can not be avoided. Thus, for the discrete signal xp (p = 0 · · ·N − 1),
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discrete Fourier transform is adopted as,

Xn =
1
N

N−1∑
p=0

xpexp
(
−i2πpn

N

)
, (3.4)

and inverse discrete Fourier transform is defined as,

xp =

N−1∑
n=0

Xnexp
(
i2πpn

N

)
. (3.5)

Here Xn represents discrete Fourier components. Discrete Fourier transform is

usually demonstrated with fast Fourier transform (FFT) algorithm. If Fourier

transform is applied to N size data in the manner of Eq. (3.4), N2 number of

calculations are required. On the other hand, FFT requires NlogN number of

operations. When the data size N increases, FFT is much faster than the direct

calculation of Eq. (3.4).

Fourier transform can be applied to spatial series of data and it provides wave

number information, i.e. mode number. Discrete Fourier transform in spatiotem-

poral signal zp,q is defined as,

Zn,m =
1

NM

N−1∑
p=0

M−1∑
q=0

zp,qexp
[
−2πi

( pn
N
−

qm
M

)]
, (3.6)

where f = n∆ f (∆ f is a frequency resolution), m is a mode number, t = p∆t (∆t is

a time resolution) and x = q∆x (∆x is a spatial resolution). N and M indicate num-

ber of measurement times and points. Great benefit of two-dimensional Fourier

transform is that propagation direction of fluctuation movement can be identified.

One-dimensional Fourier transform of real signals can not distinguish between

positive or negative frequency (or mode number) components, due to symmetry

between Fourier components and its complex conjugate, i.e., Xn = X∗−n. Two-
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dimensional Fourier transform can distinguish between the positive and negative

frequency (or mode number) as Zn,m , Z∗−n,m (or Zn,m , Z∗n,−m). Therefore, mode

number can be defined as m = −M/2 ∼ M/2 − 1 for f = 0 ∼ (N − 1)∆ f /2, or

frequency can be defined as f = −N∆ f /2 ∼ (N−1)∆ f /2 for m = 0 ∼ M/2−1. In

PANTA, 64ch probe measurement signals are frequently used to determine fluc-

tuations rotation direction.

3.1.2 Wavelet Transform

(a)!

(b)!

(c)!

FIG. 3.2: Morlet wavelet with different scale and position in the case of the di-
mensionless frequency ω0 = 6. Black and red lines are real and imaginary part of
the function, respectively.

The wavelet transform is commonly used as dynamical analysis. Compare to

Fourier transform, wavelet basis function changes its scale in time and frequency
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space. The wavelet transform is conducted through convolution of the signal with

the basis functions ψ0(η), where η is dimensionless time parameter, such as,

W (s, τ) =
1
√

s

∫ ∞

−∞

x (t)ψ∗0
( t − τ

s

)
dt. (3.7)

Here, s and τ indicate the scale and position of the basis function, respectively. Al-

though there are several basis functions, Morlet wavelet is introduced here [86].

The Morlet wavelet is constituted by the sinusoidal wave modulated by the Gaus-

sian as,

ψ0 (η) = π−1/4eiω0ηe−η
2/2, (3.8)

where ω0 denotes the dimensionless frequency. Figure 3.2 shows the Morlet

wavelet of ω0 = 6 with different position and scale. The Morlet wavelet opti-

mizes its position and scale to maximize the most efficient time and frequency

resolutions.

3.1.3 Applications

Fourier and wavelet transforms decompose signals to frequency or wavenumber

components. The coefficient of each component is usually expressed as complex

number, thus there are several techniques to extract real information from ampli-

tude and phase from the coefficient. Some important applications and verification

are mentioned in this subsection. Note that the following explanations are only

represented for Fourier coefficient X( f ), but the wavelet coefficient W(s, τ) is also

can represent as same formula.

• Auto power spectrum

Energy of each component is estimated by its squared amplitude as |X( f )|2.

Obtained Fourier components are extracted from the observed signals in range of

39



[−T/2,T/2]. Thus auto power spectral density function P ( f ) is defined as,

P ( f ) = lim
T→∞

1
T
〈X( f )X∗( f )〉, (3.9)

where the bracket 〈·〉 represents ensemble average. Auto power spectrum P( f ) de-

notes contributions to the total fluctuation power through frequency range within

f ∼ f + d f . Therefore, the summation of auto power spectrum is identified with

squared time averaged fluctuation signal as,

x̄2 = lim
T→∞

1
T

∫ T/2

−T/2
x2(t)dt =

∫ ∞

−∞

P( f )d f . (3.10)

(a)! (b)!

N = 1,10,100!

FIG. 3.3: (a)Test signal. (b) Auto power spectrum of the test signal with different
ensemble number N.

If the signal x(t) obeys Gaussian distribution, estimated power spectrum with-

out ensemble averaging has relative error of 100%. One of the methods to reduce

the error is the ensemble averaging. The verification study is introduced here. The

test signal of x(t) = sin(2π f t) + noise, where f = 8 Hz and the noise expresses the

white Gaussian noise with a standard deviation of 0.8, is shown in Fig. 3.3(a). The

auto power spectrum with different ensemble number N are shown in Fig. 3.3(b).

It is obvious that the error of the spectrum decrease as the number of ensemble

averaging increases. When data are independent from one another, variance of the
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power spectrum decreases with 1/N.

• Cross Power Spectrum

Relationship between two different signal can be analysed by cross power spec-

trum. Cross power spectrum between x(t) and y(t) can be described as,

S xy ( f ) = lim
T→∞

1
T
〈X∗( f )Y( f )〉. (3.11)

Since cross power spectrum is generally complex, the spectrum can be written as,

S xy ( f ) =
1
T
〈|X( f )| |Y( f )| e−iθxy( f )〉. (3.12)

Here, Eq. (3.3) is used. The θxy( f ) is known as cross phase, indicating averaged

phase difference at frequency f . The cross phase is obtained as,

θxy ( f ) = tan−1
Im

[
S xy ( f )

]
Re

[
S xy ( f )

] . (3.13)

N = 5,50,500!
f = 8Hz!

f = 14Hz!

f = 20Hz!

(a)! (b)!

"1/N!

FIG. 3.4: (a)Spectrum of cross coherence for test data. (b) The convergence study
shows that the noise of squared cross coherence decrease with 1/N.

For quantifying correlation between different two signals, cross coherence is usu-
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ally used. Squared cross coherence is a normalized quantity of cross power spec-

trum and defined as,

coh2
xy ( f ) =

∣∣∣S xy( f )
∣∣∣2

S xx( f )S yy( f )
, (3.14)

where S xx( f ) and S yy( f ) are auto power spectra of x(t) and y(t), respectively. Cross

coherence shows the degree of conservation of the cross phase.

The error of the cross coherence decreases with the averaging number of en-

semble. The test signals of x(t) = sin(2π f1t) + noise, and y(t) = sin(2π f1t +

π/2) + sin(2π f2t) + noise are used here, where f1 = 8 Hz, f2 = 14 Hz and the noise

expresses white Gaussian noise of standard deviation of 0.8, respectively. The

obtained cross coherence with different averaging number of ensemble is shown

in Fig. 3.4(a). It is clear that the coherence except f = 8 Hz decrease with ensem-

bles. The decrease of the error can be considered by convergence study, as shown

in Fig. 3.4(b). The reduction of the noise components of f = 14 and 20 Hz are

proportional to the inverse of the number of ensemble, 1/N.

Re!

Im!

coh
2

θxy ( f )

1

N

dθ

1

N

FIG. 3.5: Image of error estimation of the cross phase.

The error of the cross phase can be evaluated deduced from the error of the
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cross coherence. The image of the error estimation of cross phase is shown in

Figure 3.5. Since the confidential level of squared cross coherence is described

with 1/N, the error of cross phase dθ could represent as,

dθ = arcsin
(

1/N
coh2

)
. (3.15)

• Auto bi-spectrum

Bispectral analysis is an essential tool in quantifying the conservation of phase

relation among three waves couplings. Three-wave nonlinear coupling such as

disparate scale interactions or parametric modulation instability are evaluated by

the method [87,88]. Auto bi-spectrum shows the degree of coupling between three

waves with frequencies f1 , f2 and f3, where the matching condition, f1 + f2 = f3

is satisfied. Auto bi-spectrum is defined as,

B̂ = 〈X( f1)X( f2)X∗( f3)〉, (3.16)

where X( f1), X( f2) and X( f3) indicate frequency components of time series x(t).

Auto bi-spectrum becomes finite if the phase relation between X( f1), X( f2) and

X( f3) is constant. It is convenient to define the normalized quantity, i.e., squared

auto bi-coherence b̂2, in order to estimate the occurrence of three-wave coupling

qualitatively as,

b̂2( f1, f2) =
|B̂( f1, f2)|2

〈|X( f1)X( f2)|2〉〈|X( f3|
2〉
. (3.17)

The confidence level of the squared auto bi-coherence is 1/N, indicated in Ref.

[89]. The bi-phase is the phase relations among three waves, and is defined as

θb( f1, f2) = tan−1
Im

[
B̂( f1, f2)

]
Re

[
B̂( f1, f2)

] . (3.18)
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Auto bi-coherence indicates the degree of conservation of bi-phase.

f1+f2=f3 

f2+f1=f3 

f3-f2=f1 

f3-f1=f2 

f2-f3=-f1 f1-f3=-f2 

f1 f2 f3 

!"#$#!%&

!"#$#'!%&

Frequency 1&

Frequency 2&

FIG. 3.6: Schematic of symmetry of squared auto bi-coherence. Black points
indicate the same meaning.

Squared auto bi-coherence has symmetric relationship in f1 - f2 space as

shown in Fig. 3.6. Every black points in the figure show the same physical

meaning, i.e., three-wave coupling of f1 + f2 = f3. The mathematical reason

of symmetry of real part of squared auto bi-coherence is due to the symmetry of
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auto bi-spectrum, as expressed in the following.

B̂( f1, f2) = B̂∗(− f1,− f2)

= B̂( f2, f1)

= B̂( f1,− f1 − f2)

= B̂( f2,− f2 − f1)

= B̂∗(− f2,− f1)

From the top of the equations denote that point symmetry in f1- f2 coordinate, f1 =

f2 line symmetry, symmetrical point across the horizontal line f2 = 0, symmetrical

point across the vertical line f1 = 0 and f1 = − f2 line symmetry, respectively, as

shown in Fig. 3.6.

The total bi-coherence is useful for analysing the contribution of many mode

couplings to a certain mode f3. It is defined as,

b̂2
Total( f3) =

∑
f3= f1+ f2=const.

b̂2( f1, f2). (3.19)

3.2 Numerical filter

Techniques of numerical filter can extract specific frequencies or mode ranges

from signals instantaneously. Such extracted time series are useful to study dy-

namics of fluctuations. In this subsection, the basic idea of numerical filter and its

applications, spatial filter and Hilbert transform are explained.

3.2.1 Temporal filter

Temporal filter is fundamental of the numerical filter to extract the specific

frequency components from the raw signal. The temporal filter can be conducted
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through the convolution of raw signal x(t) with window function h( j) as,

x̂(t) =

m∑
j=−m

h( j)x(t − j∆t), (3.20)

where x̂(t) is the filtered signal. ∆t is a sampling time and order of the filter is

k = 2m + 1. When a sinusoidal wave x(t) = exp(i2π f t) is input to the system, the

filtered signal is obtained as

x̂(t) = ei2π f t
m∑

j=−m

h( j)e−i2π j f ∆t

= ei2π f tH( f )

= |H( f )| ei(2π f t+θ). (3.21)

Therefore, the amplitude of the input signal is modified by transfer function H( f ) =∑m
j=−m h( j)e−i2π j f ∆t, which is Fourier transform of the window function h( j). It is

noted that transfer function could change the phase of the input signal, as denoted

as θ in Eq. (3.21). Since the phase delay θ should manage to be 0, the window

function h( j) should be finite and even function. Such a filter is called as finite

impulse response (FIR) filter.

