
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Design and Analysis of Memory Access Pattern
Protection

仲野, 有登

https://hdl.handle.net/2324/2236252

出版情報：九州大学, 2018, 博士（工学）, 課程博士
バージョン：
権利関係：

Design and Analysis of Memory

Access Pattern Protection

Yuto Nakano

December, 2018

Department of Infomatics

Kyushu University

i

Content

Summary 1

Summary (Japanese) 3

1 Introduction 6
1.1 Background . 6
1.2 Contribution of This Paper . 6
1.3 Organisation of This Paper . 7

2 Security Issues in Software Protection 9
2.1 Threats against Software and its Data 9

2.1.1 Memory Dump . 9
2.1.2 Cold Boot Attack . 10
2.1.3 Cache Timing Attack . 11
2.1.4 ptrace System Call . 12
2.1.5 Vulnerabilities . 13

2.2 Related Works . 14
2.2.1 Oblivious RAM . 14
2.2.2 Oblivious Data Structures . 22
2.2.3 Oblivious Parallel RAM . 23
2.2.4 Private Information Retrieval . 23
2.2.5 Difference between ORAM and PIR 27
2.2.6 Hardware-assisted Control Flow Obfuscation 28

3 Key Extraction Attack 32
3.1 Introduction . 32
3.2 Background: RSA and AES . 34

3.2.1 RSA Description . 34
3.2.2 AES Description . 35

3.3 Attack Scenarios and Key Extraction Attack 36
3.3.1 Attack Scenarios . 36
3.3.2 Attack against RSA . 37

ii

3.3.3 Attack against AES . 38
3.4 Process Peeping Tool (PPT) . 39
3.5 Key Extraction from Memory Dump . 40

3.5.1 RSA . 43
3.5.2 AES . 45

3.6 Conclusion of This Chapter . 47

4 Lightweight Access Pattern Protection 48
4.1 Introduction . 48
4.2 Access Pattern Protection Problem . 51
4.3 Our Scheme for Memory Access Pattern Protection 53

4.3.1 Assumptions . 53
4.3.2 Set-up . 54
4.3.3 Instance 1: Construction with Secure Memory 55
4.3.4 Instance 2: Construction without Secure Memory 58
4.3.5 Applying to Other Structures . 58

4.4 Security Analysis . 59
4.4.1 Access Pattern Hiding . 59
4.4.2 Parameters: Size of Secure Memory and History Table 61
4.4.3 How much dummy data should we use? 62
4.4.4 Access Timing Hiding . 62
4.4.5 Copying More Than Two Blocks 63

4.5 Comparison . 64
4.6 Small Example of Proposed Scheme . 67
4.7 Implementation Issues . 68

4.7.1 Managing Data in Buffer Using Flags 68
4.7.2 Constructing Secure Region . 69
4.7.3 Reducing Storage Overhead . 72
4.7.4 Implementation Result . 73

4.8 Performance Comparison with Path ORAM 74
4.9 Conclusion of This Chapter . 75

5 Active Attack against ORAM 77
5.1 Introduction . 77
5.2 Preliminaries . 79

5.2.1 Side Channel Attack against ORAM 79
5.2.2 Ren et al.’s Active Attack . 79

5.3 Identifying Dummy Blocks . 80
5.3.1 Identifying Dummy Blocks in Square Root ORAM 82
5.3.2 Identifying Dummy Blocks in Our Proposal 82

5.4 Identifying Access Pattern . 84

iii

5.4.1 Identifying Access Pattern in Square Root ORAM 85
5.4.2 Identifying Access Pattern in Hierarchical ORAM 86
5.4.3 Identifying Access Pattern in Our Proposal 86
5.4.4 Identifying Access Pattern in Path ORAM 87

5.5 Experiment . 87
5.6 Countermeasures . 93

5.6.1 Parallelism . 93
5.6.2 Integrity Checking . 94

5.7 Conclusion of This Chapter . 94

6 Application of ORAM 96
6.1 Volume Encryption . 96

7 Conclusion 98

Acknowledgements 101

References 103

Index 116

List of Publications 117

iv

List of Figures

2.1 Heartbleed Description . 13
2.2 Overview of ORAM . 15
2.3 Data Structure of Path ORAM . 20

3.1 List of libraries used by RSA sample program. The boxed library is for
cryptographic operations. 41

3.2 Values referred from RAM when we iterate RSA encryption and decryp-
tion ten times . 42

3.3 Recovered value of the RSA key . 45
3.4 Recovered value of the AES secret key 46

4.1 The number of blocks (x-axis) and ε (y-axis) when m = 128, `h = 512
and δ = 20 . 65

4.2 Our Scheme . 67
4.3 Constructing Secure Area Using Obfuscation 69
4.4 Performance Evaluation in Various Settings 73

5.1 Modifying bucket 4 . 88

v

List of Tables

2.1 ptrace . 13
2.2 Comparison of ORAM and related schemes 30
2.3 Comparison of PIR . 31

3.1 Experimental environment . 42
3.2 The watch list of functions for RSA decryption and AES encryption . . . 43
3.3 Private key for the sample program . 44

4.1 Summary of Difference between ORAM and Our Proposal 51
4.2 Performance of Path ORAM . 74
4.3 Performance of Proposed Scheme . 75

5.1 Probabilities that the adversary can detect dummy blocks 81
5.2 Modified Bytes and Affected Rounds in AES Encryption when ORAM

Storage is Encrypted . 90
5.3 Modified Bytes and Affected Rounds in AES Encryption when ORAM

Storage is NOT Encrypted . 91

Summary 1

Summary

When program is executed, data that is necessary for the execution is temporary

stored on RAM. There are several known attacks against data on memory and they

are major concern to software protection. Another concern is bugs which can cause

information leakage. Oblivious Random Access Machine(ORAM) can mitigate these

threats and protect sensitive data on memory. ORAM can hide an access pattern made

by a program and it can protect data from an adversary who can observe memory.

However, ORAM incurs large overhead and does not suit for the practical use. In this

thesis, we propose more efficient scheme and evaluate the security of ORAM against

stronger adversary.

Chapter 1 describes background of the research as well as main contributions and

organisation of the thesis.

Chapter 2 describes threats against software and summarises ORAM researches.

In Chapter 3, we consider an attack using memory dump. When the adversary tries

to extract secret data from dumped data, it is required to search entire data. Our

proposed attack utilises the access pattern, more precisely the number of accesses, to

efficiently extract secret data. We take RSA as an example and demonstrate the private

key can be extracted when encryption and decryption of random data are iterated 10

times with fixed key. We also demonstrate the secret key of AES can also be extracted

when encryption of random data is iterated with fixed key.

In Chapter4, we propose a lightweight access pattern protection scheme. The large

overhead of ORAM is mainly caused by the re-shuffling of data blocks. The proposed

scheme achieves its lightweightness by omitting this re-shuffling. Even when the re-

Kyushu University

Summary 2

shuffling is not applied, accesses occur only once can be hidden. However, accesses occur

multiple times need to be hidden. The proposed scheme records history of accesses and

operates dummy accesses based on the history. These dummy accesses makes it possible

to hide the access pattern without re-shuffling. Moreover, we propose solutions of issues

for the efficient management of data, the construction of secure region and the efficient

usage of storage. We implement the propose scheme and show it outperforms the existing

scheme by around 5 times.

In Chapter 5, we consider the security of ORAM under a stronger adversary. In

general, the security is evaluated under the adversary who only observes the access and

does not modify data on memory. This type of adversary is called passive. Another

stronger type is called active who can also modify data on memory and we propose an

active attack against ORAM. In the attack, the adversary first saves the initial state

of the program and executes the program step-by-step while recording all transition of

the internal states and output. Then, he modifies one of the data block and executes

the program step-by-step. During this execution, the adversary compares the internal

state and output to those when the modification is now applied. If any difference to the

behaviour of the program is detected, the adversary records in which step the difference

is occurred and the modification. By iterating this procedure to all data blocks, the

adversary can reveal the access pattern even if ORAM is applied. We apply this attack

to AES implemented with Path ORAM and show where the secret key is stored.

In Chapter 6, we consider the application of ORAM to a storage encryption. The

encryption can provide confidentially to data stored in storage, but it alone cannot hide

the existence of the encrypted data. There is a solution to hide the existence of encrypted

volume however, it fails against an adversary who can observe the access pattern to the

volume. When access to the encrypted volume is made through ORAM, its pattern can

be hidden from the adversary.

In Chapter 7, we conclude the thesis.

Kyushu University

Summary (Japanese) 3

Summary (Japanese)

メモリ・アクセスパターン保護の設計と
評価

ソフトウェアの実行に必要なデータはメモリ上に一時的に格納されるため、これを

狙った攻撃がいくつか知られており、ソフトウェアに対する大きな脅威となっている。

また、ソフトウェアの脆弱性によって重要なデータが漏洩することも懸念される。ソフ

トウェアが扱う機密情報を保護するためには、これらの脅威への対策が必要であり、そ

の一つとしてOblivious Random Access Machine(ORAM)が提案されている。ORAMを

利用することで、攻撃者がメモリを監視できたとしても、メモリアクセスのパターンを

秘匿することが可能であり、ソフトウェアが扱う情報を保護することが可能となる。し

かし、既存のORAMはオーバーヘッドが大きいという課題があった。そこで、オーバー

ヘッドを削減した手法を提案するとともに、従来よりも強い攻撃者に対するORAMの

安全性評価を行う。

第 1章では、背景について述べ、成果および構成について説明する。

第 2章では、ソフトウェアに対する脅威について述べ、対策として提案されている

ORAMの研究動向を整理する。

第 3章では、メモリダンプを用いた攻撃の効率化手法を検討する。メモリダンプに

よってソフトウェアが利用するデータを取得することが可能であるが、メモリ上のすべ

てのデータの検索が必要であるという課題があった。そこで、ソフトウェアのアクセス

を観測することでデータの検索を不要とする攻撃を示す。具体的にはソフトウェアが行

うメモリアクセスについて、各アドレスへのアクセス回数を数え上げることで検索を不

要とする。例として、RSAを対象に、鍵を固定し乱数の暗号化と復号を繰り返し実行す

Kyushu University

Summary (Japanese) 4

る。この時、鍵が格納されているアドレスに対してアクセスが集中することを示す。実験

では暗号化・復号の処理を 10回繰り返した場合に、鍵の特定が可能である。また、AES

を対象とした実験では鍵を固定し、乱数の暗号化を行った場合に、秘密鍵の特定が可能

である。

第 4章では、従来のORAMに比べて高速なメモリ・アクセスパターン保護手法の提

案を行う。既存手法はORAMストレージ内のデータを一定周期でシャッフルする必要

があり、処理負荷が高いという課題があった。そこで、一定周期のシャッフルを省略す

ることで高速化を実現する。シャッフルなしの場合でも、ソフトウェア実行中に 1度し

かアクセスされないデータについては、安全性を確保可能である。しかし、ソフトウェ

ア実行中に複数回アクセスされるデータは、ソフトウェアにとって必要なアクセスであ

る可能性が高く、保護する必要がある。そこで、提案手法では、アクセスの履歴を記録

しておき、各アクセスにおいて、履歴として登録されているデータに対してダミーのア

クセスを実行する。これによって、定期的なシャッフルを行わずに、アクセスパターン

を秘匿することを可能にし、高速化を実現する。さらに、提案手法を実装する際の課題

となる、データの効率的な管理手法、安全な領域の構築手法、ストレージの効率的な利

用手法、について解決策を示す。さらに、既存手法に比べて最大約 5倍高速であること

を実験的に示す。

第 5章では、より強い攻撃者に対して ORAMの安全性評価を実施する。一般的に

ORAMの安全性は、アクセスパターンを監視するだけで、データの変更は行わない攻撃

者 (受動的な攻撃者)を想定して評価されている。しかし、攻撃者はデータの変更も可能

であることが多く、データを変更可能な攻撃者 (能動的な攻撃者)に対する安全性評価が

課題であった。そこで、能動的な攻撃に対するORAMの安全性を評価する。攻撃者は、

ソフトウェアの初期状態を記録し、さらに内部状態と出力を記録しながら 1ステップず

つ処理を実行する。その後、ソフトウェアを初期状態に戻し、データを 1つ選択し、それ

を変更する。その後、ソフトウェアの挙動に変化が生じるかどうかを確認しながら、1ス

テップずつ実行する。挙動に変化が生じた場合、どのデータを変更した場合にどのステッ

プで変化が生じたかを記録し、初期状態に戻す。この操作をすべてのデータに対して繰

り返すことで、各データがどのステップで利用されるかが特定可能である。PathORAM

を適用したAESに対して本手法を適用し、鍵の格納先を特定可能であることを示す。

Kyushu University

Summary (Japanese) 5

第 6章では、ORAMの適用先として PC等のストレージの暗号化を挙げ、研究の動

向をまとめる。単にストレージ全体を暗号化しただけでは、暗号化領域の存在を秘匿す

ることはできず、何らかの情報が保管されている可能性を攻撃者に対して秘匿できない。

そこで暗号化領域の存在そのものを秘匿する機能を実現したソフトウェアが公開されて

いるが、アクセスのパターンを攻撃者が観測可能な場合は、暗号化領域の存在を検知可

能であることが指摘されている。暗号化領域の存在を攻撃者から秘匿するためには、暗

号化領域へのアクセスパターンを秘匿する必要があり、このためにORAMが活用され

ている。

最後に、第 7章で得られた成果に関するまとめを行う。

Kyushu University

Chapter 1 Introduction 6

Chapter 1

Introduction

1.1 Background

Attacks against software are now major threats. In these attacks, the sensitive infor-

mation can be leaked even if underlying cryptographic primitives are secure. Moreover,

as the software becomes more and more complex, the chance of critical bugs being in-

cluded inside the software becomes higher. These bugs sometimes can be exploited by

an adversary.

As cloud storage services are getting common, many users outsource their data to a

cloud server.

1.2 Contribution of This Paper

We discuss current status of security issues in software protection in Chapter 2.

Especially software that deals sensitive information.

In order to show these threats are critical, we propose key extraction attack against

RSA and AES in Chapter 3. In the proposed attack, we closely observe the memory

accesses performed by RSA and AES. During the attack, we set the private key for RSA

and the secret key for AES remain fixed while input messages are randomly generated.

Then, iterate encryption and decryption and check the number of accesses to each ad-

dress. The result shows that in both cases some of the addresses are accessed a lot more

Kyushu University

Chapter 1 Introduction 7

often than the others. We extract values from these addresses and confirm that the

extracted values match the keys.

Oblivious RAM (ORAM) schemes can mitigate these threats, however, they impose

large computational overhead and not realistic in practical use. To reduce the overhead

of ORAM, we propose lightweight scheme in Chapter 4. The main idea behind the

proposed scheme is to use the history of accesses. In ORAM schemes, it is important all

blocks are only accessed once during an epoch (between oblivious shuffle) otherwise the

information can be leaked. Our proposal arrows any block to be accessed more than once

by performing dummy accesses to blocks which have been before. This allows us to omit

oblivious shuffle and achieve a lightweight scheme. We also apply some techniques to

improve the performance of our scheme. Then we evaluate the performance with various

parameter settings and compare with one of the most efficient scheme.

The security of ORAM schemes are usually considered against passive adversaries,

whose ability is limited only to observe the access. Considering a scenario in which

ORAM scheme is used for software protection, the user himself can be the adversary and

tries to extract sensitive information embedded inside the executable binary of software.

In this scenario, the user (i.e. adversary) has more ability than the passive adversaries,

that is modifying data stored on ORAM. We consider the security of ORAM under active

adversaries and propose two attacks in Chapter 5.

We discuss two applications of ORAM schemes in Chapter 6. The first one is to

secure multi-party computation and the second one is to volume encryption. In both

applications, hiding access pattern, which is realised with ORAM, is the key to achieve

the security requirements. Finally, we summarise research results in Chapter 7.

