
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Relaxations of Hard Graph Problems Using Finite
Groups, and Characterizations of Graphs for
Efficient Algorithms

西山, 宏

https://hdl.handle.net/2324/2236254

出版情報：九州大学, 2018, 博士（工学）, 課程博士
バージョン：
権利関係：

Relaxations of Hard Graph
Problems Using Finite Groups, and
Characterizations of Graphs for

Efficient Algorithms

Hiroshi Nishiyama

Abstract i

Abstract

It was 1971 when the notion of NP-completeness was introduced by Cook. Karp
proposed 21 NP-complete problems, and more than half of them are graph problems,
including Hamiltonian cycle problem, vertex cover, and chromatic number. These hard
problems, however, are solved efficiently when input graphs have specific structures.
Understanding graph structures is an important and prospective approach for designing
efficient graph algorithms.

Relaxation of a problem is a standard strategy to attack hard problems; consider a
relaxed variant of a hard problem, find good characterizations for it, and apply the idea
of the characterizations to the original hard problem. Motivated by the development of
new technologies for relaxation, this paper focuses on relaxations using finite groups.

The target of relaxation is not unique; relaxation of the constraints of a problem,
relaxation of “for any input” condition (restricting the class of inputs), relaxation of
objective function (approximation), and so on. To begin with, this thesis considers a
variant of the Hamiltonian cycle problem by relaxing the constraint. We give rise to a
new problem, parity Hamiltonian cycle, which is a relaxed variant of the Hamiltonian cy-
cle problem. A parity Hamiltonian cycle is a closed walk (possibly using each edge more
than once) which visits every vertex an odd number of times. We are concerned with the
problem in both undirected graphs and directed graphs. We give some good characteri-
zations for both undirected graphs and directed graphs which have parity Hamiltonian
cycles. Based on the characterizations, we present efficient algorithms for both problems.
Particularly, the existence of a parity Hamiltonian cycle in a directed graph is charac-
terized by a linear system over GF(2), thus the problem is solved by solving the linear
system. Next we consider the Hamiltonian cycle problem for covering graphs, which are
defined by finite groups. Batagelj et al. (1982) showed a very simple characterization of
the Hamiltonicity of the Cartesian product of a tree and a cycle which is represented as
a covering graph. We show the same characterization as Batagelj et al.’s is applicable
for two larger graph classes.

Finding a spanning tree of minimum weight with bounded diameter is known to be
NP-hard. We give rise to a variant of the problem, the odd depth tree problem. An odd
depth tree is a rooted spanning tree such that the distance of each leaf and the root is
odd. We show the NP-hardness for non-bipartite graphs, while we present a complete

Abstract ii

characterization for bipartite graphs. We also consider the problem for directed graphs,
and show similar characterizations and complexity results to the undirected case.

Acknowledgment iii

Acknowledgment

First of all the author is very grateful to my supervisor Shuji Kijima. He helped me a
lot and gave me advice about my research, presentations, thesis and paperworks. I was
on half-way to giving up the Ph. D. course, but he patiently waited for me while I was
taking a year off, and when I was back he encouraged me to finish this great work up.
Without his effort I could not hang tough to work on this thesis.

I would like to express my sincere gratitude to my ex-supervisor Masafumi Yamashita
who kindly gave me advice during my undergraduate and master courses, and the first
two years of my Ph. D. course. I also would like to appreciate the associated professor
Yukiko Yamauchi for taking great care of me and giving advice about my research.

I am grateful to the professor Eiji Takimoto and the associate professor Naoyuki
Kamiyama who cooperatively discussed my research and gave me a lot of helpful advice.

I would like to thank every my current members and ex-colleagues in my laboratory
who I have met in the seven years of my life here. I appreciate their kindness which
helped me a lot. I have grown in my mind in many aspects throughout the relationship
with them.

Finally, I appreciate my family, especially my mother Junko for her economic and
mental assistance.

Acknowledgment iv

Table of Contents v

Table of Contents

Abstract i

Acknowledgment iii

1 Introduction 1

1.1 Relaxation of Constraints: Parity Hamiltonian Cycle Problem 2

1.1.1 Undirected PHC Problem . 2

1.1.2 Directed PHC problem . 5

1.2 Relaxation of “For Any” Condition : HC’s in Covering Graphs 5

1.3 Relaxation of Constraints: Spanning Tree Problem 7

1.4 Organization . 8

2 The PHC Problem in Undirected Graphs 10

2.1 Preliminaries . 10

2.1.1 Parity Hamiltonian cycle . 10

2.1.2 A PHC as an Eulerian cycle of a multigraph 11

2.1.3 A PHC with an edge constraint 12

2.2 Other graph terminology . 12

2.2.1 Fundamental notations . 12

2.2.2 T -join . 12

2.2.3 Edge connectivity . 13

2.2.4 Graph classes . 13

2.3 The PHC4 problem . 14

2.4 The PHCz problems when z = 1, 2, 3 . 16

2.4.1 The PHC3 problem for four-edge-connected graphs 17

2.5 The PHC3 Problem for Two-Edge-Connected Graphs 19

2.5.1 All-roundness : Preliminary . 19

2.5.2 All-roundness of C≥5-free: Proof of Theorem 2.18 22

2.5.3 All-roundness of P6-free: Proof of Theorem 2.19 26

Table of Contents vi

2.6 Miscellaneous Discussions . 33

2.6.1 All-roundness of graphs with bridges 33

2.6.2 All-roundness of dense graphs . 34

2.6.3 Connection of Parity Hamiltonian, Hamiltonian, Eulerian 35

3 The PHC Problem in Directed Graphs 38

3.1 Preliminaries . 38

3.2 Characterization . 39

3.2.1 Recognition in Linear Time . 42

3.3 Extension to GF(p) . 43

3.4 Open problem: The PHC orientation . 44

4 The Hamiltonicity of Covering Graphs 46

4.1 Preliminaries . 46

4.2 The First Extension : The Same Label at Both Ends 48

4.2.1 Linear Time Recognition . 52

4.3 The Second Extension : The Same Label at Two Consecutive Vertices . . 56

4.4 Further Discussion : When Some Labels are Not Coprime 59

5 The Odd Depth Tree Problem 63

5.1 Preliminaries . 63

5.2 Bipartite Graphs . 64

5.3 Non-bipartite Graphs . 66

5.4 Directed Graphs : The Odd Depth In-tree Problem 68

5.4.1 Directed Bipartite Graphs . 69

5.4.2 Directed Non-bipartite Graphs . 71

6 Conclusion 74

Table of Contents vii

Chapter 1 Introduction 1

Chapter 1

Introduction

It was 1971 when Stephen A. Cook posed the notion of NP-completeness, and Leonid
Levin independently found essentially the same notion around the same time. Since
then, the conjecture P ̸= NP has been a major open problem in the theoretical com-
puter science. Graph algorithms have been the central issue in the context. In 1972,
Richard R. Karp presented 21 NP-complete problems, in which more than half of them
are problems on graphs such as Hamiltonian cycle (HC), vertex cover, chromatic num-
ber, etc. However, those hard problems are easily solved for some graphs; the Hamil-
tonian cycle problem is polynomial time solvable for strongly connected path-mergeable
graphs, locally semi-complete graphs [3], cocomparability graphs [17], distance heredi-
tary graphs [32], etc. Understanding graph structures is an important and prospective
approach for designing efficient graph algorithms. Then, the ultimate goal of this study
in future is to find good characterizations for any problems in NP.

As an approach, it may be a natural idea to begin with considering a relaxed variant,
of a hard problem, finding good characterizations of it, and applying the idea of the
characterizations to the original hard problem. Relaxation is a standard approach to
attack a hard problem. The traveling salesman problem (TSP) in a graph, is regarded as
a relaxed version of the HC problem, in the sense that the condition of visiting number
on each vertex is relaxed to more than once. Another example may be a two-factor (in
cubic graphs), which relaxes the condition of the connectivity of an HC, but a two-factor
must contain each vertex exactly once (cf. [29, 30, 8, 9]). Motivated by a development of
new techniques for relaxation, this paper focuses on relaxations using finite groups. In
the areas of graph theory and matroid theory, group-labeled graphs recently attract lots
of attension, and are intensively investigated [14, 38, 39, 54]. The parity is regarded as a
cyclic group of order two. Graph problems with parity constraints have been well studied;
realizing plane graphs with prescribed parity of degrees of vertices [1], strong connected
orienting of undirected graphs with parity constraints for degrees [22], edge-coloring with
parity constraint [12], subset feedback set problem with parity condition [35], multi-way
cut with parity constraint [44], etc.

Chapter 1 Introduction 2

The target of relaxation is not unique; relaxation of the constraints of a problem,
relaxation of “for any input” condition (restricting the class of inputs), relaxation of
objective function (approximation), and so on. In this thesis, we consider a variant of
Hamiltonian cycle problem by relaxing the constraint of the Hamiltonian cycle problem.
First we introduce the parity Hamiltonian cycle problem (PHC), which is a relaxed variant
of the Hamiltonian cycle problem. A PHC is a closed walk (possibly using each edge more
than once) which visits every vertex an odd number of times. We are concerned with the
problem in both undirected graphs and directed graphs. Particularly, a characterization
of directed graphs is given by a GF(2) linear system and the problem is easily solved
using the linear system. Next we consider the Hamiltonian cycle problem restricting the
class of input graphs. The HC problem for graphs possessing some symmetry such as
vertex-transitive graphs is a major target in graph theory. This thesis is concerned with
covering graphs, which are defined by finite groups, and gives a new characterization of
Hamiltonicity. Also we will be concerned with another NP-hard problem. A spanning
tree is a connected acyclic subgraph. While a spanning tree in a graph is easily found,
finding the one with bounded diameter is known to be NP-hard. In this thesis we consider
the odd depth tree problem, a variant of the above problem relaxing the constraint using
parity.

1.1 Relaxation of Constraints: Parity Hamiltonian Cycle Prob-
lem

1.1.1 Undirected PHC Problem

A Hamiltonian cycle (HC) is a cycle which visits every vertex exactly once. The
question if a given graph has a Hamiltonian cycle is a celebrated NP-complete problem
due to Karp [36]. It could be a natural idea for the HC problem to relax the condition on
the visiting number. The traveling salesman problem (TSP) is a celebrated optimization
problem to minimize the length of a walk, where the walk must visit every vertex at
least once, while an HC visits every vertex exactly once. This thesis proposes another
relaxation of the HC problem using parity. The parity Hamiltonian cycle (PHC), which
is a variant of the Hamiltonian cycle: a PHC is a closed walk which visits every vertex an
odd number of times (see Section 2.1, for more rigorous description). Note that a closed
walk is allowed to use an edge more than once. The PHC problem is to decide if a given
graph has a PHC. We remark that if the condition “odd number of times” is changed to
“even number of times,” the problem becomes trivial: just finding a spanning tree and
tracing it twice suffices.

It may not be trivial if the PHC problem is in NP, since the length of a PHC is
unbounded in the problem. In Section 2.3 we show that the PHC problem is in P,
in fact. Precisely, we give a complete characterization of the graphs which have PHC’s.

Chapter 1 Introduction 3

Table: 1.1: Time complexity of the PHC problem.
Each edge is used at most z times Complexity Refinement

z ≥ 4 P (Thm. 2.7)

z = 3 NP-complete (Thm. 2.10) ⇒ Table 1.2

z = 2 NP-complete (Thm. 2.10)

z = 1 NP-complete (Thm. 2.9)

Table: 1.2: Time complexity of the PHC3 problem.
Edge connectivity Complexity Refinement by graph classes

4-edge-connected P (Thm. 2.11)
3-edge-connected unknown P for P6-free or C≥5-free
2-edge-connected NP-complete (Thm. 2.10) (Section 2.5)
1-edge-connected NP-complete P for P6-free or C≥5-free

(from 2-edge-connected case) (Section 2.6.1)

Furthermore, we show that if a graph has a PHC then we can find a PHC4 in linear time,
where PHCz for a positive integer z denotes a PHC which uses each edge at most z times.
In contrast, Section 2.4 shows that the PHCz problem is NP-complete for each z = 1, 2, 3
(see Table 1.1)1. We then further investigate the PHC3 problem. In precise, the PHC3

problem is NP-complete for two-edge-connected graphs, while Section 2.4.1 shows that
it is solved in polynomial time for four -edge-connected graphs. The complexity of the
PHC3 for three-edge-connected graphs remains unsettled (see Table 1.2).

As an approach to the PHC3 problem for three-edge-connected graphs, we in Sec-
tion 2.5 utilize the celebrated ear-decomposition, which is actually a well-known charac-
terization of two-edge-connected graphs. Then, Section 2.5 shows that the PHC3 problem
is in P for any two-edge-connected C≥5-free or P6-free graphs (see Section 2.2 for the
graph classes). The classes of C≥5-free and P6-free contain some important graph classes
such as chordal, chordal bipartite and cograph. We remark that it is known that the
Hamiltonian cycle is NP-complete for C≥4-free graphs, as well as P5-free graphs (cf. [10]).

In precise, we in Section 2.5 introduce a stronger notion of all-roundness (and bipar-
tite all-roundness) of a graph, which is a sufficient condition that a graph has a PHC.
Catlin [13] presented a similar notion of collapsible in the context of spanning Eulerian
subgraphs, and the all-roundness is an extended notion of collapsible. Then, we show
that any two-edge-connected C≥5-free and P6-free graphs are all-round or bipartite all-

1Notice that those hardness results are independent, e.g., “z = 3 is hard” does not imply “z = 2 is
hard,” and vice versa.

Chapter 1 Introduction 4

Figure: 1.1: PHC3 is in P for C≥5-free graphs and P6-free graphs.

round. We conjecture that any two-edge-connected C≥7-free graphs are all-round, while
it seems not true for C≥8-free nor P7-free.

Section 2.6 is for miscellaneous discussions. Section 2.6.1 shows that the PHC3 prob-
lem is in P for any C≥5-free or P6-free graphs, and extends the results in Section 2.5
with an extra argument on bridges. In Section 2.6.2, we remark that a dense graph is
also all-round using some techniques in Section 2.5. Before closing the chapter, Sec-
tion 2.6.3 briefly discusses the connection between the PHC and other problems, such
as Hamiltonian cycle or Eulerian cycle, regarding a generalized problem described in
Section 2.5.

Related works Here, we refer to the work by Brigham et al. [11], which investigates a
similar (or, essentially the same) problem. Brigham et al. [11] showed that any connected
undirected graph has a parity Hamiltonian path or cycle (see Theorem 2.8). Their proof
is constructive, and they gave a linear time algorithm based on the depth-first-search.
As far as we know, it is the uniquely known result on the problem. To be precise, we
remark that their argument does not imply that the PHC problem is in P: their study
do not consider the case when a graph does not contain a parity Hamiltonian cycle.

Notice that the condition that an HC visits each vertex once, say 1 ∈ R times, is
replaced by 1 ∈ GF(2) times in the PHC. Modification of the field is found in some graph
problems, such as group-labeled graphs or nowhere-zero flows [34, 40]. It was shown that
the extension complexity of the TSP is exponential [56, 20, 21], while it is an interesting
question if the PHC has an efficient (extended) formulation over GF(2). We also refer
to a work on exact k-walk by Jackson and Wormald [33], which is concerned with a
spanning closed walk meeting each vertex exactly k times (or at most k times in another
version).

Chapter 1 Introduction 5

1.1.2 Directed PHC problem

It is natural to ask if the PHC problem is efficiently solved in directed graphs. We
give two characterizations of graphs which admit PHC’s. The characterizations, unlike
with the undirected case, are described by linear systems over GF(2). Since a liner
system is efficiently solved by Gaussian elimination, the characterizations directly imply
that the PHC problem in a directed graph is solved in polynomial time. We also give a
polynomial time algorithm to construct a PHC in a directed graph.

For a linear system associated with an n ×m matrix, the Gaussian elimination re-
quires O(nm2) time to solve it. We improve the time complexity by proposing a linear
time algorithm to solve the PHC problem in directed graphs which is based on the char-
acterization. The algorithm finds a T -join in the bipartite representation of a directed
graph, which is essentially equivalent to solving the linear system over GF(2) but faster
than it.

A PHC is a closed walk which visits each vertex 1 mod 2 times. For a positive
integer p, the problem is generalized as follows: given a directed graph D and a function
f : V → {0, 1, . . . , p−1}, is there a closed walk which visits a vertex v f(v) mod p times?
We show the generalized problem is characterized similarly to the PHC problem using
linear systems over GF(p). The characterization implies the problem is also solved in
polynomial time when p is prime or a power of a prime number.

1.2 Relaxation of “For Any” Condition : HC’s in Covering
Graphs

Hamiltonicity of symmetric graph is a popular subject in graph theory. Among many
kinds of symmetric graphs, the class of Cayley graphs is one of the classes that have been
paid attention most. Given a group G and its generating set S, a Cayley graph is an
undirected graph on the vertex set G with edges between the pairs of two elements g, h
of G with h = gs for some s ∈ S. Due to its construction, a Cayley graph has symmetry.
There is a folklore conjecture that every connected Cayley graph has an HC, which has
been still unsettled. The Hamiltonicity of Cayley graph is an interesting topic not only
from the theoretical point of view, but from the point of application such as network
design [43] and word processing [27].

There are some celebrated graph classes containing the class of Cayley graphs as a
subclass. The class of vertex-transitive graph is one of them, and its Hamiltonicity has
been well studied [42]. Another class is the covering graphs of voltage graphs (simply
covering graphs). A covering graph is defined by a voltage graph, which is a triple of a
graph called a base graph, a group, and labels on each edge of the base graph. Contrary
to the vertex-transitive graphs, there are few number of studies on the Hamiltonicity of
covering graphs. One of the previous results is by Alspach [2], which completely charac-

Chapter 1 Introduction 6

terizes the Hamiltonicity of generalized Petersen graphs, which is equivalent to a covering
graph of the path of length two. Although the base graph is small, the characterization
of Hamiltonicity is complicated, which possibly implies that the Hamiltonicity of the
covering graphs of the paths is intractable even when the length is small enough, say
three or four.

Another result for the Hamiltonicity of the covering graphs is by Batagelj and Pisan-
ski [4], which deals with the Cartesian product of a tree and a cycle. Their characteri-
zation is quite simple; let p be the length of the cycle and ∆ be the maximum degree of
the tree, the Cartesian product of the two graphs is Hamiltonian if and only if p ≥ ∆.
The Cartesian product of a tree and a cycle is also viewed as a covering graph; the base
graph is a tree having a self-loop on each vertex, the group is the cyclic group Zp, and the
the label of each bridge is zero and the label of each self-loop is one. We note here that
there is a study which extends the Hamiltonicity result of Batagelj et al. generalizing
the concept of Cartesian product [50].

Contribution In Chapter 4 we extend the result of Batagelj et al.’s [4] in two ways;
precisely, we propose two graph classes for which the same characterization of Hamil-
tonicity as Batagelj’s, p ≥ ∆, holds. The two classes are covering graphs of trees having
a self-loop at each vertex, and defined by some conditions on the labels. The condition
of the first class is that the edges of Γ except self-loops can be partitioned into k paths,
and for each path, the two end vertices of the path have the same label. The condition of
the second class is that the edges of Γ except self-loops can be partitioned into k paths,
and in each path, there are two adjacent vertices having the same label. Moreover, for
both conditions we require every label to be coprime to the order of the group. For each
class, one can check that it contains the class of the Cartesian product of a tree and a
cycle by taking the all-one label on the self-loop at every vertex. At last, by putting
these two conditions together, we obtain a larger class for which the Hamiltonicity is
characterized by p ≥ ∆.

Recall that it seems to be intractable to characterize the Hamiltonicity of the covering
graphs of the small paths. Our result, however, implies that the Hamiltonicity of arbi-
trarily long paths is characterized by one quite simple inequality under some conditions
on the input graph, as long as the label on each self-loop is coprime to the order of the
cyclic group. This is a remarkable aspect of our result.

The two conditions mentioned above, are non-trivial to check. We also propose a
linear time algorithm to check if the input voltage graph satisfies each condition.

Chapter 1 Introduction 7

1.3 Relaxation of Constraints: Spanning Tree Problem

A spanning tree of a graph G is a spanning connected subgraph of G having no cycles.
The concept of spanning tree is quite fundamental and it appears in many research areas.
Moreover, it has plenty of applications for areas such as network designs, distributed
algorithms, and data structures. While it is easy to find a spanning tree (of minimum
weight) in a graph, there are considerable number of hard variants. For example, finding a
spanning tree having minimum or maximum number of leaves, bounded degrees, bounded
diameter, and bounded number of hops, are all known to be NP-hard [23, 25]. Notice
that a Hamiltonian path is equivalent to a spanning tree with minimum number of leaves.

There is a previous study concerning a spanning tree with a parity condition. Lovàsz
proposed the problem, given a connected graph and a list of disjoint pairs of edges, to
find a spanning tree of minimum weight such that for each two edges e, f paired in the
list, both e and f are used in the tree or neither of them are used. Lovàsz showed the
problem is solved in polynomial time using the linear matroid parity [45, 49].