The goal of numerical filter is designing h( j) for required frequency operation

such as low-pass filter, high-pass filter, band-pass filter and band-reject filter. The

window function h( j) is obtained by inverse Fourier transform of H( f ). The most

suitable transfer function H( f ) is obtained by using least squares method,

δ =

∫
|Hideal( f ) − H( f )|2 d f , (3.22)

where Hideal( f ) is an ideal transfer function. The design of H( f ) is determined to

minimize the value δ.
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For applying a low-pass filter, the least squares method provides transfer func-

tion as,

H (F) =

 1 (0 ≤ |F| ≤ Fc)

0
(
Fc ≤ |F| ≤ 1

2

) , (3.23)

where F = f ∆t and Fc = fc∆t are normalized frequency and cut-off frequency,

respectively. The inverse transform gives window function as,

h ( j) =

 2Fc ( j = 0)
sin 2πFc j

π j ( j , 0)
. (3.24)

(a)! (b)!

j!

h
(j
)!

FIG. 3.7: (a) Window functions with different filter order k. (b) The ideal transfer
function and obtained transfer function with different filter order. Here, the cut-off

frequency is Fc = 0.1.

Obtained window function and transfer function with different filter order k are

shown in Fig. 3.7(a) and (b), respectively. The cut-off frequency Fc = 1 is set.

It is clear that the quality of the transfer function H( f ) depends on the filter or-

der k. Increase of k makes the transfer function sharper at the cut-off frequency.

However, ripples around the cut-off frequency do not disappear even if k increases

(this is called as Gibbs phenomenon). Therefore, modification of the filter design

is performed next.

The modification of ideal transfer function is shown in black line in Fig.3.8(b).
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The discontinuity at the cut-off frequency disappears by inserting the slope as,

H (F) =


1 (0 ≤ |F| ≤ F1)
F2−F

2∆
(F1 ≤ |F| ≤ F2)

0
(
F2 ≤ |F| ≤ 1

2

) , (3.25)

where F1 and F2 indicates the start and end of the slope of frequency values,

respectively. The ∆ represents the half width of the slope, defined as ∆ = (F2 −

F1)/2, and the cut-off frequency is defined as Fc = (F2 + F1)/2. The inverse

Fourier transform of Eq. (3.25) derives window function as,

h ( j) =

 2Fc ( j = 0)
sin(2πFc j)

π j
sin(2π j/k)

2π j/k ( j , 0)
. (3.26)

The modified window function and transfer function are shown in Fig. 3.8. The

ripple almost disappears in modified transfer function.

(a)! (b)!

j!

h
(j
)!

FIG. 3.8: (a) Modified window functions with different filter order k. (b) The mod-
ified ideal transfer function and obtained modified transfer function with different
filter order. Here, the cut-off frequency is Fc = 0.1.
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FIG. 3.9: Configuration of numerical spacial filter. The raw signal is decomposed
to each mode number instantly. The green line indicates the envelope of each
signals.

3.2.2 Spacial filter

The numerical spacial filter is developed through using 64ch probe signal. Image

of the spacial filter is described in Fig. 3.9. The spatial filter is advantageous to

decompose spatial-temporal series of signals into instantaneous temporal series of

mode components, even positive or negative mode number.

The basic idea of the spacial filter is employing 2-dimensional Fourier trans-

form. The process of extracting m = +m1 is demonstrated in the following; (i)

applying 2-dimensional Fourier transform to the spatio-tempolal raw signal as

mentioned in Eq. (3.6). (ii) Extracting and combine one mode (m = +m1, f > 0)

and another mode (m = −m1, f < 0) components. (iii) Demonstrate inverse

Fourier transform in frequency domain. Figure 3.10 shows schematics of above

(ii) process.

The obtained temporal series conserves the mode amplitude and phase, which

was confirmed by the spectral analysis. The spacial filter provides to observe each

fluctuations dynamics without degradation of temporal resolution.
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FIG. 3.10: The image of the process of spatial filter.

3.2.3 Hilbert transform

For obtaining time evolution of fluctuation amplitude and phase, Hilbert trans-

form is available. Fourier component X(t) of time series x(t) can be converted to

X̂( f ) by,

X̂( f ) = −isgn( f )X( f ), (3.27)

where function sgn( f ) is defined as,

sgn( f ) =


1 f > 0

0 f = 0

−1 f < 0

.

Hilbert transform is performed by conducting inverse Fourier transform to X̂( f )

as,

x̂(t) = F −1
[
X̂( f )

]
, (3.28)
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where F −1 indicates inverse Fourier transform. This process is called Hilbert

transform. Analytical signal y(t) is obtained from x(t) and x̂(t) as

y(t) = x(t) + ix̂(t). (3.29)

In this way, the analytical signal is complex and relation between x(t) and x̂(t) is

orthogonal. Finally, instant wave components of amplitude A(t) and phase θ(t),

can be written as,

A (t) =
√

x(t)2 + x̂(t)2 (3.30)

θ (t) = tan−1 x̂(t)
x(t)

. (3.31)

3.3 Conditional Averaging

Conditional averaging is widely performed to quantify non periodic signals,

which is not valid for Fourier transform [90–92]. Process of conditional averaging

is carried out as follows. First, we determine the timing when interested phenom-

ena happen in signal x(t), and extract timing as ”clocks”. The i-th clock, ti, is set

to the origin of the temporal window, and the conditionally averaged signal x̄(τ)

is derived as,

x̄(τ) =
1
N

N∑
j=1

x(t j + τ), (3.32)

where N is the number of clocks, τ is defined as τ = −M∆t/2, ..., 0, ..., (M−1)∆t/2,

and M and ∆t are the number of points in the temporal window and sampling time,

respectively.

The arbitrariness of the conditional averaging is the choice of the clocks.

There are lots of methods to determine the clock. Here, three representative meth-
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ods are introduced in next subsections.

3.3.1 Threshold method

Threshold method is useful to detect the bursty events, e.g., edge localized

mode (ELM) [93] and blobs [94]. This method is very simple; determine the

threshold value and extract local peaks, which are above the threshold. Figure

3.11(a) shows the density bursts, which is detected by Doppler reflectometer, in

ASDEX-Upgrade [95, 96]. The bursts are observed in the I-mode (Intermidiate

mode) confinement state [97, 98], which is one of the interesting candidates for

ITER discharge operation. The σL represents the standard deviation of the turbu-

lence amplitude in L-mode. Here, the threshold value is determined as 5σL, and

the clocks or trigger function is extracted, as shown in Fig. 3.11(b).

Note that the threshold method is simple and useful, however, the condition-

ally averaged signal strongly depends on the data processing. This is again men-

tioned in the subsection 3.3.4.

3.3.2 Phase tracking method

Phase tracking method is efficient for extracting the nonlinear waveform [91,99].

The advantage of the technique, compared to the numerical filter, is its capabil-

ity to extract the harmonic components as well as the fundamental one simulta-

neously, and removing the noise efficiently; thus, the technique can extract the

nonlinear characteristics of the waves directly.

Figure 3.12(a) shows the raw signal of the ion saturation current in the streamer

discharge. The low frequency components, mediator, are periodically detected

with its fundamental frequency of f = 1.7 kHz, as shown in blue line in Fig.

3.12(a). The phase of the fundamental components of the mediator, f = 1.7 kHz,

52



(a)!

(b)!

Threshold  

5σL!

FIG. 3.11: Example for the threshold method. (a) Time evolution of the density
bursts. (b) Trigger function that represents the clocks.

are tracked by the short time Fourier transform, as shown in Fig. 3.12(b). Then,

the timings when the phases become zero are determined as the clocks, as shown

in Fig. 3.12(c).

The higher harmonic components of the mediator remains if the phase rela-

tionship between the harmonics and the fundamental waves are conserved. The

nonlinear waveform and its characters are discussed in the chapter 4.

3.3.3 Template method

Template method is developed in heartbeat analysis of medical field, and now

starts to be applied in plasma experiments [48, 99, 100]. The template is a wave-

form, which is provided by iteration. Therefore, template method provides strong

uniformity, since the template is iterated calculation until the convergence.

Here, the magnetic fluctuations measured by Mirnov coils in ASDEX Upgrade
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(a)!

(b)!

(c)!

FIG. 3.12: Example for the phase tracking method. (a) Raw signal of the ion
saturation current. Blue line indicate the low frequency components of f = 1.7
kHz. (b) Time evolution of the phase of f = 1.7 kHz components. (c) Trigger
function that represents the clocks.

in the I-mode plasma are used for test analysis. Figure 3.13(a) shows that the

magnetic fluctuations increase intermittently. In the I-mode plasma, the bursts are

not only observed in the Doppler reflectometer, as shown in 3.11(a), but also in

the Mirnov coils.

In the beginning, the method requires initial template for the first iteration. The

initial template is usually chosen as a waveform similar to target signals. Here,

the modified triangle wave shown in the black line in Fig. 3.13(c) are prepared for

the initial template. The cross correlation Ci(t) between raw signal x(t) and the
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(c)!

Threshold 0.25
!

0th template 

1st template 

22th template 

FIG. 3.13: Example for the template method. (a) Raw signal of the magnetic
fluctuations with over-plot of the initial template as red dotted line. (b) Time
evolution of the cross correlation and trigger function. (c) The 0th (initial), 1st and
22th (converged) templates are shown.

initial template Xi(τ) is calculated as,

Ci (t) =
x (t + τ) XI (τ)√
x (t + τ)2

√
X (τ)2

, (3.33)

where f̄ indicates the time average of f and the subscript i is the number of itera-

tion (i = 0 is the initial iteration). Obtained cross correlation (i = 0) is shown in

Fig. 3.13(b). The next clocks are determined from the peak of the cross correla-
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tion, which is above some threshold value. Here, the peak above 0.25 is detected,

and the trigger function is shown as the red line in Fig. 3.13(b). Using these

clocks, the conditional averaging is applied, and then we obtain next waveform,

which is shown as red line in Fig. 3.13(c). This process is initial iteration. Again,

the iteration is continue until the template converges. In this case, the template

completely converges with 22 iterations, which is shown in the blue line in Fig.

3.13(c).

For the template method, only the choice of the initial template is arbitrary.

The efficiency of the template method is explained in the next subsection.

3.3.4 Application of the conditional averaging to the intermit-

tent non-monotonically bursts

In this subsection, the performances of the two different methods, threshold and

template methods, are compared. The test signal includes intermittent bursts ob-

served in the I-mode on ASDEX-U. The I-mode is known as a reduced/unchanged

heat/particle transport state, and the bursts are detected by Mirnov coils, Doppler

reflectometry and bolometry [95]. However, the characteristics of the bursts de-

tected by many diagnostics are not identical. For example, while the Doppler

reflectometer detects the monotonically peaked burst, as shown in Fig. 3.11(a),

the bursts observed by the Mirnov coils contains high frequency fluctuations and

non-monotonically increasing bursts, as shown in Fig. 3.13(a). Therefore, careful

investigation for the conditional averaging is necessary.

Here we focus on the magnetic bursts, which is detected by the Mirnov coils.

The threshold method and the template method are compared for the verification

study. Figures 3.14 show difference among three processed signals, which are (a)

raw signal, (b) envelope of raw signal and (c) 100 kHz low-pass filtered signal,

respectively.
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(a) Raw signal!

(b) Envelope of law signal!

(c) Low-pass 100kHz!

Case-a!

Case-b!

Case-c!

FIG. 3.14: Different three proceeded signals, (a) Raw signal, (b) envelope of the
raw signal, and (c) low-pass 100 kHz signal are prepared for the verification study.
For threshold method, thresholds are defined as 10, 10 and 7 T/s, respectively. The
red points indicate the local peaks, where the timing are defined as clocks.

First, results of the threshold method is shown in Fig. 3.14. The peak of each

signal, which is above the threshold values of 10 T/s, 10 T/s and 8 T/s, is extracted

as clocks for the conditional averaging. The red points in Fig. 3.14 show the

detected clocks, which seem not to be identical among different signals. These

clocks are applied to raw signal to extract the events of bursts, and the timing

of clocks are set as the center of the time window of 500 µs for the conditional

analysis. Then, the obtained ensembles of data windows are averaged, and the

averaged waveform at the bursts are estimated, as shown in Fig. 3.15. Fig. 3.15

(a), (b) and (c) show the extracted waveforms from the clocks obtained by raw

signal, envelope of raw signal and low-pass 100 kHz filtered signal, respectively.

These three cases in Fig. 3.15(a), (b) and (c) are named as Case-a, Case-b and
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(a) Case-a!

(b) Case-b!

(c) Case-c!