1.3 Organisation of This Paper

The background and purpose of this research are shown in Chapter 1. Trends and

issues in recent ORAM research are shown in Chapter 2. An efficient key extraction

attack is shown in Chapter 3. A lightweight memory access pattern protection scheme

Kyushu University

Chapter 1 Introduction 8

is addressed in Chapter 4. Some techniques to improve empirical performance of the

proposed memory access pattern protection scheme and performance evaluation are also

given in Chapter 4. Active attacks against ORAM schemes are shown in Chapter 5. As

an application of ORAM, disk encryption is discussed in Chapter 6. Finally, a summary

of my research results is given in Chapter 7.

Kyushu University

Chapter 2 Security Issues in Software Protection 9

Chapter 2

Security Issues in Software Protection

2.1 Threats against Software and its Data

Attacks against the privacy and the protection of sensitive data in memory are an

area of on-going research. In this section, we study various attacks covered in the existing

research that are strongly related to our work.

2.1.1 Memory Dump

Memory dump is usually used for debugging programs especially to detect buffer

overflows. It also can be used to attack programs. During the execution of the program,

its data is temporally stored in RAM and any process with the same privilege as the

user executing the program or a root privilege can access that region. If the program is

an encryption/decryption program, the decryption key must be stored in RAM and it is

possible for the adversary to dump the contents in the RAM and search for the key. On

Linux systems, dd or ptrace() can be used to dump memory. We can also access the

memory of a running process that runs with different privileges than the user, assuming

root is not involved, by using Linux capabilities. By giving the user a capability for the

particular program, the user will be able to execute it without the normally required

privilege. However, setting capabilities to a program/process requires, initially, root

privileges or an appropriate capability.

Kyushu University

Chapter 2 Security Issues in Software Protection 10

On operating systems which use virtual memory, part of or entire memory contents

of a program are sometimes moved from main memory to secondary storage (i.e. the

hard disk drive). If the adversary can access the region of a disk where the pages are

stored, it is easy to read the content of memory. Another possibility that the memory

content can be stored on the disk is core dump. When a process is unexpectedly stopped,

the memory image of that process is saved as a core file in order for debugging. The

adversary can access the core file and try to analyse the memory image.

Maartmann-Moe et al. [58] presented a key recovery attack with memory dumping.

Their attack exploits the fact that key representation in memory has a certain structure:

the 128-bit original key is followed by the remaining 1280-bit expanded key in case of

AES-128. Once the memory is successfully dumped, the attacker can search 128-bit

original key candidates. Then the attacker applies the key schedule algorithm for all

candidates. Only the correct candidate returns 1280-bit values which is identical to

the values on memory. The authors also applied the same idea to attack Serpent and

Twofish.

2.1.2 Cold Boot Attack

The cold boot attack is very similar to the memory dump. It involves reading an

image of the RAM without needing root privilege. When RAM module is subject to

cold temperatures (e.g., -50◦C), it takes several minutes (5-10 minutes) for its image to

degrade – this is a property that can be used to recover the contents of the memory

even when power to the memory module has been switched off. Halderman et al. [48]

demonstrated by using this low temperature characteristic that it is possible to extract

the disk encryption key from a target computer. The attack proceeds in the following

steps:

1. freeze the DRAM module while the computes is on or in sleep mode,

2. power off the computer,

Kyushu University

Chapter 2 Security Issues in Software Protection 11

3. boot the computer with a custom OS that extracts entire data in DRAM to an

external drive,

4. Identify the decryption key from acquired RAM image, and

5. decrypt the hard drive.

Müller et al. [65] demonstrated the cold boot attack against an Android smartphone.

Android version 4.0 and upwards support disk encryption so that users can encrypt their

personal data. Their tool, called the Frost (Forensic Recovery of Scrambled Telephones),

can recover the encryption key from the RAM. The attacker first installs the tool in the

recovery partition of the phone, and boots the phone from the recovery partition. Frost

can then recover the encryption keys from the RAM and decrypt the user’s partition. It

can also recover PINs with a brute force attack.

2.1.3 Cache Timing Attack

Brumley and Boneh [14] demonstrated that the RSA private key can be extracted

from an OpenSSL-based web server. Their attack used the timing difference of Mont-

gomery reduction [64] and multiplication routines. Due to the nature of Montgomery

reduction and Karatsuba [51], the required time for decryption changes depending on

the ciphertext C. At first, the attack guesses C and decrypts possible combinations of

the 2nd and 3rd most significant bits. The decryption time shows two spikes, which are

respectively Q and P in OpenSSL. This information is used to refine the guess of C and

iterate the same steps until |Q|/2 (where Q is of |Q| bits in length) most significant bits

of Q are recovered. Following that, |Q|/2 least significant bits of Q can be factorised by

Coppersmith’s algorithm [21].

It has been shown that a private key for the GnuPG RSA decryption can be recovered

with a cache timing attack [97]. Their attack, called Flush + Reload attack, targets the

L3 cache where the attack program and the victim programs share pages. The attack

program can ensure that the specific memory line is evicted from the cache and monitor

the access of the victim program to the memory line. The attack consist on three steps:

Kyushu University

Chapter 2 Security Issues in Software Protection 12

1. The attack program “flushes” the cache,

2. The attack program waits for the victim program accesses the memory line,

3. The attack program “reloads” the memory line while measuring the time required

to execute it.

When the attack program reloads the memory line in the third step, the required time will

be different depending on whether the victim program accessed that particular memory

line or not. This time difference can be used to recover the private key for RSA. The

same attack can be applied to recover a secret nonce for EC-DSA [96].

More recently security issues were found in speculative executions of modern CPUs

called Spectre (referred as CVE-2017-5753 and CVE-2017-5715) and Meltdown (referred

as CVE-2017-5754). Spectre exploits the branch prediction and Meltdown exploits out

of order execution.

2.1.4 ptrace System Call

The ptrace() system call enables one process (the “tracer”) to observe, control the

execution of another process (the “tracee”), examine and change the tracee’s memory

and registers. It is primarily used to implement breakpoint debugging and system call

tracing. Table 2.1 summarises options of ptrace. Other than ptrace() system call, there

are several other system calls that may help the adversary to monitor the process and

its access to memory, such as ltrace() for monitoring dynamic libraries and strace()

for system calls.

There is a mode called PTRACE_SINGLESTEP in ptrace, which can load a program

or can be attached to an existing program. The PTRACE_SINGLESTEP mode allows the

attacker to execute the program step-by-step. We can also acquire the values stored in

the CPU registers in each step such as program addresses, register values of operand and

values in RAM pointed to by the registers by using a PTRACE_PEEKDATA mode.

Kyushu University

Chapter 2 Security Issues in Software Protection 13

Table 2.1: ptrace
executing step-by-step ptrace(PTRACE_SINGLESTEP, pid, 0, NULL);

Retrieving values struct user_regs_struct regs;

from register ptrace(PTRACE_GETREGS, pid, NULL, ®s);

Dumping RAM ptrace(PTRACE_PEEKDATA, pid, NULL, ®s);

send me 3
letters “hat”

hat

send me 500
letters “hat”

hat
Alice wants to set master key

to ʻ15857120581ʼ …

Eve wants theses 3 letters: hatat
Alice wants to set master key to

ʻ15857120581ʼ
Bob wants pages about …

Eve wants theses 500 letters: hatat
Alice wants to set master key to

ʻ15857120581ʼ
Bob wants pages about …

Figure 2.1: Heartbleed Description

2.1.5 Vulnerabilities

Vulnerabilities in software are often critical to the security of the system. In 2014, a

critical bug called heartbleed , referred to as CVE-2014-0160, has been found in OpenSSL

TLS Heartbeat extension [81], which makes for the attacker to recover 64 kilobytes of

memory at a time [20]. If cryptographic keys are contained in this region, the adversary

can retrieve these keys. Figure 2.1 describes the attack. In the attack, the adversary can

send a request to repeat a word of his choice to check if the server is up. The request sent

to the server also contains the length of the word, which the adversary can set arbitrary.

In the example of Fig. 2.1, the requested word is ’hat’ whose length is three, however,

the adversary can disguise its length is 500. Then, the adversary will receive ’hat’ and

497 letters which are stored next to ’hat’.

Kyushu University

Chapter 2 Security Issues in Software Protection 14

2.2 Related Works

This section summarise researches on ORAM and its related areas.

2.2.1 Oblivious RAM

Protecting sensitive information inside software has been a major concern for all

software developers. Many software protection mechanisms have been proposed such as

obfuscation mechanisms and combination of secure hardware. Many of those mechanisms

are, however, ad-hoc and not based on theoretical foundations.

Pippenger and Fische [74] showed that a Turing Machine can be made oblivious.

Here an oblivious machine was defined as the movements of the head was independent

of the input to the machine and a fixed function of time. Goldreich [39], later extended

by Goldreich and Ostrovsky [40], considered oblivious in RAM model and proposed

Oblivious RAM (ORAM) for software protection. By using ORAM schemes, one can

execute a program in a way that a polynomial-time adversary can only know how long

it takes to finish the program even if the adversary can observe memory contents and

accesses during execution. A brief overview of ORAM is given in Fig. 2.2. When a

ORAM client, i.e. CPU, wants a data block a which is stored in the address x, the client

request to perform read(x) to ORAM. Then ORAM translates the operation into a set

of operations, in this example these are get(i), get(j) and get(k), and performs them to

ORAM server i.e. RAM in order to retrieve the blocks a, b and c. Finally the block

a is sent to the CPU. Because of the translation made by ORAM, the adversary who

can closely observe physical accesses to RAM cannot distinguish if the given accesses

have a certain pattern or not. The application of ORAM to realise a private access to

remote servers has also been considered, for example [92, 55]. Goldreich and Ostrovsky

proposed two main constructions, called square root solution and hierarchical solution.

After the first proposal of ORAM, several improvements have been proposed and

many applications using ORAM schemes have been proposed, for example [1, 92, 73,

12, 25, 82, 46, 53, 55, 85, 87, 93, 88]. Improvements typically arise from the use of

Kyushu University

Chapter 2 Security Issues in Software Protection 15

Figure 2.2: Overview of ORAM

different data structures and hash function schemes, more efficient sorting algorithms

(for the oblivious shuffling), and the use of secure local (client) memory. Currently, the

best amortised overhead is O(log2N/ log logN) presented in the work of Kushilevitz et

al. [53] whose security is based on the one-way function.

Batcher’s sorting network [8] can be used for oblivious re-shuffling. Given a per-

mutation π, Batcher’s sorting network moves data in the address i to the address π(i)

in a way that all operations are independent of data and the permutation. During the

sorting, two blocks are first read for the comparison, then they are swapped, if they are

not sorted, before rewritten. Sorting N blocks requires NdlogNe2 comparisons, which

leads to the computational cost of O(N log2N) for re-shuffling.

One can show that the combination of the scanning method described above, and

frequent oblivious re-shuffling can provide a high level of memory access pattern privacy

protection. In particular, the re-shuffling following level overflow ensures that a data

item is not visited twice in the same level (for 2 ≤ i ≤ logN) using the same hash

function hi. We note however that it was shown in the work of Kushilevitz et al. [53]

that the choice of hash function may still leak information to adversaries.

Despite much recent progress, where the asymptotic efficiency as well as the con-

Kyushu University

Chapter 2 Security Issues in Software Protection 16

stant terms of ORAM solutions have been improved (making it particularly attractive

for remote storage access pattern protection), current solutions remain inefficient for

preventing leakage of relatively limited-in-size memory access pattern. In these cases,

the constant terms involved in the computational complexity make the overhead unac-

ceptably high. This motivates the proposal of other methods, which while not achieving

the same level of protection as ORAM, offer low computation (and storage) overheads,

and may therefore achieve both security and performance levels acceptable in practice.

Suppose that we are accessing the data ‘a’ several times in the ORAM. The Read(a)

process searches for ‘a’ in the set of (At ∪ Pt) where At indicates all element in the

top level and Pt indicates the path which is determined by the hash function h(a) and

h(dummy). At the next access to ‘a’, the read operation searches for ‘a’ in the set of

(At+1 ∪ Pt+1). Here, we have to consider two cases: 1) re-shuffle has been done or 2)

re-shuffle has not been done.

1. Since the re-shuffle has not been done, we are using the same hash functions. But,

‘a’ must be in the top level, and search dummy location for the lower levels. Hence

Pt and Pt+1 have no correlation.

2. Since the re-shuffle has been done, new hash functions are chosen. Therefore Pt

and Pt+1 have no correlation.

As shown, Pt and Pt+1 are indistinguishable. And At and At+1 are also indistinguishable,

since the all data always is accessed in the top level. Therefore the adversary cannot

tell if ‘a’ is being accessed more than once. Re-shuffling the elements is critical for the

security of ORAM, but it is also critical for the cost of ORAM.

Comparison of computation overhead, storage overhead and security is summarised in

Table 2.2. As shown in Table 2.2, the security of SDSFRY [88] is based on the randomised

encryption. It is an encryption algorithm which uses randomness on the encryption and

resulting ciphertexts correspond to the same plaintext are indistinguishable from one

another. In the following sections, we describe some of ORAM schemes more in detail.

Kyushu University

Chapter 2 Security Issues in Software Protection 17

2.2.1.1 Square Root ORAM

The square root solution attaches area called shelter, which can contain
√
N blocks,

to main memory and adds
√
N dummy blocks. Then original N data blocks and

√
N

dummy blocks are permuted by the secret permutation π. When the client accesses to

data block x, one first scans entire shelter to check if x is inside the shelter. If the block is

already inside the shelter, the dummy block will be copied to the shelter. Otherwise, the

block x will be copied from π(x). As proposed by Zahur et al. [98], the need of dummy

blocks can be eliminated by performing the copy of real blocks from random addresses

instead of the copy of dummy blocks.

As one block is copied to the shelter at each access, the shelter gets full after
√
N

accesses. Once the shelter gets full, new permutation π′ is chosen and all blocks are

re-shuffled according to π′, which requires O(N log2N) computation. On each access,

O(
√
N) physical accesses are required. Therefore, the amortised overhead is given by

O(
√
N log2N). The amortised overhead can be optimised by setting the shelter size to

Θ(
√
N logN). The security of this scheme is based on an one-way function. The one-

way function is a function which can be easily computed in one-way, that is computing

y = f(x) for given x, however, computing the other way, that is f−1(y) for given y, is

computationally infeasible.

2.2.1.2 Hierarchical ORAM

In the hierarchical solution for RAM with N items, the data structure is organised

in n = O(logN) levels consisting of hash-tables with 2i buckets (1 ≤ i ≤ n), each bucket

containing O(logN) items. The storage requirement is therefore O(N logN). Data is

mapped into the levels using different secret hash functions hi, known by the client only.

An element r is read with the read(r) operation as follows:

1. Scan the entire first level.

2. If the element is not found, then for each level i (2 ≤ i ≤ n), compute j = hi(r)

and read the j-th bucket in the level i buffer, until the requested element is found.

Kyushu University

Chapter 2 Security Issues in Software Protection 18

3. Once the element is found (including during the scan of the first level), continue

with the procedure in step 2. by reading a dummy location in each level i given

by hi(dummy ◦ t), where t is a counter.

4. The entire first level is scanned again, and the element r is written to the first

level.

When we wish to update an element r with the write(r, x) operation, we perform the

read(r) procedure as above, but insert the new value x into the first level at the step 4.

It follows that the number of access operations for a data item request (either read or

write) is O(log2N).

Because of the writing in step 4, buffer levels eventually overflow with data. Indeed,

after 2i requests, the buffer at level i will be full, and its full contents are moved down

to level i + 1. Every time content is moved to a lower level, all data in both levels

are permuted and a new random hash function is chosen. This process requires the re-

shuffling of data, which needs to be done obliviously. This is the most complex component

of the construction, and is the main factor in its (amortised) complexity overhead.

Based on the constructions above, the Goldreich’s scheme [40] requires O(N logN) in

storage, and has amortised computation overhead of O(log3N) per query using the AKS

algorithm for the oblivious sorting [2]. Due to the very large constants, the complexity

is considered O(log4N) in practice (by using Batcher’s sorting network [8]).