In this thesis, we consider a variant of the problem to find a spanning tree with
bounded diameter relaxing the constraint using parity. An odd depth tree is a spanning
tree such that every leaf has an odd distance from a prescribed root vertex. The odd
depth tree problem is to find such a tree in a given undirected graph and a root vertex2.

Related Topics When some parity (or a finite group) condition is added to a graph
problem, it is often generalized to the problems in group-labeled graphs. A group-labeled
graph is a pair (G, ϕ) where G is a graph and ϕ is a map from E(G) to an element of
a group3. Consider a group-labeled graph associated with the group Z2 and every edge
has label 1. Consider a path on the group-labeled graph in which the sum of the labels
of the edges is not equal to zero. Then it corresponds to a path of odd length in the
normal graph. The studies on non-zero paths or cycles in group-labeled graphs have
been grown these days; packing non-zero A-paths [14] and its reduction to matroids [54],
packing non-zero cycles [38], finding a shortest non-zero A-path [39], etc.

One can suppose that an odd depth tree can be also regarded as a “non-zero” span-
ning tree in a group-labeled graph. However, paths and spanning trees have a crucial
difference; a path is regarded as a walk on a graph, while a spanning tree is not. In
other words, the operation of “taking sum of labels along a spanning tree” will make no
sense. Thus it does not seem that there is a way to relate the odd depth tree problem
with those studies on non-zero paths.

2One can also consider the even depth tree problem, that is, the problem to find a spanning tree
such that every leaf has an even depth, which is essentially equivalent to the odd depth tree problem.

3The group-labeled graph is essentially same concept as the voltage graph. There is no mathematical
difference between them, they come from different origins.

Chapter 1 Introduction 8

Contribution Our results on the odd depth tree problem are as follows. For bipartite
graphs, we show a Hall-type characterization of graphs having an odd depth tree. We
propose a polynomial time algorithm to find an odd depth tree based on the character-
ization. For non-bipartite graphs, we show the problem is NP-complete. We also study
the problem in directed graphs, for which we obtained similar results to the undirected
case.

1.4 Organization

This thesis is organized as follows. In Chapter 2 we study the PHC problem in
undirected graphs. In Chapter 3 we study the PHC problem in directed graphs. In
Chapter 4 we study the HC problem in covering graphs. In Chapter 5 we study the odd
depth tree problem. In Chapter 6 we summarize the results and mention future works.

Chapter 1 Introduction 9

Chapter 2 The PHC Problem in Undirected Graphs 10

Chapter 2

The PHC Problem in Undirected Graphs

In this chapter we investigate the parity Hamiltonian cycle (PHC) problem in undirected
graphs. First we introduce some terminologies and notations, then formally define the
PHC problem.

2.1 Preliminaries

An undirected simple graph (simply we say “graph”) G = (V,E) is given by a vertex
set V (or we use V (G)) and an edge set E ⊆

(
V
2

)
(or E(G)). Let δG(v) denote the

set of incident edges to v, and let dG(v) denote the degree of a vertex v in G, i.e.,
dG(v) = |δG(v)|. We simply use δ(v) and d(v) without a confusion.

A walk is an alternating sequence of vertices and edges v0e1v1 · · · vℓ−1eℓvℓ with an
appropriate ℓ ∈ Z≥0, such that ei = {vi−1, vi} ∈ E for each i (1 ≤ i ≤ ℓ). Note that
each vertex or edge may appear more than once in a walk. A walk is closed if vℓ = v0. A
graph G is connected if there exists a walk from u to v for any pair of vertices u, v ∈ V .

For a closed walk w = v0e1 · · · eℓvℓ, the visit number of v ∈ V , denoted by visit(v),
is the number of times that v appears in the walk but counting out the last vℓ (since
vℓ = v0), i.e., visit(v) = |{i ∈ {0, 1, . . . , ℓ− 1} | vi = v}|.

2.1.1 Parity Hamiltonian cycle

A parity Hamiltonian cycle (PHC for short) of a graph G is a closed walk in which
visit(v) ≡ 1 (mod 2) holds for each v ∈ V . Remark again that an edge may appear more
than once in a PHC w. Clearly, a graph must be connected to have a PHC, and this
paper is basically concerned with connected graphs.

An edge count vector x ∈ ZE
≥0 of a closed walk w is an integer vector where xe for

Chapter 2 The PHC Problem in Undirected Graphs 11

e ∈ E counts the number of occurrence of e in w. Remark that

visit(v) =
1

2

∑
e∈δ(v)

xe (2.1)

holds for any closed walk. Thus, we see that a PHC is a closed walk whose edge count
vector x ∈ ZE

≥0 satisfies the parity condition∑
e∈δ(v)

xe ≡ 2 (mod 4) (2.2)

for each v ∈ V .

2.1.2 A PHC as an Eulerian cycle of a multigraph

As given an arbitrary integer vector x ∈ ZE
≥0, the parity condition (2.2) is a necessary

condition for that x is an edge count vector of a PHC. In fact, the following easy but
important observation provides an if-and-only-if condition.

Proposition 2.1. Let G = (V,E) be an undirected simple graph and let x ∈ ZE
≥0 be

an arbitrary integer vector. Let F = {e ∈ E | xe > 0}, and then x is an edge count
vector of a PHC in G if and only if x satisfies (2.2) and the subgraph H = (V, F) of G
is connected.

As a preliminary of the proof of Proposition 2.1, we introduce an Eulerian cycle
of a multigraph. For a simple graph G = (V,E) and any nonnegative integer vector
x ∈ ZE

≥0, let Ex be a multiset such that e ∈ E appears xe times in Ex. Then, let (G,x)
represent a multigraph with a vertex set V and a multiedge set Ex. Note that (G,1) = G
where 1 ∈ ZE

≥0 denotes the all one vector. We say (G,x) is connected if a simple graph
H = (V, F) is connected where F = {e ∈ E | xe > 0}. An Eulerian cycle of (G,x) is
a closed walk which uses each element of the multiset Ex exactly once. It is celebrated
fact due to Euler [19] that (G,x) has an Eulerian cycle if and only if (G,x) is connected
and x satisfies the Eulerian condition∑

e∈δ(v)

xe ≡ 0 (mod 2) (2.3)

holds for any v ∈ V .

Proof of Proposition 2.1. The ‘only if’ part is easy from the definition. We prove the
‘if’ part. Note that x satisfies (2.3) since x satisfies (2.2). Since H is connected by the
hypothesis, the multigraph (G,x) has an Eulerian cycle w. Considering (2.1), it is not
hard to see that w is a PHC since x satisfies (2.2).

Chapter 2 The PHC Problem in Undirected Graphs 12

For convenience, we say x ∈ ZE
≥0 admits a PHC in G if x is an edge count vector of

a PHC in G. In summary, Proposition 2.1 implies the following.

Corollary 2.2. Let G = (V,E) be an undirected simple graph and let x ∈ ZE
≥0 be an

arbitrary integer vector. Then, x admits a PHC in G if and only if (G,x) is connected
and x satisfies (2.2).

2.1.3 A PHC with an edge constraint

As we repeatedly remarked, a PHC may use an edge more than once. For convenience,
let PHCz for z ∈ Z>0 denote a PHC using each edge at most z times.

2.2 Other graph terminology

This section introduces some other graph terminology which we will use in this chap-
ter. (They will be used in the late chapters as well.)

2.2.1 Fundamental notations

A simple path is a walk w = v0e1v1e2 · · · eℓvℓ which visits every vertex (and hence
every edge) at most once, where ℓ (ℓ ≥ 0) is the length of the path w. Similarly, a simple
cycle is a closed walk w = v0e1v1e2 · · · eℓv0 which visits every vertex at most once, where
ℓ (ℓ ≥ 3) is the length of the cycle w. An odd cycle is a simple cycle of odd length.

Let G = (V,E) be a graph. For an edge subset F ⊆ E, let G−F denote a graph H =
(V,E \F). For a vertex subset S ⊆ V , let G−S denote the subgraph induced by V \S,
i.e., G− S is given by deleting from G all vertices of S and all edges incident to S. For
convenience, we simply use G−e for e ∈ E instead of G−{e}, and G−v for v ∈ V as well.
An edge e ∈ E is a bridge if its deletion increases the number of connected components
of G. For a pair of graphs G and H, let G+H = (V (G) ∪ V (H), E(G) ∪ E(H)).

2.2.2 T -join

Let G = (V,E) be a graph and let T be a subset of V such that |T | is even. Then,
J ⊆ E is a T -join if the graph H = (V, J) satisfies

dH(v) ≡
{

1 (mod 2) if v ∈ T,
0 (mod 2) otherwise,

(2.4)

for any v ∈ V [52]. Notice that a graph H ′ = (T, J) may not be connected, in general.
A T -join is a generalized notion of a matching, in the sense that J is a matching when
all edges in J are disjoint.

Chapter 2 The PHC Problem in Undirected Graphs 13

Theorem 2.3 (cf. [41]). For any graph G = (V,E) and for any T ⊆ V satisfying that
|V (C) ∩ T | is even for every connected component C of G, G contains a T -join.

A T -join is found in O(|V |+ |E|) time (see Appendix A of [47]).

2.2.3 Edge connectivity

A graph is k-edge-connected for a positive integer k if the graph remains connected
after removing arbitrary at most k − 1 edges. A k-edge-connected component H of G is
a maximal induced subgraph of G such that H is k-edge-connected.

The ear decomposition is a cerebrated characterization of two-edge-connected graphs.
An ear P = v0e1v1e2 · · · eℓvℓ of a graph G is a simple path, or a simple cycle (where
v0 = vℓ), of length at least one where d(vi) = 2 for each i = 1, . . . , ℓ − 1 and v0 and vℓ
are in the same two-edge-connected component of G − {v1, . . . , vℓ−1}, or G − e1 when
ℓ = 1. A cycle graph, which consists of a simple cycle only, is two-edge-connected. It
is not difficult to see that any two-edge-connected graph, except for a cycle graph, has
an ear. By the definition, a graph obtained by deleting an ear P except for v0 and
vℓ from a two-edge-connected graph G is again two-edge-connected unless G is a cycle
graph. By recursively deleting ears from a two-edge-connected graph G, we eventually
obtain a single vertex. The sequence of ears obtained by the operation is called an ear
decomposition of G. The following fact is well-known.

Theorem 2.4 (cf. [52]). A graph G is two-edge-connected if and only if G has an ear
decomposition.

2.2.4 Graph classes

Let Pn (n ≥ 2) denote a graph consisting of a simple path on n vertices. Notice that
the length of the path Pn is n − 1. Let Cn (n ≥ 3) denote a cycle graph on n vertices.
A graph is Pk-free (resp. Ck-free) if it does not contain Pk (resp. Ck) as an induced
subgraph. A graph is C≥k-free

1 if G is Ck′-free for all k′ ≥ k. Clearly, any Pk-free graph
is also Pk+1-free, as well as any C≥k-free graph is also C≥k+1-free. We can also observe
that any Pk-free graph is C≥k+1-free. However, any C≥k-free is not included in Pl-free
for any l, since a tree, which is clearly C≥3-free, admits a path of any length.

Many important graph classes are known to be characterized as Pk-free or C≥k-free.
For instance, the class of cographs is equivalent to P4-free, chordal is equivalent to C≥4-
free, and chordal bipartite is C≥6-free bipartite (cf. [10])2.

1C≥k-free is often denoted by Cn+k-free [10].
2Here, we omit the definitions of cograph, chordal and chordal bipartite. This paper requires the

properties of Pk-free or C≥k-free, only.

Chapter 2 The PHC Problem in Undirected Graphs 14

2.3 The PHC4 problem

It may not be trivial if the PHC problem is in NP, since the length of a closed walk
is unbounded. In this section we begin with the PHC4 problem, and give a complete
characterization of the graphs which have PHC4’s. Then we see that the PHC problem is
in P as a corollary. The following is the key theorem to characterize the PHC4 problem.

Theorem 2.5. A connected graph G = (V,E) contains a PHC if and only if the order
|V | is even or G is non-bipartite.

In fact, we prove a slightly stronger theorem (Theorem 2.6). Given a graph G =
(V,E) and S ⊆ V , an S-odd walk is a closed walk of G which visits every vertex of S an
odd number of times and visits every other vertex an even number of times. Clearly, a
V -odd walk is a PHC of G.

Theorem 2.6. For any connected graph G and any S ⊆ V (G), G contains an S-odd
walk if and only if |S| is even or G is non-bipartite. Furthermore, we can find an S-odd
walk of G which uses each edge at most four times.

Proof. First, we show the ‘only if’ part. Suppose that G = (U, V ;E) is a bipartite graph,
and that |S| is odd. Assume for a contradiction that G has an S-odd walk. Without loss
of generality, we may assume that |U ∩ S| is odd, and hence |V ∩ S| is even since |S| is
odd. Then,

∑
v∈U∩S visit(v) is odd since visit(v) of an S-odd walk is odd for each v ∈ S

and |U ∩ S| is odd, while
∑

v∈V ∩S visit(v) is even since |V ∩ S| is even. Furthermore,∑
v∈U\S visit(v) is even (as well as

∑
v∈V \S visit(v)) since visit(v) of an S-odd walk is

even for each v ̸∈ S. Thus,
∑

v∈U visit(v) is odd while
∑

v∈V visit(v) is even. On the
other hand, any closed walk of G satisfies that

∑
u∈U visit(u) =

∑
v∈V visit(v) since G is

bipartite. Contradiction.

Next, we show the ‘if’ part. When |S| is even, let J be an S-join of G. Let x ∈ ZE
≥0

be given by

xe =

{
2 if e ∈ J,
4 otherwise.

Then, (G,x) has an Eulerian cycle, which in fact an S-odd walk since J is an S-join of
G.

When |S| is odd and G is non-bipartite, let C be an odd cycle of G. Let

T = (S \ V (C)) ∪ (V (C) \ S),

i.e., T is the symmetric difference between S and V (C). Then, it is not difficult to
observe that |T | ≡ |S|+ |V (C)| (mod 2) holds, and hence |T | is even since both |S| and
|V (C)| are respectively odd by the assumption. Let J ′ be a T -join of G, and let x′ ∈ ZE

≥0

Chapter 2 The PHC Problem in Undirected Graphs 15

(a) (b) (c)

Figure: 2.1: Example for the proof of Theorem 2.5 when |S| is odd and G is non-bipartite.
(a) Given graph G, vertex set S, and an odd cycle C, (b) x′ given by (2.5) and T , (c)
x′′ given by (2.6).

be given by

x′
e =

{
2 if e ∈ J ′,
4 otherwise,

(2.5)

and then (G,x′) satisfies the Eulerian condition, and any Eulerian cycle is a T -odd walk
since J ′ is a T -join. Now, let x′′ be given by

x′′
e =

{
x′
e − 1 if e ∈ E(C),

x′
e otherwise.

(2.6)

We remark that xe ≤ 4 for any e ∈ E, as well as xe > 0, where the latter observation
implies (G,x′′) is connected. Now, it is not difficult to observe that (G,x′′) has an S-odd
walk since S is a symmetric difference between T and V (C).

Since a T -join of a graph is found in linear time, the following is derived from the
proof of Theorem 2.6.

Corollary 2.7. A PHC4 is found in linear time for any connected graph G if the order
|V | is even or G is non-bipartite.

Finally, we remark that Theorem 2.6 is a generalization of the following theorem due
to Brigham et al. [11]. They proved it by presenting an algorithm based on a depth-first-
search, without using the notion of T -join.

Theorem 2.8 (cf. [11]). Every connected graph has a closed walk visiting all vertices
such that the walk visits at least |V | − 1 vertices an odd number of times and uses each
edge at most four times. Such a walk is found in linear time.

Chapter 2 The PHC Problem in Undirected Graphs 16

2.4 The PHCz problems when z = 1, 2, 3

In Section 2.3, we obtained a good characterization for the PHC4 problem. This
section shows that the PHCz problem is NP-complete for each z ∈ {1, 2, 3}. We remark
that these hardness results are independent, e.g., the fact that PHC3 is NP-complete
does not imply the fact that PHC2 is NP-complete, and vice versa.

Theorem 2.9. The PHC1 problems is NP-complete, even when a given graph is three-
connected, planar and cubic.

Proof. It is not difficult to observe that the PHC1 problem is exactly the same as the
HC problem for a cubic graph. It is known that the HC problem is NP-complete even
when a given graph is three-connected, planar and cubic [24].

Theorem 2.10. The PHC2 and PHC3 problems are respectively NP-complete, even when
a given graph is two-edge-connected.

Proof. It is easy to see that both problems are in NP. We reduce the HC problem for
cubic graphs to the PHC problems. Let G be a two-edge-connected cubic graph, which
is an input of the HC problem. Then, we construct a graph H as an input of the PHC
problems, as follows (see also Figure 2.2):

• Subdivide every edge e = {v, u} ∈ E(G) into a path of length three, i.e., remove e
and add vertices ve, ue and edges {v, ve}, {ve, ue}, {ue, u}.

• For each vertex v ∈ V (G), attach a cycle of length four, i.e., add vertices wv1, wv2,
wv3 and edges {v, wv1}, {wv1, wv2}, {wv2, wv3}, {wv3, v}.

For convenience, let V denote the set of original vertices, i.e., V = V (G), let Vs denote the
set of vertices ue, ve added by the subdivision, and let Vc denote the set of vertices wv1,
wv2, wv3 added by the cycle attachment, i.e., V (H) = V ∪Vs∪Vc where |Vs| = 2|E(G)| and
|Vc| = 3|V (G)|. Similarly, let Es denote the set of edges {v, ve}, {ve, ue}, {ue, u} given by
the subdivision for each v ∈ V , and let Ec denote the set of edges {v, wv1}, {wv1, wv2},
{wv2, wv3}, {wv3, v} given by the cycle attachment for each v ∈ V , i.e., E(H) = Es ∪Ec

where |Es| = 3|E(G)| and |Ec| = 4|V (G)|.
In the following, we will prove (i) if G has an HC then H has a PHC2, and (ii) if H

has a PHC3 then G has an HC. Since a PHC2 is also a PHC3, (i) implies that (i’) if G
has an HC then H has a PHC3, as well as (ii) implies that (ii’) if H has a PHC2 then
G has an HC. Thus, (i) and (ii’) imply the NP-hardness of the PHC2 problem, and (i’)
and (ii) imply the NP-hardness of the PHC3 problem.

First, we show (i) if G has an HC then H has a PHC2, by presenting an edge count

vector x ∈ ZE(H)
≥0 . For the edges in Es, set x{v,ve} = x{ve,ue} = x{ue,u} = 1 if the HC

uses e = {v, u} ∈ E(G), otherwise set x{v,ve} = x{ue,u} = 2 and x{ve,ue} = 0. For each

Chapter 2 The PHC Problem in Undirected Graphs 17

edge e′ ∈ Ec, set xe′ = 1 (see Figure 2.2, right). It is not difficult to observe that (G,x)
is connected and satisfies the Eulearian condition. Furthermore, an Eulerian cycle of
(G,x) visits every vertex of V (H) an odd number of times; it visits every vertex of V
exactly three times, and every other vertices exactly once. Thus, x admits a PHC2 of
H.

Next, we show (ii) if H has a PHC3 then G has an HC. Let x be the edge count
vector of the PHC3 of H. In order to visit each vertex of Vc an odd number of times, we
can observe that (x{v,wv1}, x{wv1,wv2}, x{wv2,wv3}, x{wv3,v}) should be (1, 1, 1, 1) or (3, 3, 3, 3)
for each cycle attached to v ∈ V since dH(v

′) = 2 for v′ ∈ Vc. Similarly, there are three
possible assignments of (x{v,ve}, x{ve,ue}, x{ue,u}) for the subdivided path between v and u
(i.e., {v, u} ∈ E(G)), namely (1, 1, 1), (2, 0, 2) or (3, 3, 3). Recall the hypothesis that G
is cubic, and let a, b, c ∈ E(G) denote the edges incident to v in G, meaning that three
subdivided paths are incident to v ∈ V in H. To be precise, dH(v) is 5, where {v, va},
{v, vb}, {v, vc} in Es and {v, wv1}, {v, wv3} in Ec are incident to v. The assumption that
x is the edge count vector of a PHC3, which visits every vertex an odd number of times,
implies that

x{v,va} + x{v,vb} + x{v,vc} + x{v,wv1} + x{v,wv3} ≡ 2 (mod 4)

holds. As we saw, x{v,wv1} = x{v,wv3} = 1 or 3 hold, which implies

x{v,va} + x{v,vb} + x{v,vc} ≡ 0 (mod 4).

Then, the possible multisets of values of {{x{v,va}, x{v,vb}, x{v,vc}}} are {{1, 1, 2}} or
{{3, 3, 2}} where {{·}} denotes a multiset. This means that exactly two of subdivided
paths incident to each vertex of V are assigned (1, 1, 1) or (3, 3, 3), while the other is
assigned (2, 0, 2). Now it is easy to observe that we obtain an HC of G by choosing edges
corresponding to (1, 1, 1) or (3, 3, 3) paths.