Threshold method!

FIG. 3.15: Conditionally averaged waveforms obtained by threshold method are
shown in (a) Case-a, (b) Case-b and (c) Case-c, respectively.

Case-c, respectively. These waveforms are clearly different from one another, in

the point of their amplitudes, phases and temporal behaviours. This is due to

difficulty in determining the peak values for such non-monotonously bursts. For

the threshold method, reproducibility is poor, and the physical interpretation could

depend on the signal processing.

Next, the template method is applied to the signals shown in Fig. 3.14. Com-

paring to the raw signal, it is obvious that the initial templates described in section

3.3.3 are not sufficient, since the converged template, shown in the Fig. 3.13,

represents smaller amplitude. Hence, we use different initial template here. The

initial template is determined by the statistical way, i.e., provided by the thresh-

old method. The identical waveforms of Fig. 3.15(a), (b) and (c) are used as the

initial template. We also named different process of template method as Case-a,
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(a) Case-a!

(b) Case-b!

(c) Case-c!

Template method!

FIG. 3.16: Conditionally averaged waveforms obtained by template method are
shown as (a) Case-a, (b) Case-b and (c) Case-c, respectively.

Case-b and Case-c again, similar to the case of the threshold method. Each initial

template is applied to at the beginning of the iteration process with the thresholds

of the correlation set to be 0.45. Figures 3.16(a), (b) and (c) show the converged

waveforms of Case-a, Case-b and Case-c, respectively. In spite of the different

initial templates, obtained waveforms seem to be very similar to one another.

For quantifying performance of the conditional averaging, first, the conver-

gence study is performed. Figure 3.17 shows the convergence of the amplitude

of the waveforms at τ = 0 µs for the threshold method and template method, re-

spectively. The amplitude at τ = 0 µs are estimated from Hilbert transform, i.e.,

envelope of the signals. Horizontal axes in Fig. 3.17 are the inverse of the num-

ber of ensemble averaging, 1/N. Here the ensemble number N is identical to the

number of the clocks, which are (49, 79, 49) for Case-a, Case-b and Case-C of
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(a) Threshold method! (b) Template method!

Case-a, Case-b, Case-c! Case-a, Case-b, Case-c!

FIG. 3.17: Convergence of amplitude of obtained waveforms at τ = 0 µs. The
Case-a (black), Case-b (red) and Case-c (blue) of (a) threshold method and (b)
template method are shown. Here, amplitude is estimated as Hilbert transform
and N means the number of ensembles for conditional averaging.

the threshold method, and (67, 61, 63) for Case-a, Case-b and Case-C of the tem-

plate method, respectively. The amplitude converges towards the different values

in case of the threshold method, as shown in Fig. 3.17(a). While results of the

template method indicates that all cases converge towards almost the same values.

The equivalent convergence of the peak value indicates that the template method

doesn’t depend on the initial template.

The direct comparison among results by using different clocks is also per-

formed. Figure 3.18 shows probability density functions (PDF) of the time differ-

ence of the clocks from Case-a in threshold method and template method, respec-

tively. The time lags of the clocks of Case-a and Case-b and those of Case-a and

Case-c are calculated. The green/purple histogram indicates the time lag between

Case-b/Case-c and Case-a. Compared to the threshold method, the both PDFs of

the template method are concentrated around 0 µs, which indicates that properties

of the clocks are similar. These results indicate that compared to the threshold
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(a) Threshold method! (b) Template method!

FIG. 3.18: PDF of the time difference between the clock of Case-a and Case-b
(green) and the clock of Case-a and Case-c (purple) for (a) threshold method and
(b) template method.

method, the template method doesn’t depend on the different signal processing

cases and provides unique results. Thus, template method is useful to quantify

intermittent, non-monotonously peaked bursts.

To summarize the result of this subsection. For quantifying intermittent, non-

monotonously peaked bursts, the conditional averaging is a strong technique,

however, unique results are expected and shouldn’t depend on process parame-

ters. The threshold method and the template method are applied to the intermit-

tent, non-monotonously peaked magnetic bursts observed at ASDEX-U. Different

three cases of the both method are tested, and the template method provides more

preferable results. In the three cases, the averaged waveforms are similar, and

converge towards the same value of amplitude, and the clocks timings are almost

identical. The results indicate that the template method can produce unique con-

ditionally averaged waveforms, which enable us to understand the abrupt events

quantitatively.
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Chapter 4

Nonlinear structure and associated

transport of streamer

As mentioned in Chapter 1, this thesis focuses on a streamer in PANTA, which is

generated by the modulation of the drift waves through mediator [44, 45]. Figure

4.1 shows the mode-frequency (m and f ) decomposed power spectrum. The pre-

vious works revealed that the linearly driven drift waves of (m, f ) = (2, 8.4 kHz)

are nonlinearly couple with the mediator, which appears in the spectrum as (m, f )

= (-1, 1.7 kHz). There nonlinear coupling may generate the side-band modes,

where are (m, f ) = (3, 6.7 kHz) or (m, f ) = (1, 10.1 kHz).

Up to date, the nonlinear coupling of the streamer and phase structure are stud-

ied, however, there are several questions remained. For instance, higher harmonic

components of streamers, phase and amplitude structures of streamers, and the as-

sociated transport are not clarified. The conditional averaging technique is used to

resolve the problems. In this chapter, first parameter dependence of the streamer

is mentioned. Then, observation of the nonlinear spatio-temporal structure of

the streamer are observed as nonlinear waves. Finally, transport mechanisms of

streamers are discussed.
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FIG. 4.1: Two-dimensional power spectrum of ion saturation current. The positive
mode number indicates propagation in the electron diamagnetic direction.

4.1 Streamer condition

In PANTA, main external control parameters for plasmas are neutral gas pres-

sure and magnetic field strength. The streamer is only observed in relatively low

gas pressure. While the streamer exists under some conditions of the magnetic

field strength [68]. Thus, the magnetic field dependence of the streamer has been

observed in detail. In this section, the fluctuations including their radial structure

and nonlinear couplings are studied by changing the magnetic field strength with

constant RF power of 3 kW and constant gas pressure of 0.45 mTorr.

Since the streamer is formed by the nonlinear coupling between drift waves

and the mediator, three-wave coupling is strongly conserved. Thus, the streamer

is considered the significant correlation between the mediator and the envelope of

drift waves. Figure 4.2(a) and (b) show the ion saturation current fluctuation of

m > 0 components with its envelope and that of the mediator components of m =

-1. The mode decomposed time evolution of fluctuations are extracted by spatial

filter. The time evolution shows that the envelope and the m = -1 components
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seems to correlate.

m = -1!

m > 0!

Correlation!

r =
 2

.5
 cm
!

(a)!

(b)!

(c)! (d)!

FIG. 4.2: Ion saturation current fluctuations of (a) m ¿ 0 components (drift waves)
with its envelope and (b) m = -1 components (mediator), respectively. (c) Depen-
dence of cross correlation between the envelope of m > 0 and m = -1 on magnetic
fields and radial positions. (d) Magnetic field dependence of the correlation of (c)
at r = 2.5 cm.

By changing the magnetic field, the radial profile of the maximum value of

cross correlation coefficient between enelope of drift waves and the mediator are

provided in Fig. 4.2(c), and the slice at r = 2.5 cm are shown in Fig. 4.2(d). The

strong correlation between the envelope and the mediator are radially elongated in

the low magnetic field condition. The conter plot also indicates that the magnitude

of the correlation decreases with the magnetic field. Thus, the fluctuation status

can be categorize to three conditions in terms of the magnetic field; (i) streamer

conditions (B = 0.07 ∼ 0.10 T), (ii) intermediate conditions (B = 0.10 ∼ 0.12 T),

(iii) solitary conditions [43, 68] (B = 0.12 ∼ 0.15 T).

The waveforms and spectra of fluctuations are shown in Fig. 4.3. In Fig.

4.3(a), (d) and (g), a clear streamer structure is shown; the envelope of fluctuations

rotates in the ion diamagnetic direction and the power spectrum constitutes the

side band structure. For the B = 0.11 T, the waveform and associating side band

spectrum change temporally. One side-band is similar to the streamer, but the

64



[/Hz]!

900G (Streamer) 1100G (Intermediate) 1300G (Solitary wave) (a)! (b)! (c)!
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FIG. 4.3: (a)-(c) Spatio-temporal evolutions, (d)-(f) temporal evolutions and (g)-
(i) power spectra of ion saturation current fluctuations under streamer, interme-
diate and solitary wave conditions. The positive θ and azimuthal mode number
indicate the electron diamagnetic direction.

other is similar to the solitary waves. The clear solitary structure appears with

high magnetic field, and constitutes the abruptly increasing waveform and higher

harmonics spectrum, as shown in Fig. 4.3(c), (f) and (i). It is noted that the

spectra show that the power of drift waves don’t change significantly, or even

increase with the magnetic field (or Larmor radius). In addition, it is observed

that the inverse of density scale length (the strength of density gradient) decreases

with the magnetic field strength. These are inconsistent with linear drift wave

theory, where the linear growth rate decreases with Larmor radius and density

scale length.

The changes of the fluctuations status are also seen in the nonlinear couplings.

Figure 4.4 represents the auto bi-coherence of the ion saturation current fluctua-

tion at r = 4 cm. In case of the streamer condition, the vertical line at f1 = 1.7 kHz

are seen. This line indicates the couplings between the mediator and other modes.
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Drift waves of f2 = 8.4 kHz and its side-band 6.7 kHz have a strong value, which

indicates the three-wave coupling between the drift waves and the mediator. In

the intermediate state, weak but finite couplings with the mediator are seen. In

addition, the large self-coupling of f1 = f2 = 4.0 kHz are investigated. The dy-

namical observation of bi-coherence revealed that the combination of nonlinear

couplings changes, as well as the waveform of fluctuations changes in time. In

the high magnetic field condition, the nonlinear characteristics of solitary waves

are clearly shown that the fluctuation at f1 = 4.0 kHz is interacted with its higher

harmonics at f2 = 8.0 or 12.0 kHz.

(a)900G (Streamer) (b)1100G (Intermediate) (c)1300G (Solitary wave) 

FIG. 4.4: The squared auto bi-coherence b̂( f1, f2) of ion saturation current fluctu-
ations for (a) streamer, (b) intermediate and (c) solitary wave conditions.

The clear magnetic field dependence of the nonlinear coupling among the fluc-

tuations are seen in Fig. 4.5. To represent the fluctuations status, the cross correla-

tion of the streamer envelope and the mediator of m = -1 at r = 2.5 cm is shown in

Fig. 4.5(a). The main components of nonlinear couplings of the streamer are rep-

resented as m = 2 and -1 or m = 3 and -1. On the other hand, the solitary waves are

composed by the coupling between m = 1 and 1 or m = 1 and 2. These couplings
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of fluctuations are summed in frequency space, shown in Fig. 4.5(b). The figure

indicates that the nonlinear couplings dramatically change with the magnetic field,

and the fluctuations status changes.

In short summary, the streamer exist with the long radial correlation length

in the magnetic field range around 0.7-0.10 T. The fluctuation status nonlinearly

changes by magnetic field increase, i.e. from streamer region to intermediate

states and finally to solitary wave region. It is suggested that the nonlinear status

of drift waves are sensitively changes with magnetic field or Larmor radius. This

indicates that the magnetic field strength is one of the control parameter to change

the nonlinear status of drift waves, which is essential for study on the transport.

m = 1 & 1!

m = 1 & 2!

m = 2 & -1!

m = 3 & -1!

Streamer 

region!
Interme-

diate 

region!

Solitary wave 

region!

(a)!

(b)!

FIG. 4.5: (a) Correlation coefficient between the envelope and the mediator at r
= 2.5 cm. (b) Dependence of the summed squared bi-coherence on the magnetic
field.
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4.2 Nonlinear waves of streamer

The previous works [44] have confirmed that the streamer and the mediator could

correspond to the fast mode and the slow mode, respectively, which were pre-

dicted by a theoretical work based on Hasegawa-Mima equation [41]. Thus, the-

oretically, the streamer and mediator could be described in nonlinear Schrodinger

equation, which is known as general equation of nonlinear waves. However, to

date, the mediator has been treated simply as a linear wave without taking into

account contribution of its higher harmonic components. Here we present the

nonlinear characteristics of the mediator including the higher harmonic compo-

nents by applying conditional averaging [99]. Moreover, the method to deduce

the waveform of the mediator from the signal makes it possible to extract the ex-

act waveform of envelope of the streamer, which has the same frequency as that

of the mediator. The higher harmonic components of the mediator contribute to

the generation of the distortion of the envelope of the streamer and their nonlinear

relationship that both heights of the mediator and the envelope of the streamer

increases as their localization becomes narrower, as is commonly observed for

solitary waves. This chapter presents these new findings on the mediator and the

streamer in a linear cylindrical plasma of PANTA.