2.2.1.3 Path ORAM

Recently the third construction called the tree construction is proposed by Shi et

al. [82]. It has an N -element database in a binary tree of depth logN . Each node

in the tree has a bucket which can store k data items. Their scheme uses O(N logN)

storage at the server. The client needs O(1) memory and computation complexity is

O(log3N). The scheme is proven secure given the access to a random oracle. Later, the

tree construction is optimised by Gentry et al. [35]. The optimisations can reduce the

storage overhead by an O(k) factor and computation complexity by an O(log k) factor,

Kyushu University

Chapter 2 Security Issues in Software Protection 19

where k is a security parameter.

Path ORAM is one of the most efficient scheme [88]. Data in Path ORAM is also

maintained as a binary tree of the height L and it has 2L leafs. Each node is called a

bucket and always stores Z blocks. When the number of the data blocks is less than Z,

dummy blocks will be padded. It also has a secure area in which stash and position map

are stored. The stash acts like a shelter in square root ORAM and it can hold up to C

blocks. The position map is a table relating the leafs and blocks inside each leaf. The

data structure of Path ORAM is shown in Fig. 2.3.

When a data block a is accessed, Path ORAM retrieves that leaf ` has the data block

a from the position map. Then it accesses the path to leaf ` and copies all data blocks

into the stash. The data block a is now in the stash, it accesses a. After the access,

choose new leaf `′ and update the position map. Also all data blocks in the stash are

evicted into the buckets on path `′. Dummy blocks are filled an empty space in the

buckets on path `′. When the block a is retrieved from the server, it is always written

back to a new random location. Therefore, the sequence of accesses, from the server’s

view point, is indistinguishable from the random sequence.

Stefanov et al. also proposed a recursive Path ORAM for reducing the size of the

position map which has to be stored in the secure area. The recursive Path ORAM has

X ORAMs; ORAM0, ORAM1, . . ., ORAMX where ORAM0 contains the data blocks,

and ORAMi+1 contains the position map for ORAMi. Each recursion compress the size

of the position map by a constant factor, and it can be compressed to O(1) after a

logarithmic number of recursion.

2.2.1.4 GORAM

Maffei et al. [59] presented a framework for privacy preserving cloud storage called

GORAM. In GORAM, the user can store his data to cloud storage, and share data

with other users with selectively allowing read and write accesses. Moreover these access

patterns are oblivious from the server. In the original ORAM scheme and most of the

following works only consider the single and honest client. On the other hand, Maffei et

Kyushu University

Chapter 2 Security Issues in Software Protection 20

!" !# !$!% !& '('! '' ') '* '" '# '$ '% '&)(

$ % & !(!! !' !) !*

) * " #

! '

(

+,-,.

(

!

'

)

*

(! ') * " # $ % & !(!! !' !) !* !".,/012

Figure 2.3: Data Structure of Path ORAM

al. considered multiple and possibly malicious clients and provided security proofs.

2.2.1.5 Circuit ORAM

When ORAM is used as a building block to realise a secure multi-party computation,

its circuit size is critical to the performance of the resulting MPC. Though Path ORAM is

one of the most efficient scheme, its eviction is complex and is not as efficient in terms of

its circuit size as expected. Circuit ORAM is also a tree-based scheme, like Path ORAM,

but with simpler eviction and can be implemented as a small circuit [90]. The eviction

of Circuit ORAM, the client first chooses one block and keeps it. Then it can be evicted

to somewhere along the path. The eviction algorithm is initiated from the bottom of

the tree (i.e. leaves). It first searches a new path where the block can be contained, and

move the block from the current path to the new path. If there is not such block, the

eviction algorithm chooses different path. Each logical access to a block is translated to

the access to a random path, retrieving part is proved to be indistinguishable from the

random sequence. The eviction algorithms are also proven to be indistinguishable from

the random sequence. Circuit ORAM is later extended to Circuit OPRAM to support

parallelism [15].

Kyushu University

Chapter 2 Security Issues in Software Protection 21

2.2.1.6 Ring ORAM

Ren et al. [75] proposed Ring ORAM which achieves online bandwidth of O(1) and

the amortized overall bandwidth is independent of the bucket size. Ring ORAM is

also a tree-based ORAM and shares its characteristics with Path ORAM [88] and SSS

ORAM [87]. Server storage of Ring ORAM is organised as a binary tree and each bucket

in the tree can hold up to Z + S blocks where Z is the number of real blocks and S is

the number of dummy blocks. The client storage is consisted of a position map and a

stash.

The main difference between Path ORAM and Ring ORAM in accessing ORAM

server is that Ring ORAM only reads one block from each bucket while Path ORAM

reads all blocks. Hence Ring ORAM achieves smaller overhead. In order to fulfil the

security requirement even when only one block is accessed in the bucket, each bucket

will be shuffled after it runs out of un-accessed dummy blocks. Another difference is

in an eviction. In Path ORAM, the eviction is performed for every access while Ring

ORAM is every A accesses where A is a public parameter. As the result, Ring ORAM

outperforms Path ORAM by 2.7×.

2.2.1.7 PRO-ORAM

Tople et al. [89] proposed PRO-ORAM which achieves constant latency to hide a

pattern of read accesses. While it only protects read access, it achieves constant latencies

per access. The key idea of PRO-ORAM is to decompose read access into ‘access’ and

‘shuffle’ and to prepare two separate copies of data. One copy, called active array, is

used to perform access operation. The other copy, called next array, is used to perform

shuffle operation, and resulting state after
√
N accesses can be active array for the next

epoch. They also utilise trusted hardware on the server side to delegate access and shuffle

operation. Their scheme can be useful when clients repeat read-only accesses to data on

the clouds after the initial upload. There are several services which fit in this model, for

example photo sharing services, document sharing services and music/video streaming

Kyushu University

Chapter 2 Security Issues in Software Protection 22

services, where the content owners upload their own contents to the cloud and other

users consumes them.

2.2.1.8 PIR-MCORAM

Despite many proposals of ORAM schemes, majority of these schemes focused on a

single client scenario. There is only a few schemes which support multi honest clients

scenario. Maffei et al. [60] proposed PIR-MCORAM, one of the schemes that supports

multi client. PIR-MCORAM also considers malicious clients.

2.2.2 Oblivious Data Structures

Despite the latest progress in the research of efficient ORAM schemes, even the

most efficient scheme incurs relatively large overhead and it is not efficient enough for

a practical use. The overhead is due to protecting arbitrary access patterns and it can

be reduced if one considers only the specific pattern. Wang et al. [91] considered access

patterns with a certain degree of predictability and proposed two techniques to make data

structures and algorithms oblivious. Their proposal is asymptotically and empirically

more efficient compared to ORAM. In their proposal, sequence of accesses is considered

as a graph, called the access pattern graph, in which each node corresponds to memory

cell and edges correspond to accesses. When the access pattern graph is a rooted tree

with bounded degree, a parent node has pointers to its children. Then the location of

children can be retrieved by accessing the parent node, hence no need to lookup the

position map to locate the children. This is called the pointer-based technique. Another

one is called locality-based technique. This is for the access pattern graph of a low

doubling dimension. In this graph, nodes are partitioned into clusters and clusters keep

pointers to their neighbouring clusters. When accessing a data block in the cluster, data

blocks in the neighbouring clusters will be pre-fetched. This makes sure that for the

following accesses, required data blocks are already in the client’s storage.

Kyushu University

Chapter 2 Security Issues in Software Protection 23

2.2.3 Oblivious Parallel RAM

One of the limitations of ORAM is that the protected program cannot be paral-

leled even if the original program can enjoy large improvement in terms of performance.

Boyle et al. [13] proposed Oblivious Parallel RAM (OPRAM) to overcome this limita-

tion. When transforming ORAM into OPRAM, multiple CPUs may perform accesses

to the same address, which leaks information that these CPUs are requesting the same

data. In order to avoid the collision of accessing addresses, Boyle et al. made only

the representative CPU perform the real access and distribute the data block to other

CPUs. In tree-based ORAM, the data block will be re-inserted to the root node after

the access. If the same policy is applied to the OPRAM, the root node can be easily

overflown. Instead of re-inserting to the root node, their scheme re-inserts to nodes in

level logm. After inserting m blocks, m flush operations will be applied to push inserted

blocks down towards leaves.

Inspired by the work of Boyle et al. [13], Chen et al. [16] presented an OPRAM

scheme based on Path ORAM. First they proposed Subtree-ORAM, which only support

single client, but does support multiple access at a time. Then extend it to Subtree-

OPRAM. In Subtree-OPRAM, all clients emulate the Subtree-ORAM and interact each

other. They also presented a generic transformation turning any (single-client) ORAM

scheme into an OPRAM scheme.

2.2.4 Private Information Retrieval

Emerging of cloud storage services enables users to store and access their data very

easily. Moreover, users can store huge data which is too large to store locally. However,

it also raises a new security challenge, which is how to protect user’s privacy. When

the user request data to the server, the server will notice which data the user wants.

The server might be curious about the user’s request and try to extract user’s private

information. Encryption can provide confidentiality of data, however, sometimes it is

not sufficient. For instance, if the particular file is accessed very often, it implies that

Kyushu University

Chapter 2 Security Issues in Software Protection 24

file is more important for the user than the ones accessed less often. An adversary may

try to delete those files.

Private Information Retrieval is a technology that allows clients to query a database

in a way that even the database cannot learn anything about the clients’ queries. A trivial

solution is to download everything every query. This solution, however, is impractical

due to a high communication overhead and a high storage overhead at the client side.

There are two PIR schemes: computational PIR (CPIR) [17, 54] and information

theoretic PIR (ITPIR) [19]. In the CPIR, the client queries the database an encrypted

query and the server returns the encrypted result to the client in order to prevent the

computationally limited server from learning anything about the query. For example,

Chor and Gilboa’s scheme [17] and Kushilevitz and Ostrovsky’s scheme [54] require O(N)

server storage for storing data of size N , the same as evaluated in ORAM schemes, and

communication overhead is O(N ε). We evaluate the efficiency of PIR schemes in terms

of the communication cost, not the computational cost, as the efficiency is generally

measured by the communication cost. The security of Chor and Gilboa’s scheme is based

on an one-way function and Kushilevitz and Ostrovsky’s one is based on the hardness

of deciding quadratic residuosity. An integer q is called quadratic residue (QR) if there

exists an integer x such that x2 = q mod n, and q is called quadratic non-residue (QNR)

otherwise. It is considered hard to predicate if q is QR or QNR when n is a product of two

distinct prime numbers of equal length. On the other hand, the ITPIR can offer perfect

security, that is, the server cannot acquire any information about the client’s query even if

the server has unlimited computational resources and unlimited time. In order to achieve

the ITPIR, usually multiple servers are required and these servers are assumed not to

collude. The t-private `-server PIR can information theoretically guarantee the privacy

of the query even if up to t out of ` servers collude. Beimel and Stahl [9] introduced a

notation called t-private k-out-of-` PIR in which k out of ` servers need to respond and up

to t servers may collude without compromising the security. In addition they examined

a situation that v out of k servers can return incorrect answers, due to a malicious

servers or database failure, which is termed as t-private v-Byzantine-robust k-out-of-`

Kyushu University

Chapter 2 Security Issues in Software Protection 25

PIR. Chor et al. [18, 19] have proposed several schemes. Their proposals enable the

client to retrieve one bit with O(
√
N) communication cost in a simple `-server scheme,

O(N1/`) communication in a general `-server scheme and 1
3
(1+o(1)) · log2N · log log(2N)

communication cost in 1
3
logN + 1-server scheme. Their scheme is information theoretic

secure.

After the first proposal of PIR [18], several improvements in terms of communi-

cation cost have been shown [83, 84, 4, 9, 38, 92, 45, 26]. The scheme proposed by

Goldberg [38] requires O(N) server storage and O(1) communication overhead, and is

information theoretic secure. This scheme was implemented as an open-source project

on SourceForge [37]. Smith et al. [83, 84] proposed a scheme with a tamper-proof device.

The client sends the secure coprocessor (SC) with encrypted query. The SC receives the

query and decrypt it. Then the SC reads the entire database and get the requested data

item. When returning the data item to the client, the SC encrypts the item and send it

back to the client. Williams and Sion [92] proposed a single-server PIR with an ORAM

and a secure coprocessor. The communication and computational complexities of their

scheme is O(log2N) and O(
√
N) client storage is required. The security of their scheme

is proven when it has the access to a random oracle. Devet et al. [26] improved the

scheme presented by Goldberg [38] and evaluated the performance of the scheme. They

showed that their implementation was several thousands times faster than Goldberg’s

scheme [38].

Bao et al. [6] and Schnorr et al. [80] independently proposed similar PIR schemes

using homomorphic encryption. Their schemes requires only O(1) computation to be

done on-line. The idea of the schemes is to do as many operations as possible off-line to

achieve practical on-line overhead. However, because of heavy off-line computation, the

client has to wait until the server is ready to be queried, and this latency may make the

schemes less practical. The schemes work as follows: When the client wants to obtain

a data item, which is encrypted with the servers secret key and publicly available, first

the client download the item and encrypts it with the client’s secret key. After the

encryption at the client, the client sends the item to the server and asks to remove the

Kyushu University

Chapter 2 Security Issues in Software Protection 26

server’s encryption. Finally, the client obtain the data item by decrypting one’s own

encryption.

Asonov and Freytag’s scheme [4] also assumes the SC inside the server and SC first

shuffles the entire database according to a random permutation π. When the client

request the data item i1, the SC fetches the item from π(i1). This only requires O(1) of

computation and communication. For the second query of requesting the item i2, the SC

first has to read π(i1) and then read π(i2). When i1 = i2 (the second and the first query

request the same data item), the SC reads π(i1) and a random item in order to hide the

fact that the client is reading the same data item twice. Therefore, for the n-th query,

the SC has to read all previously read items before reads π(in). At a certain point, the

SC has to pick a new permutation π′ and shuffle the database with π′.

The PIR schemes can protect user’s privacy from an honest-but-curious servers. How-

ever, PIR schemes can not offer a protection from a dishonest user. Gertner et al. [36]

proposed a symmetric private information retrieval (SPIR) that prevents the user from

learning additional information. Henry et al. [49] considered an application of SPIR

for e-commerce and proposed a protocol that extended the PIR scheme [38] to a priced

symmetric private information retrieval (PSPIR). Their PSPIR scheme maintain user’s

anonymity and does not leak any information about the record of user’s purchases.

Recently implementations of CPIR and evaluating performances on real environments

are attracting more attentions. Melchor and Gaborit [63, 62] proposed a lattice-based

new scheme with a reasonable communication cost and with computational complexity

being improved by a factor of one hundred. Later, Olumofin and Goldberg [70] imple-

mented the lattice-based scheme and evaluated the performance. They demonstrated

that the overhead of Olumofin and Goldberg’s scheme was 10 to 1000 times smaller than

the trivial scheme (i.e. downloading entire database). Ding et al. [28] proposed a PIR

scheme, which does not require full-shuffle of the database. By shuffling only a portion

of the database, their scheme achieves O(logN) communication cost, O(1) runtime com-

putation cost, and O(
√

N logN/k) overall amortized computation cost per query, where

k is the trusted cache size.

Kyushu University

Chapter 2 Security Issues in Software Protection 27

Recent schemes can outsource the database to untrusted servers and yet can protect

both the privacy of the database owner and clients. Huang and Goldberg [50] proposed

a scheme for outsourcing Private Information Retrieval. Their scheme requires O(
√
N)

computational overhead and the server stores O(
√
N) data. The security of the scheme

is proven when it has the access to a random oracle. They also implemented their

scheme and evaluated the performance. When the client updates 1MB record in the 1

TB database, an amortised end-to-end latency is smaller than 300 ms.

The comparison of PIR schemes is summarised in Table 2.3. In Table 2.3, we com-

pared communication overhead of schemes since they are generally evaluated by commu-

nication overhead1, while ORAM schemes are evaluated by computational overhead.