2.4.1 The PHC3 problem for four-edge-connected graphs

The PHC3 problem is NP-complete for two-edge-connected graphs, as we have shown
in Theorem 2.10. For four -edge-connected graphs, we obtain the following.

Theorem 2.11. A four-edge-connected graph G = (V,E) contains a PHC3 if and only
if the order |V | is even or G is non-bipartite.

To prove Theorem 2.11, we use the following celebrated theorem.

Theorem 2.12 ([46, 28]). Every four-edge-connected graph has two edge disjoint span-
ning trees.

Chapter 2 The PHC Problem in Undirected Graphs 18

Figure: 2.2: A PHC2 around vertex v.

Proof of Theorem 2.11. The ‘only-if’ part follows from that of Theorem 2.5. We show
the ‘if’ part, in a constructive way. Suppose that G is four-edge-connected. Then,
let τ and τ ′ be a pair of edge disjoint spanning trees of G, implied by Theorem 2.12.
Intuitively, we construct a closed walk on τ , and control the parity condition using edges
in τ ′, then we obtain a PHC3.

Let x ∈ ZE
≥0 be given by

xe =

{
2 if e ∈ E(τ),
0 otherwise.

(2.7)

Then, (G,x) is connected, and has an Eulerian cycle, say w. Let S be the set of vertices
with even degree in τ , i.e., S is the entire set of vertices each of which w visits an even
number of times. We also remark that |V \ S| is even, by the handshaking lemma. In
the following, we consider two cases whether |V | is even or odd.

If |V | is even, then |S| is even. Let J ⊆ E(τ ′) be an S-join in the tree τ ′. Then, let
x′ ∈ ZE

≥0 be defined by

x′
e =

{
xe + 2 if e ∈ J,
xe otherwise.

(2.8)

It is easy to see that x′ satisfies the parity condition (2.2) for each vertex of V since J is
an S-join. Clearly (G,x′) is connected, and x′ admits a PHC by Corollary 2.2. Notice
that J ⊆ E(τ ′) is disjoint with E(τ), meaning that (2.7) and (2.8) imply that x′

e ≤ 2 for
each e ∈ E. We obtain the claim in the case.

If |V | is odd, then |S| is odd. By the hypothesis, G is non-bipartite and hence G

Chapter 2 The PHC Problem in Undirected Graphs 19

contains an odd cycle, say C. Let

T = (S \ V (C)) ∪ (V (C) \ S),

i.e., T is the symmetric difference between S and V (C). Then, it is not difficult to
observe that |T | ≡ |S| + |C| (mod 2) holds, and hence |T | is even since both |S| and
|C| are respectively odd by the assumption. Let J ′ ⊆ E(τ ′) be an T -join of τ ′, and let
x′′ ∈ ZE

≥0 be defined by

x′′
e =

{
xe + 2 if e ∈ J ′,
xe otherwise.

(2.9)

It is not difficult to see that (G,x′′) has a (V \ V (C))-odd walk. Finally, we modify x′′

to x′′′ ∈ ZE
≥0 by

x′′′
e =

{
x′′
e + 1 if e ∈ E(C),

x′′
e otherwise,

(2.10)

and then we obtain a PHC3.

It is known (cf. [52]) that a pair of edge disjoint spanning trees τ and τ ′ in a four-edge-
connected graph is found in polynomial time (e.g., O(|E(G)|2) time, due to Roskind,
Tarjan [51]). Thus, the proof of Theorem 2.11 also implies a polynomial time (e.g.,
O(|E(G)|2)) algorithm to find a PHC3 in a four-edge-connected graph G.

2.5 The PHC3 Problem for Two-Edge-Connected Graphs

The PHC3 problem is NP-complete for two-edge-connected graphs (Theorem 2.10),
while it is solved in polynomial time for any four-edge-connected graph (Theorem 2.11).
We devote this section to dig into the PHC3 problem in two-edge-connected graphs
(which includes the class of three-edge-connected graphs). The goal of this section is to
establish the following theorem.

Theorem 2.13. Suppose that a two-edge-connected graph G is P6-free or C≥5-free. Then,
G = (V,E) contains a PHC3 if and only if the order |V | is even or G is non-bipartite.

As mentioned before, C≥5-free contains some important graph classes such as chordal
(equivalent to C≥4-free), chordal bipartite (equivalent to C≥5-free bipartite), and cograph
(equivalent to P4-free). We also remark that the Hamiltonian cycle problem is NP-
complete for C≥4-free graphs, as well as P5-free graphs (cf. [10]).

2.5.1 All-roundness : Preliminary

We introduce the notion of the all-roundness of a graph. This notion is used through-
out the rest part of this section to characterize the graphs having PHC3’s.

Chapter 2 The PHC Problem in Undirected Graphs 20

Generalized problem

Section 2.5 is actually concerned with the following problem, which is a slight gener-
alization of the PHC3 problem.

Problem 1. Given a graph G = (V,E) and a map f : V → {0, 1, 2, 3}, find x ∈
{0, 1, 2, 3}E satisfying the conditions that∑

e∈δ(v)

xe ≡ f(v) (mod 4) for any v ∈ V , (2.11)

(G,x) is connected. (2.12)

Clearly, the PHC3 problem is given by setting f(v) = 2 for any v ∈ V (recall Corol-
lary 2.2). For convenience, we call x ∈ {0, 1, 2, 3}E a mod-4 f -factor of G if x satisfies
(2.11). A mod-4 f -factor x ∈ {0, 1, 2, 3}E is connected if it satisfies (2.12), i.e., Problem 1
is a problem to find a connected mod-4 f -factor. We remark the following two facts.

Proposition 2.14. A graph G = (V,E) has a mod-4 f -factor only when the map f
satisfies that ∑

v∈V

f(v) is even. (2.13)

Proof. Summing up the both sides of (2.11) over V , we obtain∑
v∈V

f(v) ≡
∑
v∈V

∑
e∈δ(v)

xe (mod 4). (2.14)

It is not difficult to see that ∑
v∈V

∑
e∈δ(v)

xe = 2
∑
e∈E

xe (2.15)

holds, in an analogy with the handshaking lemma, that is
∑

v∈V
∑

e∈δ(v) 1 =
∑

e∈E 2. By
(2.14) and (2.15), we obtain that∑

v∈V

f(v) ≡ 2
∑
e∈E

xe (mod 4)

which implies the claim.

We will later show in Lemma 2.23 that (2.13) is also sufficient for any connected
non-bipartite graph to have a mod-4 f -factor. For bipartite graphs, we need an extra
necessary condition on f .

Chapter 2 The PHC Problem in Undirected Graphs 21

Proposition 2.15. A bipartite graph G = (U, V ;E) has a mod-4 f -factor only when the
map f satisfies that ∑

v∈U

f(v) ≡
∑
v∈V

f(v) (mod 4). (2.16)

Proof. Since G = (U, V ;E) is bipartite,∑
v∈U

∑
e∈δ(v)

xe =
∑
v∈V

∑
e∈δ(v)

xe (2.17)

is required. Summing up (2.11) over U and V , respectively, we obtain∑
v∈U

f(v) ≡
∑
v∈U

∑
e∈δ(v)

xe (mod 4), and∑
v∈V

f(v) ≡
∑
v∈V

∑
e∈δ(v)

xe (mod 4)

hold, which with (2.17) implies the claim.

Notice that the condition (2.16) implies (2.13). We will show in Lemma 2.23 that
(2.16) is also sufficient for any connected bipartite graph.

All-roundness : Definition

Then, we introduce the following two notions.

Definition 2.16. A graph G is all-round if G has a connected mod-4 f -factor for any
map f satisfying (2.13).

Definition 2.17. A bipartite graph G is bipartite all-round if G has a connected mod-4
f -factor for any map f satisfying (2.16).

It is not difficult to see that Definitions 2.16 and 2.17 are (too strong) sufficient
conditions that a graph contains a PHC3. In the rest of Section 2.5, we will show the
following theorems, which immediately imply Theorem 2.13.

Theorem 2.18. Every two-edge-connected C≥5-free graph is either all-round or bipartite
all-round.

Theorem 2.19. Every two-edge-connected P6-free graph, except for C5, is either all-
round or bipartite all-round.

Chapter 2 The PHC Problem in Undirected Graphs 22

Figure: 2.3: K3 is all-round. A number beside a vertex denotes the value of f . There
are 43/2 = 32 possible assignment of f , but by the symmetry, it suffices to check these
10 cases.

All-roundness of small graphs

As a preliminary step of the proof, we remark the following facts, which are easily
confirmed by the exhaustive search.

Proposition 2.20. C3 (i.e., K3) is all-round (See Figure 2.3).

Proposition 2.21. C4 and C6 are bipartite all-round, respectively.

The following fact may be counterintuitive.

Proposition 2.22. C5 is not all-round.

Figure 2.4 shows an example of f for which Problem 1 does not have a solution.
Notice that C5 clearly has a PHC3, which implies that the all-roundness is not a necessary
condition for a graph to have a PHC3.

2.5.2 All-roundness of C≥5-free: Proof of Theorem 2.18

This section shows Theorem 2.18, presenting some useful idea on a mod-4 f -factor
of a graph, and all-roundness or bipartite all-roundness. To begin with, we show for any
appropriate map f that it is easy to find a mod-4 f -factor, which may be disconnected.

Chapter 2 The PHC Problem in Undirected Graphs 23

Figure: 2.4: A counterexample of the all-roundness (C5). A number beside a vertex v is
the value of f(v). For this f , there are two ways to suffice the (mod 4) degree condition
on every vertex, neither of the factors are connected.

Lemma 2.23. Any connected non-bipartite graph has a mod-4 f -factor for any map f
satisfying (2.13). Any connected bipartite graph has a mod-4 f -factor for any map f
satisfying (2.16).

Proof. We give a constructive proof. Let T := {v ∈ V | f(v) is odd}. We remark that
|T | is even since

∑
v∈V f(v) is even by (2.13). Then, let J ⊆ E be a T -join, and let

x ∈ {0, 1, 2, 3}E be given by

xe =

{
1 if e ∈ J,
0 otherwise.

Let f ′ : V → {0, 1, 2, 3} be

f ′(v) =

f(v)−
∑
e∈δ(v)

xe

 mod 4. (2.18)

Remark that f ′(v) is even for any v ∈ V , i.e., f ′(v) = 0 or 2 for any v ∈ V . Let
S = {v ∈ V | f ′(v) = 2}. If |S| is even, then let J ′ be an S-join and let x′ ∈ {0, 1, 2, 3}E
be defined by

x′
e =

{
xe + 2 if e ∈ J ′

xe otherwise.

It is not difficult to observe that x′ satisfies (2.11), and x′
e ≤ 3 holds for any e ∈ E.

Thus, we obtain the claim in the case. Here we remark that if G is bipartite then |S| is

Chapter 2 The PHC Problem in Undirected Graphs 24

even, since (2.16) implies ∑
v∈U∪V

f ′(v) =
∑
v∈U

f ′(v) +
∑
v∈V

f ′(v)

≡
∑
v∈U

f ′(v)−
∑
v∈V

f ′(v)

≡ 0 (mod 4).

If |S| is odd, we need an extra process. Notice that G is non-bipartite in the case, by
the above argument. Let C be an odd cycle of G and let x′′ ∈ {0, 1, 2, 3}E(G) be

x′′
e =

{
xe + 1 if e ∈ E(C)
xe otherwise.

Let f ′′ : V → {0, 1, 2, 3} be

f ′′(v) =

f(v)−
∑
e∈δ(v)

x′′
e

 mod 4. (2.19)

Let S ′ = {v ∈ V (G) | f ′′(v) = 2}. Then, S ′ is the symmetric difference between S
and V (C), which implies |S ′| is even since |S| and |V (C)| are respectively odd. Let
J ′ ⊆ E(G) be an S ′-join and let x′′′ ∈ {0, 1, 2, 3}E(G) be

x′′′
e =

{
x′′
e + 2 (mod 4) if e ∈ J ′

x′′
e otherwise.

Then, we obtain a mod-4 f -factor.

To obtain a connected mod-4 f -factor, the notions of all-roundness and bipartite all-
roundness play important roles. The following lemma is easy to see from the definition.

Lemma 2.24 (connecting lemma). Let x be a mod-4 f -factor of G, and let H1 and H2

be a distinct pair of connected components of (G,x). Suppose that there is a connected
subgraph H of G such that V (H) intersects both V (H1) and V (H2), and that H is all-
round or bipartite all-round. Then, G has another mod-4 f -factor x′ such that H1 and
H2 are connected in (G,x′) where other connected components are respectively kept being
connected.

Proof. As given x ∈ {0, 1, 2, 3}E(G) and H described in the hypothesis, we define a map
fH : V (H)→ {0, 1, 2, 3} by

fH(v) =
∑

e∈δH(v)

xe mod 4.

Chapter 2 The PHC Problem in Undirected Graphs 25

Figure: 2.5: Connecting lemma. Left figure shows that H1 and H2 are disconnected in
(G,x). Right figure shows that a mod-4 f -factor in H is replaced by another connected
one. The hypothesis that H is all-round or bipartite all-round implies such a connected
mod-4 f -factor in H.

Let y ∈ {0, 1, 2, 3}E(H) be defined by ye = xe for each e ∈ E(H), and then clearly y
is a mod-4 fH-factor of H. Proposition 2.14 implies that fH satisfies (2.13), as well as
Proposition 2.15 implies that fH satisfies (2.16) if H is bipartite. The hypothesis that
H is all-round or bipartite all-round implies that there is a connected mod-4 fH-factor
y′ ∈ {0, 1, 2, 3}E(H) of H. Let x′ ∈ {0, 1, 2, 3}E(G) be

x′
e =

{
y′e if e ∈ E(H),
xe otherwise,

and then, it is not difficult to observe that x′ is a desired mod-4 f -factor of G (See also
Figure 2.5).

It is not difficult to see that Lemmas 2.23 and 2.24 imply the following useful lemma.

Lemma 2.25. Let G be a graph. Suppose that for any edge e ∈ E(G) there exists a
subgraph H of G such that e ∈ E(H) and H is all-round or bipartite all-round. Then,
G is all-round, or bipartite all-round.

Proof. For any appropriate f , meaning that f satisfies (2.13), and (2.16) if G is bipartite,
Lemma 2.23 implies a mod-4 f -factor x. Since the hypothesis, we can obtain a connected
mod-4 f -factor by iteratively applying the connecting lemma (Lemma 2.24) to x.

In fact, the all-roundness of C≥5-free (Theorem 2.18) is immediate from Lemma 2.25.

Proof of Theorem 2.18. Let G be a two-edge-connected C≥5-free graph. Then, any edge
e of G is contained in C3 or C4. Since C3 is all-round (Proposition 2.20), and C4 is
bipartite all-round (Proposition 2.21), Lemma 2.25 implies thatG is all-round or bipartite
all-round.

Chapter 2 The PHC Problem in Undirected Graphs 26

We will use Lemma 2.25 again in the proof of Theorem 2.19, with some extra argu-
ments. We also show another example in Section 2.6.2 where we apply Lemma 2.6.2 to
dense graphs.

2.5.3 All-roundness of P6-free: Proof of Theorem 2.19

We cannot directly apply Lemma 2.25 to a P6-free graph G, since G may contain C5,
which is not all-round (recall Proposition 2.22). To prove Theorem 2.19, we investigate
the all-roundness (or bipartite all-roundness) of two-edge-connected graphs, considering
ear-decomposition in Section 2.5.3.

Ear-decomposition for mod-4 all-round graphs

This section presents three lemmas, which claim that adding a short ear preserves
the all-roundness or bipartite all-roundness.

Lemma 2.26. Let G and G′ be two-edge-connected non-bipartite graphs, where G′ is
given by adding to G an ear of length at most seven. If G is all-round, then G′ is
all-round.

Proof. The proof idea is similar to Lemma 2.25: construct a mod-4 f -factor which may
not be connected (Lemma 2.23), and let it be connected using the connecting lemma
(Lemma 2.24) on assumption that G is all-round. A technical issue of the proof idea is
that the ear is not bipartite all-round. We show that a desired mod-4 f -factor always
exists if the ear is short.

Let p = v0e1v1e2 · · · eℓvℓ denote the ear added toG, and let P = ({v0, v1, . . . , vℓ}, {e1, . . . , eℓ}),
where ℓ ≤ 7. Remark that v0, vℓ ∈ V (G). As given an arbitrary map f : V (G′) →
{0, 1, 2, 3} satisfying (2.13), let x ∈ {0, 1, 2, 3}E(G′) be a mod-4 f -factor implied by
Lemma 2.23. For convenience, let x(0) = (x1, . . . , xℓ) ∈ {0, 1, 2, 3}E(P) where xi denotes
xei for simplicity. We also define x(a) ∈ {0, 1, 2, 3}E(P) for each a ∈ {1, 2, 3} by

x
(a)
i =

{
(xi + a) mod 4 if i is odd,
(xi − a) mod 4 if i is even.

Notice that x(a) for each a ∈ {0, 1, 2, 3} is a mod-4 f
(a)
P -factor for a map f

(a)
P : V (P) →

{0, 1, 2, 3} given by

f
(a)
P (v) =


(x1 + a) mod 4 if v = v0,
(xi + xi+1) mod 4 = f(v) if v ∈ {v1, . . . , vℓ−1},
(xℓ + (−1)ℓa) mod 4 if v = vℓ,

Chapter 2 The PHC Problem in Undirected Graphs 27

when v0 ̸= vℓ, whereas

f
(a)
P (v) =

{
(x1 + xℓ + a+ (−1)ℓa) mod 4 if v = v0 = vℓ,
(xi + xi+1) mod 4 = f(v) if v ∈ {v1, . . . , vℓ−1},

when v0 = vℓ. At the same time, let f
(a)
G : V (G) → {0, 1, 2, 3} be defined for each

a ∈ {0, 1, 2, 3} by

f
(a)
G (v) =

{ (
f(v)− f

(a)
P (v)

)
mod 4 if v ∈ {v0, vℓ},

f(v) otherwise,

and then G has a connectedmod-4 f
(a)
G -factor y(a) ∈ {0, 1, 2, 3}E(G) since G is all-round by

the hypothesis. If (P,x(a)) consists of at most two connected components, i.e., x
(a)
i = 0

holds for at most one i ∈ {1, 2, . . . , ℓ}, then x(a) and y(a) imply a connected mod-4
f -factor of G′.

Then, we claim that there is a ∈ {0, 1, 2, 3} such that (P,x(a)) consists of at most

two connected components. Remark that {x(0)
i , x

(1)
i , x

(2)
i , x

(3)
i } = {0, 1, 2, 3} holds for

each i ∈ {1, 2, . . . , ℓ}. By a version of the pigeon hole principle, the hypothesis of ℓ ≤ 7

implies that there is an index a ∈ {0, 1, 2, 3} such that x
(a)
j = 0 holds for at most one

j ∈ {1, 2, . . . , ℓ}; otherwise the multiset {{x(a)
j | a ∈ {0, 1, 2, 3}, j ∈ {1, 2, . . . , ℓ}}}

contains 8 or more 0’s. The x(a) is the desired mod-4 f
(a)
P -factor for P , and we obtain

the claim.

The following lemma is a version of Lemma 2.26 for bipartite graphs. The proof is
essentially the same, and we omit it.

Lemma 2.27. Let G and G′ be two-edge-connected bipartite graphs, where G′ is given
by adding to G an ear of length at most seven. If G is bipartite all-round, then G′ is
bipartite all-round.

Finally, we show the following lemma, which claims a connection between a bipartite
all-round graph and an all-round graph.

Lemma 2.28. Let G be a two-edge-connected bipartite graph, and let G′ be a two-edge-
connected non-bipartite graph given by adding to G an ear of length at most three. If G
is bipartite all-round, then G′ is all-round.

Proof. The proof is similar to Lemma 2.26. Let p = v0e1v1e2 · · · eℓvℓ denote the ear
added to G where ℓ ≤ 3, and let P = ({v0, v1, . . . , vℓ}, {e1, . . . , eℓ}). Remark that
v0, vℓ ∈ V (G). As given an arbitrary map f : V (G′) → {0, 1, 2, 3} satisfying (2.13), let
x ∈ {0, 1, 2, 3}E(G′) be a mod-4 f -factor implied by Lemma 2.23. For convenience, let

Chapter 2 The PHC Problem in Undirected Graphs 28

x(0) = (x1, . . . , xℓ) ∈ {0, 1, 2, 3}E(P) where xi denotes xei for simplicity. We also define
x(2) ∈ {0, 1, 2, 3}E(P) by

x
(2)
i = (xi + 2) mod 4.