4.2.1 Extraction of nonlinear waveforms using conditional av-

eraging

The nonlinear waveform of the mediator can be directly extracted using condi-

tional averaging based on phase tracking method as described in Chapter 2. Here,

the raw signal is obtained from the ion saturation current measured with 64ch

probe, similar to the previous experiment, since its signal-to-noise ratio is bet-

ter than that of the floating potential. The conditional averaging is done by the
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FIG. 4.6: (a) Raw signal (black solid line) and streamer envelope (red dashed
line) are shown. The origin of time, τ = 0 ms, indicates when the phase of the
mediator is zero. (b) The waveforms of the mediator (blue dash-dashed line) and
the streamer envelope (green dash-dotted line) are observed by the conditional
averaging. (c) Spectra of the raw signal, the streamer envelope, the conditionally
averaged mediator and the streamer envelope.

following procedure.

First, in order to extract the waveform of the mediator, phase tracking method

is applied. The short time Fourier transform is performed to track the phase of

its fundamental component in its temporal evolution. Here, the frequency of the

fundamental component of the mediator is found to be f = 1.4 kHz from the

power spectrum, as shown in Fig. 4.6(b). Then, conditional averaging is applied

to the raw signal. The blue dash-dashed line in Fig. 4.6(b) shows the obtained

(or typical) waveform of the mediator after the conditional averaging is applied

on the temporal windows of the raw signals. The base level of the waveform is

adjusted to zero by subtracting its minimum value, then the peak value of the wave

is termed mediator height here, as described in Fig. 4.7.

Next, the streamer is obtained by subtracting the waveforms of the mediator

from the raw signal. The envelope of the streamer (equivalent to the term streamer

envelope in this thesis) deduced by Hilbert transform and its spectrum are shown
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Height!

FIG. 4.7: Definition of height.

in Figs. 4.6(a) and (c), respectively. The spectrum shows that the fundamental

component of the streamer envelope should also be at f = 1.4 kHz in accordance

with the mediator. Therefore, the typical shape of the streamer envelope is also

extracted by the conditional averaging on the envelopes with the same temporal

windows of the mediator. The result is shown in Fig. 4.6(b) in the green dash-

dotted line. For comparison, the spectra of the raw signal,the streamer envelope,

the conditionally averaged mediator, and the conditionally averaged streamer en-

velope are shown in Fig. 4.6(c). The spectra of averaged waveforms reveal the

existence of clear peaks at the second harmonic frequency at 2.8 kHz. Note that

the peaks at higher harmonic frequencies are buried in the background powers of

the spectra; therefore, they cannot be identified without the conditional averag-

ing. The results demonstrate that the modulation of the drift waves to generate the

streamer is not only through fundamental components of the mediator, but also

through higher harmonic components of the mediator.
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fitting ~sech2βθ!α = Cdown/Cup!
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FIG. 4.8: (a) The waveforms of the mediator with the magnetic field strength of
0.06, 0.08 and 0.10 T are described. The degree of nonlinearity is estimated by
two methods, deducing the (b) anharmonicity parameter, α, and (c) localization
parameter, β. The waveform of the mediator at B = 0.08 T is used for the example
fitting.

4.2.2 Evaluation of nonlinear characteristics of waveform

In the previous section, it shows that the nonlinear characteristics of the mediator

and envelope of streamer change with the magnetic field. Figure 4.8 (a) illustrates

examples of temporal evolution of the mediator under three values of magnetic

field conditions B = 0.06, 0.08 and 0.10 T. The figure demonstrates that the height

and the degree of localization of the mediator may increase with the magnetic

field. Similar tendency can be seen for the streamer envelope.

The nonlinear characteristics of the waveform, or the degree of wave localiza-

tion, can be quantified by evaluating the anharmonicity as a general method for

periodic waves in the present case. The anharmonicity is defined as the ratio of
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Cdown to Cup, where Cup and Cdown represent the full width of half maximum from

the time averaged value of local maximum and that of half minimum of local min-

imum, respectively, as is shown in Fig. 4.8(b), and the example of its description

is shown in Fig. 4.9. The anharmonicity increases as the deviation from the sinu-

soidal wave (Cdown/Cup = 1) becomes larger. An example of the analysis on the

mediator in Fig. 4.8(a) shows that the anharmonicity parameter α are evaluated as

0.9, 1.0 and 1.2 for B = 0.06, 0.08 and 0.10 T, respectively.

!Cdown/Cup = 3.8 

Cup!

Cdown!

Average
!

FIG. 4.9: Description of anharmonicity.

Besides, an additional method is introduced here as a support to evaluate the

degree of localization of the waveform by fitting under the assumption that the

structure is in the state of rigid body rotation. Thus, the azimuthal position θ is

introduced by replacing time τ, as the transformation 2π f τ → θ, where f is the

fundamental frequency of the nonlinear wave. Figure 4.8 (c) shows an example

of the fitting result for the waveforms of mediator. The fitting function is f (θ) =

y0 + a ∗ sech2βθ, which corresponds to the solution expected in the theory [41].

Here, y0, a and β are the minimum value of the amplitude, the height and the

localization strength, respectively. In this case, the localization width β, for the

mediator of B = 0.06, 0.08 and 0.10 T are 1.50, 1.84 and 2.02, respectively. Both
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results, estimating α and β, indicate that the mediator should be more localized

with increasing the magnetic field strength.
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FIG. 4.10: Magnetic field dependence of (a) the height and (b) of the anharmonic-
ity α and the localization parameter β for the mediator and the streamer envelope.

Figure 4.10 plots the height and localization parameters α and β for the me-

diator and the streamer envelope as a function of magnetic field. The plots show

a clear dependence that the height and localization parameters increase with the

magnetic field strength. It is noted that the power of the drift waves (∼ y0 + a/
√

2,

where y0 and a are minimum values of the amplitude and the height) also increases

with the magnetic field strength. These results indicate that both the height and

localization parameters of both waves increase with the magnetic field strength.

The direct relationship between the height and localization can be evaluated

as is generally investigated for the both waves. Here, the characteristic changes in

the drift wave [see Fig. 4.10(a)], which reflect the background plasma conditions,

are taken into account, since the resultant height of the streamer envelope is ex-

pected to increase proportionally with the drift wave and its side-band amplitudes

owing to the couplings with drift waves. In order to remove the effect due to the

change in the background plasma, or the change due to magnetic field strength,

the heights of the waves need to be normalized by the drift wave amplitude, which
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FIG. 4.11: Dependence of anharmonicity α on the normalized height is shown as
a double logarithmic plot. The slope of asymptotic lines is 0.5, which indicates
that height converges proportionally to α2.

includes its side-band. Figure 4.11 shows the relationship between the height and

the localization parameter, α, in a double logarithmic plot. The results show that

the both normalized heights should increase, asymptotically, with the square of the

localization parameter, α. The mediator and the streamer envelope have a com-

mon feature known for solitons, such as the solution of the Korteweg-de-Vries

equation.

4.2.3 Discussion of nonlinear couplings

The discussion is focused on the nonlinear couplings. Here, the phase relation-

ships among the component modes of the mediator are investigated to understand

the origin of the distortion from sinusoidal wave in the mediator. For this pur-

pose, bi-coherence analysis is adopted to investigate how the nonlinear couplings

change for the mediator, as the magnetic field strength changes. Since the bi-

coherence indicates the degree of phase coherency among the three waves, we
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can evaluate the changes in nonlinear coupling strength between the mediator and

its higher harmonic components.

(b)!(a)! (c)!

FIG. 4.12: Magnetic field dependence of the (a) squared-bi-coherence and (b)
bi-phase of the components of mediator. The ensemble number is 150. Recon-
struction of the mediator is performed by bi-phase analysis. The anharmonicities
α of the mediator for the observed (black) and reconstructed (blue), which is per-
formed by bi-phase analysis, are shown in (c). A good agreement with experi-
mental observation can be seen.

Figure 4.12 (a) shows the result how the squared-bi-coherence among the fun-

damental mode of the mediator and its harmonic modes changes as a function

of the magnetic field strength. In Fig. 4.12 (a), the black solid and red dashed

lines represent the coupling among the fundamental mode and the second har-

monic mode (i.e., m = -1 and m = -2), and that among the fundamental mode,

second and third harmonic modes (i.e., m = -1, -2 and m = -3). The results simply

demonstrate that the coupling strength increases as the magnetic field increases,

or the nonlinear characteristics of the mediator become clear. Particularly, the

tendency is significant for the coupling between the fundamental mode and the

second harmonic mode, as shown in the black solid line in Fig. 4.12 (a).

Next, the waveform of the mediator can be reconstructed from bi-phase anal-

ysis, which provides the necessary phase relationships between the fundamental

and higher harmonic modes for the reconstruction. Figure 4.12 (b) shows the bi-

phase for these couplings; the bi-phase among the fundamental and second har-

monic modes and that among fundamental, second and third harmonic modes are
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calculated. As a result, by using these phase relations and the mode amplitudes ob-

tained from the power spectra, the waveform of the mediator can be reconstructed.

Figure 4.12(c) shows the comparison between anharmonicites α obtained by re-

constructions and observation. The reconstructed anharmonicity indicates a sim-

ilar tendency that of observation. This suggests that the main mechanism of the

nonlinear distortion of the waveform of the mediator is self-couplings of the fun-

damental mode to the second harmonics. It is also suggested that the distortion of

the streamer envelope is generated from the higher harmonic components of the

mediator and the drift waves.

In short summary, the conditional averaging is applied to extract the wave-

forms of the mediator, which include higher harmonic components. Due to the

modulation by the higher harmonic components of the mediator, the envelopes of

the streamer also contain higher harmonic components. Furthermore, the height

and the localization of the both waveforms are found to increase with the magnetic

field strength. The heights of the waves are found to increase with the square of

localization degree, α2, as is commonly valid for the solitary waves. Additionally,

the bi-coherence analyses confirmed that the self-couplings of the fundamental

mode of the mediator become strong with the magnetic field and should be the

major cause of nonlinear characteristics of the mediator.

4.3 Structure of streamer and its effect on transport

Causality between radially elongated streamer structure and transport enhance-

ment is studied in this chapter. In previous chapter, temporal waveform analysis

reveal that the streamer localizes in the azimuthal direction and fluctuates in time.

Thus, the discussion through using conventional method, i.e., averaged in time

and space, are not efficient. Since the dynamical observation of the streamer is
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important, the conditional averaging is provided again in this section.

(a)! (b)! (c)!
Total, DWs,  

Mediator!

Total, DWs,  

Mediator!

FIG. 4.13: Time averaged radial profiles of (a) electron density and inverse scale
length of the density, (b) fluctuations amplitude obtained by root-mean-squared of
signal and (c) fluctuation induced particle flux.

The experiment is conducted with the RS probes and 64ch probes, which are

described in Chapter 2. Discharge conditions are, the magnetic field strength B =

0.09 T, argon gas pressure of 0.45 mTorr and RF power of 3 kW. The power spec-

trum of ion saturation current fluctuation is similar to Fig. 4.1, which corresponds

to the streamer condition in PANTA.

First, time averaged radial profiles of quantities are shown in Fig. 4.13. The

electron density and inverse of its scale length indicate that the strong density

gradients are found at r < 5 cm. The fluctuation amplitude profiles reflect the

radial density gradient, as shown in the Fig. 4.13(b). The amplitude is estimated

as time averaged root-mean-squared of ion saturation current fluctuation. The

dominant fluctuation components are the drift waves and the mediator. Those

amplitudes are obtained through numerical band-pass filter. The range of band-

pass filter for drift waves and mediator are 6 < f < 10 kHz and 1 < f < 3 kHz,

respectively. Figure 4.13(b) shows that the drift waves are strong in r < 5 cm,

which corresponds to strong density gradient region, and mediator exists in broad

radial region.