2.2.5 Difference between ORAM and PIR

The target of both ORAM and PIR is the same: how to efficiently protect the

pattern of accesses. The main difference is that (full functional) ORAM supports both

the read and write operations to RAM (or server) while PIR usually consider only the

read operation. As the functionality of PIR is limited compared to ORAM, PIR tends

to be more practical, in terms of communication and storage cost, than ORAM. PIR

works very well when one server or cloud operator provides a large database and many

clients want to download part of the database in a privacy preserving manner. Video

and audio streaming services are good applications of PIR, where providers upload their

video and/or audio files to the cloud and subscribers enjoy the contents while hiding

their privacy. However, as PIR does not support write operation, it does not work

well in some services for example file hosting services where clients upload their files

and they often update part of their files. Neither does PIR work well when a software

developer wants to protect his/her software from reverse engineering. ORAM is usually

less practical than PIR in terms of performance, however, ORAM supports both read and

write operations. Hence ORAM is suitable for protecting access pattern in a database
1All literatures referred in Table 2.3 evaluate their own scheme in terms of the communication

overhead, except Huang and Goldberg’s scheme [50]

Kyushu University

Chapter 2 Security Issues in Software Protection 28

which is often updated and a software protection.

PIRs usually offer less functionality (i.e. protection only for read accesses) than full

functional ORAMs, hence they are lighter than ORAMs and oppose smaller overhead.

Because of their lightweightness, PIRs are more attractive for users who wish to hide

only their reading pattern. Some ORAM schemes are practical and their applications to

realise a private access to remote servers have also been considered. Our scheme is as

light as one of the most efficient PIRs, our scheme can be used instead of PIRs without

sacrificing performance.

2.2.6 Hardware-assisted Control Flow Obfuscation

ORAM constructions remain too expensive to be implemented on embedded proces-

sors. Zhuang et al. [99] proposed a practical, hardware-assisted scheme for embedded

processors, with low computational overhead. Their control flow obfuscation scheme for

embedded processors employs a small secure hardware obfuscator (called shuffle buffer)

to hide program recurrence. We give a brief description of the scheme below; for more

details, refer to [99].

Let n be the size (in blocks) of memory, and m� n be the size of the shuffle buffer.

The shuffle buffer is within the CPU trusted boundary, i.e. it is considered secure local

storage (cache), and an adversary is not able to observe access pattern in the shuffle

buffer. As in other parts of this paper, we assume that data is stored encrypted and access

operations consist of sequential read and write operations. A random permutation is

initially applied to data before loading it to RAM. The scheme then works as follows.

1. The first m blocks in memory are moved to the shuffle buffer.

2. When making a request for a data item, if the block is found in the shuffle buffer,

access the block.

3. If the block is not found in the shuffle buffer, pick a random block in the shuffle

buffer and swap it with the requested data block in memory (the accessed data

item is now in the shuffle buffer).

Kyushu University

Chapter 2 Security Issues in Software Protection 29

4. When the program finishes its entire process, the full contents of shuffle buffer are

written back into memory.

Note that item 3. implies that the permutation used to map data in memory is

dynamically modified as the program runs. Although the dynamic secret permutation

helps to protect the privacy of individual items being accessed (or being repeatedly

accessed), it also means that the scheme needs to make use of a block address table to

map data items into memory (describing the permutation at time t). As a result there

is the storage requirement of size O(n) within the trusted environment to represent this

mapping (albeit with constant < 1).

The scheme trades security for low overhead. Besides the costs of having a secure

on-chip buffer, the scheme trivially leaks information about access of data items during

execution of program. In fact, the lack of memory access in step 2 indicates that when

step 3 is executed, one knows the exact block being accessed (the one in memory, being

brought into the buffer). Thus a step 2 followed by a step 3 indicates that the data items

being accessed are definitely distinct (i.e. there is no 2-recurrence at this particular

stage). Likewise, a step 3 followed by a step 2 indicates a 2-recurrence with probability

1/m. Furthermore, an access in memory to a data item which was previously swapped

out from the buffer indicates with high probability the existence of repeated access to a

particular data. These could be confirmed by running the program several times.

Despite the limitations of the proposal, it adds a very low overhead to the program

execution (besides the read/write and encryption/decryption overhead, only an extra

read/write operation due to cache misses). We will adapt some of the ideas from this

scheme in our proposal.

Kyushu University

Chapter 2 Security Issues in Software Protection 30

Table 2.2: Comparison of ORAM and related schemes. r is a small constant of r > 1.

B is a size of data block (B = χ logN). `m and `h are respectively the size of buffer and

history table. k is the security parameter whose typical setting may be k ∈ [50, 80].
Computational Server Client Security

Overhead Storage Storage

GO [40] O(log3N) O(N logN) O(1) random oracle

PR [73] O(log2N) O(N) O(1) random oracle

BMP [12] O(
√
N) O(N) O(

√
N) random oracle

DMN [25] O(log3N) O(N) O(1) information

theoretic

GM [43] O(logN) O(N) O(N1/r) one-way function

GMOT [44, 46] O(logN) O(N) O(N1/r) random oracle†

SCSL [82] O(log3N) O(N logN) O(1) random oracle

SO [56] O(logN) O(N) O(1) one-way function

KLO [53] O(log2 N
log logN

) O(N) O(1) one-way function

SSS [87] O(log2N) O(N) O(
√
N) random oracle

WS [93] O(log2N log logN) O(N) O(logN) one-way function

SDSFRY [88] O(log
2 N

logχ
) O(N) O(log

2 N
logχ

)) · ω(1) randomised

encryption

GGHJRW [35] O(k log2 N
log k

) O(N) O(1) random oracle

ZZLP [99] 2 O(N) O(1) probabilistic

Ours 1 [66] 4 + 2`h O(N) O(1) probabilistic

Ours 2 [66] 2(`m + `h + 1) O(N) O(1) probabilistic
† This can be realised without a random oracle by using the work of Damgård et

al. [25]

Kyushu University

Chapter 2 Security Issues in Software Protection 31

Table 2.3: Comparison of PIR. ` is the total number of servers and k is the minimal

number of servers which are available at the time of retrieval. c is a constant of c ≥ 2

and ε is a small constant of ε ≥ 0.

Communication Server Client Security

Overhead Storage Storage

CG [17] O(N ε) O(N) O(1) one-way function

KO [54] O(N ε) O(N) O(1) quadratic residuosity

problem

CKGS [18, 19] O(log2N log logN) O(N logN) O(1) information theoretic

AF[4] O(1) O(N) O(1) secure coprocessor

G [38] O(1) O(N) O(1) information theoretic

BS [9] O(N1/k) O(N) O(1) information theoretic

WS [92] O(log2N) O(N logN) O(
√
N) random oracle

GMOT [45] O(1) O(N) O(N1/c) one-way function

HG [50] O(
√
N)‡ O(N) O(1) random oracle

‡ They evaluated the scheme in terms of computational overhead.

Kyushu University

Chapter 3 Key Extraction Attack 32

Chapter 3

Key Extraction Attack

3.1 Introduction

The growth of various services on the Internet has given rise to a dramatic increase in

the information that is exchanged over Internet protocols. Sensitive information in pri-

vate e-mails, confidential documents, e-commerce and other financial transactions need

to be guarded against eavesdropping. In order to protect the communication between

two network hosts, the Secure Sockets Layer [33] and Transport Layer Security [27]

(SSL/TLS) are commonly used. OpenSSL1 is the one of most commonly used open

source libraries for the SSL and TLS protocols. The core library offers implementations

for various cryptographic algorithms such as Blowfish [79], Camellia [3], AES [67], SHA-

1 [68], SHA-2 [68], RSA [78], DSA [69] and Elliptic Curve [52] and other utility functions.

The library is implemented in the C programming language and available for Windows

as well as all Unix-based operating systems such as Linux, Mac OS X and Android.

Recently, a critical bug, referred to as CVE-2014-0160, has been found in OpenSSL TLS

Heartbeat extension [81], which makes for the attacker to recover cryptographic keys by

reading 64 kilobytes of memory at a time [20].

Any unauthorised access to cryptographic keys constitutes a security breach. Tamper-

proof devices [22, 100, 99] and obfuscation [7, 57, 41] can be used when a program is not
1See: https://www.openssl.org/.

Kyushu University

https://www.openssl.org/

Chapter 3 Key Extraction Attack 33

running but not during program execution. It is well-known that the cryptographic keys

are present in the random access memory (RAM) during the execution of a program;

a knowledge that an adversary can use to extract the keys from the RAM [48, 58, 65].

Protecting the keys or any other valuable information from unauthorised access during

program execution is an important area of on-going research. Oblivious RAM schemes

and related works, such as [39, 40] can protect the RAM access patterns of programs

from unauthorised access. However, these schemes require trustworthy and secure CPUs

for the protection, and cannot prevent attacks where the attacker can access the CPU

and extract information such as operations, access to memory addresses of operations

and values stored in those addresses.

In this chapter, we present a new attack method that can extract a private key for

RSA and a secret key for AES from dumped memory image. Then we implement a

tool called the Process Peeping Tool (PPT) to demonstrate the attacks against RSA

and AES. The PPT enables us to analyse the structure and behaviour of the target

program by observing its memory use. The PPT can also statistically analyse the data

that is acquired from the RAM, that is, when a function inside the target program

makes request to a certain data blocks, the PPT can record which function made the

request to which data block and how many times the access is made. Thus, it enables

the attacker to determine cryptographic keys by observing memory accesses made by

cryptographic functions. We use the PPT to extract cryptographic keys (both for RSA

and for AES) from sample programs, which use the OpenSSL library. In the key recovery

attack against RSA, we iterate through cycles of encryption and decryption and observe

the memory values, which the decryption function accesses. Assuming that the private

key remains fixed during the execution of the program, the number of accesses to the key

grows as we iterate through encryptions and decryptions. The key can be extracted by

observing the accesses to memory. In the case of AES, we encrypt a random number with

one fixed secret key and observe the memory values accessed by the encryption process.

We demonstrate that the secret key can be extracted by observing the memory access

patterns. The address of any shared libraries has to be public for the PPT to be able

Kyushu University

Chapter 3 Key Extraction Attack 34

to analyse the program. Using a static library and deleting symbol information makes

it harder for the attacker to obtain the keys. However, the keys can still be extracted

once the attacker determines the functions that need to be observed. Although, adding

dummy data and/or dummy operations also make the attack harder, the keys can be

extracted with the help of additional information. Even when dummy data and dummy

accesses are added, these can be distinguished from the actual data since the dummy

data and accesses do not affect the output of the program.

3.2 Background: RSA and AES

In this section, we briefly describe the basics of the two encryption algorithms: the

RSA [78] asymmetric cipher and the AES [67] block cipher.

3.2.1 RSA Description

RSA was invented by Rivest, Shamir and Adleman [78] as one of the first practical

public key cryptography. The security of RSA is based on the difficulty of factoring

the product of two large prime numbers. Now, it is the most widely used public key

cryptosystem and also used as the standard public key cryptography for SSL/TLS. RSA

consists on three algorithms: key generation, encryption and decryption. A pair of keys

consisting of the public key and the private key can be generated in the key generation

algorithm. In the key generation, one first finds two prime numbers p and q, and let

N = pq and φ(N) = (p − 1)(q − 1). Then one chooses e which satisfies E < φ(N) and

gcd(E, φ(N)) = 1. The public keys are D and N , and the private key can be given

by D = E−1 mod φ(N). With the public key, one can encrypt a plaintext M with a

public exponent E and modulus N as ciphertext C ← ME mod N . The ciphertext is

decrypted as M ← CD mod N , where D is a private exponent.

The Chinese Remainder Theorem (CRT) is often used to perform these exponentia-

tion operations and it is also used in OpenSSL library. The exponentiation is computed

in two steps:

Kyushu University

Chapter 3 Key Extraction Attack 35

1. Evaluate M1 = CD1 mod P and M2 = CD2 mod Q (here D1 = D mod φ(P)

and D2 = D mod φ(Q) are precomputed from D), and then

2. combine M1 and M2 using CRT to yield M .

3.2.2 AES Description

AES is based on Rijndael [24] and has been standardised by NIST as FIPS197. It

is now one of the most widely used symmetric key encryption algorithms, and OpenSSL

also uses AES. It makes use of a substitution-permutation network. It supports three

different key lengths: 128-bits, 192-bits and 256-bits. The key length decides the number

of rounds Nr: 10 for 128-bits, 12 for 192-bits and 14 for 256-bits. The encryption can be

described as Algorithm 1.

Algorithm 1 AES [67]
1: KeyExpansion {expands the initial key to round keys.}

2: AddRoundKey {adds a round key to the state.}

3: for i=1 to Nr − 1 do

4: AddRoundKey

5: SubBytes {applies 8-to-8-bit substitution to the state.}

6: ShiftRows {shifts the i-th row of the state to i positions to the left.}

7: MixColumn {mixes the column C by multiplying a 4 × 4 maximum distance

separable matrix M as C ←M × C.}

8: end for

9: SubBytes

10: ShiftRows

11: AddRoundKey

Here we describe KeyExpansion for AES-128 in detail. It has two functions, which

are SubWord() and RotWord(). SW() takes a four-byte input and applies the same

8-to-8-bit substitution as SubBytes. RW() performs a cyclic shift to the 32-bit word

[a0, a1, a2, a3] and returns [a1, a2, a3, a0]. KeyExpansion also uses the array Rcon(i)

Kyushu University

Chapter 3 Key Extraction Attack 36

which contatins [xi mod x8+x4+x3+x+1, 0x00, 0x00, 0x00] where x = 0x02. The round

key w[i] (0 ≤ i ≤ 43) can be generated from the initial key [key[0], key[1], key[2], key[3]]

as following:

w[i] =
key[i] (0 ≤ i ≤ 3)

SW(RW(w[i− 1]))⊕ Rcon(i/4)⊕ w[i− 4] (4 | i)

w[i− 1]⊕ w[i− 4] (4 - i, i > 4)

3.3 Attack Scenarios and Key Extraction Attack

We first consider three attack scenarios, then propose attacks against RSA and AES.

3.3.1 Attack Scenarios

The private key of RSA and the secret key of AES are assumed to be of fixed values,

or at least fixed during the execution of the program. Such a key can be hidden inside

the program with some protection, for instance encrypted or obfuscated. It is also

possible that the key is stored in the tamper-proof device and loaded in the RAM when

the program is initiated. Thus, we assume that the key is securely protected and it is

impossible for the attacker to extract the key by any means when the program is not

executed. However, when the program is initiated, the key must be loaded in the RAM

in plaintext. If the attacker can dump memory when the key is loaded in the RAM,

it is possible to extract the secret key from the dumped image. We assume that the

adversary has the access to the target program and memory dump data.

A service provider provides various services such as hosting, web application and

file sharing. The clients connect to the server through secure channels established with

SSL/TLS or any equivalent protocols. The secret key can be stored in tamper-proof

devices when they are not communicating. However, the secret keys have to be stored

in the RAM so long as the clients are connected to the service provider’s service. While

the connection is active, the malicious operator can attach his attacking process on the

Kyushu University

Chapter 3 Key Extraction Attack 37

server-side to the target and dump the related area in the memory without being detected

by the clients. Following this, the adversary can attempt to extract the secret key or

any valuable information from the dump of the memory image. Even when there is no

malicious operator, there is a chance that the server is attacked by malware (e.g., Trojan

horse) which acquires the root privilege and mounts similar attacks on the processes

handling secure client connections.

Another possible scenario is that several users share the same physical server (i.e.,

public cloud) on which they operate their own virtual machines (VMs). Usually each

VM is separated, and they cannot communicate. Once the attacker can login as the

administrative user, it is possible to attach the attacking process to the victims’ VM

processes. Ristenpart et al. [77] showed that it is possible to extract information from a

target VM. The authors identified where in memory a particular target VM was likely

to reside, and then started new VMs until one was placed co-resident with the target.

Last but not the least is the user-as-the-attacker scenario. The user can have full

access to the target program and have full control of his own system. The aim of the

user is to extract the secret keys or other valuable information from the target program

by attaching the attacking process to the target process.

3.3.2 Attack against RSA

The exponentiation of RSA decryption involves variable length arithmetic, it is ex-

pected that decryption process uses shift operations. Also the Chinese Remainder The-

orem (CRT), which involves division operations, is often used for exponentiation oper-

ations of encryption and decryption. Therefore, shift and division operations deal the

private key and we can recover the key by dumping and analysing memory region used

by these operations.