Notice that x(2) is also a mod-4 f
(2)
P -factor for a map f

(2)
P : V (P)→ {0, 1, 2, 3} given by

f
(2)
P (v) =


(x1 + 2) mod 4 if v = v0,
(xi + xi+1) mod 4 = f(v) if v ∈ {v1, . . . , vℓ−1},
(xℓ + 2) mod 4 if v = vℓ,

when v0 ̸= vℓ, whereas

f
(2)
P (v) =

{
(x1 + xℓ + 2) mod 4 if v = v0 = vℓ,
(xi + xi+1) mod 4 = f(v) if v ∈ {v1, . . . , vℓ−1},

when v0 = vℓ. At the same time, let f
(a)
G : V (G) → {0, 1, 2, 3} be defined for each

a ∈ {0, 2} by

f
(a)
G (v) =

{ (
f(v)− f

(a)
P (v)

)
mod 4 if v ∈ {v0, vℓ},

f(v) otherwise,

and then f
(0)
G clearly satisfies (2.16), and f

(2)
G as well. Thus, G has a connected bipartite

mod-4 f
(a)
G -factor y(a) ∈ {0, 1, 2, 3}E(G) for each a ∈ {0, 2} since G is bipartite all-round

by the hypothesis. If (P,x(a)) consists of at most two connected components, i.e., x
(a)
i = 0

holds at most one i ∈ {1, 2, . . . , ℓ}, then x(a) and y(a) imply a connected mod-4 f -factor
of G′.

Then, we claim that one of (P,x(0)) or (P,x(2)) consists of at most two connected

components. Remark that {x(0)
i , x

(2)
i } = {0, 2} or {1, 3} holds for each i ∈ {1, 2, . . . , ℓ}.

Since ℓ ≤ 3, it is not difficult to observe the claim.

Proof of Theorem 2.19

Now, we show Theorem 2.19. In fact, we prove the following lemma, which immedi-
ately implies Theorem 2.19 together with Lemma 2.25.

Lemma 2.29. Let G = (V,E) be a two-edge-connected P6-free graph such that G ̸= C5.
For any edge e ∈ E, there is a subgraph H of G such that H contains e and it is all-round
or bipartite all-round.

Proof. Suppose that an edge e is contained in a cycle C of length ℓ. If ℓ = 3, 4, 6, then
C itself is all-round or bipartite all-round, and we obtain the claim. Thus, we will show
the cases of ℓ = 5 and ℓ ≥ 7.

Chapter 2 The PHC Problem in Undirected Graphs 29

First, we show the case ℓ ≥ 7. To begin with, we remark that the cycle C has at least
two chords, say f and g, otherwise, let v be an end vertex of the unique chord and then
the induced subgraph removing v contains P6 (or longer) as an induced subgraph. For
convenience, we say a chord separates C into (a, ℓ−a) (a ∈ {2, 3, . . . , ⌊ℓ/2⌋}) if the chord
connects vertices in the distance a along C. The proof idea is an induction on ℓ, i.e., we
show a shorter cycle containing e. Recall that C3 is all-round (Proposition 2.20), and C4

and C6 are bipartite all-round (Proposition 2.21), while C5 is not all-round (Lemma 2.22).

In the case of ℓ = 7. If a chord separates C into (2, 5), then e is contained in C3 or
C6, and we obtain the claim. If both chords f and g separate C into (3, 4). then we
claim that H = C + f + g is all-round. If f and g share a common vertex, then it is
easy to observe that e is contained in C4 or C3. Otherwise, H is isomorphic to one of
two graphs in Figure 2.6. In the left graph, we can find an ear decomposition consisting
of C4 (1-5-6-7-1, in Figure 2.6) and ears of length 3 (1-2-3-7) and 2 (3-4-5). Let H ′

denote the graph consisting of C4 (1-5-6-7-1) and an ear of length 3 (1-2-3-7). Then,
Lemma 2.27 implies that H ′ is bipartite all-round. Since H is given by H ′ and an ear of
length two, Lemma 2.28 implies that H is all-round. In the right graph, we can find an
ear decomposition consisting of C4 (1-5-6-7-1), an ear of length 2 (5,4,7), and an ear of
length 3 (1,2,3,4). Then, H is also all-round by a similar argument.

In the case of ℓ = 8. Then, a chord possibly separates C into (2, 6), (3, 5) or (4, 4).
The cases of (2, 6) and (3, 5) are easy; in the case of (2, 6), e is contained in C3 or C7,
where the latter case is reduced to the above case of ℓ = 7. In the case of (3, 5), e
is contained in C4 or C6. Finally, suppose that both f and g separate C into (4, 4).
Notice that f and g cannot share a common vertex in the case. Then, H = C + f + g is
isomorphic to one of two graphs in Figure 2.7. One graph (upper one) consists of C4 (1-5-
4-8-1) and two ears of length 3 (1-2-3-4 and 5-6-7-8), and it is all-round by Lemmas 2.26
and 2.28. The other consists of C6 (1-5-4-3-7-8-1) and ears of length 2 (1-2-3 and 5-6-7),
and it is bipartite all-round, by Lemma 2.27. Thus we obtain the claim in the case.

In the case of ℓ = 9. Then, a chord possibly separates C into (2, 7), (3, 6) or (4, 5).
The cases of (2, 7) or (3, 6) are easy, since e is contained in C3, C8, C4 or C7. Suppose
that each of f and g separate C into (4, 5). If f and g share a common vertex, then
e is contained in C6. Otherwise, H = C + f + g is isomorphic to one of three graphs
in Figure 2.8. We can observe that each graph has an ear decomposition consisting of
C6 (1-2-3-4-5-6-1) with ears of length two and three. Then, each graph is all-round by
Lemmas 2.26, 2.27 and 2.28.

In the case of ℓ ≥ 10. Suppose that a chord separates C into (a, ℓ−a) where a ≤ ℓ−a,
then e is in Ca+1 or Cℓ−a+1. Unless e ∈ C5, i.e., a = 4 and e ∈ Ca+1, the case is reduced
to a shorter cycle. Suppose e ∈ Ca+1 where a = 4. Then, ℓ − a + 1 ≥ 7 implies that
Cℓ−a+1 contains another chord. Using the chord, we can reduce the case to a shorter
cycle.

Next, we show the remaining case of ℓ = 5. Suppose that e is contained in a cycle C

Chapter 2 The PHC Problem in Undirected Graphs 30

Figure: 2.6: ℓ = 7.

of length five. We consider two cases: C is the unique cycle which contains e, or there is
another cycle containing e.

First, we consider the former case. Since there is no cycle containing e other than
C, C has no chord. Furthermore, since G ̸= C5, there exists a vertex v ∈ V (C) that is
contained in another cycle, which implies there exists an edge f ∈ δ(v) \ E(C). Since
G is a two-edge-connected P6-free graph, f is contained in a C3: Otherwise G has a P6

as an induced subgraph. Then, Lemma 2.26 implies that C + C3 is all-round, and we
obtain the claim in the case.

Next, we consider the second case. If there exists another cycle containing e and its
length is not five, the argument for ℓ ̸= 5 establishes Lemma 2.29 for e. Suppose every
cycle containing e has length five. Let C ′′ be one of the cycles containing e other than
C. Then C and C ′′ has common edges. Let k be the number of the common edges. If
k = 2 or 3, Lemma 2.28 implies that C + C ′′ is all-round. If k = 1, C + C ′′ − e is a
cycle of length eight. Then C + C ′′ − e has a chord f ̸= e because G is P6-free. By the
argument of the case ℓ = 8, C + C ′′ + f is all-round.

Chapter 2 The PHC Problem in Undirected Graphs 31

Figure: 2.7: ℓ = 8.

Chapter 2 The PHC Problem in Undirected Graphs 32

Figure: 2.8: ℓ = 9.

Chapter 2 The PHC Problem in Undirected Graphs 33

2.6 Miscellaneous Discussions

This section remarks three related topics. We have introduced the notion of all-
roundness in Section 2.5, and have shown that the PHC3 problem is in P for two-edge-
connected P6-free or C≥5-free graphs using an ear decomposition. Section 2.6.1 shows that
the PHC3 problem is in P for any P6-free or C≥5-free graphs, using their all-roundness
with an extra argument on bridges. Section 2.6.2 remarks an all-roundness of dense
graphs applying Lemma 2.25. Section 2.6.3 briefly explains a connection between the
PHC problem and other problems such as the HC problem.

2.6.1 All-roundness of graphs with bridges

Theorem 2.30. The PHC3 problem is in P for P6-free or C≥5-free graphs.

Proposition 2.31. If a graph G = (V,E) has a PHC3, then its edge count vector
x ∈ ZE

≥0 satisfies the condition that xe = 2 for any bridge e in G.

Proof. The edge count vector x ∈ ZE
≥0 of any closed walk satisfies the condition that

xe is positive and even for any bridge e ∈ E. Since xe ≤ 3 for a PHC3, we obtain the
claim.

Proposition 2.32. Suppose that a graph G = (V,E) has a vertex v ∈ V such that
δ(v) ⊆ B where B ⊆ E denotes the set of bridges of G. Then, G has a PHC3 only when
the degree of v is odd.

Proof. Suppose that every edge incident to a vertex v is a bridge of G. Proposition 2.31
implies that the visiting number (2.1) at v is equal to its degree if G has a PHC3. It
must be odd.

Proof of Theorem 2.30. Without loss of generality, we may assume that an input graph
G = (V,E) is connected. We give an algorithmic proof, consisting of essentially two steps.
Algorithm 2.6.1 shows the summary. As a preliminary step (Step 1 in Algorithm 2.6.1),
we check the condition implied by Proposition 2.32; ifG has a vertex v such that δ(v) ⊆ B
where B denotes the set of bridges B and d(v) is even, then G cannot have a PHC3. It
takes polynomial time, namely in O(|E|2) time in a naive way.

The second step (Step 2 in Algorithm 2.6.1) is the heart of the proof. For convenience,
let B denote the set of bridges of G, and let D1, . . . , Dℓ denote two-edge-connected
components, which are also found in polynomial time, namely in O(|E|2) time in a naive
way. Considering Proposition 2.31, let a map fi : V (Di)→ {0, 1, 2, 3} for i = 1, . . . , ℓ be
given by

fi(v) ≡ (2− 2|B ∩ δ(v)|) (mod 4) (2.20)

Chapter 2 The PHC Problem in Undirected Graphs 34

Algorithm 2.6.1

INPUT: A connected P6-free or C≥5-free graph G = (V,E).
QUESTION: If G has a PHC3?
Step 1. If G has a vertex v ∈ V such that δ(v) ⊆ B and d(v) is even, then return
FALSE,

where B denotes the set of bridges of G.
Step 2. For each two-edge-connected component D1, . . . , Dℓ of G,
set fi(v) ≡ (2− 2|B ∩ δ(v)|) (mod 4) for v ∈ V (Di).
Case (a): Di is a cycle of length 5 (C5). Unless Di has a mod-4 fi-factor, return

FALSE.
Case (b): Di (̸= C5) is non-bipartite. Unless fi satisfies the condition (2.13), return

FALSE.
Case (c): Di is bipartite. Unless fi satisfies the condition (2.16), return FALSE.

Step 3. Return TRUE.

for v ∈ V (Di). It is not difficult to observe that G has a PHC3 if and only if every Di

has a mod-4 fi-factor. Notice that each Di is two-edge-connected and it is P6-free or
C≥5-free, meaning that Di is all-round or bipartite all-round unless Di is a cycle graph
of length 5 (C5) by Theorems 2.18 and 2.19. If Di = C5, then we can check if Di

has a mod-4 fi-factor in a constant time, by an exhaustive check of all assignments of
{0, 1, 2, 3}5. Unless Di ̸= C5, we only need to check if fi satisfies conditions (2.13), and
(2.16) when Di is bipartite. Propositions 2.14 and 2.15 imply the condition is necessary,
and Theorems 2.18 and 2.19 imply that it suffices. Clearly, it takes only polynomial
time, namely O(|V (Di)|) time for each i = 1, . . . , ℓ.

Remark that Theorem 2.30 only claims that the decision problem is in P. If we know
an appropriate ear decomposition then we can also find a PHC3 in polynomial time by
carefully tracing the proofs of Theorems 2.18, 2.19 and 2.30. It is an interesting question
if we can find a PHC3, beyond the existence, in polynomial time for P6-free or C≥5-free
graphs.

2.6.2 All-roundness of dense graphs

This section shows another application of Lemma 2.25.

Proposition 2.33. Let G = (V,E) be a connected graph where |V | ≥ 3 and the minimum
degree of G is at least |V |/2. Then, G is all-round, or bipartite all-round if G is bipartite.

Proof. We show that every edge e = {u, v} ∈ E is contained in a cycle of length three
or four, and then Lemma 2.25 implies that G is all-round. If |V | is odd, the degree of
each u and v is strictly greater than |V |/2 by the hypothesis. This implies that u and v

Chapter 2 The PHC Problem in Undirected Graphs 35

have a common neighbor w by the pigeon hole principle. Thus any edge is contained in
a cycle of length three.

Suppose |V | is even. If u and v have a common neighbor, then we obtain the claim.
If it is not the case, we can observe that |N(u) \ {v}| = |N(v) \ {u}| = |V |/2− 1 holds.
Let w ∈ N(u) \ {v}, and then d(w) ≥ |V |/2 implies that w is connected to a vertex in
N(v) \ {u} by the pigeon hole principle. Thus we obtain a cycle of the length four in the
case.

In fact, we can show the following stronger theorem with some complicated arguments
(see [47] for the proof).

Theorem 2.34. Let G = (V,E) be a connected graph where |V | ≥ 4 and the minimum
degree of G is at least |V |/3. Then, G is all-round, or bipartite all-round if G is bipartite.

2.6.3 Connection of Parity Hamiltonian, Hamiltonian, Eulerian

We remark the connection between the PHC problem and the HC problem, or other
related topics3. In fact, we are concerned with the following generalized version of Prob-
lem 1.

Problem 2 (connected mod-d f -factor with edge capacity constraints). Given a graph
G = (V,E), a map z : E → Z≥0, a positive integer d, and a map f : V → Z≥0, find
x ∈ ZE

≥0 satisfying the conditions that∑
e∈δ(v)

xe ≡ f(v) (mod d) for any v ∈ V , (2.21)

(G,x) is connected. (2.22)

xe ≤ z(e) for any e ∈ E. (2.23)

The PHC problem is given by setting d = 4 and f(v) = 2 for any v ∈ V with an
appropriate capacity constraint. Problem 1 is given by setting d = 4 and z(e) = 3 for
any e ∈ E. The Hamiltonian cycle problem is represented by setting d = n, f(v) = 2
for any v ∈ V , and z(e) = 1 for any e ∈ E. We remark that the Hamiltonian cycle
problem is also given (in its original form) by setting d = ∞, f(v) = 2 for any v ∈ V ,
and removing (2.23) (or setting z(e) = ∞ for any e ∈ E). The Eulerian cycle problem
is given by setting d = 2, f(v) = 0 for any v ∈ V , and replacing (2.23) with xe = 1 for
any e ∈ E.

A two-factor plays a key role in the arguments of the HC problem in cubic graphs,
where the connectivity constraint is relaxed [29, 30, 8, 9]. Motivated by a connected

3The argument of this section might be appropriate appearing in the section of Concluding Remarks.
However, it is too long to put there, and we discuss just before the concluding remark.

Chapter 2 The PHC Problem in Undirected Graphs 36

“factor,” this paper has investigated connected mod-4 factors. A mod-d factor for prime
d is an interesting future work.

Chapter 2 The PHC Problem in Undirected Graphs 37

Chapter 3 The PHC Problem in Directed Graphs 38

Chapter 3

The PHC Problem in Directed Graphs

In this chapter we consider the PHC problem in directed graphs. First we introduce
terminologies necessary for this chapter. Then we give a characterization of digraphs
which have PHC’s in Section 3.2 and show the problem is solved in polynomial time. In
Section 3.2.1, we propose a linear time algorithm to solve the PHC problem based on
the characterization. In Section 3.3 we extend the PHC problem to “modulo p” version,
and give a characterization which is decidable in polynomial time.

3.1 Preliminaries

A directed graph (digraph for short) D = (V,A) is given by a vertex set V and an arc
set A (we write V (D) and A(D) to clarify which graph we are discussing). Let δ+(v)
(resp. δ−(v)) for v ∈ V denote the set of outgoing (resp. incoming) arcs; that is, arcs
that leave v (resp. enter v). Their sizes |δ+(v)| and |δ−(v)| are called the out-degree and
the in-degree of v, respectively.

A directed walk is a sequence of vertices and arcs v0a1 · · · aℓvℓ, where ai = (vi−1, vi) ∈
A for each i (1 ≤ i ≤ ℓ). A directed walk is closed if vℓ = v0. A directed path is a
directed walk which contains each vertex at most once except the start vertex v0 and the
end vertex vℓ. A directed closed path is called a directed cycle. A digraph D is strongly
connected if there exists a directed path from u to v for any pair of vertices u, v ∈ V (D).
For convenience, we often represent a directed closed walk by an integer vector x̃ ∈ ZA

≥0,
in which x̃(a) denotes the number of occurrences of arc a in the closed walk.

A cycle basis of D is a set of directed cycles {C1, C2, . . . , Ck} which satisfies condi-
tions: (i) Their incidence vectors c1, c2, . . . , ck ∈ {0, 1}A are linearly independent over
GF(2), and (ii) For the incidence vector γ of each cycle in D1, there exist coefficients
α1, α2, . . . , αk ∈ {0, 1} such that γ = α1c1 + α2c2 + · · ·+ αkck over GF(2). We call each

1γ can be an incidence vector of a cycle which is not directed.

Chapter 3 The PHC Problem in Directed Graphs 39

cycle Ci a fundamental cycle. It is known that the size k of a cycle basis is equal to
|A(D)| − |V (D)|+ 1 [3]. A cycle basis of a digraph is found in linear time [3, 53].

For a digraph D, let M+ = [m+
va] and M− = [m−

va] ∈ {0, 1}|V |×|A| be matrices
respectively defined by

m+
va =

{
1 if a ∈ δ+(v),
0 otherwise,

and m−
va =

{
1 if a ∈ δ−(v),
0 otherwise.

Let x̃ ∈ ZA
≥0 be the edge count vector of a directed closed walk in a digraph. Then x̃ is

the edge count vector of a PHC if and only if M+x̃ ≡M−x̃ ≡ 1 (mod 2) holds.

We define a matrix M over {0, 1}2|V |×|A| by

M =

[
M+

M−

]
.

Let {C1, C2, . . . , Ck} (k = |A| − |V |+1) be a cycle basis of D and let c1, c1, . . . , ck ∈
{0, 1}A be their incidence vectors. Let R = [c1, c1, . . . , ck]. We define a matrix Q ∈
{0, 1}|V |×k by

Q = M+R. (3.1)

Remark that Q = M−R holds, since for each i, the column vector qi ∈ {0, 1}V of Q is a
vector such that qi(v) = 1 if and only if Ci contains v ∈ V .

3.2 Characterization

The following is the characterization for the PHC problem in digraphs.

Theorem 3.1. Let D = (V,A) be a strongly connected digraph. The following three
conditions are equivalent:

(a) D has a PHC,

(b) Mx ≡ 1 (mod 2) has a solution x ∈ {0, 1}A,

(c) Qβ ≡ 1 (mod 2) has a solution β ∈ {0, 1}k,

where k = |A| − |V |+ 1 and 1 denotes the all-one vector.

Proof. The proofs of (c) ⇒ (a) and (a) ⇒ (b) are easy, while the other way (b) ⇒ (a)
and (a) ⇒ (c), as well as (b) ⇒ (c) directly are not trivial. First we show (a) ⇔ (b),
then we show (a) ⇔ (c).

(a) ⇒ (b) Let x̃ ∈ ZA
≥0 be a vector in which x̃(a) denotes the number of uses of a ∈ A

in a PHC. By the parity condition of PHC, we have M+x̃ ≡ M−x̃ ≡ 1 (mod 2). Then

Chapter 3 The PHC Problem in Directed Graphs 40

let x ∈ {0, 1}A be defined by x ≡ x̃ (mod 2), we have M+x ≡M−x ≡ 1 (mod 2), and
thus Mx ≡ 1 (mod 2).

(b) ⇒ (a) Suppose that x ∈ {0, 1}A is a solution of Mx ≡ 1 (mod 2), then we ex-
plain how to construct a PHC. Remark that a graph indicated by x satisfies the parity
condition of the visiting number on each vertex, but may not satisfy the Eulerian condi-
tion, meaning that

∑
a∈δ+(v) x(a) =

∑
a∈δ−(v) x(a) may not hold for some vertex v, and

connectivity.

First, we construct x′ ∈ ZA
≥0 satisfying both of the parity conditionMx′ ≡ 1 (mod 2)

and the Eulerian condition
∑

a∈δ+(v) x
′(a) =

∑
a∈δ−(v) x

′(a) for each v ∈ V . Let ϕ(v) =∑
a∈δ+(v) x(a)−

∑
a∈δ−(v) x(a) for each v ∈ V , denoting the difference between out-degree

and in-degree of v in x. Then x is Eulerian if and only if ϕ(v) = 0 for all v. Notice that∑
v∈V ϕ(v) = 0 holds since the total of out-degrees is equal to the total of in-degrees. We

also remark that ϕ(v) is even for each v ∈ V , since Mx ≡ 1 (mod 2) implies that both
of out-degree (

∑
a∈δ+(v) x(a)) and in-degree (

∑
a∈δ−(v) x(a)) are odd. Then we apply the

following Procedure 1 to x:

Procedure 1.