The radial particle flux driven by Ẽθ × B drift fluctuations, Γr is defined as,

Γr(t) = ñe(t)ṽr(t) = ñe(t)(Ẽθ(t))/B, where ñe and Ẽθ represent electron density
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FIG. 4.14: (a) Power spectra of ion saturation current fluctuations and its envelop.
(b) Temporal evolution of ion saturation current fluctuations with its envelope, and
(c) radial particle flux induced by fluctuations. The measurement point is r = 4
cm.

fluctuations and azimuthal components of electric field fluctuations, respectively.

Since the electron temperature fluctuation is sufficiently small in PANTA [75], the

density fluctuation and electric field fluctuation are derived from ion saturation

current fluctuation and floating potential fluctuation, respectively. Figure 4.13(c)

shows the time averaged particle flux profiles. Here, the positive value of Γr indi-

cates outward flux. The figure shows that the total flux is outward from 2 < r < 8

cm. The outward flux is mainly driven by the drift waves (2 < r < 4cm) and the

mediator (4 < r < 6cm). The residual of the flux is driven by the 2nd or higher

harmonics of the mediator, D’Angelo-like mode and high frequency components.

4.3.1 Conditionally averaged structure and flux patterns

As mentioned before, Figure 4.13 is not sufficient for discussing that the streamer

really enhances transport or not, and the dynamical observation is necessary. Fig-

ure 4.14 show the power spectra of Ĩis and its envelop, |Iis|, with their temporal

evolutions and that of the associated particle flux, Γr(t). In the spectrum of Ĩis, a

peak at 1.7 kHz and rather broad-band fluctuations from 6 to 10 kHz reflect the ex-
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istence of the mediator and the DWs, respectively [45]. The existence of a peak at

the same frequency of 1.7 kHz in the spectrum of the envelop, |Iis|, shows the am-

plitude modulation of fluctuations due to the mediator. Figure 4.14(b) shows the

temporal evolution of streamers i.e., quasi-periodic events of sudden increases of

fluctuations in Ĩis and |Iis|. Note that the envelope is calculated by the Hilbert trans-

form. On the other hand, Fig. 4.14(c) shows the temporal evolution of fluctuation-

driven particle flux, in which the periodic increases should be synchronized with

the envelope of streamer, |Iis|. Therefore, the outward flux should be, as is ex-

pected in theories and simulations, driven by the formation of streamers.

In the case of PANTA, the streamer is observed as a quasi-periodic phenomenon,

thus, the conditional averaging technique can be used to study the typical behavior

of streamer and its associated flux. Since the phase of streamer is controlled with

the mediator, a typical temporal evolution should be extracted with a conditional

average with using the mediator period as a clock. Here, the fixed probe at r = 4

cm and θ = 90◦, which has axial distance of 225 mm from the RS probe array, is

used as a reference signal to evaluate the phase of the mediator [99].

Figure 4.15 shows the conditionally-averaged temporal evolution of the fluctu-

ation part of |Iis|, or strength of amplitude modulation, and the associated particle

flux with their snap shots. In Fig. 4.15(a), the shape of the streamer is expressed

in the fluctuation part of the envelop, |̃Iis| = |Iis| − 〈|Iis|〉, where <> denotes tem-

poral average. On the other hand, Fig. 4.15(b) and (c) show the averaged value

and shape of the streamer-driven fluxes. It is obvious that both envelop and ad-

joint particle flux are radially elongated, and localized in a short duration, ∼ 2/5

for a cycle period of the streamer emergence. Figure 4.15(b) shows time aver-

aged (solid) and maximum value (dotted) of flux profiles. The comparison shows

that the instantaneous maximum flux should be 1.5-2.5 times larger than the time

averaged one.
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FIG. 4.15: ((a) The fluctuation part of the conditionally-averaged envelop |̃Iis|,
(b) temporally-averaged flux profiles (solid) with temporally maximum value of
flux (dotted), and (c) the conditionally-averaged total particle flux. (d) The recon-
structed cross section image of the envelop, and (e) that the particle flux. The gray
dotted lines in (a) and (c) show the time at maximum value of the fluxes.

The periodic appearance of the almost same patterns should be regarded as that

the streamers should rotate with keeping its shape almost constant over the entire

radial extent. Then, assuming the rigid body rotation of the streamers, the 2D snap

shots of the streamers and the associated flux shape, f (r, θ, τ = 0), can be obtained

using the relationship f (r, θ, τ) = f (r, θ0, τ − ∆θ/ω), where θ0 and ω represent the

azimuthal position of the RS probe and angular frequency of streamer, and ∆θ =

(θ0 − θ) are the azimuthal distance to the position to estimate. The reconstructed

images demonstrate the feature that the streamer-driven flux should be radially

elongated and azimuthal localized as well as the streamers. The cooperative works

of DWs and mediators result in not only the azimuthal localization, but also in its

radially elongated shape to cause the ballistic transport.
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4.3.2 Decomposition of flux patterns

It is worth a while to decompose the streamer-driven particle fluxes to the contri-

butions of each mode along the following formula,

〈Γr(t)〉 =

〈∑
ω1

ne(ω1, t)
∑
ω2

vr(ω2, t)
〉

=
〈
Γr,sel f

〉
+

〈
Γr,crs

〉
=

∑
ω

〈ne(ω, t)vr(ω, t)〉 +
∑
ω1,ω2

〈ne(ω1, t)vr(ω2, t)〉 ,

where 〈〉 means the conditional average, and the first and second terms repre-

sent the elemental mode contributions of streamers, and the interactive ones that

give no finite value in the temporal average, respectively.

Figures 4.16(a-d) show the elemental mode contributions of DWs and the fun-

damental mode of the mediator to the streamer-driven particle flux. Here, the

contributions of DWs and (fundamental) mediator-driven fluxes are calculated as

the conditional averages of the band-pass filtered signals for the frequency range

of f = 6-10 kHz and 1-3 kHz for DWs and mediator, respectively. As is shown in

the figures, the most of the particle flux is driven by DWs in the central region (r

= 2-4 cm), while it is driven by the mediator in the outer region (r = 4-6 cm). In

addition, the DW-driven flux is found to be modulated at the mediator frequency,

while the mediator-driven flux shows the second harmonic oscillations, which

comes from the product of density and electric field fluctuations of the mediator.

Figs. 4.16(e) and (f) show the total contributions of the elemental modes,

and the interactive contributions to the streamer-driven particle flux. From the

figures, the total contributions of elemental modes should produce two straight

lines toward the edge, corresponding to the modulations in the contribution of the
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FIG. 4.16: (a) Temporally-averaged and (b) conditionally-averaged contribution
of drift waves (6 < f < 10 kHz) to the conditionally averaged particle flux, and (c)
(d) those of mediator (1 < f < 3 kHz). The temporally averaged total flux is shown
in the dashed lines in (a) and (c). (e) Conditionally averaged total contributions
of elemental modes, and (f) the interactive contribution whose temporal average
is zero.

fundamental mode of mediator, although it almost could reproduce the observed

streamer-driven particle flux. In contrast, the interactive contributions is found to

strengthen the first lines of the particle flux (propagating from the core to edge)

and weaken the second line (propagating from the edge to core), and to work to

create the observed pattern of the streamer-driven particle fluxes. It is confirmed

that the second harmonic of the mediator should be a dominant contributor to

the interactive term. Finally, it is obvious that only the DWs should not be able to

produce the radially elongated shape of the particle flux, but the cooperative works

of DWs, the mediator and higher harmonic contributions can create the ballistic
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FIG. 4.17: (a) Conditionally averaged product of envelop of density and radial
velocity fluctuations, and (b) the contribution of the phase difference between
density and radial velocity fluctuations.

nature of the streamer and its transport.

On the other hand, Figs. 4.16(a) and (b) show another aspect, the contribu-

tions of the fluctuation amplitude and the phase difference to the streamer-driven

particle flux. By using the Hilbert transform, the particle flux can be calculated as,

Γr(t) = ne(t)vr(t) = |ne(t)||vr(t)| cos(ω(t)t) cos(ω(t)t+α(t)) = 0.5Anevr (t)[cos(2ω(t)t+

α(t)) + cos(α(t))], where ω(t), α(t) and Anevr (t) represent time-dependent angular

frequency, phase difference between ne and vr and the product of envelope of ne

and vr, respectively. It is noted that the first term including the fast-varying phase,

(2ω(t)t + α(t)), dose not contribute to the conditional average, while the second

term that slowly varies should be the main contributor of the phase difference. Fig-

ure 4.17(a) and (b) shows the total conditionally-averaged envelop, Anevr (t), and

the contribution of the phase difference, cos(α(t)). The product of the amplitude is

modulated at the fundamental frequency over the entire region, although the sec-

ond harmonic modulation in the phase term becomes clearer toward the plasma

edge, corresponding to the above-mentioned characteristics of the mediator [99].

Therefore, the straight line of the streamer-driven flux is produced by the pattern

of the amplitudes without the second harmonic modulation.

The strengths of modulation between in amplitude and in phase are compared.
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FIG. 4.18: Modulation level of amplitude and phase of particle flux. The modu-
lation level is defined as root-mean-squared of fluctuation part of amplitude and
phase, where the amplitude is normalized by its mean values.

Here, the modulation level is estimated as root-mean-squared of fluctuation parts

of amplitude and cosine of phase. For comparison, fluctuations of amplitude mod-

ulation is normalized by its mean values to discuss in the dimensionless quantities.

Figure 4.18 indicates that the amplitude modulation is larger than phase modula-

tion more than factor 2. Therefore, the amplitude modulation is again important

to generate flux patterns elongation in radial direction.

4.3.3 Structure of the streamer

Next, we discuss about the streamer structure, which induces the radially elon-

gated transport. As we mentioned before, envelope structure of the streamer is

formed by the nonlinear couplings. Figure 4.19(b) shows the conditionally aver-

aged wavelet bi-coherence of ion saturation current at r = 4 cm, which is corre-

lated at the mediator frequency of f1 = 1.7 kHz, and the vertical axis indicates

the f2. The nonlinear couplings among the mediator and drift waves, which are

around f ∼ 8 kHz, are changes in time. Frequency summed bi-coherence, ex-

pressed as Σb̂2, changes with in phase with streamer envelope, as is shown in
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FIG. 4.19: Conditionally averaged wavelet bi-coherence at r = 4 cm is shown
in (b). The vertical axis indicates f2, and f1 = 1.7 kHz. (a) Time evolution of
summed bi-coherence (black) and the conditionally averaged envelope at r = 4
cm (arbitrary unit, red) are plotted. (d) Radial structure of conditionally averaged
summed bi-coherence and (c) its time average.

the red line in Fig. 4.19(a). Therefore, the envelope structure is created by the

nonlinear couplings.

The time evolution of radial changes of total bi-coherence are shown in Fig.

4.19(c) and (d). Similar to the streamer envelope, which is represented in Fig.

4.15(a), the total bi-coherence is also radially distributed. It is also confirmed that

the radial structure of the streamer increase when the total bi-coherence increase.

In addition to the radial distribution of nonlinear couplings, radial convective

flow of the streamer is also observed. Figure 4.20 show the fluctuation of radial

E×B velocity for (a) total and (b) drift wave components, respectively. Since fluc-

tuations of drift waves disappears after the conditional averaging of the mediator

period, drift wave components are obtained by using trigger of drift waves period

of f = 8.6 kHz. Compared to the drift wave components inducing fluctuations,

in case of streamer, the fluctuation is radially elongated. This result is consistent

with various simulation results of streamer [33, 40]. The generation of the large

radial convection is the reason to enhance the radial transport.

85



(a)! (b)!

FIG. 4.20: Conditionally averaged radial velocity fluctuations, which are obtained
by triggering (a) mediator (or streamer) frequency f = 1.7 kHz and (b) drift wave
frequency f = 8.6 k Hz.