However, the private key is not the only value which these processes deal and another

technique for identifying the key is required. Assume both the public and private keys are

fixed while the plaintext and the ciphertext keep changing. Then every time the encryp-

tion or decryption is executed, the program’s accesses to the key retrieve the fixed value,

Kyushu University

Chapter 3 Key Extraction Attack 38

while its accesses to the plaintext or the ciphertext retrieve different values. Therefore,

as the number of execution increases, the accesses to keys can be distinguishable from

other accesses by counting the number of accesses to each value. The procedure can be

summarised as follows:

1. Iterate encryption and decryption of random numbers with the fixed key,

2. Dump values which are accessed by shift and division operations,

3. Terminate the encryption program,

4. Count how many times each value is accessed,

5. Output key candidate values which are accessed considerably more than other

values.

If the multiplication of two primes PQ matches the modulo N , the key is correctly

recovered.

3.3.3 Attack against AES

As described in Algorithm 1, the round keys are XORed to the state in AddRoundKey.

Hence, we can recover the round keys, also the secret key, by dumping and analysing

memory region accessed by AddRoundKey. As AddRoundKey takes 2 inputs, the round

key and the state, the values accessed by AddRoundKey are not always the round key.

The similar technique to the RSA can be applied to AES in order to extract the secret

key. As one of the input to AddRoundKey is the fixed key and the other one is the

variable internal state, the key can be distinguished from the internal state by counting

the number of accesses during the iteration of encryption. As AES is symmetric, we only

need to operate either encryption or decryption in order to extract the secret key. The

procedure can be summarised as follows:

1. Iterate the encryption of random numbers with the fixed key,

2. Dump values which are accessed by AddRoundKey operations,

Kyushu University

Chapter 3 Key Extraction Attack 39

3. Terminate the encryption program,

4. Count how many times each value is accessed,

5. Output key candidate values which are accessed considerably more than other

values.

If the round keys derived from the recovered secret key matches the recovered round

keys, the secret key is correctly recovered.

3.4 Process Peeping Tool (PPT)

The PPT can analyse the structure of the target program, including which shared

libraries it uses and which functions are used in each library. It can also analyse memory

addresses that the target process accesses and values which the target process uses. These

addresses and values can be recorded and statistically analysed. Dumped data can be

efficiently used for the key extraction attack as, unlike existing memory dump tools, we

can specify libraries and functions of interest.

One can attach the PPT process to the target program by specifying the target’s

process ID (PID). Once successfully attached to the target PID, the evaluator can browse

inside the target as if the target and the analysing tool were respectively a file system

directory structure and the shell. This is enabled by using ltrace system call. When

ltrace is called to analyse the target program, it first searches the absolute path of the

target. Then it reads dependent libraries with elfutils, and obtains symbol information

and a list of function’s addresses from a table called Procedure Linkage Table (PLT).

In the next step, the child process is executed with PTRACE_TRACEME. When the child

process executes a function, the parent process receives SIGTRAP and pauses the child

process. The parent process replaces, keeping a copy of the original values, the function’s

addresses with breakpoints in PLT. Then the original operation is restored to execute a

single step of the child process with PTRACE_SINGLESTEP, and the parent process obtains

information on which libraries the child process accessed. After the single step, the parent

Kyushu University

Chapter 3 Key Extraction Attack 40

process again takes over the control and continues the operation until it encounters the

next breakpoint.

The evaluator, therefore, can find out which libraries are used and which functions

inside these libraries are called. Figure 3.1 shows an example of the result. As shown in

Figure 3.1, rsao0s_so is the executable file and it uses the shared libraries, for instance

ld-2.17.so, libc-2.17.so and libcrypto.so.0.9.8. Inside of libcrypto.so.0.9.8,

many functions are called, for instance RSA_generate_key, RSA_public_encrypt and

RSA_private_decrypt.

The evaluator can control how each function can be executed by setting its status.

The available statuses are:

watch: execute the function step-by-step recording its data;

watchdeeply: in addition to watch, this status enables recording the behaviour of other

functions called inside the target function;

through: execute the function step-by-step without recording data; and

skip: execute the function as usual.

When the function is under surveillance with “watch” status, the function is executed

with a PTRACE_SINGLESTEP. When the single step of the child process is executed, the

addresses and the values from the child task can be read by PTRACE_PEEKDATA. The

addresses and values are recorded by PPT and used for static analysis.

Any function with a “watch” status is skipped if that function is called by one with

a “skip” status. In order for the “watch” status to work with a function, it should be

ensured that its caller function has a status set to “through”.

3.5 Key Extraction from Memory Dump

In this section we demonstrate how the Process Peeping Tool can help extract the

private key and the secret key of RSA and AES respectively from two separate target

Kyushu University

Chapter 3 Key Extraction Attack 41

TYPE	OBJECT
Executable |rsao0s_so
SharedLibrary |ld-2.17.so
SharedLibrary |libc-2.17.so
SharedLibrary |libcrypto.so.0.9.8
SharedLibrary |libdl-2.17.so
SharedLibrary |libgcc_s.so.1
SharedLibrary |libm-2.17.so
SharedLibrary |libssl.so.0.9.8
SharedLibrary |libstdc++.so.6.0.18
SharedLibrary |libz.so.1.2.8
SharedLibrary |[vdso]
SharedLibrary |[vsyscall]

Figure 3.1: List of libraries used by RSA sample program. The boxed library is for

cryptographic operations.

sample programs. The attack procedure is summarised as follows:

1. analyse the structure of the target program including libraries and functions,

2. specify which library or function to monitor,

3. execute the target program while specified libraries and functions are executed

step-by-step,

4. record addresses and values,

5. recover the key by statically analysing data acquired in step 3.

The experimental environment is summarised in Table 3.1.

In case of RSA, PPT retrieves the private key and a lot of random numbers from

RAM. Hence we require the statistical analysis to distinguish random numbers and

Kyushu University

Chapter 3 Key Extraction Attack 42

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

!(
!!
!!
!!
!!
"

!(
!!
!!
!!
!!
!$
)*
$+
,!
"

!(
!!
!!
!!
!!
!$
)*
$-
%+
"

!(
!!
!!
!!
!!
!$
)*
$.
.!
"

!(
!!
!!
!!
!!
!$
)*
%$
#!
"

!(
!!
!!
!!
!!
!$
)*
%%
-!
"

!(
!!
!!
!!
!!
!$
)*
%'
/!
"

!(
!!
!!
!!
!!
!$
)*
%.
,!
"

!(
!!
!!
!!
!!
!$
)*
&,
!!
"

!(
!!
!!
!!
!!
!$
)*
&*
*!
"

!(
!/
*!
-+
*-
--
,$
0,
1#
"

!(
%$
$)
-#
/.
))
!*
%,
+$
"

!(
&)
,-
%$
+'
'2
!0
*3
!"

!(
'.
$$
+-
*%
).
0/
0*
.0
"

!(
)!
-1
1,
'/
!-
-1
$.
,0
"

!(
,,
$&
*&
02
#-
%!
#-
&'
"

!(
+/
//
+-
',
'0
+.
-+
/'
"

!(
-$
#!
!.
+#
'1
02
)*
&2
"

!(
.'
'/
#$
).
2'
#+
).
$/
"

!(
/)
*4

./
+4

!,
0-
))
"

!(
21
+&
,.
!2
.#
.-
1#
%,
"

!(
*2
#!
&'
$*
#!
2)
2'
2+
"

Figure 3.2: Values referred from RAM when we iterate RSA encryption and decryption

ten times

the private key. On the other hand, the key extraction of AES is simple and we do

not need any additional analysis in order to separate the secret key from other values.

Maartmann-Moe et al.’s attack [58] uses the facts that round keys are derived from the

initial key and the round keys are stored on RAM right after the initial key. Therefore,

their attack cannot be applied when the initial key and round keys are stored on the

separate locations on RAM. On the other hand, our attack can recover the key even

when the initial key and round keys are stored on the separate locations as our attack

observes the values which are accessed by the encryption function.

Table 3.1: Experimental environment

CPU Intel Core i7 4930K

RAM 24GB

OS Ubuntu 13.10 64-bit

Library OpenSSL 0.9.8

Kyushu University

Chapter 3 Key Extraction Attack 43

Table 3.2: The watch list of functions for RSA decryption and AES encryption

RSA

Library Function Status

rsao0s_so RSA_private_decrypt through

libcrypto.so.0.9.8 BN_div watch

libcrypto.so.0.9.8 BN_lshift watch

libcrypto.so.0.9.8 BN_rshift watch

AES

Library Function Status

aesopenssl AES_encrypt watchdeeply

3.5.1 RSA

3.5.1.1 Sample Program

We implemented a simple RSA encryption and decryption program using the OpenSSL

library. This sample program repeatedly encrypts random numbers and decrypts the gen-

erated ciphertexts. Both the public and the private keys remain unchanged during the

experiment.

3.5.1.2 Which functions to watch

In the libcrypto.so.0.9.8 library, there are two shift operations which are BN_lshift

and BN_rshift. We set the statuses of these two functions as “watch”. Another function

that we should watch is BN_div. In order to watch the functions we are interested in,

in this case BN_lshift, BN_rshift and BN_div, we have to specify that these functions

not to be skipped. This can be realised by set the status of the function in the upper

layer as “through”. Therefore, we also set the status of rsao0s_so as “through” in order

to “watch” three functions of interest. Table 3.2 summarises the list of the methods to

Kyushu University

Chapter 3 Key Extraction Attack 44

be observed.

3.5.1.3 Key Recovery Phase

We initiate the sample program and start the encryption and decryption operations.

Then, we initiate PPT and attach its process to the sample program. PPT can show

the structure of the program as shown in Fig. 3.1, when it is successfully attached to the

target. By executing the program while watching the specified functions in Table 3.2,

we record the values and their frequencies in which they are referred to in the RAM.

Figure 3.2 shows relations between the values and their frequencies. The x-axis shows

the values and the y-axis shows the number of referred times. As it is unlikely that

the private key is a sparse value, we can eliminate the sparse candidates, for instance

0x0000000000000001. These sparse values are mostly used for controlling the operations

such as counters.

For the remaining candidates, we can use number of referred times as a clue. In this

example, we iterate encryption and decryption 10 times. Thus, the private key has to

be used at least 10 times. Even when we do not know how many times encryption and

decryption is iterated, we can still extract key when they are iterated long enough to

separate random numbers and the private key. The numbers which are not sparse and

are referred more than 10 times are shown in Fig. 3.3, which match with the private key

shown in Table 3.3.

Table 3.3: Private key for the sample program
p 0xF97EDAC39DD1895CF22132485C484099CA88F457825CA818D2

2C4DFF547902960AFE653B3A9F44CA0F5B3440702AA78587E067

AB435443291A0C2A42299EBCE1

q 0xCC95FEE773FE65D8F8A2744972C68704580560E858D4A33B30

31F267B70E59B992C76BD41829D499B7A1E027B04D5B54811A01

9267102E85CBFB9B96317D03F7

Kyushu University

Chapter 3 Key Extraction Attack 45

-----address------	------value-------
0000000000090b20	0afe653b3a9f44ca
0000000000090b20	0f5b3440702aa785
0000000000090b20	1a0c2a42299ebce1
0000000000090b20	3031f267b70e59b9
0000000000090b20	580560e858d4a33b
0000000000090b20	811a019267102e85
0000000000090b20	87e067ab43544329
0000000000090b20	92c76bd41829d499
0000000000090b20	b7a1e027b04d5b54
0000000000090b20	ca88f457825ca818
0000000000090b20	cbfb9b96317d03f7
0000000000090b20	cc95fee773fe65d8
0000000000090b20	d22c4dff54790296
0000000000090b20	f22132485c484099
0000000000090b20	f8a2744972c68704
0000000000090b20	f97edac39dd1895c

Figure 3.3: Recovered value of the RSA key. The 16 digit hex values of the lefthand side

show the address of the operation and righthand side values show the ones accessed by

the operation. Boxed values are part of p and non-boxed values are part of q.

3.5.2 AES

3.5.2.1 Sample Program

We also implemented a simple AES encryption program, named aesopenssl, using

the OpenSSL library. This sample program continuously encrypts random numbers with

a fixed secret key.

3.5.2.2 Which Function to watch

Table 3.2 shows the function to be observed. As described in Sect. 3.2.2, the round

keys are XORed to the state in AddRoundKey. Hence, we can recover the secret key

and the round keys by observing the values accessed by AddRoundKey. AddRoundKey

Kyushu University

Chapter 3 Key Extraction Attack 46

-----address------	---value----
000000000007bac7	fbad2a84
0000000000080940	53494854
0000000000080943	45535349
0000000000080947	54455243
000000000008094b	2159454b
000000000008094f	0000000a
00000000000809dc	01a84f5a
00000000000809dc	402172fe
00000000000809dc	5b059066
00000000000809dc	6bf23a2a
00000000000809dc	be7a19c6
00000000000809dc	c1b2cdd8
00000000000809dc	d0fbc77a
00000000000809dc	d58ef8b5
00000000000809dc	f28ba6f8
00000000000809e6	3ac48cff
00000000000809e6	541b9cca
00000000000809e6	7da88171
00000000000809e6	825d7e4a
00000000000809e6	8e6a562f
00000000000809e6	b164156a
00000000000809e6	c3d443ee
00000000000809e6	e0b4833b
00000000000809e6	ef12619a

initial key

round

key

00000000000809f3	11490aa2
00000000000809f3	1b24e298
00000000000809f3	27055e4d
00000000000809f3	5aaddf3c
00000000000809f3	99799cd2
00000000000809f3	9f235c8d
00000000000809f3	a5e7d072
00000000000809f3	aa40f7f2
00000000000809f3	fe5b6b38
00000000000809f7	2bd348d4
00000000000809f7	30f7aa4c
00000000000809f7	6e81debc
00000000000809f7	7fc8d41e
00000000000809f7	8193bf26
00000000000809f7	a98e369e
00000000000809f7	d426b7ef
00000000000809f7	f1a28231
00000000000809f7	f323e9a2
0000000000080b01	8e068911
0000000000080b0f	a8ab9806
0000000000080b25	8faec64b
0000000000080b29	5b8871a4
000000000011079b	fbad2a84

round key

Figure 3.4: Recovered value of the AES secret key

is called inside AES_encrypt, which is aesopenssl executable file. We set the status of

AES_encrypt as “watchdeeply”. We can specify the functions in more detail than setting

AES_encrypt as “watchdeeply” as we did in RSA for more efficient analysis. However,

compared to RSA, AES is simpler and we can recover the secret key efficiently enough

by setting the status of AES_encrypt only to “watchdeeply”.

3.5.2.3 Key Recovery Phase

We execute the program while observing the aesopenssl function, and apply the

method similar to what we did for RSA to eliminate the non-key values. The result

is shown in Fig. 3.4. The secret key we used for the sample program is “THISISSE-

CRETKEY!”, which is 0x54,0x48, 0x49, 0x53, 0x49, 0x53, 0x53, 0x45, 0x43,

Kyushu University

Chapter 3 Key Extraction Attack 47

0x52, 0x45, 0x54, 0x4b, 0x45, 0x59, 0x21 in ASCII code. After the secret key,

PPT recovered 0x0000000a, which is the number of rounds in AES-128, followed by the

round key.

We can also deduce that listed values are part of the secret key from the address.

In the first line of the Fig. 3.4, the value 0xfbad2a84 is referred from the address

of 0x000000000007bac7. Then the program is observed to jump to the address of

0x0000000000080940 and access the value 0x53494854. After this operation, the pro-

gram continues to access successive addresses until it jumped to 0x000000000011079b.

Hence, we can deduce that the encryption process starts at 0x0000000000080940 and

ends at 0x0000000000080b29.