1. Find u, v ∈ V such that ϕ(u) < 0 and ϕ(v) > 0.

2. Find a directed path P from u to v (P always exists since D is strongly connected).

3. x(a) := x(a) + 2 for each a ∈ A(P).

Procedure 1 preserves the parity condition Mx ≡ 1 (mod 2), and decreases the value
of

∑
v∈V |ϕ(v)| (by four). By recursively applying Procedure 1 until

∑
v∈V |ϕ(v)| is zero,

we obtain a desired closed walk x′.

If x′ suggests a connected walk, we obtain a PHC. Suppose that x′ is not connected.
Then we apply the following Procedure 2 to x′:

Procedure 2.

1. Find u, v ∈ V which are in distinct connected components.

2. Find directed paths P from u to v and P ′ from v to u.

3. x′(a) := x′(a) + 2 for each a ∈ A(P) ∪ A(P ′).

Procedure 2 preserves the parity condition Mx ≡ 1 (mod 2) and the Eulerian con-
dition, and decreases the number of connected components. By recursively applying
Procedure 2, we obtain a connected walk, which is in fact a PHC.

(c) ⇒ (a) We construct a PHC from the solution β ∈ {0, 1}k. Let

αi =

{
1 if βi = 1,
2 if βi = 0,

(3.2)

Chapter 3 The PHC Problem in Directed Graphs 41

and set x̃ = Rα. Notice that x̃ indicates a closed walk since it is a sum of cycles. We
claim that the closed walk indicated by x̃, say γ, is a PHC. The walk γ is connected
since γ uses all edges of D at least once, and D is strongly connected. Then, we have

M+x̃ = M+Rα = Qα ≡ Qβ ≡ 1 (mod 2),

where the second last congruence comes from (3.2) and the last congruence follows from
the assumption that β is a solution of Qβ ≡ 1 (mod 2). Hence, γ satisfies the parity
condition, and thus γ is a PHC.

(a) ⇒ (c) To show the necessity we show the following lemma.

Lemma 3.2. Let γ be any closed walk of D, and let x̃ ∈ ZA
≥0 be a vector in which

x̃(a) denotes the number of uses of a ∈ A in γ. Then Rβ ≡ x̃ (mod 2) has a solution
β ∈ {0, 1}k.

Proof. Since γ is an Eulerian walk in a multi-digraph, meaning that γ consists of simple
cycles, x̃ is represented by

x̃ =
ℓ∑

j=1

αjγj, (3.3)

with appropriate positive integer ℓ, where each αj is a nonnegative integer and each
γj ∈ {0, 1}A is the incidence vector of a directed cycle of D. Remark that each γj is
represented by a linear combination of incidence vectors of fundamental cycles c1, . . . , ck,
such that γj ≡

∑k
i=1 β

′
ijci (mod 2) for some 0-1 coefficients β′

ij for each j. Let βi ∈ {0, 1}
be defined by βi ≡

∑ℓ
j=1 β

′
ijαj (mod 2), then

x̃ ≡
ℓ∑

j=1

αj

k∑
i=1

β′
ijci ≡

k∑
i=1

βici (mod 2)

holds. Notice that
∑k

i=1 βici = Rβ, then we obtain the claim.

Suppose that γ is a PHC of D, and that x̃ ∈ ZA
≥0 is a vector in which x̃(a) denotes

the number of uses of a ∈ A in γ. Since a PHC is a closed walk, Lemma 3.2 implies that
there is a vector β ∈ {0, 1}k such that x̃ ≡ Rβ (mod 2). Then

Qβ = M+Rβ ≡M+x̃ ≡ 1 (mod 2),

where the last congruence comes from the fact that x̃ indicates a PHC.

Chapter 3 The PHC Problem in Directed Graphs 42

3.2.1 Recognition in Linear Time

By Theorem 3.1, we can decide if a given directed graph D has a PHC in polynomial
time, by solving a linear system Mx ≡ 1 (mod 2) or Qβ ≡ 1 (mod 2), both of which
cost O(|V ||A|2) time. In this section we improve the time complexity to linear.

For a digraph D = (V,A), let BG(D) be an undirected bipartite graph (V +, V −;E),
where V + and V − are the copies of V and E = {u+v− | (u, v) ∈ A}. It is easy to see
that the class of D’s and BG(D)’s have a one-to-one corresponding. Observe that M of
D coincides with the incidence matrix of BG(D), and hence |E| = |A|.

Lemma 3.3. Mx ≡ 1 (mod 2) has a solution if and only if BG(D) = (V +, V −;E) has
a (V + ∪ V −)-join.

Proof. Let F be any subset of E, and let xF ∈ {0, 1}E be its incidence vector. Since M is
the incidence matrix of BG(D), the v-th entry of the vector MxF , (MxF)v, denotes the
degree of v in xF . Let x ∈ {0, 1}E be a solution of Mx ≡ 1 (mod 2). Then x indicates
a subgraph of BG(D) in which every vertex has odd degree, which is a (V + ∪ V −)-join
of BG(D). Conversely, if xF ∈ {0, 1}E is the incidence vector of a (V + ∪ V −)-join F ,
xF satisfies MxF ≡ 1 (mod 2).

Since both BG(D) and a T -join are constructed in linear time, we see the following.

Theorem 3.4. The PHC problem in digraphs is solved in linear time.

Thus we have verified that it is decided in linear time if the input directed graph has
a PHC. Finally we argue the time complexity to construct a PHC in a given directed
graph D. The proof of Lemma 3.3 implies that we can obtain a solution x ∈ {0, 1}A of
Mx ≡ 1 (mod 2) by finding a (V + ∪ V −)-join of BG(D). Once we obtain a solution
x, we can construct a PHC according to the proof of Theorem 3.1 for (b) ⇒ (a). The
algorithm is summarized in Algorithm 3.2.1.

It takes O(|A|) time in line 1. In line 2, we repeatedly find paths, each path is
found in O(|A|) time and repeated O(|A|) time thus O(|A|2) time in total. In line 3,
we repeatedly find pairs of paths, each is done in O(|A|) and repeated O(|V |) time,
thus O(|V ||A|) time in total. Consequently, the time complexity of Algorithm 3.2.1 is
O(|A|2).

Algorithm 3.2.1 Constructing a PHC in a digraph.

1: Find a (V + ∪ V −)-join J of BG(D) and x← χJ

2: Repeat Procedure 1 until x satisfies the Eulerian condition
3: Repeat Procedure 2 until x becomes connected
4: return x

Chapter 3 The PHC Problem in Directed Graphs 43

3.3 Extension to GF(p)

This section is concerned with the following problem, a generalization of the PHC
problem: Given a digraph D and an integer p and an integer vector r ∈ {0, 1, . . . , p−1}A,
decide if there exists a closed walk which visits each vertex v r(v) times modulo p. In
other words, the problem asks to find a connected closed walk that satisfies the condition
M+x̃ ≡M−x̃ ≡ r (mod p), where x̃ ∈ ZA

≥0 is a vector in which x̃(a) denotes the number
of uses of arc a in the closed walk. It is easy to see that the problem is equivalent to
the PHC problem when p = 2 and r = 1. The following is the characterization for the
generalized problem which is similar to Theorem 3.1 (b).

Theorem 3.5. A strongly connected digraph D has a connected closed walk which satis-
fies M+x̃ ≡M−x̃ ≡ r (mod p) if and only if M+x ≡M−x ≡ r (mod p) has a solution
x ∈ {0, . . . , p− 1}A.

Proof. The proof is similar to (a) ⇔ (b) of Theorem 3.1.

Necessity. Let x̃ ∈ ZA
≥0 be a vector in which x̃(a) denotes the number of uses of

a ∈ A in a connected closed walk which satisfies M+x̃ ≡ M−x̃ ≡ r (mod p). Then let
x ∈ {0, . . . , p− 1}A be defined by x ≡ x̃ (mod p), we have M+x ≡M−x ≡ r (mod p).

Sufficiency. Suppose that x ∈ {0, . . . , p − 1}A is a solution of M+x ≡ M−x ≡ r
(mod p), then we explain how to construct a closed walk which satisfies M+x̃ ≡M−x̃ ≡
r (mod p). Remark that a graph indicated by x may not satisfy the Eulerian condition,
meaning that

∑
a∈δ+(v) x(a) =

∑
a∈δ−(v) x(a) may not hold for some vertex v.

First, we construct x′ ∈ ZA
≥0 satisfying the condition M+x′ ≡ M−x′ ≡ r (mod p)

and the Eulerian condition
∑

a∈δ+(v) x
′(a) =

∑
a∈δ−(v) x

′(a) for each v ∈ V . Let ϕ(v) =∑
a∈δ+(v) x(a)−

∑
a∈δ−(v) x(a) for each v ∈ V , denoting the difference between out-degree

and in-degree of v in x. Then x is Eulerian if and only if ϕ(v) = 0 for all v. Notice that∑
v∈V ϕ(v) = 0 holds since the total of out-degrees is equal to the total of in-degrees.

We also remark that ϕ(v) is a multiple of p for each v ∈ V , since M+x ≡ M−x ≡ r
(mod p) implies that both of out-degree (

∑
a∈δ+(v) x(a)) and in-degree (

∑
a∈δ−(v) x(a))

are r(v) modulo p. Then we apply the following Procedure 1’ to x:

Procedure 1’.

1. Find u, v ∈ V such that ϕ(u) < 0 and ϕ(v) > 0.

2. Find a directed path P from u to v (P always exists since D is strongly connected).

3. x(a) := x(a) + p for each a ∈ A(P).

Procedure 1’ preserves the condition M+x ≡ M−x ≡ r (mod p), and decreases the
value of

∑
v∈V |ϕ(v)| (by 2p). By recursively applying Procedure 1’ until

∑
v∈V |ϕ(v)| is

zero, we obtain a desired closed walk x′.

Chapter 3 The PHC Problem in Directed Graphs 44

If x′ suggests a connected walk, we obtain a closed walk which satisfies M+x̃ ≡
M−x̃ ≡ r (mod p). Suppose that x′ is not connected. Then we apply the following
Procedure 2’ to x′:

Procedure 2’.

1. Find u, v ∈ V which are in distinct connected components.

2. Find directed paths P from u to v and P ′ from v to u.

3. x′(a) := x′(a) + p for each a ∈ A(P) ∪ A(P ′).

Procedure 2’ preserves the condition M+x ≡ M−x ≡ r (mod p) and the Eulerian
condition, and decreases the number of connected components. By recursively applying
Procedure 2’, we obtain a connected closed walk which satisfies M+x̃ ≡ M−x̃ ≡ r
(mod p).

If p is prime or power of a prime, the linear system M+x ≡ M−x ≡ r (mod p) is
solved over GF(p), and we obtain a desired closed walk in polynomial time. Otherwise
GF(p) is not a field, and we need an extra observation to solve the equation efficiently.

3.4 Open problem: The PHC orientation

In Chapter 2 we have investigated the PHC problem in undirected graphs. Now it
is natural to ask how the problem in undirected graphs and directed graphs are related.
The PHC orientation problem is a problem to decide if a given undirected graph has an
orientation such that the resulted directed graph admits a PHC. Figure. 3.1 shows an
example of an undirected graph which has a PHC, but does not admit a PHC orientation.
It is open if the PHC orientation problem is solved in polynomial time.

Figure: 3.1: An undirected graph which has a PHC but does not have a PHC orientation.
The dotted line indicates an undirected PHC.

Chapter 3 The PHC Problem in Directed Graphs 45

Chapter 4 The Hamiltonicity of Covering Graphs 46

Chapter 4

The Hamiltonicity of Covering Graphs

In this chapter we study the HC problem in covering graphs. After and introducing some
notations and fundamental properties of covering graphs in Section 4.1, we mention our
main results of this chapter in Sections 4.2 and 4.3.

4.1 Preliminaries

We use the same notations as preceding chapters for the fundamental graph termi-
nologies. A voltage graph is a triple (Γ, G, σ) where Γ is a graph, G is a group, and
σ : E(Γ)→ G is a mapping which assigns an element of G to each edge of Γ1. We call Γ
the base graph and σ(e) the label of e. We will assume Γ is a connected directed graph,
and if e = (u, v) ∈ E(Γ), then the inverse edge e−1 = (v, u) is also in E(Γ). In fact, we
will assume the underlying graph of Γ is a tree. Because we want the voltage graph to
be undirected, we require, σ(e−1) = σ(e)−1 for every edge e ∈ E(Γ). We also allow Γ to
have self-loops, and if e = (u, u) is a loop, we sometimes say σ(e) is the label on u.

The covering graph of a voltage graph (Γ, G, σ) is a graph with

• the vertex set V (Γ)×G, and

• the edge set E(Γ) × G. If e = (u, v) ∈ E(Γ) and a ∈ G, (e, a) is the edge which
leaves the vertex (u, a) and enters (v, ag) where g = σ(e). Because σ(e−1) = σ(e)−1,
the covering graph also has the edge leaving (v, ag) and entering (u, a).

We write Γσ to denote the covering graph generated from (Γ, G, σ). Instead of writing
(v, a) and (e, a), we often use short-hand notations va and ea, respectively. For a vertex va,
we call a the level of va. As a simple example, suppose Γ is a path of length two with the
vertex set {u, v} and each vertex having a self-loop. Let G = Z5, σ(u, u) = 1, σ(v, v) = 2

1Note that we use the symbol G for representing groups, not for graphs. This notation is used
throughout this chapter.

Chapter 4 The Hamiltonicity of Covering Graphs 47

and σ(u, v) = 0. Then, the covering graph of this voltage graph is isomorphic to the
Petersen graph.

Every vertex v ∈ V (Γ) has |G| copies in the covering graph. A set of copies of a
vertex v,

∪
g∈G{vg} is called a fiber over v. Sometimes by the fiber over v, we actually

will understand the subgraph of Γσ induced by vertices in the fiber over v. Similarly, a
set of copies of an edge e,

∪
g∈G{eg} is called a fiber over e.

Throughout this paper, G = Zp, the cyclic group of order p. We represent the ele-
ments of Zp by 0, 1, . . . , p−1, and the operator of the group by “+” and “-”, respectively.

We use the following proposition, whose proof is obvious.

Proposition 4.1 (Invariance under the label shift). Let (Γ,Zp, σ) be a voltage graph.
Let F ⊆ E(Γ) be a minimal edge cut of Γ. Let U and V be the vertex sets of the two
components of Γ − F , and {F+, F−} be the partition of F such that F+ = {(u, v) ∈ F |
u ∈ U, v ∈ V } and F− = {(v, u) ∈ F | u ∈ U, v ∈ V }. For a ∈ Zp, define a voltage
assignment σa as

σa(e) =


σ(e) + a e ∈ F+,

σ(e)− a e ∈ F−,

σ(e) e /∈ F.

(4.1)

Then Γσ ≃ Γσa for any a ∈ Zp.

By the previous proposition, if e is a bridge in Γ, we can assume without loss of
generality that σ(e) = 0. Since in this paper the underlying graph of Γ is a bi-directed
tree, we assume σ(e) = 0 for every e = (u, v) when u ̸= v.

The following is also an useful observation.

Proposition 4.2 (Invariance under multiplication for cyclic groups). Let (Γ,Zp, σ) be a
voltage graph. For an integer d define a voltage assignment σ′ as

σ′(e) = d · σ(e) mod p, e ∈ E(Γ). (4.2)

If d is coprime to p, then Γσ ≃ Γσ′
.

The result from [4] about the Hamiltonicity of the cartesian product of a cycle and a
tree can be restated in the following form.

Theorem 4.3 ([4]). Let Γ be a bi-directed tree with a self-loop at each vertex and let L
be the set of self-loops. Let σ : E(Γ)→ Zp be defined by

σ(e) =

{
1 e ∈ L,

0 e /∈ L.
(4.3)

Then Γσ is Hamiltonian if and only if p ≥ ∆, where ∆ is the maximum degree of Γ−L.

Chapter 4 The Hamiltonicity of Covering Graphs 48

4.2 The First Extension : The Same Label at Both Ends

In this section we give our first extension of Theorem 4.3.

Theorem 4.4. Let Γ be a bi-directed tree with a self-loop at each vertex and let L be the
set of self-loops. Let σ : E(Γ) → Zp. Suppose the voltage graph (Γ,Zp, σ) satisfies the
following conditions:

• There exists a system of paths P1, P2, . . . , Pk such that {E(P1), E(P2), . . . , E(Pk)}
is a partition of E(Γ) \ L, Pi and Pj are internally vertex disjoint for i ̸= j, and
the self-loops of the two end-vertices of Pi have the same label for each i,

• σ(v, v) is coprime to p for every v ∈ V (Γ).

Then the covering graph Γσ is Hamiltonian if and only if p ≥ ∆, where ∆ is the maximum
degree of Γ− L.

Figure 4.1 shows an example of a graph which satisfies the conditions in Theorem 4.4.
One can see that Theorem 4.4 is an extension of Theorem 4.3 by restricting σ to be the
all-one label, since it is trivial to cover a tree with a system of pairwise internally vertex
disjoint paths.

Figure: 4.1: A graph which satisfies the conditions in Theorem 4.4. The number at a
vertex denotes the label of its self-loop (the self-loops are not drawn). If a vertex has
no number next to it, it means its self-loop can have any label coprime to p. Then,
P1, P2, P3, P4, P5, P6 is a system of paths satisfying the conditions in Theorem 4.4.

The first condition in Theorem 4.4, requires the two ends of each path to have the
same label on the self-loops. This condition is necessary as there are voltage graphs
which do not satisfy this condition and their covering graph is not Hamiltonian; for
example, consider the example giving the Petersen graph.

Chapter 4 The Hamiltonicity of Covering Graphs 49

Before we prove Theorem 4.4, we prove its special case which will be the base case
in the main proof.

Lemma 4.5. Let Γ be a bi-directed path with a self-loop at each vertex. Suppose σ : E(Γ)→
Zp satisfies the following:

• σ(u, u) = σ(v, v) where u and v are the leaves of Γ,

• σ(w,w) is coprime to p for every w ∈ V (Γ).

Then Γσ is Hamiltonian if and only if p ≥ 2.

Proof. It is obvious that Γσ cannot be Hamiltonian when p = 1. This proves the necessity.
In the remaining part we prove the sufficiency.

We may assume σ(u, u) = σ(v, v) = 1, by Proposition 4.2. Just for the convenience
of explanation, let us suppose Γ is drawn horizontally, u lies on the left-hand side, and
v lies on the right-hand side. Our strategy to construct a Hamiltonian cycle of Γσ is as
follows. We call it the billiard strategy (see Figure 4.2): Start by considering the u0-u1

Hamiltonian path of the fiber over u, leaving its two ends u0 and u1 open. Extend the
path to the next fiber on the right from these ends to their corresponding vertices in
this fiber. Now include all remaining vertices of this fiber onto the constructed path
by adding them in clockwise (or counter-clockwise) order from these starting vertices.
This process will create new ends in this fiber, which are extended to next fiber to the
right. Repeat this process until we get to the fiber over v. In this fiber we close the path
into a Hamiltonian cycle of Γσ. We show this is always possible. Let w(1), w(2), . . . , w(k)

be the vertices of Γ − {u, v} named in the order as they appear on Γ starting from u.

We first construct a u0-u1 Hamiltonian path u0up−1up−2 . . . u2u1. Then add edges u0w
(1)
0

and u1w
(1)
1 . Suppose σ(w(1), w(1)) = a. Since we have assumed that a is coprime to p,

the fiber over w(1) (considered as a graph) is isomorphic to a simple cycle. Extend the

constructed path by adding a path from w
(1)
0 to w

(1)
1−a and from w

(1)
1 to w

(1)
−a in this fiber,

respectively. It is easy to see that this is always possible in such a way that all the
vertices in the fiber over w(1) are on the so constructed path. Next, add edges w

(1)
1−aw

(2)
1−a

and w
(1)
−aw

(2)
−a. Suppose σ(w(2), w(2)) = b. Repeat the same as in the fiber before, that is,

extend the path by adding a path from w
(2)
1−a to w

(2)
−a−b and from w

(2)
−a to w

(2)
1−a−b in this

fiber. An important fact here is that the two new ends have the difference of their levels
equal to 1. This difference is preserved in the fiber over v as well. Now, since σ(v, v) = 1,
the last two ends in this fiber can be joined by a Hamiltonian path (in this fiber), hence
completing the whole path into a Hamiltonian cycle of Γσ.

To prove Theorem 4.4, we also need the following proposition.