4.3.4 Discussions

So far we discuss the typical temporal evolution of streamers and associated par-

ticle fluxes. However, each streamer event is slightly different from each other. It

is interesting how much degree the streamer-driven fluxes can be deviated from

the standard value. Figure 4.21(a) shows the probability density function (PDF),

ρ(Γr), of the maximum value of streamer-driven fluxes for the radial position at

r = 4-6 cm. The PDF shows that a finite value should still remain in the region

of larger value more than a few standard deviation σ; for comparison, a Gaussian

distribution for reference is also plotted. Supposed that the tail of PDF should

obey the power law, ρ(Γr) ∝ Γ
−β
r , as shown in Fig. 4.21(b), the most probable

exponent is found to be β = −4.7±0.2 when the fitting is performed for the region

of more than 2σ.

Besides, one of the most important characteristics of the streamer-driven flux

is its ballistic nature of the transport. From the result in Fig. 4.15(c), it should take

∼ 0.1 ms for the streamer pulse to reach from r = 2 cm to r = 6 cm. On the other

hand, the diffusive time scale governed by DWs is estimated as, τ ∼ a2/D ∼ 3 ms,

where radial distance a = 4 cm, diffusion coefficient D ∼ ω∗/k2
⊥, DWs frequency
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f (Γr) = a+bΓr
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f (Γr) ~ exp(-λΓr
2/σ2)!

2σ!

(a)! (b)!

b ~ -4.7 ± 0.2!

FIG. 4.21: (a) Probability density function (PDF) of maximum particle flux at r =

4-6 cm and a Gaussian (orange) distribution for reference. (b) A logarithmic plot
of PDF, in the region of more than 2σ. A linear fit (red) is provided to deduce the
slope.

ω∗ ∼ 2π×8 kHz and perpendicular wavenumber k⊥ ∼ 2π×0.5 cm−1 are assumed.

The comparison indicates that propagation speed of flux associated with streamer

is more than 30 times faster than the diffusive time scale of DWs.

It is also important to evaluate how the particles ejected from the magnetic

field under steamers. Assuming that the particle should move along the trajectory

of E × B-drift associated with the streamer structure, the RM probe measurement

gives a rough value of 2 km/s. Thus, the radial particle ejection frequency is

estimated around |Eθ × B|/a ∼ 50 kHz. On the other hand, the rotation frequency

of the streamer is ω ∼ 10 kHz ( f = 1.7kHz), since it is the same as the mediator

frequency. The comparison between these two frequencies, the particle (and heat)

should be transported to the plasma edge before the azimuthal location of the

streamer does not show significant changes.

Therefore, these considerations demonstrate that streamer could make parti-

cle and energy transport instantaneously to connect the plasma core to the edge.

Moreover, it has been known, in PANTA, that the azimuthal width of the streamer

should become narrower with the amplitude increase [99]. If this might be valid

for the streamer in toroidal plasma, a large amount of particle and heat in the
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confinement regime could be directly driven to the narrower region of the plasma

periphery, as the streamers with larger amplitude emerge.

In short summary, the streamer-driven particle flux is evaluated experimen-

tally in a linear cylindrical plasma, PANTA. The results show fundamental as-

pects of streamers and associated particle fluxes, that is, their shapes, the mech-

anisms to create the radially elongated structure, the individual contributions of

drift waves and mediators to the transport, and the frequency of the occurrence

of larger streamers and transports seems to obey the power law. The radial prop-

agation time of transport associated with streamer is one order shorter than that

of DWs. The ballistic nature of the streamer-driven fluxes that connect the high

temperature core and edge, and the power laws of their emergence demonstrates

the significant importance of streamers and its driven transport to the magnetically

confinement plasmas for fusion.
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Chapter 5

Response of streamer during biasing

experiment

Previous chapter shows that the streamer forms a radially elongated structure

and hence increase the radial transport. Thus, contorol of the streamer is important

for plasma confinement. In PANTA, end-plate biasing experiments have been

performed to observe the streamer response against electric field biasing. The

privious experiments indicated that the streamer was regulated during the biasing

[111], however, their suppression mechanism, nonlinear structure and transport

changes are not clarified. In this chapter, experimental observations of the end-

plate biasing feature and its effect on the instabilities, nonlinear structure of the

streamer and associated particle transport are discussed. Main of these results are

published in Ref. [103, 104].

5.1 The effect of end-plate biasing in PANTA

The biasing experiment has been performed in various experimental devices,

tokamaks [105, 106], helical machines [107, 108] and linear cylindrical devices
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[56, 109]. The electrode biasing is one of the techniques to control plasma turbu-

lence through change of electric current and electric field. It is well known that

the radial electric field shear generates shear flows, which cause the turbulence

suppressions [110]. In this section, the effect of the end-plate biasing experiment

on PANTA plasma is mentioned. Changes of two type of instabilities which forms

streamer, drift waves and flute type mediator mode, are observed during the bias-

ing.

5.1.1 Description of end-plate biasing experiment

A disk-shaped end-plate is installed at the end of the vacuum vessel, as shown in

Fig. 5.1. The diameter of the end-plate is 50 mm and is located at z = 3950 mm.

The end-plate is biased against the grounded vacuum chamber. The power supply

has the maximum output power of 1500 W up to 100 V output voltage and up to

15 A output current.
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(a)! (b)!

FIG. 5.1: Configuration of end-plate biasing experiment in PANTA. (a) Circuit of
the biasing experiment. (b) Picture of the end-plate.

5.1.2 Discharge configuration

For investigating the effect of the biasing on the plasma, various plasma condi-

tions are tested. Here, high RF power discharges at 6 kW are introduced in the
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experiment. The magnetic field strength and the neutral gas pressure are the same

as those at the previous streamer discharges, as B = 0.09 T and 0.45 mTorr, re-

spectively. The drift waves and an m = -1 of flute type mode, which is similar to

the mediator, are observed in the 6 kW discharge. In this experiment, a number

of the RS probes are aligned in the axial direction to investigate axial profiles of

the electron density and floating potential. For instance, one is located at z = 1375

mm, in front of the 64ch probe, and the other is at z = 3885 mm, in front of the

end-plate, respectively.

(a)Bias voltage 

    Bias current!

(b) RF incident/reflection wave!

(c) Ion saturation current (z=1375, 3885mm)!

(d) Floating potential (z=1375, 3885mm)!

(e) -"rVf (z=1375, 3885mm)!

r = 2.5cm!

r = 2.5cm!

r = 2.5cm!

FIG. 5.2: Time evolutions of (a) biasing voltage and current and (b) RF incident
and reflected waves. RS probes at different axial positions measure (c) ion satura-
tion current, (d) floating potential, and (e) radial gradient of the floating potential,
respectively.

91



Waveforms at a typical discharge are shown in Fig. 5.2. The biasing is applied

from 0.3 s to 0.5 s. In the discharge, the positive 30 V bias is applied, and the

electric current towards the end-plate is around 12 A. The RF signal shows that

the net input power doesn’t change during the biasing. The fluctuation level of

the ion saturation current decrease at both axial positions, as shown in Fig. 5.2(c).

With the biasing, the floating potential abruptly increases simultaneously in the

axial direction. On the other hand, the radial gradient of the floating potential

decreases with some finite time delay when the biasing starts.

5.1.3 Bias voltage dependence of profiles

For investigating bias dependence, the bias voltage is positively changed every

2.5 V. Figure 5.3 shows the dependence of the plasma quantities at z = 1375 mm,

except the bias current (measured at the end-plate, z = 3950 mm). The bias current

and floating potential increase gradually with the bias voltage. On the other hand,

in the central region inside the end-plate radius r < 2.5 cm, the ion saturation

current and inverse scale length of the electron density start to increase at around

20 V and saturate at around 30 V. In spite of the increase of the density gradient,

the radial derivative of the floating potential starts to decrease at around 20 V.

The radial profiles at 0, 20 and 30 V biasing are shown in Figs. 5.4. They

indicate that the electron density gradient in the central region (r < 3 cm) increase

with the biasing voltage. However, the electron temperature dose not change with

the biasing voltage. Thus, change in the profiles of the floating potential almost

reflect change in the plasma potential by the biasing.

From above discussion, the change of radial gradient of the floating potential

reflects the change of radial electric field. Figure 5.5(a) shows that the gradient of

the floating potential and its shear at around r = 2.5 cm decrease with the biasing.

On the other hand, the relative fluctuation levels, which are obtained from root-
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(a)Bias current 

(b) Iis (r=2,3,4,5,6 cm)!

(c) 1/Ln (r=2.5,3.5,4.5,5.5 cm)!

(d) Vf (r=2,3,4,5,6 cm)!

(e) -"rVf (r=2.5,3.5,4.5,5.5 cm)!

FIG. 5.3: Bias voltage dependence of (a) bias current, (b) ion saturation current,
(c) inverse scale length of density profile, (d) floating potential and (e) radial
derivative of the floating potential, respectively. The measurement axial position
of the quantities (b)-(e) is at z = 1375 mm.

mean-squared of the ion saturation current fluctuations, decrease at around r =

2.5 cm. This is not consistent with the physics of electric field shear suppression

[110]. However, since the fluctuations have large axial correlations, the variation

of the electric field in the different axial position may affect the suppression of

fluctuations. Figure 5.5(b) shows the gradient of the floating potential measured

at z = 3885 mm. The strong radial electric field shear at around r = 2.5 cm is

induced by the biasing. This radial electric field near the edge of the end-plate may

reduce the fluctuations level in the whole region. The end-plate biasing changes
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0V, 20V, 30V!

(b)!

(d)!

FIG. 5.4: Profiles of (a) electron density, (b) electron temperature, (c) inverse scale
length of electron density and (d) floating potential are shown. The measurement
position is at z = 1375 mm.

the profiles of electric field in three-dimensional space, and that changes influence

the plasma, or fluctuations.

5.1.4 Fluctuations changes with biasing

In this plasma conditions, similar to the streamer discharge, the drift waves and

flute type mode coexist. Since the flute mode has an m = -1 and kz = 0, it is

quite similar to the mediator in the streamer discharge. Thus, the changes of these

fluctuations against bias voltage is key for the streamer suppressions.

The bias voltage dependence of the amplitude of drift waves is measured, as

shown in Fig. 5.6(a). The drift waves decrease around 15 V, and saturate at 30 V.

The dependence is similar with those of density gradient and radial electric field.
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FIG. 5.5: Profiles of the radial gradient of floating potential at (a) z = 1375 mm
and (b) z = 3885 mm. Fluctuation levels at (c) z = 1375 mm and (d) z = 3885 mm
are also shown.

On the other hand, the amplitude of flute mode increases with the bias voltage.

Therefore, the flute mode behaivior is correlated with the radial electric fields,

e.g. Kelvin-Helmholtz type instabilities [64].

In short summary, the end-plate biasing in PATNA, the radial electric field

changes only near the end-plate region. Since the drift waves have long axial

wavelength and correlation, the radial electric field shear at the end-plate region

may suppress the drift waves in the whole plasma region. The reduction of the

drift waves may link the increase of the density gradient. On the other hand, the

amplitude of the mediator like flute mode increase with the biasing, thus, this

mode is correlated with the electric field shear driven instabilities. The changes of

electric field in three-dimensional space could affect to the fluctuations, and thus
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!
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!

FIG. 5.6: Amplitudes of normalized ion saturation current fluctuation and floating
potential fluctuation for (a) drift waves and (b) flute mode measured with the 64ch
probe. The measurement location is at r = 4 cm and z = 1885 mm.

to the streamer.

5.2 The change of nonlinear structures

The end-plate biasing experiment on the streamer discharge is performed. Dur-

ing the biasing, bunching structure of the streamer is destroyed [111]. This is the

same mechanism of the previous experiment that the strong radial electric field is

generated near the end-plate, and the shear may suppresses the whole region of

fluctuations [111]. Here, the changes of nonlinear structures of the streamer are

discussed for studying the suppression mechanism of the streamer.

5.2.1 The discharge condition and profiles

Similar to the previous section, the end-plate biasing on the streamer discharge

is conducted. The positive bias is applied for the period of 0.3 to 0.45 s as shown

in Fig. 5.7. For the streamer discharge, when the biasing voltage reaches 50 V,

the bias current takes two values and jumps from one to the other several times.
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FIG. 5.7: (a) Bias voltage. (b) Bias current. Bias-less S-mode yields the streamer
region. During the B2-mode, fluctuations are suppressed more than during the
B1-mode. (c) Averaged electron density at three different radii (r = 10, 30 and 40
mm). (d) Floating potential measured at r = 40 mm. (e) Fluctuation component
of ion saturation current at r = 30 mm.