3.6 Conclusion of This Chapter

In this chapter, we introduced a statistical key extraction attack on cryptographic

keys using memory dump data, and confined the effectiveness of the attack by utilising

our Process Peeping Tool (PPT). The tool can be attached to the target process and can

trace the target’s memory usage. We used RSA and AES as example cryptosystems in

the target programs, which made use of the OpenSSL library implementations of those

cryptosystems. Thus, it is possible to apply the same approach to other applications

using OpenSSL library or similar cryptographic libraries. Although we only applied

PPT to RSA and AES implemented in the OpenSSL library, it is possible to apply

the same extraction mechanism to other, including non-cryptographic, algorithms or

libraries. Although we execute the PPT with the root privilege, we can still apply our

method obtaining memory dump data without the root privilege.

In the next chapter, we propose a countermeasure against the threat caused by PPT.

The attack using PPT is only possible because some data is accessed more often the

others. Hence the attack can be prevented by making the distributions of accesses

equally, or less concentrated.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 48

Chapter 4

Lightweight Access Pattern Protection

4.1 Introduction

The problem of preventing leakage of information arising from both running software

on untrusted systems, as well as storing data in remote untrusted servers has attracted

much attention. While encryption can be used to protect data confidentiality, the prob-

lem of protecting access pattern with manageable and practical overhead is harder to

address.

In the software execution environment, one can identify two main motivations for

protecting memory access pattern privacy: the traditional application is to protect In-

tellectual Property, and prevent software piracy. More recently, it has been shown how

access pattern leakage can be used to attack certain implementations of cryptographic

algorithms (in the so-called cache attacks [71]). In the remote storage environment, one

would like to protect access pattern from a curious but not malicious server, which may

benefit from gaining information about the client’s pattern of access of stored data.

The traditional solution for memory access pattern protection is known as Oblivious

RAM(ORAM). It was first proposed by Goldreich [39], and later extended by Goldreich

and Ostrovsky [40]. The main construction is based on the hierarchical solution, in

which the data structure is organised in levels consisting of hash-tables (using secret

hash functions known by the client only), and requires periodic expensive oblivious re-

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 49

shuffling of data.

In the past few years, many improvements have been proposed, for example [1, 73,

25, 44, 82, 53]. Several schemes consider improvements for the application to cloud

computing [18, 92, 42, 43, 45, 46, 55, 94]. Improvements typically arise from the use

of different data structures and hash function schemes, more efficient sorting algorithms

(for the oblivious shuffling step), and the use of secure local (client) memory. Besides

the hierarchical solution, Goldreich and Ostrovsky [40] also proposed the square root

construction, which uses secret random permutations when storing data. Boneh et al. [12]

have recently presented a hybrid algorithm between the square-root and hierarchical

algorithms, and proposed a new notion of oblivious storage.

Despite much recent progress, where both the asymptotic efficiency as well as the

constant terms of ORAM solutions have been improved (making it particularly attrac-

tive for remote storage access pattern protection), current solutions remain inefficient for

software execution protection, i.e. to prevent leakage of relatively limited-in-size memory

access pattern. In these cases, the constant terms involved in the computational com-

plexity make the overhead unacceptably high. Yet an efficient and secure mechanism

for access pattern protection is a particularly desirable feature in this environment. For

instance, an emerging issue is the rapid increase of malicious software targeting smart-

phones. Most existing protection schemes, originally designed for PCs, are not suitable

for smartphones due to several limitations, such as the computational power and avail-

able storage size. In these environments, solutions range from use of obfuscation to

hardware-based access pattern protection mechanisms. For instance, Zhuang et al. [99]

proposed a practical, hardware-assisted scheme for embedded processors, with low com-

putational overhead. Their control flow obfuscation scheme for embedded processors

employs a small secure hardware obfuscator to hide program recurrence. Their proposal

however trades security for low overhead (and the cost of the trusted hardware buffer),

and in some situations an adversary with access to the device can retrieve information

about memory access.

As the storage size glows, the overhead incurred by existing ORAM schemes, which

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 50

is dependent on the storage size, can be unacceptably high. In this chapter, we propose a

practice-oriented scheme for protecting RAM access pattern, which leverages the history

of memory access to help hiding the pattern. We first consider an instance which, similar

to the proposal by Zhuang et al., also relies on the use of a secure (trusted) hardware

buffer. However it achieves higher security by adapting ideas from Goldreich and Os-

trovsky’s square root solution, yet without the expensive (re-)shuffling of buffers. By

applying this scheme, we can construct a secure platform that is suitable for executing

software that deals with user private information. A potential application is to secure

program execution in smartphones: these devices typically contain sensitive user infor-

mation and are increasingly under severe threat from malware. Most smartphones have a

SIM card, which is generally considered as a secure area, and deployment and security of

our scheme could rely on the SIM card. Another instance requires no special hardware,

but as a result leads to a higher, yet practical overhead. This scheme can offer the same

level of security without any special hardware. Many applications have their security

relying on IC cards or other trusted hardware. One of the roles of trusted hardware is

offering a secure computation, which can be realised with our proposal. Another role is

a secure storage for a secret information, which is yet to be realised.

The main feature of our proposal is to maintain the history of memory access, which

together with the access of dummy data, helps one to hide data access pattern. The

security of the schemes depends on the size of the buffer (as cache or in RAM) and how the

history is used. We claim that under reasonable assumptions and by selecting appropriate

parameters, the schemes achieve both security and performance levels acceptable in

practice. One of the advantages of our proposal is its lightweightness. Another advantage

is that the overhead is independent of the storage size. Unlike ORAM schemes, which

hide addresses of accesses, our proposal achieves access pattern protection by hiding the

access timing. This helps to realise the constant overhead required to hide the pattern.

Therefore, it is suited for protecting large storage where most of ORAM schemes become

impractical. We note that although the proposal is particularly focused on the software

execution protection environment (i.e. to prevent RAM access pattern leakage), its

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 51

Table 4.1: Summary of Difference between ORAM and Our Proposal
Security Computational Cost Adversary

ORAM Hide accessing addresses Dependent on N Observe memory access

Ours Hide accessing timing Constant Observe memory access

security may well be appropriate for most uses in the remote storage environment, to

prevent access pattern leakage of cloud storage with much lower performance overhead

than existing solutions. Then we consider practical implementation of the scheme and

propose three techniques for the higher performance.

Table 4.1 summarises the difference between ORAM and our proposal. ORAM hides

addresses of blocks which are accessed, and ensures given two access patterns are indistin-

guishable. While its computational cost is dependent on the storage size. Our proposal

only hides when the block is accessed and cannot offer the same level of security as

ORAM. However it achieves constant overhead independent on the storage size.

4.2 Access Pattern Protection Problem

We can model the problem of access pattern protection as follows. We consider

a client, with potentially small secure memory, and a server providing large insecure

storage. This storage consists of several data blocks (for simplicity, all of the same size).

In the software execution environment, we can think of the CPU as the client, and

RAM as the server, where a malicious entity (e.g. malware) has access to RAM and the

memory bus used in the communication between the CPU and memory.

The client accesses data by making requests to the server to either retrieve the con-

tents of a particular data block at location i or by writing x into a data block at location

j. We denote these operations by read(i) and write(j, x), respectively. We consider the

security goals as: to protect the confidentiality1 of data, as well as hide the client’s ac-
1In environments where there is a requirement, we will also want to protect data integrity; this can

be done by adding a MAC or by using an authenticated encryption algorithm.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 52

cess pattern to the stored data blocks from a computationally bounded adversary, which

can access the data storage and the communication channel between the client and the

server.

We can address the first goal by using a semantically secure probabilistic encryption

scheme, such that two encryptions of the same data block will look indistinguishable to

a computationally bounded adversary. The use of encryption adds a constant overhead

to the system. For the remaining of this work, we will assume that the data is stored

encrypted; it is decrypted whenever it is read from memory, and re-encrypted whenever

it is written into memory.

For the second goal, we would like that a particular sequence of operations in the

stored data does not substantially leak any information, other than how many data

blocks were accessed. To formalise it, we use the definition in [73] for a secure oblivious

RAM system.

Definition 1 ([73]). The input y of the client is a sequence of data blocks, denoted by

((v1, x1), . . . , (vn, xn)) and a corresponding sequence of operations, denoted by (op1, . . . , opm),

where each operation is either a read or a write operation. The read operation, denoted

read(v), retrieves the data of the block indexed by v. The write operation, denoted

write(v, x), sets the value of block v to be equal to x.

The access pattern A(y) is the sequence of accesses to the remote storage system. It

contains both the indices accessed in the system and the data blocks read or written. An

oblivious RAM system is considered secure if for any two inputs y and y′ of the client,

of equal length, the access patterns A(y) and A(y′) are computationally indistinguishable

for anyone but the client.

The typical, straightforward method for preventing an adversary from distinguishing

between the read and write operations is to always perform both operations in every

access. As a result of using this method, an access pattern A(y) (for the purpose of

indistinguishability) can be thought as simply as a sequence of indices i (corresponding to

the data blocks accessed). The trivial solution to the access pattern protection problem

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 53

consists of accessing all data blocks on the memory for each query. Another trivial

solution is to use a secure client hardware. Both schemes are however too costly in

practice.

In addition, data blocks are typically organised in memory based on a secret permu-

tation or hash function in an oblivious way. This is the most expensive component of

the schemes, and is the main responsible for the (amortised) computational overhead.

Our proposal does not employ oblivious re-shuffling of memory; while this will affect

the security provided by the scheme, we claim that under reasonable assumptions, the

proposals achieve both security and performance levels acceptable in practice.

4.3 Our Scheme for Memory Access Pattern Protection

While oblivious RAM constructions can completely hide memory access pattern, they

are too expensive to be implemented on resource-constrained devices. In this section, we

describe our proposal for a practice-oriented memory access pattern protection scheme.

One of its main features is the inclusion of an extra buffer used to maintain the history

of memory access, to help hiding the access pattern. We present below two instances:

the first one uses a secure (trusted) hardware buffer, as in the work by Zhuang et al. [99];

however it achieves higher security by adapting ideas from oblivious RAM mechanisms,

yet without the expensive (re-)shuffling of buffers. The second instance requires no

special hardware, but as a result leads to a higher, yet practical overhead.

4.3.1 Assumptions

We consider the problem of hiding the access pattern of memory with n data blocks.

Our scheme will assume that the client has access to an efficient pseudo-random number

generator (to make random choices of addresses), and a semantically secure probabilistic

encryption scheme. Data is always stored encrypted: it is decrypted whenever it is read

from memory, and re-encrypted whenever it is written into memory. Furthermore, either

a read or write operation will always perform the two operations in every access, the

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 54

difference is the value being written in the write step. As a result of using this method,

an access pattern (for the purpose of indistinguishability) can be thought as simply as a

sequence of indices i (corresponding to the data blocks accessed).

Our scheme will also require a way to generate a pseudo-random permutation, to map

memory addresses. This can be achieved by using a deterministic encryption algorithm

E . This mapping will be described either by the function E , with the output computed

in each call, or explicitly described as a table look-up (with input-output pairs). We

note that the latter requires O(n) memory within the client’s trusted boundary (as in

the work by Zhuang et al. [99]), which in some scenarios may be impractical.

Perhaps the main challenge of access pattern protection schemes is to hide the re-

peated access of data blocks. In general, when not deploying expensive ORAM solutions,

access pattern can typically be distinguishable by observing a long series of accesses.

Therefore, we define a relaxed, still practical, security definition of access pattern pro-

tection, which we call δ-length security. Assume that during a certain sequence of data

access, a particular block ‘a’ is accessed twice by a program at t-th access and (t+ δ)-th

access; we call this a δ-distance access of ‘a’. Informally, an access pattern protection

scheme is δ-length secure if the probability that an adversary identifies repeated accesses

in A(y) at distance at most δ is small.

Definition 2. We say that an access pattern protection scheme is δ-length ε-secure if

the probability that an adversary identifies any d-distance access in A(y) is at most ε for

every d ≤ δ.

4.3.2 Set-up

On loading n data blocks to memory, our scheme will use E to permute the corre-

sponding addresses. Dummy data will be typically added to the original data, so that

at initialisation we have kn data blocks being loaded to memory, with k ≥ 1 a small

constant. The constant k will be selected based on the typical epoch length of the pro-

gram and the availability of memory within the client’s trusted boundary to describe the

random permutation E . We discuss the use of dummy data in more detail in Section 4.4.3.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 55

Our scheme will partition memory into two regions: a (secure) buffer M and an

unsecured memory L, of sizes m and `, respectively, with m � `. It follows that

m+ ` = kn. Furthermore, we will require a secure table H, called the history table. The

table H stores addresses of data blocks that have been moved from the secure bufferM

to the unsecured memory L, and has size `h. We denote the address of a data block ‘a’

as ia. Typically, we may have H implemented as part of M. In the case where we are

able to store the permutation mapping table explicitly, H can be implemented by adding

a set bit into the table. Despite these choices, in our discussions below we consider H as

a separate table.

4.3.3 Instance 1: Construction with Secure Memory

The first instance of our scheme considers the buffer M being implemented within

the client’s trusted boundary (as in the work by Zhuang et al. [99]). The table H is

also stored within this boundary. After loading data into memory, m data blocks are

copied intoM; the table H starts empty2. On the first access to a data block ‘a’ (either

a read(a) or write(a, x)), we search for ‘a’ in M and access L twice: if ‘a’ is in M,

we replace two random elements (not ‘a’) from M with two random dummy elements

from L and we access ‘a’; if ‘a’ is not inM, two random elements fromM are replaced

by ‘a’ and one random dummy element from L (and ‘a’ is accessed). In both cases,

the corresponding addresses of blocks being kicked out from M are written in H. In

subsequent calls, we proceed as follows:

1. if ‘a’ is in M, we replace two random elements (not ‘a’) from M by a random

element from L and a random element from L which had already been accessed

before (as recorded in the history buffer), and we access ‘a’.

2. if ‘a’ is not in M, and its address is in the history table, we replace two random

elements fromM by a random element from L and ‘a’ (as recorded in the history
2although, before the program starts to run, the scheme can operate by accessing a number of dummy

data blocks to populate the history buffer.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 56

Algorithm 2 Pseudocode of access pattern protection scheme
1: scan M for ‘a’

2: if ‘a’ ∈M then

3: replace two random elements (not ‘a’) in M with two random blocks in L, one of

them is chosen from the history H and the other is randomly chosen from L

4: else

5: scan H for ‘ia’

6: if ‘ia’ ∈ H then

7: replace two random blocks in M with a random block in L and ‘a’

8: else

9: replace two random blocks in M with ‘a’ and a random block whose address is

registered in H

10: end if

11: end if

12: choose `h elements from `h + 2 to update history table H

13: access ‘a’

buffer). Note that H holds only addresses and data itself is stored in L.

3. if ‘a’ is not inM, and its address is not in the history table either, we replace two

random elements fromM by ‘a’ and a random element from L which had already

been accessed before (as recorded in the history buffer).

Every time the data blocks are kicked out from M to L, data blocks are written in

L taking their original position (as described by E), and addresses of those blocks are

registered in the history table H. As the program continues to access data blocks, the

table may eventually get full. When this is the case, at each access we select at random

`h elements among the `h + 2 elements (the current history elements and the two new

ones). We have a pseudocode of our scheme in Algorithm 2 and show an example in the

appendix.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 57

4.3.3.1 The Objective of the History Table

The goal of our scheme is to efficiently protect the privacy of data access pattern. It

is clear that if during a run of the program, data blocks are only accessed once, then the

use of a random permutation alone will suffice to hide the access pattern. The case of

relevance is thus when a data block is accessed more than once. When it is accessed for

the first time, it is copied into M. If accessed again, and it is still in M, then access is

oblivious from an adversary; still we would like to hide the fact that the data accessed

was found in M. If it is no longer in M, then we would like to hide the fact we are

accessing it again from an adversary. Thus, if we consider the case that a program keeps

reading ‘a’ at different intervals, we have the following three types of access to consider:

1. ‘a’∈M;

2. ‘a’/∈M and ‘ia’ ∈ H;

3. ‘a’/∈M and ‘ia’ /∈ H.

Note that case 3 is likely to occur when ‘a’ is accessed for the first time. As discussed,

the cases that require most attention are 2 and 3 when ‘a’ is accessed again: since we

do not perform an oblivious re-shuffling, the adversary would notice that ‘a’ is being

accessed again.