Proposition 4.6. Suppose Γ is a bi-directed tree with a self-loop at every vertex and
σ : E(Γ) → Zp. If the voltage graph (Γ,Zp, σ) has a system of paths satisfying the

Chapter 4 The Hamiltonicity of Covering Graphs 50

Figure: 4.2: The billiard strategy. The simple cycle is a fiber of some vertex. One end
comes to 0 and the other end to 1. Then, each goes along the cycle as long as possible,
and stops just before it would collide with an already included vertex. The difference of
the two levels at the beginning is preserved at the end. The new ends can now extended
to new ends in next fiber.

conditions in Theorem 4.4, then there exists a path P in the system which has the same
label at its two ends, and satisfies exactly one of the following:

1. One end of P is a leaf of Γ, and the other end is its nearest branching vertex of Γ
or a leaf of Γ if Γ is a path. We call it type 1, or

2. Both ends of P are leaves of Γ, and P contains exactly one branching vertex of Γ
of degree three. We call it type 2.

Furthermore, if Γ is not a path and we remove P from Γ except for the vertex of at-
tachment (that is either the branching vertex if P is of type 2 or the end vertex of P if
P is of type 1), the new graph will have a system of paths satisfying the conditions of
Theorem 4.4.

Proof. The proof is trivial if Γ is a path, so we assume Γ is not a path. Let P1, P2, . . . , Pk

be paths satisfying the conditions in Theorem 4.4. Since Γ is connected, we can sort
these k paths so that they satisfy the following property,

ℓ∪
i=1

Pi constitutes a connected graph for every ℓ (1 ≤ ℓ ≤ k), (4.4)

and the following constraint: when more than one path can be added to
∪ℓ−1

i=1 Pi as Pℓ,
one that becomes of type 2 has always a preference. Then, the last path Pk is obviously

Chapter 4 The Hamiltonicity of Covering Graphs 51

of type 1 or type 2. This is the desired path P . We only note the fact that in case 2,
the internal branching vertex must be of degree 3 follows from the fact that all paths are
internally vertex disjoint.

The second part of the proposition is easy to see.

Figure: 4.3: A path of type 1 (left) and type 2 (right).

We have the following corollary.

Proposition 4.7. Let (Γ,Zp, σ) be a voltage graph. Suppose we have a system of paths
Pk, Pk−1, . . . , P1 of Γ which is obtained by recursively removing the paths of type 1 or
2 in Proposition 4.6 until Γ becomes empty. Then P1, P2, . . . , Pk is a system of paths
satisfying the conditions of Theorem 4.4.

Now we proceed to the proof of Theorem 4.4.

Proof of Theorem 4.4. We first prove the necessity. Suppose p < ∆. Let v be a vertex
of degree ∆, and let Fv be the fiber over v. Since Γ is a tree, the removal of Fv from Γσ

creates ∆ components. Any spanning cycle of Γ must visit each of these ∆ components
and so it must visit Fv at least ∆ times. However, any closed cycle in Γσ can go through
the vertices in Fv at most p < ∆ times, a contradiction.

Now we show the sufficiency. The proof is by induction on the parameter k = 1 +∑
v∈V (Γ) : dΓ−L(v)≥2(dΓ−L(v)−2), i.e., the number of branches of Γ. For the consistency of

the induction, we enforce the Hamiltonian cycle to have the following stronger property:

(A) For each loop (v, v) ∈ L, the Hamiltonian cycle uses exactly p− dΓ−L(v) edges in
the fiber over (v, v).

Lemma 4.5 implies the base case k = 1, since (A) is satisfied for the constructed Hamil-
tonian cycle.

For the inductive step, suppose the statement is true for every Γ that has k > 1
branches. Suppose Γ has k+1 branches. By Proposition 4.6, Γ has a path of either type
1 or 2. We first deal with the former case, i.e., P is of type 1. Let Γ′ be the graph obtained
by removing the branch P (except for the vertex of attachment) from Γ. Thus, Γ′ has
k branches and still satisfies the requirements of Theorem 4.4 by Proposition 4.6. Let

Chapter 4 The Hamiltonicity of Covering Graphs 52

σ′ be the restriction of σ to E(Γ′). By the induction hypothesis, Γ′σ′
has a Hamiltonian

cycle which satisfies (A), say C ′. Let V (P) = {v0, v1, . . . , vℓ}, where v0 is the common
vertex of Γ′ and P (the vertex of attachment), vℓ is the other leaf of P , and vi−1 is
adjacent to vi for every i (1 ≤ i ≤ ℓ). Note that dΓ′−L(v0) ≤ ∆ − 1. By the first
condition, σ(v0, v0) = σ(vℓ, vℓ). Furthermore, since C ′ satisfies the property (A), and
p− dΓ′−L(v0) ≥ p− (∆− 1) ≥ 1, at least one edge in the fiber over the loop (v0, v0) ∈ L,
say e, is used by C ′. To construct a Hamiltonian cycle in Γσ, remove e from C ′, then
connect the two end-vertices of e to the vertices in the fiber over v1 of the same levels,
respectively. By using the billiard strategy on P , starting with the two end-vertices, we
can extend the current path to a Hamiltonian cycle C of Γσ. Let us check C satisfies the
property (A). For any vertex different from v0, C obviously satisfies (A). For v0, since
C ′ uses p− dΓ′−L(v0) edges in the fiber over v0, C uses p− dΓ′−L(v0)− 1 = p− dΓ−L(v0)
out of them, which ensures (A) is satisfied.

Now we deal with the case P is of type 2. Let Γ′ be the graph obtained by removing
P (except for the vertex of attachment) from Γ. As before, Γ′ has k−1 branches and still
satisfies the requirements of Theorem 4.4 by Proposition 4.6. Let σ′ be the restriction
of σ to E(Γ′). By the induction hypothesis, Γ′σ′

has a Hamiltonian cycle which satisfies
(A), say C ′. Let vj be the unique vertex in V (Γ′) ∩ V (P) (the vertex of attachment),
and let σ(vj, vj) = a. Since vj is a leaf of Γ′, by the property (A), C ′ uses p − 1 edges
in the fiber over the loop (vj, vj). Remove all these edges from C ′, and let P ′ be the
resulting path having two open ends the difference of whose levels is a. By applying the
construction from proof of Lemma 4.5 to P , we have a Hamiltonian cycle CP of P which
satisfies (A). Now we explain how to combine P ′ and CP . Without loss of generality,
suppose the levels of two open ends of P ′ are 0 and a, respectively. If CP uses the edge
joining (vj, 0) and (vj, a), remove the edge and combine the resulting Hamiltonian path
to P ′, to form a Hamiltonian cycle of Γσ. Otherwise shift CP ; that is, for every edge
(u0, vg) in CP , replace it with (uh, vg+h) for some h ∈ Zp. There exists h ∈ Zp such that
the shifted Hamiltonian cycle uses the edge joining (vj, 0) and (vj, a) and we can proceed
as in the previous case. Thus, by this shifting operation we can always combine the two
paths to form a Hamiltonian cycle C of Γσ. Let us check C satisfies the property (A).
For any vertex different from vj, C obviously satisfies (A). For vj, CP uses p− 2 edges
in the fiber over vj. Thus, C uses p − 2 − 1 = p − 3 = p − dΓ−L(vj) edges in the fiber
over (vj, vj), which ensures (A) is satisfied. This completes the proof.

4.2.1 Linear Time Recognition

Since the conditions in Theorem 4.4 are non-trivial to check, we consider the following
question:

Question : Can we decide in a polynomial time whether there is a system of paths in
(Γ,Zp, σ) which satisfies the conditions in Theorem 4.4?

Chapter 4 The Hamiltonicity of Covering Graphs 53

To answer this question, we again use Proposition 4.6.

Theorem 4.8. Suppose Γ is a bi-directed tree with a self-loop at every vertex and
σ : E(Γ) → Zp. There is a linear time algorithm to decide whether (Γ,Zp, σ) has a
system of paths satisfying the conditions in Theorem 4.4.

Proof. We say the vertices u and v are path-adjacent if u is reachable from v without
passing through a branching vertex2. To describe the algorithm, we define the notion
safe. A branching vertex v is safe if at most two of the path-adjacent leaves of v have
different labels from v’s, and if there are two such leaves, they have the same label.

The algorithm is as follows.

1. If Γ is a path, compare the labels on its two ends. If the labels are same return
YES, otherwise NO.

2. If Γ is not a path, find a branching vertex such that all but at most one of its
path-adjacent vertices are leaves. Collect all such branching vertices.

3. If one of the collected branching vertices is not safe, return NO.

4. Suppose all of the collected branching vertices are safe. For each such branching
vertex v, remove paths of type 1 and 2 in Proposition 4.6 from Γ (except for v)
until the degree of v becomes at most two. (These branching vertices are no more
branching vertices in the new tree.)

5. Go back to Step 1.

We implement the algorithm in the following way. Put a pointer on each leaf at the
beginning of the algorithm. In Step 2, move it until they reach a branching vertex. Each
pointer carries the label on its starting leaf. If there is a branching vertex of degree d
on which at least d− 1 pointers are, then it is the desired (by Step 2) branching vertex.
Keep the positions of all pointers, and unify the pointers into a single pointer on a vertex
if it is processed in Step 4. When unifying the pointers put on v, its label is determined
as follows: if exactly one of the pointers (before unifying) has a label different from v’s,
then the new label is set to be the same as its label. Otherwise the new label is same as
v’s.

We first verify this algorithm runs in linear time. In Step 1 the algorithm checks
whether Γ is a path or not. This is done by just counting the number of pointers; if there
are at most two pointers then Γ is a path, otherwise it is not. It only takes constant
time for each iteration, and since the number of iteration is at most linear, Step 1 takes
linear time in total. In Step 2, the algorithm finds a set of branching vertex satisfying

2A branching vertex is a vertex of degree at least three.

Chapter 4 The Hamiltonicity of Covering Graphs 54

the condition on the number of path-adjacent leaves. By the implementation, one can
see that every edge of Γ is traversed at most once (by moving pointers) and every vertex
is checked at most as much as its degree with this implementation. Thus, Step 2 takes
linear time through the run of the algorithm. In Step 3 and 4, the algorithm compares
the label on a branching vertex with the labels on its leaves which is carried by pointers,
which costs a time proportional to its degree. Hence it takes O(|E(Γ)|) time in total.
In Step 4, the algorithm also removes paths, which obviously takes linear time, as it is
done by unifying the pointers on currently collected branching vertices. Since every step
runs in linear time, the running time of the algorithm is linear.

Next we verify the correctness of the algorithm.

Proposition 4.9. Let Γi be the graph at the beginning of i-th iteration of the algorithm.
Then (Γ,Zp, σ) has a system of paths satisfying the conditions in Theorem 4.4 if and
only if for every i, Γi is either a path whose labels on its two ends are same, or Γi is not
a path and all of the branching vertices the algorithm collects in iteration i are safe.

Proof. (⇒) Suppose (Γ,Zp, σ) has a system of paths satisfying the conditions in Theo-
rem 4.4. If Γi is a path, since the algorithm has removed paths of type 1 and 2 iteratively,
the labels on its two ends must be same by Proposition 4.6. Suppose Γi is not a path.
Suppose (Γ,Zp, σ) has a system of paths satisfying the conditions in Theorem 4.4 and
the algorithm finds a branching vertex v that is not safe. Let L be the multi-set of the
labels on the path-adjacent leaves of v, and a be the label on v. Then L contains two
distinct labels each of which is different from a, or three same labels different from a.
Consider the former case. Let x, y be the leaves having different labels from a. Since Γ
has a system of paths satisfying the conditions in Theorem 4.4, x and y are respectively
ends of some paths in that system. Let x′ (resp. y′) be the other end of the path of
x (resp. y). Since both x and y have different labels from a, x′ ̸= v and y′ ̸= v. This
implies the x-x′ path and the y-y′ path intersect at v3, which contradicts to the condition
that Pi and Pj do not share the inner vertex for any i ̸= j.

For the latter case, suppose x, y, z be the leaves having different labels from a. If
these three leaves belong different paths in the system, the three paths intersect at v,
which is the contradiction. If two of the vertices (say x, y) belong the same path, then
the x-y path and the z-z′ path intersect at v, where z′ is the other end of the path of z,
which is the contradiction again.

(⇐) Suppose Γi is not a path. Suppose all branching vertices the algorithm finds in
each iteration are safe. Let v be a branching vertex for which the algorithm is processing.
Let L be the multi-set of the labels on the path-adjacent leaves of v, and a be the label
on v. Since v is safe, L contains at most one label different from a, or two same labels

3We assume here that any of two paths in the system do not share a vertex of degree two; in that
case we can merge the two paths and obtain a new single path, which does not affect the existence of
the path system.

Chapter 4 The Hamiltonicity of Covering Graphs 55

different from a. In the former case, all but at most one of the path-adjacent leaves
are ends of paths of type 1, the other end being v. The algorithm formally removes
these paths until the degree of v becomes two. In the latter case, all but two of the
path-adjacent leaves are ends of paths of type 1, the other end being v. The algorithm
removes these paths, then the remaining two leaves are the ends of a path of type 2. The
algorithm removes the path and the degree of v becomes one. Thus all but one edges
incident to v are (formally) removed from Γi, v is not a branching vertex any more. Thus
in each iteration, paths of type 1 or 2 are removed. And since the number of branching
vertices decreases, Γ is finally reduced to a path. If Γi is a path, Γi is a path of type
1. Since in each iteration only paths removed are of type 1 and 2, by Proposition 4.7,
(Γ,Zp, σ) has a system of paths satisfying the conditions in Theorem 4.4.

In Theorem 4.8 we described a linear time algorithm which recognizes voltage trees
which have a system of paths satisfying Theorem 4.4. The following observation suggests
a simple characterization of graphs that have a system of paths satisfying the conditions
of Theorem 4.4 in case of cubic tree4.

Lemma 4.10. Suppose Γ is a cubic tree with a self-loop at each vertex and L′ is the set
of self-loops attached to leaves and branching vertices. Suppose σ : E(Γ) → Zp satisfies
that σ(L′) ∈ {a, b}, where a, b ∈ Zp. Then, the voltage graph (Γ,Zp, σ) contains a system
of paths satisfying the conditions in Theorem 4.4 if and only if both |{e ∈ L′ : σ(e) = a}|
and |{e ∈ L′ : σ(e) = b}| are even.

Proof. The necessity is easy, we prove the sufficiency. Suppose that both |{e ∈ L′ :
σ(e) = a}| and |{e ∈ L′ : σ(e) = b}| are even. If Γ is a path, the labels on its two ends
are either both a or both b, E(Γ) is a path satisfying the conditions in Theorem 4.4.
Suppose Γ is not a path. Since Γ is a cubic tree, Γ contains a branching vertex u having
two path-adjacent leaves v, w. Since there are at most two distinct labels on u, v, w, we
may assume that two of these three vertices have the same label. If they are v and w,
v-u-w is a path of type 2 in Proposition 4.6. If one of them is u, the path which starts at
u and goes to the leaf having the same label as u is a path of type 1 in Proposition 4.6.
Let P1 be the path of either type. Remove P1 from Γ except for u. Then the resulting
graph is a cubic tree, and satisfies the conditions of the lemma. By recursively finding
a branching vertex and removing a path Pi, Γ finally becomes a path. Since the labels
on its two ends are both a or both b, by the argument above, Γ itself is a path of type
1. This way, we obtain a system of paths P1, P2, . . . , Pk, which satisfies the conditions of
Theorem 4.4 by Proposition 4.7.

4A cubic tree is a tree such that every non-leaf vertex has degree at most three.

Chapter 4 The Hamiltonicity of Covering Graphs 56

4.3 The Second Extension : The Same Label at Two Consecu-
tive Vertices

In this section we give another extension of Theorem 4.3.

Theorem 4.11. Let Γ be a bi-directed tree with a self-loop at each vertex and let L be
the set of self-loops. Let σ : E(Γ)→ Zp. Suppose the voltage graph (Γ,Zp, σ) satisfies the
following conditions:

(a) There exists a system of paths P1, P2, . . . , Pk of Γ such that {E(P1), E(P2), . . . , E(Pk)}
is a partition of E(Γ)\L, the paths Pi and Pj are internally vertex disjoint for any
i ̸= j, and for all i (1 ≤ i ≤ k) there are two adjacent vertices of Pi, say ui, vi,
such that their self-loops have the same label,

(b) Both ui and vi have degree at most two in Γ− L for every i (1 ≤ i ≤ k),

(c) σ(w,w) is coprime to p for every w ∈ V (Γ).

Then the covering graph Γσ is Hamiltonian if and only if p ≥ ∆, where ∆ is the maximum
degree of Γ− L.

Figure: 4.4: A graph which satisfies the conditions in Theorem 4.11. The number at a
vertex denotes the label of its self-loop (self-loops are not drawn). If a vertex has no
number next to it, it means its self-loop can have any label coprime to p. P1, P2, P3, P4

is a system of paths satisfying the conditions in Theorem 4.11.

As in the previous section, we consider the base case first.

Lemma 4.12. Let Γ be a path with a self-loop at every vertex and let L be the set of
self-loops. Suppose σ : E(Γ)→ Zp satisfies the following:

• σ(u, u) = σ(v, v) where u and v are some two adjacent vertices on Γ,

Chapter 4 The Hamiltonicity of Covering Graphs 57

• σ(w,w) is coprime to p for every w ∈ V (Γ).

Then Γσ is Hamiltonian if and only if p ≥ 2.

Proof. The necessity is easy, so we prove the sufficiency. We may assume σ(u, u) =
σ(v, v) = 1 by Proposition 4.2. Let u′, v′ be the two leaves of Γ such that the u-u′ path
does not contain v and the v-v′ path does not contain u. It is possible that u = u′

and/or v = v′. Let σ(u′, u′) = a and σ(v′, v′) = b. We show that, in the covering graph
of the subgraph of Γ induced by {u, v}, there exists a pair of a vertex-disjoint u0-v0 path
and a ua-vb path that covers all the vertices of this graph. These two paths can then be
extended to a Hamiltonian cycle in Γσ, by applying the same strategy as in Lemma 4.5
to both the u-u′ path starting with ends u0 and ua, and the v-v′ path starting with ends
v0 and vb, respectively. It remains to show how to construct the two starting paths u0-v0
and ua-vb.

We can assume both a and b are odd numbers. If p is odd, this is obvious since a
and p− a are same, and one of them must be odd. If p is even, a is odd since a must be
coprime to p. The same argument applies to b.

So assume that a and b are both odd. Without loss of generality we can also assume
that a ≤ b, when they are compared as integers. The u0-v0 path is constructed in the
following way: start from u0, go straight down to ua−1, hop to va−1, and go straight up
to v0. The ua-vb path is constructed in the following way: start from ua and go zig-zag
until reaching ub; that is, ua, va, va+1, ua+1, ua+2, va+2, . . . , vb−1, ub−1, ub. Once we get to
ub we can get to vb by first going straight down to up−1 and hop to vp−1, then going
straight up to vb.

Note that, if u or v is a leaf, i.e. u = u′ or v = v′ respectively, one can see that the
construction above still works.

To prove Theorem 4.11 we need the following proposition whose proof is similar to
that of Proposition 4.6.

Proposition 4.13. Suppose Γ is a bi-directed tree with a self-loop at every vertex and
σ : E(Γ) → Zp. If the voltage graph (Γ,Zp, σ) has a system of paths satisfying the
conditions in Theorem 4.11, then there exists a path P which contains two consecutive
vertices having the same label on their self-loops, has the property:

• one end of P is a leaf of Γ, and the other end is its nearest branching vertex of Γ
(or a leaf of Γ if Γ is a path).

Furthermore, if we remove P from Γ except for the vertex of attachment, the new graph
will have a system of paths satisfying the conditions of Theorem 4.11.

By using Proposition 4.13, one can obtain a linear time algorithm to decide whether
(Γ,Zp, σ) satisfies the conditions in Theorem 4.11, which is similar to the one in Theo-
rem 4.8. We omit the details here.

Chapter 4 The Hamiltonicity of Covering Graphs 58

Now we prove Theorem 4.11.

Proof of Theorem 4.11. To construct a Hamiltonian cycle of Γσ, we use the recursive
construction similar to the one in the proof of Theorem 4.4. For the consistency of
induction, we assume the following condition for the Hamiltonian cycle:

(A) The Hamiltonian cycle uses p− dΓ−L(v) edges in the fiber over (v, v) ∈ L for each
v ∈ V (Γ) except possibly for ui, vi in conditions (a) and (b).

The base case is proved in Lemma 4.12. Note that the Hamiltonian cycle constructed
there satisfies the condition (A) since it uses p − 1 edges in the fiber over the loop of
each end-vertex and p− 2 edges in the fiber over the loop of each inner-vertex except for
u and v.

For the inductive step, suppose there are k branches in Γ. By Proposition 4.13, there
exists a path P of Γ satisfying the property of Proposition 4.13 that can be removed
from Γ (except for the vertex of attachment) so that the resulting graph Γ′ will still
satisfies the conditions of Theorem 4.11. Let v∗ be the vertex of attachment, and σ′ be
the restriction of σ to E(Γ′). Note that v∗ cannot be either ui or vi in conditions (a) and
(b) since degree of v∗ in Γ is at least three. Let C ′ be the Hamiltonian cycle of Γ′ which
we assume exists by the inductive hypothesis.