The current jump is an indicator of the transition. Figure 5.7(b) shows a case of

one current jump during a single discharge. Here we define three plasma modes;

the first is S-mode (Streamer mode), which appears without biasing and is charac-

terized by the streamer state. The lower and higher bias current phases are called

as B1-mode (Biased 1 mode) and B2-mode (Biased 2 mode), respectively. Figure

5.7(c) shows time-averaged electron density at r = 10, 30 and 40 mm measured

with the 5ch radial probe array, which is located at z = 1375 mm. The electron

density at r = 10 mm, inside the end plate region, increases in the B1-mode, and

further increases in the B2-mode. On the other hand, the density at r = 40 mm,
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outside the end plate region, decreases. Then, the radial profile of the density is

steep in the B1-mode and becomes steeper in the B2-mode. During the biasing,

the floating potential also increases rapidly as shown in Fig. 5.7(d). Amplitude of

the fluctuation was reduced in the B1-mode and further reduced in the B2-mode,

as shown in Fig. 5.7(e).
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FIG. 5.8: Radial mean profiles of (a) electron density, (b) floating potential and
(c) relative density fluctuation level. Black, blue and red lines indicate data in
S-mode, B1-mode and B2-mode, respectively.

Time-averaged radial profiles of the electron density, floating potential and

root-mean-squared fluctuation level are shown in Fig. 5.8. The profiles are ob-

tained with the 5ch probe. Black, blue and red lines denote those in the S-mode,

B1-mode and B2-mode, respectively. During the biasing, the gradient of the den-
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sity profile is sharp in B1-mode and becomes sharper in B2-mode. Similar to

the previous experiments, the gradient of the floating potential dosn’t change, or

is even weaker during the biasing. On the contrary, the gradient of the floating

potential near the end-plate increases [111]. Thus, relative fluctuation levels de-

creases during the biasing over the whole axial positions, as shown in Fig. 5.8.

5.2.2 Changes of spectra and structure of fluctuations during

biasing

Frequency-azimuthal mode decomposed Fourier analysis is applied to signals of

the 64ch probe array. Figure 5.9 shows two-dimensional normalized power spec-

tra of the ion saturation current ((a), (b) and (c)), and the floating potential ((d),

(e) and (f)) fluctuations. The floating potential is normalized by the electron tem-

perature of 3 eV, which was measured in identical plasma condtions [51]. Here,

positive frequency denotes that fluctuations propagate in the electron diamagnetic

drift direction. In the S-mode, the mode at (m, f ) = (1, -1.5 kHz) is the mediator

of the streamer, which propagates in the ion diamagnetic direction. Strong drift

wave fluctuations exist as (m, f ) = (2, 6.5kHz) and (3, 5kHz), which propagate in

the electron diamagnetic direction.

Density fluctuations are considered during the biasing; in the B1-mode, fre-

quency of the m = 2 drift wave changes from 6.5 kHz (S-mode) to 7 kHz as shown

in Fig. 5.9(b). The mediator frequency also changes from -1.5 kHz (S-mode) to

-2 kHz. The power of the drift wave fluctuations decreases. In contrast, the power

of the mediator increases and the higher harmonics of the mediator are excited

as the mode (m, f ) = (2, -4.5 kHz). In the B2-mode, the frequency of the m = 2

drift wave changes from 6.5 kHz (S-mode) to 7.5 kHz. The mediator frequency

also changes from -1.5 kHz (S-mode) to -2.5 kHz. The power of the drift wave

fluctuations further decreases compared to that in the B1- mode. In addition, the
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FIG. 5.9: 2-dimensional normalized power spectra of data measured with the 64ch
probe array. (a), (b) and (c) indicate ion saturation current fluctuations and (d), (e)
and (f) show floating potential fluctuations, respectively.

power of the mediator and its higher harmonics further increases.

The floating potential fluctuations during the biasing are considered; in the

B1-mode, the mediator disappears and the power of drift waves decreases. In the

B2-mode, the mediator is excited again and its higher harmonics are also excited,

and the power of drift waves furtherer decreases. Increase in the power of a mode

m = 0 during the biasing is not verified yet. These modes are not zonal flows,

however, since the observed fluctuations oscillate radially at the same phase, and

its radial wavenumber is almost 0.

In order to investigate the spatial structure of fluctuations, correlation analy-

sis is performed. Figure 5.10 shows contours of real part of the complex cross

spectra of the normalized density fluctuations between the 5ch radial probe data

and the 64ch probe array data. Frequency of the m = -1 component, mediator,

changes to (1.5 kHz, 2.0 kHz, 2.5 kHz) depending on the modes (S-mode, B1-
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FIG. 5.10: Cross section of mediator of m = −1, deduced by real part of cross
spectra between 5ch radial probe and 64ch probe array. Frequency components
of (a) 1.5 kHz in the S-mode, (b) 2.0 kHz in the B1-mode, and (c) 2.5 kHz in the
B2-mode are shown, respectively.

mode, B2-mode). A node is formed in the density fluctuation, and location of the

node shrinks radially inward during the biasing. The mediator structure changes

globally by the biasing.
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FIG. 5.11: Cross section of mediator of m = 2, deduced by real part of cross
spectra between 5ch radial probe and 64ch probe array. Frequency components
of (a) 6.5 kHz in the S-mode, (b) 7.0 kHz in the B1-mode, and (c) 7.5 kHz in the
B2-mode are shown, respectively.

The drift wave cases are explained next. Figure 5.11 shows cross spectrum of

the m = 2 component of density fluctuations in the (a) S-mode, (b) B1-mode and

(c) B2-mode, respectively. The drift wave of m = 2 component has long radial

correlation length in the S-mode. The correlation length tends to decrease in the
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B1-mode, and is clearly shortened in the B2-mode. Not only the amplitude but

the correlation length of the drift waves decreases by the biasing.

5.2.3 Change of nonlinear characteristics

First, to investigate the changes of the nonlinear couplings of the streamer,

bi-spectrum analysis is performed. Auto-bi-coherence is obtained from 179 en-

semble averaging (2 ms time window) from the 64ch probe array. To increase

the number of ensemble averaging, the 32 probe signals of 64ch probe are aver-

aged and thereby the bi-coherence is averaged over the azimuthal wave number

domain.
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FIG. 5.12: Squared auto-bi-coherence of density fluctuations measured by 64ch
probe array in (a) S-mode, (b) B1-mode and (c) B2-mode. Auto-bi-coherence
changes during biasing.

Figure 5.12(a) shows the squared auto-bi-coherence of density fluctuations in

the S-mode. Strong peaks are visible at f1 = 6.5 kHz. These peaks mean the

strong nonlinear coupling between f1 = 6.5 kHz and peaked f2 fluctuations. For

example, f1 = 6.5 kHz couples with f2 = ±1.5 kHz and produces f3 = 5 kHz and
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8 kHz drift waves. In particular, a peak at ( f1, f2) = (6.5 kHz, 6.5 kHz) is very

strong. This suggests that the coherent mode at (m, f ) = (4, 13 kHz) observed in

the 2-dimensional power spectrum is exited by the self-coupling of the coherent

drift wave at f = 6.5 kHz. Peaks aligned on the three lines, i.e., f1 = 1.5 kHz, f2

= 1.5 kHz and f1 + f2 = 1.5 kHz, indicate the nonlinear coupling with the m = −1

waves, i.e. the mediator.

In the B1-mode, Fig. 5.12(b) shows that the nonlinear coupling with the drift

wave reduces, because peaks aligned on the lines of f1 = 7 kHz and f2 = 7 kHz

become weak compared with those in the S-mode. In particular, the self-coupling

reduces. On the other hand, the couplings with the mode at (m, f ) = (-1, 2 kHz)

increases compared to those in the S-mode.

Further changes appear in the B2-mode. Figure 5.12(c) indicates that the non-

linear coupling with the drift wave further reduces. The self-coupling consid-

erably reduces. Nonlinear coupling with the mode at (m, f ) = (-1, 2.5 kHz) is

enhanced because peaks aligned on three lines, i.e. f1 = 2.5 kHz, f2 = 2.5 kHz

and f1 + f2 = 2.5 kHz, become strong and broad. Especially, the self-couplings of

this mode (i.e., f1 = 2.5 kHz and f2 = 2.5 kHz, 5.0 kHz and 7.5 kHz) are clearly

shown in the B2-mode.

Although the couplings between the m = −1 waves and drift waves contribute

the streamer formation, these self-couplings contribute not the streamer formation

but the formation of the solitary structure. Unfortunately, the frequencies of the

m = 2 drift wave and third harmonic of the m = −1 (7.5 kHz) overlap each other

in the B2-mode, thereby it is difficult to distinguish the contributions of these two

modes to nonlinear couplings at ( f1, f2) = (2.5 kHz, 7.5 kHz). For more detailed

discussion, wavenumber mode decomposition in the bi-coherence analysis is re-

quired, however, it requires large number of ensemble to obtain the converged

bi-coherence. This point is discussed in the next section.
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FIG. 5.13: Total bi-coherences in S-mode (black line), B1-mode (blue line) and
B2-mode (red line). The nonlinear couplings of drift wave decrease, while that of
m = −1 waves increase during the biasing.

The total bi-coherence is very useful to observe contribution of a certain mode

to the nonlinear couplings with ambient modes. Figure 5.13 (a) shows that the

total bi-coherence is large at f = 6.5 kHz in the S-mode and thus the m = 2 drift

wave is strongly coupled with other fluctuations. With the biasing, the couplings

with the m = 2 drift wave ( f = 7 kHz in the B1-mode and 7.5 kHz in the B2-mode)

decreases. On the other hand, the couplings of m = −1 waves ( f = 1.5 kHz, 2.0

kHz and 2.5 kHz, for the S-mode, B1-mode and B2-mode, respectively) increases

during the biasing. This result is consistent with the result of bi-coherence analy-

sis.

To observe the nonlinear coupling features more directly, temporal evolutions

of fluctuations are also considered. Figure 5.14 shows temporal evolution of den-

sity fluctuations. Figs. 5.14 denote mode-frequency resolved signals in the (a)

S-mode, (b) B1-mode and (c) B2-mode, respectively. The upper rows denote the

filtered signal in the range f = 0.8 - 3.0 kHz and m = -1 (mediator), the middle

rows denote the filtered signal in the range f = 4.8 - 9.0 kHz and m = 2 and 3
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FIG. 5.14: Time evolution of density fluctuations are extracted by the spatio-
temporal filter. In upper raws, fluctuations are filtered in the range f = 0.8 - 3.0
kHz and m = -1. In middle raws fluctuations are filtered in the range f = 4.8 - 9.0
kHz and m = 2, 3. In lower raws fluctuations are filtered in the range f = 1 - 8.5
kHz and m = -2, -3. Green line indicates envelope of each fluctuations.

(drift waves), and the lower rows represent the filtered signal in the range f = 1

- 8.5 kHz and m = -2 and -3 (harmonic components of mediator), respectively.

Green line means envelops of fluctuations calculated by using Hilbert transform.

In the S-mode, envelops of drift waves (m = 2 and 3) vary temporally and those

frequencies are the same as that of the m = -1 mode. This means that the modes (m

= 2 and 3) are modulated by the m = -1 mode. On the other hand, modulations of

the envelops of the modes m = -2 and -3 are weak and doesn’t synchronized with

the m = -1 wave. Here the coupling among m = -1 and m = 2 and 3 are three-wave

coupling, while coupling between m = -1 and m = -2 and -3 can be self-coupling

of the m = -1 mode. Thus, three-wave couplings are dominant in the S-mode.

In the B1-mode, the m = −1 mode couples with the m = 2 and 3 modes,

because the envelope modulation is observed. While m = -2 and -3 modes are

merely couple with m = -1 mode especially for 0.438 s ∼ 0.44 s.

In the B2-mode, modulations of m = 2 and 3 drift waves are small compared

to those in the B1-mode, especially for 0.36 s ∼ 0.364 s. The envelops of m =

-2 and -3 modes, on the other hand, modulate strongly compared to those in the
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B1-mode. The three-wave coupling among m = -1 mode and m = -2 and -3 modes

is confirmed shown as the amplitude modulation, however, three-wave coupling

between m = -1 and m = 2 and 3 modes decreases in the B2-mode compared to

those in the S-mode and B1-mode.