To address this, in our scheme, we first search ‘a’ in M and then, depending on the

cases described above, the access of memory is done as follows:

1’. access (r, p),

2’. access (r, a),

3’. access (a, p),

where r is a random location in L and p is a location recorded in the table H.

Note that we need to keep the contents in the history table secret: although the

adversary can record all blocks previously accessed, in practice we may not be able to

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 58

keep the addresses of all accessed blocks in the history table (since `h may be small). If

we had the addresses in cleartext, one may note that in case 3’ above, although ‘a’ had

being accessed before, its address was no longer in the history table (for lack of space).

4.3.4 Instance 2: Construction without Secure Memory

We consider a second instance of our proposal, which does not require a secure buffer.

The bufferM and history table H are kept in the unsecured memory area, as with L. In

this case, access to M (and H) is made by reading and writing every data block in the

buffers (which requires decryption and encryption of data). Thus, to find out whether ‘a’

is inM, we read/write all values; when replacing data blocks inM, we again read/write

all values. Except for this, the access is made as described in Section 4.3.3. The security

provided is the same, but the computation overhead is obviously increased, and it is

dependent of the sizes of buffers M and H.

4.3.5 Applying to Other Structures

We consider applying the idea of access pattern hiding using the history of accesses

to other structures, which are hierarchical and tree.

In hierarchical ORAM, the requested blocks are moved to the top level. After several

accesses, the top level buffer will be full. Then all blocks stored in the buffer will be

pushed downwards with a new permutation, i.e. re-shuffling. If we apply our idea to

hierarchical ORAM, the block will be written back to the same position as it has been

before the access, hence there is no need to pushing the blocks downwards. This means

it is essentially same as applying the idea to the square root ORAM. In hierarchical

ORAM, one block in each level is touched, we can modify this operation to touching

previously accessed blocks to hide the pattern.

In the tree structured ORAM (like Path ORAM), all blocks along the path to the

leaf node will be touched, and blocks are written back to a new path. When considering

to apply our idea to tree structured ORAM, it also becomes similar to doing to square

root because all blocks will be back to the same path. We can add touching another

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 59

path which has been accessed in the past in order to hide which path contains the block

currently required.

4.4 Security Analysis

We discuss the security of our scheme.

4.4.1 Access Pattern Hiding

Regarding recurrence, recall that in our scheme, we first search ‘a’ in M and then,

depending on the cases described in Section 4.3, the access of memory is as follows:

1. ‘a’∈M, and ‘a’ is accessed: access (r, p) in L;

2. ‘a’/∈M, ia ∈ H, and ‘a’ is accessed: access (r, a) in L;

3. ‘a’/∈M, ia /∈ H, and ‘a’ is accessed: access (a, p) in L.

Assume that the program accesses ‘a’ at time t; we denote it by Xt = a. We have

the following lemma.

Lemma 1. Assume that Xt = a, and let m and `h denote the sizes of the M and H,

respectively. Then after δ steps we have the following:

pM = Pr[a ∈M] ≥
(
m− 2

m

)δ

,

pH = Pr[ia ∈ H] ≥
(

`h
`h + 2

)δ

.

Proof. To compute Pr[a ∈ M], note that the right-hand side of the expression corre-

sponds to the probability that an element remains in a set of size m after δ replacements

of 2 elements at time, which is how the scheme manages the buffer M. The inequal-

ity comes from the fact that even if removed after d < δ steps, ‘a’ may be re-inserted

during the normal operation of the scheme. Showing the second probability is similar

(noting however that in the history table, the scheme draws 2 elements among `h + 2

elements).

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 60

For the sake of simplicity, we will in the remaining of this paper assume equality in

the two expressions above. Furthermore, we will also assume that the two events are

independent (obviously the probability that the index of block a is in H after δ steps

will be influenced by whether/when block a leaves the bufferM; however we believe this

assumption is reasonable for typical values of m, `h and δ – and substantially simplifies

our computations). The simple lemma below then follows.

Lemma 2. Consider the three cases for memory access discussed above, and assume that

Xt = Xt+δ = a. Then the probability that we have case 1 is pM , the probability that we

have case 2 is pH(1− pM), and the probability that we have case 3 is (1− pH)(1− pM).

Now assume that an adversary observes the scheme at time t + δ in case 1, i.e. we

have a ∈M and access to (r, p) from L. Then following a conservative estimate, we have

Pr[Xt+δ = a | case 1] ≤ 1
m−2

. For case 2, we have a similar upper bound: Pr[Xt+δ =

a | case 2] ≤ 1
m−2

. Case 3 is perhaps the one in which an adversary can extract more

information (since it is very likely that, unlike the other two cases, the pair of elements

(a, p) drawn from L have already been observed by the adversary). We will again adopt

a conservative approach, and have the upper-bound Pr[Xt+δ = a | case 3] ≤ 1/2.

Theorem 1. The proposed scheme is δ-length ε-secure access pattern protection scheme,

where

ε ≤ pM
(m− 2)2

+
(1− pM)pH
(m− 2)2

+
(1− pM)(1− pH)

2(m− 2)
.

Proof. Let A be adversary who is able to observe an access sequence Xi = ai, for

i = 1, . . . , N . Let us assume that Xt = Xt+δ = a. We wish to compute the probability

Pr[Xt = a,Xt+δ = a]. We assume that the first access to a is at time t (the proof and

figures can be slightly modified when this is not the case), and that the accesses at time t

and t+δ are independent events (i.e. we assume no knowledge of statistics of the original

program being protected). Then we have Pr[Xt = a] ≤ 1/(m − 2), and by lemmas and

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 61

discussion above.

Pr[Xt = a,Xt+δ = a] = Pr[Xt = a] · Pr[Xt+δ = a]

≤ 1

m− 2
(Pr[Xt+δ = a | case 1] · Pr[case 1]

+ Pr[Xt+δ = a | case 2] · Pr[case 2]

+ Pr[Xt+δ = a | case 3] · Pr[case 3])

≤ pM
(m− 2)2

+
(1− pM)pH
(m− 2)2

+
(1− pM)(1− pH)

2(m− 2)
.

4.4.2 Parameters: Size of Secure Memory and History Table

The choice for sizes of the secure memory M and history table H have an obvious

influence in the security and efficiency/cost of the scheme: it follows from Theorem 1

that large values for m and `h significantly decreases the chances that an adversary

can identify a repeated access to a particular memory block. However large M and

H negatively affect the performance of the scheme (as well as increase its costs in the

hardware-assisted version).

For instance, if we take the size of the shuffle buffer as 128 16-byte blocks (as in the

work by Zhuang et al. [99]), and the same size for H (that is, 512 32-bit addresses), then

for δ = 20, we have pM ≈ 0.73 and pH ≈ 0.92, and as a result ε ≤ 1.4× 10−4. The value

increases to 4.4×10−4 if δ = 50, and to 1.06×10−3 if δ = 100 In general, SIM cards have

a capacity of 64KB, which means we can allocate much more space, say 1024 blocks and

4 × 1024 history addresses. In this case, we have pM ≈ 0.82 and pH ≈ 0.95, and as a

result ε ≤ 0.5× 10−5 for δ = 100.

As discussed before, we note however that our scheme does not achieve strong indis-

tinguishability: As we use a static permutation E , addresses are fixed (after the permu-

tation), and this implies some leakage of information (an adversary will, for instance,

know when the sets of potentially accessed blocks are disjoint, implying no recurrence).

Overall, we believe that, a choice of parameters can be made to achieve both security

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 62

and performance levels acceptable in practice.

4.4.3 How much dummy data should we use?

Oblivious RAMs provide security by making sure that a data block is only accessed

once while it remains at the same address. When it is accessed again, it will be allocated

to a completely different address and the adversary will have no information about the

contents and whether/when it was accessed before. Our scheme, on the other hand, tries

to ensure the security in the circumstance that the data block is accessed multiple times

while in the same address.

If there are several dummy data blocks, that can be used as random elements that

the protection scheme can access. They will also prevent the adversary from determining

which blocks are actually accessed by the program. We can also make dummy accesses

to the actual data blocks when it is not accessed by the program. When the program

accesses a data block, the access pattern protection scheme will access 2 blocks as the

scheme always swaps 2 blocks between M and L. If we add n dummy data blocks,

the number of accesses to the actual data and dummy data will be roughly the same.

Guessing the access pattern correctly becomes harder as n increases, and less dummy

blocks will be required. While we still need to confirm it experimentally, we expect that

the required number of dummy blocks will be at most 2n and the constant k will be

1 ≤ k ≤ 3.

4.4.4 Access Timing Hiding

ORAM can be said that it hides the accessing addresses while our proposal hides the

timing of accesses. When a certain data block is being accessed multiple times, ORAM

ensures the physical access will be made to different addresses. Our proposal eliminates

the re-shuffling data blocks, whenever the block is kicked back to the ORAM storage,

they are allocated to the same addresses as before they are brought into the buffer.

Hence, the adversary will notice when the block of his interest moves to the buffer and

comes back to the storage. However, the adversary cannot distinguish if these physical

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 63

accesses are made due to the logical accesses or dummy accesses. When accessing a

block, the block is first moved to the buffer, and stays in the buffer until it is kicked back

to the memory. When the block is moved to the memory, its address is recorded to the

history table. Then the history is used to perform the accesses to previously accessed

blocks. The accesses to previously accessed blocks can be dummy ones or necessary ones

depending on the blocks in the buffer. When it is the necessary one and the adversary

can detect it, the access pattern will be leaked. When it is dummy one (i.e. the required

data is in the buffer), the pattern will not be leaked.

Unlike ORAMs, which hide the addresses to be accessed in order to hide the pattern,

our scheme hides the timing of the access and cannot completely hide the access pattern.

Yet the weaker security can be suffice in some scenarios. One example is the counter-

measure to the cache timing attack. Both ORAM and the proposal perform dummy

accesses, which means the block accessed by the dummy access will be temporary stored

in the CPU cache and makes the cache timing attack difficult.

4.4.5 Copying More Than Two Blocks

We consider security when more than two block are swapped between the two region.

In the following discussion, we assume the block ‘a’ is accessed multiple times and three

blocks are copied into the buffer, instead of two as in the original scheme. The choice of

blocks can be two blocks from history and the third one not from history. After the first

access to the block ‘a’, the access can be simulated as follows:

1. ‘a’∈M, and ‘a’ is accessed: access (r, p1, p2) in L;

2. ‘a’/∈M, ia ∈ H, and ‘a’ is accessed: access (r, a, p1) in L;

3. ‘a’/∈M, ia /∈ H, and ‘a’ is accessed: access (a, p1, p2) in L.

The probability of the block ‘a’ in the buffer after δ accesses is given by pM3 ≤ (m−3
m

)δ,

and that of the address of block ‘a’ in the history is given by pH3 ≤ (`h
`h+3

)δ. Then the

probability of the adversary detecting the first and second accesses to the block ‘a’ can

be given by:

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 64

ε ≤ Pr[Xt = a] · Pr[Xt+δ = a]

≤ 1

m− 3
(Pr[Xt+δ = a | case 1] · Pr[case 1]

+ Pr[Xt+δ = a | case 2] · Pr[case 2]

+ Pr[Xt+δ = a | case 3] · Pr[case 3])

≤ pM3

(m− 3)2
+

(1− pM3)pH3

(m− 3)2
+

(1− pM3)(1− pH3)

3(m− 3)
.

The similar argument can be applied for the case of k blocks are copied on every

accesses, and the probability can be given as follows:

ε ≤ pMk

(m− k)2
+

(1− pMk)pHk

(m− k)2
+

(1− pMk)(1− pHk)

k(m− k)
,

where pMk ≤ (m−k
m

)δ and pHk ≤ (`h
`h+k

)δ.

When two blocks are copied on every access, ε ≤ 1.4× 10−4 when m = 128, `h = 512

and δ = 20. When three blocks are copied, ε ≤ 1.7 × 10−4 under the same condition.

Figure 4.1 shows the relation between the number of blocks (2 ≤ m ≤ 127, x-axis) and

ε (y-axis). As shown in the figure, ε takes minimum when the number of blocks equals

to two, then stays low until the number of blocks equals 120, then rapidly rises.

4.5 Comparison

Our scheme requires secure memory for storing m data blocks. It also requires storage

for the history table of size `h. When we read a data block, we first access the secure

memory to check whether the data block sought is inM. We then move two data blocks

into M and read the data block. We also need to access and update the history table.

Thus the total cost is 4 operations, plus the cost associated with reading and writing the

history table (which can be only two extra accesses if H is within the secured boundary).

Thus we have the overhead of 7 operations. We discuss how to improve the overhead

later this section. The history can be potentially stored (encrypted) in the memory area

L. When H is not within the secured boundary, we have to read and update all blocks

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 65

Figure 4.1: The number of blocks (x-axis) and ε (y-axis) when m = 128, `h = 512 and

δ = 20

in the table. Thus we have the overhead of 4 + 2`h. Finally, if using dummy data, we

also have data storage overhead in L depending on the constant k.

Our scheme can also be implemented without any special hardware. The difference in

this case is that we need to scan the entire bufferM twice, plus the access to the history

table and two swaps. We have therefore the cost of 2m + 2`h + 2 operations. As we

assume m is much smaller than n, our scheme without a hardware is still more efficient

than most of oblivious RAMs. According to the work by Stefanov et al. [86], practical

overhead of oblivious RAMs are, in general, on the range of thousands to hundred of

thousands. When we choose m = `h = 128, the overhead is 514, which is less than half

of that of oblivious RAMs. The scheme proposed in the work of Stefanov et al. [86]

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 66

achieved the overhead of (20 − 35)×, which is faster than our second scheme, still our

scheme has the advantage in terms of storage size, that is, ours requires less than 3n

storage for n original data while the scheme in the work of Stefanov et al. [86] requires

4n+ o(n).

Overall, the parameters m, `h and k can be set to suitable values, to offer the appropri-

ate trade-off between security and implementation/computational costs. While oblivious

RAMs are too expensive especially for resource constrained devices and Zhuang et al.’s

scheme is not suitable scheme for this purpose, our scheme can offer reasonable security

for the access pattern protection problem with constant computational overhead and

practical storage.

Unlike the ORAMs, the proposal hides the timing of the logical access. By adding

the physical access based on the history (i.e. bringing the block which has been kicked

out from the buffer into the buffer again), the timing can be hidden. As there is no

need to hide the addresses, re-shuffling can be eliminated, and this realises the constant

overhead.

Improvement of Performance. When we update the history table, addresses of two

data blocks are registered into the history table independently in the original scheme.

Assume that two addresses ‘ia’ and ‘ib’ need to be registered, then two random locations

are selected and those locations are updated with the new blocks. Therefore, the update

requires two operations in each cycle. The update can be done with only one operation

by modifying the entry as a bigger one ia||ib, where || is concatenation. When choosing

one data block from the history table, one can first choose the concatenated block and

then can choose higher half or lower half of the block. As a result, we can reduce the

cost for updating the history table from 2 to 1 and the overall overhead is improved to

6.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 67

A B C D E F5 6 7 8 91 2 3 4

5 7 D 2 1A C 6E 9 F3 B 8

5

D

5

8

B 7 D 1A C 64 E 9 F3 5 8

5 7 2 18 A C 6 3E 9 F3 B D

5 B 7 1C 6 34 E 9 FA 8 D

B 7 2 18 C 34 E 9 FA 5 D

5 B 7 D 2 18 A C 6 34 E 9 F

5 B 7 D 2 18 A C 6 34 E 9 F

4

2

2

2

6

History

Reading

4 B

4 B 5 8

4 B 5 8 3 B

M

Secure memory

2 B 8 8 3 B

Figure 4.2: Our Scheme

4.6 Small Example of Proposed Scheme

We present a small example of the scheme in Figure 4.2. In this example, we have

m = 4 and `h = 6, then the program reads data in the order 5 → D → 8 → 5. For

simplicity, we will not be using dummy data (i.e. k = 1) and we have a fixed permutation.

1. All data in the memory L is randomly permuted andM is filled with the 4 random

blocks.

2. When the program tries to access 5, since it is not in M, blocks 5 and 2 are

brought into M. Since we do not have any history yet, block 5 and a random

block is chosen. Two blocks (4 and B) in M are written back to L, and their

addresses are entered in the history.