To construct a Hamiltonian cycle C of Γσ we do the following: cut one “vertical”
edge in the fiber over v∗ from C ′ to make its two ends open, then connect these ends
with a Hamiltonian path of the covering graph of the k-th branch. To accomplish this
strategy successfully, one must ensure that there are available “vertical” edges in the
fiber over v∗ to cut off. Since p ≥ ∆, the number of edges in the fiber over v∗ used in
C ′ is p− dΓ′−L(v

∗) ≥ ∆− dΓ′−L(v
∗) ≥ 1. Hence there must be at least one edge we can

make use of, and thus we can obtain a Hamiltonian cycle C of Γσ. Now let us see that
C satisfies (A). Since C ′ satisfies (A), the only vertex that can violate the property is
v∗. By the construction, C uses p− dΓ′−L(v

∗)− 1 = p− dΓ−L(v
∗) edges in the fiber over

the loop (v∗, v∗), hence C satisfies (A).

As in the previous section, one can see that Theorem 4.11 is an extension of Propo-
sition 4.3 by restricting σ to be the all-one label.

Finally, we note that we can merge Theorem 4.4 and Theorem 4.11 to obtain the
following.

Corollary 4.14. Let Γ be a bi-directed tree with a self-loop at each vertex and let L be
the set of self-loops. Let σ : E(Γ)→ Zp. Suppose the voltage graph (Γ,Zp, σ) satisfies the
following conditions:

• There exists a system of paths P1, P2, . . . , Pk of Γ such that {E(P1), E(P2), . . . , E(Pk)}
is a partition of E(Γ) \ L, the paths Pi and Pj are internally vertex disjoint any
i ̸= j, and for all i (1 ≤ i ≤ k) Pi satisfies either of the following:

Chapter 4 The Hamiltonicity of Covering Graphs 59

– the two ends of Pi have the same label, or

– there are two adjacent vertices ui, vi having the same label, both ui and vi have
degree at most two in Γ− L,

• σ(w,w) is coprime to p for every w ∈ V (Γ).

Then the covering graph Γσ is Hamiltonian if and only if p ≥ ∆, where ∆ is the maximum
degree of Γ− L.

4.4 Further Discussion : When Some Labels are Not Coprime

So far we have required that every label has to be coprime to p, the order of the cyclic
group. In this section, we investigate the case when some labels are not coprime to p.
The following result gives a sufficient condition of Hamiltonicity of a covering graph of
a path under some additional conditions.

Theorem 4.15. Let Γ be the path of length n with a self-loop at every vertex and suppose
V (Γ) = {v1, v2, . . . , vn}, where v1 and vn are leaves, and vk−1 and vk are adjacent for
all k (2 ≤ k ≤ n). Let σ : E(Γ) → Zp. If n is odd and σ(v1, v1) = σ(vn, vn) = 1 and
gcd(p, σ(vk, vk)) = d for every k (2 ≤ k ≤ n − 1) for some odd integer d, then Γσ is
Hamiltonian if p ≥ 2d.

Proof. We first construct 2d paths joining vertices in the fiber over v1 to those in the
fiber over vn. Then we connect these paths appropriately to a Hamiltonian cycle of Γσ.
Let Pi (0 ≤ i ≤ 2d − 1) be the path having one end at (v1, i) which will be fixed, and
another end at (v2, i) initially. At each step we extend each Pi by extending its non-fixed
end to the next fiber, until it reaches a vertex in the fiber over vn. We achieve this by
applying the billiard strategy simultaneously to all 2d paths. Finally, we appropriately
close ends of these paths in the first and last fibers to form a Hamiltonian cycle of Γσ.
For a complete example of the construction, we refer the reader to Fig. 4.5. The following
proposition ensures that this strategy will work properly.

For the path Pi, let fk(i) be the level of the vertex at which Pi leaves the fiber over vk
when we apply the billiard strategy simultaneously to all these paths for 1 ≤ k ≤ n− 1.

Proposition 4.16.

fk(i) = Ak + i mod p (4.5)

for odd k, and

fk(i) =

{
Ak + i mod p (0 ≤ i ≤ d− 1),

Ak − 2d+ i mod p (d ≤ i ≤ 2d− 1)
(4.6)

Chapter 4 The Hamiltonicity of Covering Graphs 60

for even k, where Ak is a constant depending on k (0 ≤ Ak ≤ p − 1). Furthermore, for
every k, fk(i) ≡ j (mod d) if and only if i = j or i = j + d.

Proof. Proof is by induction on k. If k = 1 we have fk(i) = i by the definition of
Pi, (4.5) clearly holds with A1 = 0, and the latter statement is clear as well. Suppose
k > 1 and the proposition is true for k − 1. We first prove the latter statement. Since
gcd(σ(vk, vk), p) = d, the fiber over vk (considered as a graph) is a disjoint union of d

cycles of length p/d. Let C
(k)
j be the cycle in the covering graph which contains the

vertex (vk, j) (0 ≤ j ≤ d−1). Then, C
(k)
j contains all vertices whose levels are equivalent

to j modulo d, that is, (vk, j), (vk, j+d), . . . , (vk, j+p−d). By the induction hypothesis,
fk−1(i) ≡ j (mod p) if and only if i = j or i = j + d, hence there are only two paths

Pj and Pj+d which are passing through C
(k−1)
j . These two paths enter C

(k)
j at vertices

having the same levels as vertices via which these paths left C
(k−1)
j in the fiber over vk−1,

since σ(e) = 0 for every bridge e of Γ. By the billiard strategy, these two paths visits

only the vertices in C
(k)
j in the fiber over vk, and they visit all vertices of levels j modulo

d before leaving the fiber, and thus fk(i) ≡ j (mod d) holds for i = j, j + d. The latter
statement is proved.

Now let us see that (4.5) and (4.6) hold. Suppose k is odd and fk−1(i) satisfies (4.6).

Given j, 0 ≤ j ≤ d− 1, consider the two paths Pj and Pj+d, which get into C
(k)
j by the

latter statement. Let σ(vk, vk) = ℓd where ℓ is coprime to p. Then, by the behavior of
the billiard strategy, we have

fk(j) = fk−1(j + d)− ℓd mod p and fk(j + d) = fk−1(j)− ℓd mod p. (4.7)

By (4.6) and (4.7), we get fk(j + d)− fk(j) = d mod p for every j (0 ≤ j ≤ d− 1), and
fk(j+1)−fk(j) = 1 mod p for every j (0 ≤ j ≤ d−2). Thus, fk(0), fk(1), . . . , fk(2d−1)
is a monotonic sequence increasing by one modulo p, hence fk(i) satisfies (4.5).

For even k, suppose fk−1(i) satisfies (4.5). Note that (4.7) also holds for even k. By
(4.5) and (4.7) we get fk(j + d) − fk(j) = −d mod p for every j (0 ≤ j ≤ d − 1), and
fk(j + 1) − fk(j) = 1 mod p for every j (0 ≤ j ≤ d − 2). This implies fk(d), fk(d +
1), . . . , fk(2d − 1), fk(0), fk(1), . . . , fk(d − 1) is a monotonic sequence increasing by one
modulo p, thus fk(i) satisfies (4.6).

Now we will complete the proof of Theorem 4.15. We have that fn−1(i) satisfies (4.6)
since n is odd, and thus, end of each Pi meets the vertex of level fn−1(i) in the fiber over
vn. We stop the extensions of paths at this point. To construct a Hamiltonian cycle of
Γσ, close the 2d ends of Pi’s in the fiber over vn in the following way:

• Connect the end of Pi to the end of Pi+1 for i = 0, 2, . . . , d− 3,

• Join the end of Pd−1 to the end of Pd by the path consisting of the vertices lying
between them,

Chapter 4 The Hamiltonicity of Covering Graphs 61

• Connect the end of Pi to the end if Pi+1 for i = d+ 1, d+ 3, . . . , 2d− 2.

Close the ends of Pi’s in the fiber over v1 in the following way:

• Connect the end of Pi to the end of Pi+1 for i = 1, 3, . . . , 2d− 3,

• Join the end of P2d−1 to the end if P0 by the path consisting of vertices (v0, 2d), (v0, 2d+
1), . . . , (v0, p− 1).

One can see that we obtain a single closed cycle that covers all vertices of Γσ. Thus we
have obtained a Hamiltonian cycle of Γσ.

Figure: 4.5: The billiard strategy in Theorem 4.15. The underlying group is Z15. A
number beside a vertex of the horizontal path Γ is the label on it. In this example,
we suppose the gcd together with 15 is 3. The blue and orange lines denote the paths
Pi’s, and the black lines in the first and last fibers are the joining edges. Observe that
together these lines form a Hamiltonian cycle.

Chapter 4 The Hamiltonicity of Covering Graphs 62

Chapter 5 The Odd Depth Tree Problem 63

Chapter 5

The Odd Depth Tree Problem

A spanning tree of a graph G is a spanning connected subgraph of G having no cycles.
While it is easy to find a spanning tree (of minimum weight) in a graph, there are consid-
erable number of hard variants. For example, finding a spanning tree having minimum or
maximum number of leaves, bounded degrees, bounded diameter, and bounded number
of hops, are all known to be NP-hard [23, 25]. Notice that the Hamiltonian path problem
is equivalent to the problem to find a spanning tree with minimum number of leaves. In
this chapter, we consider a variant of the problem to find a spanning tree with bounded
diameter relaxing the constraint using parity. An odd depth tree is a spanning tree such
that every leaf has an odd distance from a prescribed root vertex. The odd depth tree
problem is to find such a tree in a given undirected graph and a root vertex.

After defining some new notations in Section 5.1, we mention our results in the
continuing sections. In Section 5.2 we give a characterization for the odd depth tree
problem in bipartite graphs and show it is solved in polynomial time. In Section 5.3 we
show the problem in NP-complete. In Section 5.4 we consider the directed version of the
problem.

5.1 Preliminaries

For a vertex v ∈ V , u ∈ V is called a neighbor of v if {u, v} ∈ E. We denote by NG(v)
the set of neighbors of v. For X ⊆ V , we denote by NG(X) the set of vertices which are
not in X and having neighbors in X. By δG(v) we denote the set of edges incident to v
in G. The number of edges incident to v is called the degree of v and denoted by dG(v).
For X ⊆ V , we denote by δG(X) the set of edges having one end in X and the other end
in X. NG(X) (resp. δG(X)) is simply written as N(X) (resp. δ(X)) if the graph we are
discussing is obvious. For F ⊆ E, we denote by G[F] a subgraph of G induced by F .
We simply write NG[F](X) as NF (X) (analogously we write δF (X) and dF (v)).

A forest of G is a spanning subgraph of G which does not contain a cycle. A spanning

Chapter 5 The Odd Depth Tree Problem 64

tree, or simply tree is a forest consisting of one connected component. A vertex of a tree
of degree one is called a leaf of G. The distance of two vertices u, v in a tree is the
number of edges contained in the unique path between u and v. When the root vertex
r is specified in a tree, the distance from r to a vertex v is called the depth of v. The
definition of an odd depth tree is given as follows:

Definition 5.1 (Odd Depth Tree). Let G = (V,E) be an undirected graph and r ∈ V .
A tree T of G is an odd depth tree with respect to r if every leaf of T (except r if it is
a leaf) has an odd depth.

The odd depth tree problem is the problem to find an odd depth tree with respect to
a prescribed root r in an undirected graph. We assume the input graph is connected to
ensure it has a spanning tree.

5.2 Bipartite Graphs

In this section we study the odd depth tree problem in bipartite graphs. The following
is the characterization of bipartite graphs which contains odd depth trees.

Theorem 5.2. Let G = (U, V ;E) be a bipartite graph. Suppose r ∈ U . Then G has an
odd depth tree with respect to r if and only if

|N(X)| ≥ |X|+ 1 (5.1)

holds for every X ⊆ U \ {r}, X ̸= ∅.

Proof. Necessity. Suppose there is a non-empty subset X ⊆ U \{r} with |N(X)| ≤ |X|.
If |X| = 1, the unique member of X has degree one, which is a leaf of an even depth
in any tree of G. Suppose |X| = k ≥ 2 and G has an odd depth tree T with respect to
r. Since every vertex in u \ {r} cannot be leaves in T , dT (u) ≥ 2 for any u ∈ U \ {r},
there are at least 2k edges incident to X. On the other hand, since |NT (X)| is at most
k, |X ∪ NT (X)| ≤ 2k. Hence there are at most 2k vertices and at least 2k edges in
T [X ∪NT (X)], which implies there is a cycle, which is a contradiction.

Sufficiency. We give an algorithm to construct an odd depth tree with respect to r.
The algorithm uses the matroid intersection algorithm for two matroids Mi = (E, Ii)
(i = 1, 2) on the same set E defined as follows:

• I1 consists of F ⊆ E such that F does not induce a cycle, which is known to be
the graphic matroid, and

• I2 consists of F ⊆ E such that dF (u) ≤ 2 for every U \ {r}, which is known to be
the partition matroid.

Chapter 5 The Odd Depth Tree Problem 65

The solution the matroid intersection algorithm returns, if exists, is a forest in which
every vertex in u ∈ U \ {r} has degree two. Once we have obtained it, we add edges
connecting all of the components of the forest and we obtain an odd depth tree with
respect to r. In what follows we show under the assumption |N(X)| ≥ |X|+ 1 for every
non-empty X ⊆ U \{r}, the matroid intersection algorithm always returns such a forest.

Let F = ∅. While there exists a vertex u ∈ U \ {r} such that dF (u) < 2, the matroid
intersection algorithm do the following:

• If there is an edge e ∈ δG(u) such that F ∪ {e} does not induce a cycle, add e to
F .

• If there is no such edge, find edges e0, f1, e1, f2, e2, . . . , fℓ, eℓ ∈ F such that e0 ∈
δG(u) and F ∪

∪ℓ
i=0 ei \

∪ℓ
i=1 fi ∈ I1 ∩ I2.

let X be the set of vertices in U \ {r} contained in the same connected component as
u in G[F]. Let M(X) ⊆ V be the set of vertices mated to vertices in X in M . Find a
vertex u′ ∈ X which is adjacent to a vertex v′ ∈ V \M(X) in G. Such u′ always exists
since |N(X)| ≥ |X| + 1. Note that dF (u

′) = 1 since u′ lies in the same component as
u ̸= u′. Let e = u′v′ and f ∈ F ∩ δG(u′). Exchange e and f , that is, F ← F ∪ {e} \ {f}.
The edge set M ∪ F the procedure returns induces a forest of G such that every vertex
in U \ {r} has degree two. Finally, by adding edges connecting distinct components in
M ∪ F , we obtain an odd depth tree with respect to r.

Since the matroid intersection algorithm runs in polynomial time, the algorithm in
the sufficiency part also runs in polynomial time, we obtain the following.

Corollary 5.3. The odd depth tree problem is solved in polynomial time for bipartite
graphs.

Before moving to the next section, we should mention here an interesting relation
between our result and Bérczi et al’s [6], which studies the DM-irreducible graphs. In
their paper, the characterization of DM-irreducible graphs is shown (Lemma 3.1 in [6]),
which is exactly same as ours (Theorem 5.2). Moreover, they gave a polynomial time
algorithm to find an optimal edge set to add to a DM-redcucible graph to make it DM-
irreducible. In their algorithm, the matroid intersection algorithm with two matroids is
used, the graphic matroid and the partition matroid. This is again same as what we
used in the sufficiency part of the proof of Theorem 5.2. This coincidence was totally
unexpected and we don’t know how to explain this; anyway, it should imply some rela-
tionship between two objects matchings and spanning trees. To clarify the detail is one
of our future works on this topic.

Chapter 5 The Odd Depth Tree Problem 66

5.3 Non-bipartite Graphs

In the previous section we gave a characterization of bipartite graphs having odd
depth treed, and showed the problem is solved in polynomial time. Contrary to it, this
section shows the problem for non-bipartite graphs is intractable.

Theorem 5.4. The odd depth tree problem for two-edge-connected non-bipartite graphs
is NP-complete.

Proof. We show a reduction from CNF-SAT. Let ϕ be an input boolean formula of CNF-
SAT such that every clause has at least three literals. Let x1, . . . , xn be the variables and
C1, . . . , Cm be the clauses of ϕ, where each Cj is in the form of yj1 ∧ . . .∧ yjl where yjk is
either xjk or xjk. Construct an undirected graph Gϕ as follows: first draw a root vertex
r, and a triangle ruivi for each variable xi (1 ≤ i ≤ n). We call the triangle ruivi the
variable gadget of xi. For each clause Cj, draw lj squares where lj is the number of the
literals in Cj. Draw a single vertex wj, and connect each square and wj by a single edge.
The clause gadget of Cj is the subgraph consisting of wj and the l squares connected to
it.

We explain how to connect the variable gadgets and the clause gadgets. For each
square of the clause gadget of Cj, the entrance is the vertex which is the farthest from
wj in the clause gadget. Connect squares and variable gadgets as follows:

• For each square corresponding to the literal xi, connect its entrance and vi by a
single edge.

• For each square corresponding to the literal xi, connect its entrance and vi by a
path of length two.

Now the construction of Gϕ is completed.

We show that ϕ is satisfiable if and only if Gϕ has an odd depth tree with respect
to r. Suppose ϕ is satisfiable. We show the construction of an odd depth tree T of Gϕ

with respect to r. Let x∗ be a satisfying assignment of ϕ. For the variable gadget of
xi, pick up edges for E(T) as follows: rui and rvi if x

∗
i = T, or rui and uivi if x

∗
i = F.

Note that vi is of an odd depth if xi = T, or of an even depth otherwise. Pick all of the
edges connecting the variable gadgets and clause gadgets and add them to E(T). Let
a, b, c, d be the distinct vertices of a square, where a is the entrance and c is the vertex
at opposite side, that is, the vertex adjacent to wj. Since at least one literal is assigned
T in each clause in x∗, there is at least one square having the entrance of even depth for
each clause gadget. For l squares of clause gadget of Cj, pick edges for E(T) as follows:

• Choose one square having the entrance of an even depth, pick ab, bc, ad and cwj.

• For all the other squares having the entrances of even depths, pick ab, cd and cwj.

Chapter 5 The Odd Depth Tree Problem 67

• For squares having the entrances of odd depths, pick bc, cd and cwj.

One can verify that E(T) induces a tree of Gϕ, and every leaf of T has an odd depth.
Thus we have obtained an odd depth tree T with respect to r.

Now we show the converse. Suppose G has an odd depth tree T with respect to r. We
first claim the following: for every clause gadget, there exists a square whose entrance is
of an even depth and is connected to vi for some i by a single edge or a path of length
two. The proof is by contradiction. Let S be the set of the squares in the clause gadget
of Cj having connections to some vi. Suppose there exists a clause Cj such that the
entrances of all the squares in S are of odd depths. Let a, b, c, d be the vertices of a
square, where a is the entrance and c is the vertex at opposite side, that is, the vertex
adjacent to wj. If there is a square in S such that a is adjacent to either b or d in T , one
of them should be a leaf of even depth, that must not occur. Hence for every square in
S, the entrance is adjacent to neither b nor d in T . However, the disconnections imply
that T is disconnected, this is a contradiction again. Therefore, there must be at least
one entrance of even depth for every clause gadget having connection to some vi.

Now let us see how to construct a satisfying assignment of ϕ. For each clause gadget,
select one square as the representative which has the entrance of an even depth. Let xi

be the variable corresponding to the square. Then, by the construction of Gϕ, the depth
of vi must be odd when xi appears in the clause as a positive literal, or even when it
appears as a negative literal xi. Determine the assignment of each xi as follows: xi = T
if vi is of an odd depth, and xi = F if vi is of an even depth. Note that the assignment
does not conflict (that is, it does not happen that a variable xi assigned to T from a
clause, but assigned to F from another clause) since T is a tree, and it is bipartite. For
vi that is not connecting to a representative square, the assignment of the corresponding
variable xi is don’t care. Now the assignment is completed. Let us verify the assignment
x = (xi)

n
i=1 satisfies ϕ. Since we selected an entrance of an even depth for each clause,

and by the rule of deciding the assignment of each variable, the corresponding literal xi

or xi, must be T. Thus x assigns T for at least one literal for every clause, x satisfies
ϕ.

Gϕ is two-edge-connected but not two-connected in general. However, Gϕ is NOT
two-connected if and only if ϕ is partitioned into ϕ = ϕ1∧ϕ2 such that ϕ1 and ϕ2 have no
common variable. In that case the root vertex r is a (only) cut-vertex of Gϕ. For CNF
formulas that are not separable the proof of Theorem 5.4 holds, the following corollary
is derived.

Corollary 5.5. The odd depth tree problem is NP-complete for two-connected non-
bipartite graphs.

Chapter 5 The Odd Depth Tree Problem 68

Figure: 5.1: Gϕ of the boolean formula ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4).

5.4 Directed Graphs : The Odd Depth In-tree Problem

In this section we consider the odd depth tree problem in directed graphs. We first
introduce some notations for digraphs.