These results suggest that the characteristics of three-wave (drift waves and

mediator) couplings in the streamer disappear during the biasing. Instead, the

coupling of m = -1 mode and its higher harmonics (m = -2 and -3) are excited.

Next, for the confirmation, the nonlinear waveform of the mediator are extracted

by the conditional averaging.
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FIG. 5.15: Conditional averaging with phase tracking method is applied in (a)
S-mode, at f = 1.5 kHz, (b) B1-mode, at f = 2 kHz and (c) B2-mode, at f = 2.5
kHz, respectively. Power spectra of the extracted waves are also described as (d),
(e) and (f), respectively.

Here, frequency components of f = 1.5 kHz, 2.0 kHz and 2.5 kHz are used

as reference tracking phase frequency in the S-mode, B1-mode and B2-mode,

respectively. Conditional averaging is performed over more than 580 ensemble

numbers. The extracted waveform of the mediator in the B1-mode has larger peak
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than that in the S-mode, and the peak additionally become larger in the B2-mode,

as shown in Figs. 5.15(a)-(c).

Power spectra of the extracted waves show that there are more clear peaks

of 2nd and 3rd harmonics of the mediator during the biasing. This suggests that

the self-coupling of the m = −1 mode increases in the B1-mode and addition-

ally increases in the B2-mode. The excitation of the harmonics suggests that the

azimuthal localization of the mediator becomes strong during the biasing.

5.3 The change of transport

In previous section, it is explained that the nonlinear couplings between the

drift waves and the mediator decreases during the biasing, and the mediator forms

nonlinear waveforms strongly by their self couplings. During the biasing, due

to the destruction of the streamer, the radial density gradient increases. In this

chapter, the changes of particle flux associated with change in the streamer during

the biasing are mentioned.

5.3.1 Frequency-mode decomposed particle flux

The total particle flux redueces during the biasing. At r = 4cm, time-averaged

fluxes in the S-mode, B1-mode and B2-mode are 2.3, 2.2 and 1.7 [1019/m2s] , re-

spectively. To understand fluctuation behaviours, the particle flux is decomposed

into frequency-mode domain by using two-dimensional Fourier transform. In this

case, the total particle flux is written as [101],

Γr =
2
B
<

[∫ ωNyq.

0
dω

∫ kNyq.

−kNyq.

dkS ñ,Ẽ(k, ω)
]
, (5.1)
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where S ñ,Ẽ(k, ω) is the complex cross spectrum between density and electric field

fluctuations, < denotes real part of cross spectrum and kNyq. and ωNyq. denote

Nyquist wavenumber and frequency, respectively. The, k - ω resolved particle

flux is given as,

Γr(k, ω) =
2
B
γñ,Ẽ(k, ω) | Pñ(k, ω) |1/2| PẼ(k, ω) |1/2 cos(αñ,Ẽ(k, ω)) (5.2)

where Pã(k, ω) indicates power spectrum of arbitrary fluctuation ã, and γñ,Ẽ(k, ω)

and αñ,Ẽ(k, ω) are coherence and phase delay between density and electric field

fluctuations.
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FIG. 5.16: Two-dimensional particle flux. (a), (b) and (c) represent those in S-
mode, B1-mode and B2-mode. Positive flux indicates outward direction.

Figure 5.16 shows f - m ( f = ω/2π and m = rk) decomposed particle fluxes

in the S-mode, B1-mode and B2-mode, respectively. Positive (red) and negative

(blue) signs denote direction of outward/inward particle fluxes. Positive frequency

indicates that the fluctuation propagates in the electron diamagnetic drift direction.

In the S-mode, the outward flux is mainly driven by drift waves with (m, f ) = (2,

6.5 kHz) and (3, 5.2 kHz). The drift waves nonlinearly couple with the mediator

with (m, f ) = (1, -1.3 kHz). The mediator drives the inward flux. In the B1-mode,

the m = 2 wave (drift wave) driven outward flux decreases, and the m = −1

wave (mediator) driven flux becomes obscure. In the B2-mode, the drift-wave-
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driven outward flux further reduces, and the m = −1 mediator-driven flux becomes

outward. This suggests that the mediator changes its qualitative characteristics

during the biasing.
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5.3.2 Changes of fluctuations amplitude and phase relation
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FIG. 5.17: Mode decomposed frequency spectra. (a), (b), (c) and (d) indicate
those of m = −1 component, and (e), (f), (g) and (h) indicate those of m = 2
component. (a) and (e) show power spectra of ion saturation current, (b) and
(f) show power spectra of floating potential. (c) and (g) show the squared cross
coherence, (d) and (h) show the cross phase between Ĩis and Ṽ f . Black, blue and
red lines indicate those in S-mode, B1-mode and B2-mode, respectively.

To understand the behaviours of the particle flux in the different 3 modes, spec-

tra of Ĩis and Ṽ f are verified. The band-pass filter in the k-domain is performed,

and the m = −1 (mediator) and m = 2 mode (drift wave) are extracted. The cross

spectra between two fluctuation components are calculated. Figures 5.17 (a), (b),

(c) and (d) indicate the cross spectra of m = −1, i.e. power spectra of Ĩis/Īis

and eṼ f /Te, squared coherence and cross phase between Ĩis and Ṽ f , respectively.
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Black, blue and red lines denote the plots in the S-mode, B1-mode and B2-mode.

In the S-mode, power spectra of Ĩis and Ṽ f have a maximum at f = 1.3 kHz,

and the squared coherence is very high at the frequency. The phase difference

between Ĩis and Ṽ f (αĨisṼ f
) is 0.23π, corresponding to αñẼ = 0.73π. In the B1-

mode, power spectrum of Ṽ f doesn’t have any clear peaks. Then, the coherence is

low. Because of the low coherence, particle flux driven by m = -1 wave becomes

almost zero. In the B2-mode, a peak appears in the power spectrum of Ṽ f at

f = 2.6 kHz, and coherence becomes high. Phase difference of αĨisṼ f
is -0.81π,

corresponding to αñẼ = -0.31π. The change of sign of the phase means inversion

of direction of flux.

Concerning drift waves, the power spectrum of the m = 2 drift waves has a

peak at 6.5 kHz in the S-mode. The phase difference of αĨisṼ f
is 0.16π, corre-

sponding to αñẼ = -0.36π, which is a typical value for drift waves. During the

biasing, the power spectra decrease in the B1-mode, and further decrease in the

B2-mode. Cross coherence tends to decrease during the biasing. The phase re-

lation changes from 0.16π to 0.36π during the biasing. Although the phase shift

during the biasing has effects to enhance outward flux, reduction of power spectra

has a stronger impact on the reduction of the particle flux and thus drift-wave-

driven flux reduces in this experiment.

Relation between fluctuations power and particle flux are summarized in a di-

agram (in Fig. 5.18). Drift-wave (m = 2) driven particle flux decreases as decrease

in fluctuations power. On the other hand, flux driven by the m = -1 mode becomes

0 due to the decrease in fluctuations power and reversed its direction with recovery

of fluctuations power.

The qualitative feature of the turbulence becomes visible with Lissajous di-

agram of density and floating potential fluctuations. Figure 5.19 shows the Lis-

sajous diagram of m = 2 and m = −1 waves, and black, blue and red lines denote
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FIG. 5.18: Relation between fluctuations power spectrum and particle flux for
m = −1 mediator and m = 2 drift wave. Black circle, square and triangle symbols
indicate those in S-mode, B1-mode and B2-mode, respectively.

those in the S-mode, B1-mode and B2-mode respectively. The m = 2 wave,

trajectory rotates in the same direction (counter-clockwise direction), which cor-

responds to the same direction of fluxes. During the biasing, the amplitude of

fluctuations decreases, while the phase relations changes to enhance the positive

fluxes. The area of closed trajectory is proportional to magnitude of flux, thus

fluxes driven by the m = 2 wave decrease during the biasing, accompanying with

decrease in the fluctuation amplitudes. Changes in the phase shift have small

impact on the decrease in flux. The m = −1 wave in the S-mode and B2-mode ro-

tates in different directions (counter-clockwise direction in the S-mode and clock-

wise direction in the B2-mode). The observation indicates that the directions of

m = −1 wave-driven flux are different in different plasma modes. In addition,

density/potential fluctuation increases/decreases from the S-mode to B2-mode. In

the B1-mode, the potential fluctuation of the m = -1 mode disappears, then the

flux becomes almost zero. For the m = 2 mode, the ratios in the B1/B2 modes

of area to that in the S-mode are 0.86 and 0.28, which is consistent with those
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FIG. 5.19: Lissjous diagrams between ion saturation current fluctuation and float-
ing potential fluctuation. Those for m = 2 waves and m = −1 waves are shown.
Black, blue and red lines correspond to the S-mode, B1-mode and B2-mode, re-
spectively. Colored arrows denote the direction of rotation.

estimated from the spectra indicated as Fig.5.18, 0.85 and 0.22. For the m = −1

mode, the ratio of area for the m = -1 mode is 1:1.2 (S-mode, B2-mode), while

the ratio estimated from Fig. 5.18 is 1:1. These facts strongly support that the

turbulence can form different states in the PANTA plasma during the biasing.
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Chapter 6

Conclusion

The experimental observation of streamer has been really rare in spite of the

importance. In particular, the real shape of streamer and its transport process

have been unknown. This thesis focuses on the basic experimental observation of

streamer. Advanced analytical methods, e.g., azimuthal mode analysis, wavelet-

bicoherence and conditional averaging technique are first applied on the streamer.

The streamer is studied in terms of its nonlinearity, transport process and response

to the electric field. Here, the summary and the conclusion of the thesis are de-

scribed.

(i) The nonlinear waveform of streamer is revealed

Since the streamer is nonlinearly evolved structure, there real waveform should

contain nonlinearity. By using the conditional averaging, the typical waveforms

of streamer and mediator are extracted. It is found that both waves are nonlinear

waves, and satisfy the characteristics of solitons, i.e., the amplitude increases with

squared of the parameters of localization width. The discovery is that the two

different kinds of solitons, streamer and mediator, co-exist in the plasma.
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(ii) The streamer-driven particle flux is investigated

In decades, the streamer has been expected to enhance transport, since streamer

is radially elongated. The conditional averaging is applied to investigate the struc-

ture of the streamer and the accompanied particle flux simultaneously. The ob-

tained patterns of the particle flux is found to follow the shape of the streamer

which is radially elongated and azimuthally localized, and show to enhance the

radial transport. The instantaneous maximum flux is about two times larger than

the time averaged value, and the time scale of the flux is one-order faster than

the diffusive transport. The occurrence of the streamer of larger transport deviates

from the Gaussian, but should obey the power low. The structures of flux patterns

are generated not only through the amplitude modulation, but also through phase

modulation. Moreover, streamer-driven flux patterns are composed of DWs and

mediator flux, and the mutually-induced flux components are important for the

localization of the flux. These are the first experimental observations of streamer-

driven flux.

(iii) The verification study of conditional averaging is performed

For obtaining the above-mentioned results, the validation of the conditional

averaging is performed. In the conditional averaging process, determination of

the trigger is a crucial issue. In this thesis, three methods to determine the trigger

are introduced. The validation of the methods is made for the intermittent and

non-monotonically increasing bursts observed in the I- mode of ASDEX-U. The

study reveals that the template method should have excellent property, compared

to the usual ones using the threshold to determine the trigger time. The verification

studies of conditional averaging technique assure the analytical results of streamer

practically.
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(iv) The effect of electric field to the streamer is observed

It is known that the radial electric fields can suppress the turbulence by the

sharing effect. Hence, for the candidate of the streamer control, the experiment to

generate the electric field with end-plate biasing is carried out, and the streamer

responses are observed. The end-plate biasing provides the strong shear of ra-

dial electric field, which is only localized at the end region of the axial direction.

During the biasing, the DWs amplitudes are reduced with the nonlinear inter-

action between DWs and mediator, while the higher harmonics of the mediator

increased. It is found that the particle flux is also reduced during the biasing. The

possibility of streamer control through biasing experiment is indicated.

The experimental observation of streamer clarified about the streamer struc-

ture, transports and the response toward electric field. In addition to the confirma-

tion of the streamer character, these results can contribute to the progress in the

theory and simulation predictions of streamer. The understanding of the basics of

streamer provides benefits to the progress of fusions and basic plasma physics.
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