Let D = (V,A) be a digraph. For a vertex v, a vertex u is called an incoming neighbor
(resp. outgoing neighbor) of v if (u, v) ∈ A (resp. (v, u) ∈ A). We denote by N−

D (v) (resp.
N+

D (v)) the set of incoming (resp. outgoing) neighbors of v. By δ−D(v) (resp. δ+D(v)) we
denote the set of incoming (resp. outgoing) arcs of v. The number of incoming (resp.
outgoing) arcs of v is called the incoming (resp. outgoing) degree of v, and denoted by
d−D(v) (resp. d

+
D(v)). For X ⊆ V , we define N−

D (X) and N+
D (X) analogously to NG(X).

We simply write N−(X) or N+(X) if the digraph we are discussing is obvious.

The followings are the definitions of in-trees and odd depth in-trees :

Definition 5.6 (In-trees). Let D = (V,A) be a digraph and r ∈ V . An in-tree with root
r is a subgraph T of D which satisfies the following three conditions:

(a) The out-degree of r is 0,

(b) Every vertex except r has out-degree 1, and

(c) r is reachable from every vertex.

Definition 5.7 (Odd Depth In-trees). Let D = (V,A) be a digraph and r ∈ V . An
in-tree T of D is an odd depth in-tree with respect to r if every leaf of T except r itself
has an odd distance from r.

Chapter 5 The Odd Depth Tree Problem 69

The odd depth in-tree problem is the problem to find an odd depth in-tree with respect
to a prescribed root r in a digraph D. We assume that the root r is reachable from any
vertex in D to ensure it has an in-tree.

5.4.1 Directed Bipartite Graphs

As in the undirected version of the problem, we first consider the bipartite case. For
X,Y ⊆ V (D) such that X ∩ Y = ∅, an (X,Y)-perfect matching is a matching that only
consists of arcs from X to Y and that covers all vertices in Y . The following is the main
result.

Theorem 5.8. Let D = (U, V ;A) be a bipartite digraph which contains an in-tree with
root r. Suppose r ∈ U . Then D has an odd depth in-tree with respect to r if and only if
there is a (V, U \ {r})-perfect matching M which satisfies the following:

(A) For every non-empty X ⊆ U \ {r}, there exists a vertex v ∈ N+(X) \M(X) such
that N+

D (v) \X ̸= ∅,

where M(X) denotes the set of vertices mated to some vertex in X in M .

Proof. Necessity. Suppose D has an odd depth in-tree T with respect to r. Since all
vertices in U \{r} are not leaves, they must have at least one incoming arcs in T . By the
definition of in-tree, every vertex except r has out-degree one, N−

T (u1)∩N−
T (u2) = ∅ for

any u1, u2 ∈ U \ {r} (u1 ̸= u2). By taking one of the incoming arcs of each u ∈ U \ {r}
in T , we obtain a (V, U \ {r})-perfect matching M .

Now we prove M must satisfy the condition (A). Suppose that D contains an odd
depth tree with respect to r, and let M be a (V, U \ {r})-perfect matching M contained
in T . Assume that in M there is a non-empty set X ⊆ U \ {r} that violates (A). Then
either of the following holds: N+

T (X) \M(X) is empty or every v ∈ N+
T (X) \M(X)

satisfies N+
T (v) \X = ∅. In both cases, any path starting from a vertex of X comes back

to some vertex in X after two steps, and it cannot reach r, which contradicts to the fact
that T is an odd depth in-tree. Thus we proved the necessity.

Sufficiency. The proof is quite similar to the sufficiency part of the proof of Theorem 5.2.
Suppose there is a (V, U \{r})-perfect matching M satisfying (A). Let F = ∅. We repeat
the following procedure while there exists a vertex u ∈ U \ {r} such that d+M∪F (u) = 0:

• If there is an arc e ∈ δ+D(u) \M such that M ∪ F ∪ {e} does not induce a cycle1,
add e to F .

1Here a cycle is not necessarily directed; it may contain arcs of any direction.

Chapter 5 The Odd Depth Tree Problem 70

• If there is no such arc, let X ⊆ U \ {r} be the set of vertices contained in the same
connected component as u in D[M ∪F]. Find a pair of vertices u′ and v′ such that
u′ ∈ X, v′ ∈ V \M(X), and (u′, v′) ∈ A. Such u′, v′ always exists since M satisfies
the condition (A). Let e = (u′, v′) and f ∈ F ∩ δ+D(u′). Exchange e and f , that is,
F ← F ∪ {e} \ {f}.

The arc set M ∪ F the procedure returns induces a forest of D satisfying the following:
every vertex in U \ {r} has in-degree one and out-degree one, having exactly one vertex
of out-degree zero in each connected component. In other words, M ∪F induces a union
of disjoint in-forests. To complete the construction of an odd depth in-tree, connect all
components of the forest so that r can be reached from every vertex. This is done by
the following procedure.

1. Set W = {r}.

2. While W ⊊ U ∪ V repeat the following.

(a) Find a vertex v ∈ V \W such that v has no outgoing arc in M ∪ F and has
an outgoing arc to some vertex in W in D.

(b) Add the outgoing arc to F and let W ← W ∪ C, where C is the component
to which v belongs.

3. If W = U ∪ V , return M ∪ F .

Let us verify that this procedure always works correctly. We show the vertex v ∈ V \W in
Step 2(a) always exists. If there exists a vertex v ∈ V \W that constitutes a component
by itself (that is, v has no incident arc in M ∪ F), take this v. Suppose there is no such
vertex. Since M satisfies the condition (A), there exists a vertex v ∈ N+

D (U \W) such
that N+

D (U \W) \ (U \W) ̸= ∅. The condition implies v has an outgoing arc to W in D,
take this v. Thus we showed the v in Step 2(a) always exists. And sinceW monotonically
increases, the procedure terminates in a finite number of repetitions. Thus we obtain an
odd depth in-tree with respect to r.

Theorem 5.8 gives a characterization of odd depth in-trees in bipartite directed
graphs, but it is not clear that it is tested in polynomial time. In fact it is unset-
tled that the odd depth in-tree problem is solved in polynomial time in directed graphs.
However, for bipartite DAG’s (directed acyclic graphs), we have the following result.

Theorem 5.9. Let D = (U, V ;A) be a bipartite DAG which has an in-tree with root r.
Suppose r ∈ U . Then D has an odd depth tree with respect to r if and only if

|N−(X)| ≥ |X|, (5.2)

holds for any X ⊆ U \ {r}, X ̸= ∅.

Chapter 5 The Odd Depth Tree Problem 71

We omit the proof as it is essentially same as in Theorem 5.2. The characterization
is exactly same as that of Hall’s theorem, the following is obtained.

Corollary 5.10. The odd depth tree problem is solved in polynomial time for bipartite
DAG’s.

5.4.2 Directed Non-bipartite Graphs

In this section we consider the odd depth in-tree problem in non-bipartite graphs.
Similar to Section 4, we obtain the following hardness result.

Theorem 5.11. The odd depth in-tree problem in non-bipartite graphs is NP-complete
even for DAGs.

Proof. The proof is similar to that of Theorem 5.4. We show the reduction from the same
problem, CNF-SAT. Let ϕ be the input CNF formula, and x1, x2, . . . , xn be its variables
and C1, C2, . . . , Cm be its clauses. We explain how to construct a DAG Dϕ = (V,A)
from ϕ. First draw a single vertex r. For each variable xi, add three arcs (vi, ui), (ui, r)
and (vi, r). We call this the variable gadget of xi. Construct the clause gadget of Cj as
follows: Draw the complete bipartite graph Kk,k, where k is the number of literals in
Cj. Orient all edges to the same direction; in other words, orient them not to make a
directed cycle. Let us call a vertex with no incoming arc source, and a vertex with no
outgoing arc sink. Then each sink of Kk,k corresponds to each literal in Cj. Connect the
clause gadgets and variable gadgets in the following way: if a sink in the clause gadget
of Cj corresponds to the variable xi, connect the sink to vi by:

• an arc if xi appears as the positive literal in Cj, or

• a path of length two if xi appears as the negative literal in Cj.

By connecting every pair of sinks and vi, we obtain Dϕ.

Now let us prove Dϕ contains an odd depth in-tree with respect to r if and only if
ϕ is satisfiable. We first see the “if” part. Suppose ϕ is satisfiable, that is, ϕ has a
satisfying assignment x∗. We obtain an odd depth in-tree T of Dϕ as follows: For the
variable gadget of xi, pick up the following two arcs in E(T): (ui, r) and (vi, r) if x

∗
i is T,

or (vi, ui) and (ui, r) if x
∗
i is F. Pick up all arcs connecting variable gadgets and clause

gadgets for E(T). Then, one can observe that there is at least one sink which is of an
even depth for each clause gadget. For each sink of an even depth, pick up one of its
incoming arcs for E(T) not to take more than one outgoing arc of the same source. For
the other sinks, pick up none of their incoming arcs. Then, pick up the outgoing arcs of
the remaining sources that get in sinks of even depth. From the construction one can see
that the depth of every leaf is odd, thus we obtain an odd depth in-tree T with respect
to r.

Chapter 5 The Odd Depth Tree Problem 72

Now let us see the converse. Suppose Dϕ has an odd depth in-tree with respect to r.
For each clause gadget, every source in Kk,k is a leaf, thus it must be of an odd depth.
Then there is at least one sink of an even depth, since it has an incoming arc from the
sources. Select one of such sinks as the representative of the clause. For each variable
xi, determine its truth value as follows: if vi is reached by some representative, the value
of xi is in accordance with the parity of the depth of vi; that is, xi = T if vi is of an
odd depth and xi = F otherwise. If vi cannot be reached by any representatives, then
its value is don’t care. Note that the assignment does not conflict for any xi since T is
an in-tree and thus T is bipartite. By the way of assigning values to the variables, the
literal corresponding to the representative is assigned to T, thus every clause has at least
one literal assigned to T. Hence ϕ is satisfied by x.

Figure: 5.2: Dϕ of the boolean formula ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4).

Chapter 5 The Odd Depth Tree Problem 73

Chapter 6 Conclusion 74

Chapter 6

Conclusion

Motivated by a development of new technologies for relaxation, this thesis has focused
on relaxations using finite groups. We have presented a new variant of Hamiltonian cycle
problem, the parity Hamiltonian cycle problem, for undirected and directed graphs. For
the undirected version, we have given a complete characterization of graphs having PHC’s
when z ≥ 4, and showed the problem is in P as a corollary. We have also showed that
the problem is NP-complete when z ≤ 3. Then, we are involved in the case z = 3, and
showed some graph classes for which the problem is in P. It is open if the PHC3 problem
is in P for three-edge-connected graphs. For directed graphs, we gave two different
characterizations of graphs having PHC’s, and from that, we have derived a linear time
algorithm. We have proposed a polynomial time algorithm to construct a PHC in a
directed graph. We have further extended the problem to the modulo p version, and
showed a characterization similar to the one of PHC’s.

For the original Hamiltonian cycle problem, we have also studied the Hamiltonicity of
the covering graphs of trees. We have showed the characterization of Batagelj et al. [4]
is applicable to two wider classes; both are defined by the path partitions with some
extra conditions. For both classes, we proposed a linear time algorithm to test if the
input graph satisfies the condition. We have also studied the case when some labels are
not coprime to the order of the given cyclic group, and showed a sufficient condition of
Hamiltonicity for a path type covering graphs.

We have also introduced the odd depth tree problem by relaxing the constraint on the
diameter by parity. For bipartite graphs, we have showed a Hall-type characterization
of odd depth trees, and showed the problem is solved in polynomial time. For non-
bipartite graphs, we have showed the problem is NP-complete. We have also investigated
the variant of the problem for directed graphs, the odd depth in-tree problem. For the
directed bipartite graphs we have showed a characterization of graphs having an odd
depth in-trees which is similar to the undirected case. For non-bipartite DAG’s, we have
showed the problem is NP-complete.

Our ultimate goal is to find structures of problems in NP, and our future work is to

Chapter 6 Conclusion 75

study how the (simple) characterizations for relaxed variants can be used to characterize
the original problems. For this purpose, we will be concerned with variants of NP-hard
problems changing the strength of relaxation using finite groups. The author believes
the approach of relaxing using finite groups is prospective, and will make progress to
derive good characterizations of NP-hard problems.

Chapter 6 Conclusion 76

Reference 77

Reference

[1] O. Aichholzer, T. Hackl, M. Hoffmann, A. Pilz, G. Rote, B. Speckmann, B. Vogten-
huber, Plane graphs with parity constraints, WADS, 9 (2009), 13–24.

[2] B. Alspach, The classification of Hamiltonian generalized Petersen graphs, Journal
of Combinatorial Theory B, 34 (1983), 293–312.

[3] J. Bang-Jensen, G. Z. Gutin: Digraphs Theory, Algorithms and Applications,
Springer, 2008.

[4] V. Batagelj, T. Pisanski, Hamiltonian cycles in the Cartesian product of a tree and
a cycle, Discrete Mathematics, 38 (1982), 311–312.

[5] M. Beck, T. Zaslavsky, The number of nowhere-zero flows on graphs and signed
graphs, Journal of Combinatorial Theory B, 96 (2006), 901–908.

[6] K. Bérczi, S. Iwata, J. Kato, Y. Yamaguchi, Making bipartite graphs DM-
irreducible, arXiv.org e-print archive abs/1612.08828.

[7] N. Biggs, E. Lloyd, R. Wilson, Graph Theory, 1736-1936, Oxford University Press,
1986.

[8] S. Boyd, R. Sitters, S. van der Ster, L. Stougie, TSP on cubic and subcubic graphs,
Lecture Notes in Computer Science, 6655 (2011), 65–77

[9] S. Boyd, S. Iwata, K. Takazawa, Finding 2-factors closer to TSP walks in cubic
graphs, SIAM Journal on Discrete Mathematics, 27 (2013), 918–939.

[10] A. Brandstaedt, V.B. Le, J.P. Spinrad, Graph Classes, A Survey, Society for Indus-
trial and Applied Mathematics, 1987.

[11] R.C. Brigham, R.D. Dutton, P.Z. Chinn, F. Harary, Realization of parity visits in
walking a graph, The College Mathematics Journal, 16 (1985), 280–282.

[12] D. P. Bunde, K. Milans, D. B. West, H. Wu, Optimal strong parity edge-coloring of
complete graphs, Combinatorica, 28 (2008), 625–632.

Reference 78

[13] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, Journal of
Graph Theory, 12 (1988), 29–44.

[14] M. Chudonovsky, J. Geelen, B. Gerards, L. Goddyn, M. Lohman, P. Seymour,
Packing non-zero A-paths in group-labelled graphs, Combinatorica, 26 (2006), 521–
532.

[15] V. Chvàtal, P. Erdös: A note on Hamiltonian circuits, Discrete Math, 2 (1972),
111–113.

[16] S. J. Curran, J. A. Gallian, Hamiltonian cycles and paths in Cayley graphs and
digraphs – A survey, Discrete Mathematics, 156 (1996), 1–18.

[17] J. S. Deogun, G. Steiner, Polynomial algorithms for Hamiltonian cycle in cocompa-
rability graphs, SIAM J. Comput., 23 (1992), 520–552.

[18] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson,
W. P. Thurston, Word processing in groups, A. K. Peters, Ltd., Natick, MA, USA,
1992.

[19] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii
Academiae Scientiarum Imperialis Petropolitanae 8 (1736) 128–140 = Opera Omnia
(1) 7 (1911-56), 1–10.

[20] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, R. deWolf, Exponential lower bounds
for polytopes in combinatorial optimization, Journal of the ACM, 62 (2015), 17.

[21] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, R. de Wolf, Linear vs. semidefinite
extended formulations, exponential separation and strong lower bounds, Proc. of
STOC 2012, 95–106.

[22] A. Frank, Z. Király, Graph orientations with edge-connection and parity constraints,
Combinatorica, 22 (2002), 47–70.

[23] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, 2009.

[24] M. R. Garey, D. S. Johnson, R. E. Tarjan, The planar Hamiltonian circuit problem
is NP-complete, SIAM Journal on Computing, 5 (1976), 704–714.

[25] L. Gouveia, C. Requejo, A new Lagrangean relaxation approach for the hop-
constrained minimum spanning tree problem, European Journal of Operational Re-
search, 132 (2001), 539–552.

[26] J. L. Gross, Voltage graphs, Discrete Mathematics, 9 (1974), 239–246.

Reference 79

[27] J. L. Gross, T. W. Tucker, Topological graph theory, Courier Corporation, 1987.

[28] D. Gusfield, Connectivity and edge-disjoint spanning trees, Information Processing
Letters, 16 (1983), 87–89.

[29] D. Hartvigsen, Extensions of Matching Theory, Ph.D. thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1984

[30] D. Hartvigsen, Y. Li, Maximum cardinality simple 2-matchings in subcubic graphs,
SIAM J. Optim., 21 (2011), 1027–1045.

[31] P. Hell, H. Nishiyama, L. Stacho, Hamiltonian cycles in covering graphs of trees. In:
X. Gao, H. Du, M. Ha (eds) Combinatorial Optimization and Applications. COCOA
2017. Lecture Notes in Computer Science, vol 10628. Springer, Cham

[32] R.-W. Hung, M.-S. Chang, Linear-time algorithms for the Hamiltonian problems on
distance-hereditary graphs, Theoretical Computer Science, 341 (2005), 411–440.

[33] B. Jackson and N.C. Wormald, K-walks of graphs, Australas. J. Combin., 2 (1990),
135–146.

[34] M. Joglekar, N. Shah, A. A. Diwan, Balanced group-labeled graphs, Discrete Math-
ematics, 312 (2012), 1542–1549.

[35] N. Kakimura, K. Kawarabayashi, Fixed-parameter tractability for subset feedback
set problems with parity constraints, Theoretical Computer Science, 576 (2015),
61–76.

[36] R.M. Karp, Reducibility among combinatorial problems, Proc. Complexity of Com-
puter Computations 1972, 85–103.

[37] K. Kawarabayashi, B. Reed, Highly parity linked graphs, Combinatorica, 29 (2009),
215–225.

[38] K. Kawarabayashi, P. Wollan, Non-zero disjoint cycles in highly-connected group-
labelled graphs, Electric Notes in Discrete Mathemactics, 25 (2002), 271–275.

[39] Y. Kobayashi, S. Toyooka, Finding a shortest non-zero path in group-labeled graphs
via permanent computation, Algorithmica, 77 (2017), 1128–1142.

[40] M. Kochol, Polynomials associated with nowhere-zero flows, Journal of Combinato-
rial Theory B, 84 (2002), 260–269.

[41] B. Korte, J. Vygen, Combinatorial Optimization, Theory and Algorithms, Fifth
Edition, Springer-Verlag, 2012.

Reference 80

[42] K. Kutner, R. Marušič, Hamilton cycles and paths in vertex-transitive graphs –
Current directions, Discrete Mathematics, 309 (2009), 5491–5500.

[43] S. Lakshmivarahan, J-S Jwo, S.K. Dhall, Symmetry in interconnection networks
based on Cayley graphs of permutation groups: A survey, Parallel Computing, 19
(1993), 361–407.

[44] D. Lokshtanov, M. S. Ramanujan, Parameterized tractability of multiway cut with
parity constraints, ICALP 2012, 750–761.

[45] L. Lovász, The matroid parity problem, Unpublished manuscript, University of
Waterloo, Waterloo, Ontario, 1979.

[46] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, Journal
of the London Mathematical Society, 36 (1964), 445–450.

[47] H. Nishiyama, Y. Kobayashi, Y. Yamauchi, S. Kijima, M. Yamashita, The parity
Hamiltonian cycle problem, Discrete Mathematics, 341 (2018), 606–626.

[48] H. Nishiyama, Y. Yamauchi, S. Kijima, M. Yamashita, The parity Hamiltonian
cycle problem in directed graphs. In: R. Cerulli, S. Fujishige, A. Mahjoub (eds)
Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science, vol
9849. Springer, Cham

[49] C. H. Papadimitriou, M. Yannakakis, The complexity of restricted spanning tree
problems, Journal of Association for Computing Machinery, 29 (1982), 285–309.

[50] T. Pisanski, J. Žerovnik, Hamilton cycles in graph bundles over a cycle with tree as
a fibre, Discrete Mathematics, 309 (2009), 5432–5436.

[51] J. Roskind, R. E. Tarjan, A note on finding minimum-cost edge-disjoint spanning
trees, Mathematics of Operations Research, 10 (1985), 701–708.

[52] A. Schrijver, Combinatorial Optimization, Springer, 2003.

[53] P. Seymour, C. Thomassen, Characterization of even directed graphs, Journal of
Combinatorial Theory B, 42 (1987), 36–45.

[54] S. Tanigawa, Y. Yamaguchi, Packing non-zero A-paths via matroid matching, Dis-
crete Applied Mathematics, 214 (2016), 169–178.

[55] W. Tutte, A theorem on planar graphs, Trans. Am. Math. Soc. 82 (1956), 309–324.

[56] M. Yannakakis, Expressing combinatorial optimization problems by linear programs,
Journal of Computer and System Sciences, 43 (1991), 441–466.