3. When the program accesses D, the block D is brought into M. The block B is

chosen from the history and also brought into M. Blocks 5 and 8 are instead

written back to L, and their addresses are entered in the history.

4. When the program accesses 8, since 8 is in the history, block A is randomly chosen.

Blocks 3 and B are written back to L, and their addresses are entered in the history.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 68

5. When the program accesses 5, since the address of 5 is in the history, the block 6

is randomly chosen to be brought into theM. Blocks 2 and 8 are written back to

L. Now the history table is full, two addresses of random blocks (in this example,

4 and 5) are replaced with those of 2 and 8.

6. All blocks in M are written back into L.

4.7 Implementation Issues

Considering the practical implementation of ORAM, there were several questions to

be addressed and improvements to be achieved. We propose practical solutions for these

issues. The issues are

• Management of data blocks in the buffer

• Construction of a secure area

• Size of each block.

In Sec. 4.7.1, we propose a better management of data blocks. The construction of secure

area based only on software is discussed in Sec. 4.7.2. Finally we discuss better use of

each block for saving storage in Sec. 4.7.3.

4.7.1 Managing Data in Buffer Using Flags

The square-root based solutions first scan all data blocks in order to know if the

accessing block is in the shelter or not at the beginning of the process. If the accessing

block is in the shelter, the block from a dummy location will be fetched into the shelter.

When the dummy block is being fetched, there is a chance that the block which is

already in the shelter is chosen again. If this block is the dummy one, it is not a

problem. However, if the block is the real one, which is the one actually accessed by the

program, we cannot distinguish which block is newer. As the result, the program may

misbehave in the software protection scenario and the database may be ruined in the

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 69

Buffer

Obfuscation

Obfuscated Buffer

...

...

Figure 4.3: Constructing Secure Area Using Obfuscation

database access protection scenario. Therefore, we must ensure that all blocks in the

shelter are the latest and there is no duplication.

The trivial solution to ensure that is to scan the entire shelter before fetching the

data block, which impose large overhead. We can omit this scan by using n 1-bit flags

Fi indicating whether the data block is in the buffer or not. We set Fi = 1 when data

stored in address i is stored in the buffer and Fi = 0 otherwise. When bringing two

blocks into the buffer, we check flag of each block. If it is 0, we bring the block into the

block. If it is 1, we pick different block and check the flag again.

The same situation can happen in the lightweight scheme proposed in the work of

Nakano et al. [66]. Their scheme always fetches two blocks in to the shelter, the chance

of the block which is already in the shelter being chosen is higher than the square-

root solution. We have confirmed that this solution can improve the performance by

roughly 3 times in many parameter settings with a prototype implementation. When

the hierarchical solution is applied, there is no need for the management of newer data as

newer data blocks are always upper level. The scheme proposed in the work of Zhuang

et al. [99] does not either require this management as their scheme swaps two blocks

between the shelter and main area.

4.7.2 Constructing Secure Region

ORAM of square-root solution has a shelter of size
√
N and the scheme has to access

all data blocks in the shelter at least twice per one access. As the size of the program

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 70

or database grows, the size of the shelter also grows, which increase the computational

overhead of the implementation. ORAM of hierarchical solution also has the same prob-

lem as it also has to access all data blocks in the top level buffer. Though it may not be

serious as square-root solution, as the size of top level buffer is fixed and usually smaller

than
√
N .

The cost of accessing shelter or top level buffer can be reduced by using secure

hardware where only the client can access as done in the works of Nakano et al. [66]

and Zhuang et al. [99]. Though this is looks promising, requiring secure hardware may

compromise the practicality. The third option is to construct a secure region with ob-

fuscation. Let access(K) be the complexity of accessing K blocks and obf(V) be the

complexity of obfuscating variables V . Also let X be the variables after the obfuscation.

Then the obfuscation can offer higher performance than accessing all data blocks in the

buffer when the following inequation holds;

access(K) ≤ obf(V) + access(X).

In the square root construction, the size of the shelter tends to large as its size is
√
N .

Therefore, it is likely that we can improve the performance of ORAM scheme with this

method. Depending on the size of the top level buffer for hierarchical solution and

the complexity of obfuscation obf(V), this method is also applicable to the hierarchical

solutions. It is also applicable for the scheme proposed by Nakano et al. [66].

We use the scheme proposed by Fukushima et al. [34] for obfuscation. By using

obfuscation with the memory protection scheme, we only need to protect the shelter

(square-root [40]), top level buffer (hierarchical [40]) or buffer and history table (Nakano

et al.’s scheme [66]), which are much smaller than N . As described in the following, we

divide the buffer and history table into smaller ones and apply the obfuscation repeatedly.

Hence we can further decrease the overhead due to obfuscation.

By obfuscating data blocks inside the secure region, the accesses to memory is also

“obfuscated”, that is, the access to a certain data block is transformed into the access(es)

to obfuscated block(s). When the protection scheme needs to access one of data blocks, it

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 71

accesses obfuscated blocks and unlock the obfuscation in order to obtain the real value.

As the correspondence between the original access and the “obfuscated” access(es) is

secret, an adversary cannot understand which block is actually accessed. The obfuscation

does not affect any operation done by the protection scheme as it only encodes the

data blocks. The obfuscation also realise less access overhead than that of accessing all

blocks in the buffer by appropriately choosing the parameters, which we discuss later

this section. Thus, by using obfuscation for data blocks, we can construct a secure area

without hardware, and less overhead than accessing all blocks in the buffer.

Each block which requires to be secret is implemented as variables, and these variables

are encoded into obfuscated variables. The following is a small example of the obfuscation

from a set of variables {v1, v2, v3} into a set of obfuscated variables {x1, x2, x3, x4, x5};

x1

x2

x3

x4

x5

=

1 0 0 1

0 1 0 1

0 0 1 1

1 1 0 1

0 1 1 1

v1

v2

v3

d

⊕

y1

y2

y3

y4

y5

, (4.1)

where the matrix is chosen as its rank to be the same as the number of elements in the

original variables (in this example, it is 4). Each element of the matrix is randomly cho-

sen except the rightmost column, which is set to all 1s. A random variable d is generated

by a pseudo-random number generator and it is attached to the original variables. Fi-

nally a secret vector {y1, y2, y3, y4, y5} is exclusive-ORed, this operation acts like random

masking. We repeatedly apply the same obfuscation for the multiple sets of the original

values until we obtain enough size of the secure region. In this example, we obtain the

secure region of size 4 per one iteration.

When one of vis, say v1, is requested, we first determine which set of obfuscated

variables to access depending on the index of v1, then access all xis to decode v1. Suppose

v1 is updated to v′1 after the operation, then we apply the same obfuscation as given in

Eq. (4.1) with newly generated random number d′. We use different random numbers

every time the program accesses to the secure region. As the corresponding column to d

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 72

is set to all 1s, the change of d will cause the changes of all variables of {xi} even if none

of variables {vi} are changed (i.e. read operation). Moreover, as the encoding applies

the secret matrix, the adversary cannot detect the correspondence between {vi} and

{xi}. Though the adversary may be able to detect which one of {xi} is being accessed,

one cannot understand which one of {vi} is being accessed. Thus, we can construct a

secure region using obfuscation.

There is, however, a limitation to use obfuscation for constructing secure area, which

is the size and number of all variables must be pre-determined. In order to overcome

this limitation, we divide the secure region into smaller units. Figure 4.3 shows an

example when 8 blocks to be obfuscated into 16 blocks with one random number. We

can of course use different matrices and vectors for each obfuscation unit, which makes

obfuscation more difficult to be analysed, though this will increase the code size. We

also note that we can of course choose arbitrary size for the unit of obfuscation.

4.7.3 Reducing Storage Overhead

In Zhuang et al.’s scheme [99], the uniform unit of data was defined as a block of

size 128-bit. However, some programs uses a byte block or smaller as the smallest unit.

When one byte data is allocated to 16 byte block, it wastes remaining 15 bytes. For

the better management of storage, we modify the scheme so that one block can store

multiple smaller blocks.

This modification not only saves storage, but also improves the performance for

operations such as data copy and move. When a program copies for example four integer-

type blocks, the original scheme requires four copy operations. On the other hand, our

proposal only requires one copy operation when these four blocks are in the same 128-bit

block. By carefully choosing smaller blocks on storing them into a large block, we can

expect speed-up and saving storage at the same time.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 73

0

0.1

0.2

0.3

0.4

0.5

100 200 300 400 500 600 700 800 900 1000

ti
m

e[
s]
!

number of blocks in buffer

number of blocks in history table!
100 200 300 400 500 600 700 800 900 1000

Figure 4.4: Performance Evaluation in Various Settings

4.7.4 Implementation Result

We implemented our scheme to which three modifications are applied. Then we

measured the required time to write 1MB data on RAM using the protection scheme.

The evaluation was done on the PC of CPU: Intel(R) Core(TM) i7 3930K and RAM:

8 GB which runs Ubuntu 13.04 x64 and gcc 4.7.3. As our scheme has two parameters

(e.g. number of blocks in the buffer and history table) which affects the performance, we

measured the required time while we change the number of blocks in the buffer and the

history table from 100 to 1000. Figure 4.4 shows the relation between parameters and

performance of our efficient implementation. The x-axis denotes the number of blocks

(from 100 to 1,000 for every 100) in the secure buffer, the y-axis denotes required time

to load 1 MB data to the protection scheme and each curve corresponds to each size of

the history table. In the fastest setting, our scheme only requires 0.125[s] to write 1 MB

data. As shown in the figure, the overhead grows linear to the size of buffer and history

table. This is because more time required to scan the entire buffer and history table as

their size grow. However, growth of overhead is very slow compared to that of size of

buffer and history table thanks to the efficient implementation of scanning process.

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 74

Table 4.2: Performance of Path ORAM
depth No. of blocks time [s]

4 124 0.023174

5 252 0.026869

6 508 0.031161

7 1020 0.036253

8 2044 0.040308

9 4092 0.045745

10 8188 0.050515

11 16380 0.055507

12 32764 0.061350

13 65532 0.067854

14 131068 0.070075

15 262140 0.074905

4.8 Performance Comparison with Path ORAM

We compare the performance of our method and Path ORAM in several settings

when both are applied to protect the secret key of AES-128. We perform the encryption

of 1024-bit data with AES-128 five times and compare the average time required to com-

plete the encryption. The evaluation was done on the PC of CPU: Intel(R) Core(TM) i7

7700K and RAM: 32 GB which runs Ubuntu 18.04.1 LTS x64 and gcc 7.3.0. The results

are summarised in Tables. 4.2 and 4.3. These results are updated ones because the im-

plementation used for the original comparison is no longer available and we used different

implementation for this comparison. The Path ORAM implementation is available at

https://github.com/AmarSaggu/ORAM.

Each node of Path ORAM has 4 blocks hence, over all number of blocks are 4 times

the number of nodes. In case the depth of the tree is 4, the number of blocks will be

4× 31 = 124. For our proposed scheme, we choose the size of buffer and history (i.e. the

Kyushu University

https://github.com/AmarSaggu/ORAM

Chapter 4 Lightweight Access Pattern Protection 75

Table 4.3: Performance of Proposed Scheme
ORAM Storage [byte] time [s]

1296 0.014449

1808 0.014576

2832 0.015511

4880 0.013627

8976 0.015189

17168 0.013736

33552 0.014095

66320 0.014743

131856 0.016971

262928 0.014286

525072 0.013470

1049360 0.013698

number of blocks that can be stored in buffer or history table) to be 16. For the size of

ORAM storage, which is equivalent to the number of blocks in Path ORAM, we set the

storage size to roughly matches to that of Path ORAM, note that our scheme always

preserve temporary storage of 800 bytes and each block in Path ORAM is 4 bytes.

As shown in Tables. 4.2 and 4.3, our scheme outperfoms Path ORAM by maximum

5 times. Path ORAM tends to slow down as the level increases, while our scheme can

achieve the constant performance. Our scheme has the larger advantage when the size

of ORAM storage increases.

4.9 Conclusion of This Chapter

In this chapter, we proposed two new schemes for protecting memory access patterns.

The distinctive character of our scheme is that we do not re-shuffle the order of the data

blocks in memory. To protect the access pattern without re-shuffling, we used a history of

Kyushu University

Chapter 4 Lightweight Access Pattern Protection 76

the accesses. We first considered an instance which is similar to the proposal in the work

of Nakano et al. [99], and also relies on the use of a secure (trusted) hardware buffer;

however it achieves higher security by adapting ideas from Oblivious RAM (ORAM)

mechanisms, without the expensive (re-)shuffling of buffers. Another instance requires

no special hardware, but as a result leads to a higher, yet practical overhead. We defined

a new security notion called δ-security and proved that the proposed two schemes are

δ-secure. We also discussed the size of parameters, which are the size of secure memory,

history table and dummy data and compared the performance with existing schemes.

We claim that under reasonable assumptions, the schemes can achieve both security and

performance levels acceptable in practice.

We then discussed three general implementation issues of our proposed scheme,

namely management of data blocks in the buffer, construction of a secure area and size of

each block, and their solutions. We applied these methods to our proposed scheme and

compared the performance with Path ORAM. Our scheme outperforms Path ORAM by

5 times. The solutions can be widely used for implementing ORAM and improving the

performance.

Kyushu University

Chapter 5 Active Attack against ORAM 77

Chapter 5

Active Attack against ORAM

5.1 Introduction

The access pattern to RAM contains valuable information of the program, for exam-

ple, the location of the secret key can be easily identified by observing the access pattern

of a cipher program. Another example is digital right management (DRM) program.

When the protected digital content is consumed, the player application first accesses to

RAM to obtain the secret key. Then the content can be decrypted and played. When

the user is malicious, he can analyse the access pattern of the player application in or-

der to efficiently identify the location of the secret key. Once he identifies the location,

he can use this key to decrypt the content and obtain unprotected version. Oblivious

RAM (ORAM) is an effective countermeasure against such threat [40]. ORAM sits in

between the program and RAM, and hides the access pattern of the program from the

adversary who is observing read/write access to RAM. ORAM can be also effective when

the program has vulnerability which can be exploited to extract data stored on RAM.

The Heartbleed vulnerability is one of such examples, which the adversary can obtain

data from RAM on OpenSSL servers. Another application of ORAM is called private

information retrieval (PIR), where the client’s access to cloud storage can be protected

from curious cloud operators [92, 45, 46, 55, 93, 95, 47]. Applying ORAM for secure com-

putations is also considered for example in the works of Faber et al. [30] and Doerner

and Shelat [29].

Kyushu University

Chapter 5 Active Attack against ORAM 78

The square root solution and hierarchical solution are the basic constructions of

ORAM. In the square root solution, a region called ‘shelter’, where accessed data blocks

are stored temporary, is attached to RAM. Before the program starts to access data,

all data blocks must be permuted according to the secret permutation. The hierarchical

solution has layered structure and access is done from top level to th e bottom. The

square root solution is simpler but imposes higher overhead than the hierarchical solu-

tion. After the first proposal of ORAM, many researches have been done to improve the

performance of ORAM [1, 73, 25, 44, 82, 53, 10, 98]. One of the most efficient schemes

is called Path ORAM [88].

The security of ORAM is often considered under passive adversaries who can observe

memory access but cannot alter data stored on RAM. However, adversaries with the

ability to observe memory access, in general, also have the ability to modify data on

RAM using a debugger. Ren et al. [76] considered security of Path ORAM under the

active adversary and showed that naïve recursive Path ORAMs leak information on

memory access patterns.

In this chapter, we further consider the security of several ORAM schemes against

the active adversaries and propose two active attacks. These two attacks assume more

powerful adversary than one considered by Ren et al. [76] as the adversary can re-execute

the ORAM in the same setting. Yet, the proposed attack is more critical since the

adversary can identify the pattern of accesses. The first attack we propose is identifying

addresses where dummy blocks are stored in ORAM. The second one is to try to identify

in which step of the program a certain data block will be accessed. The basic idea

behind our attacks is that dummy blocks do not affect the behaviour (i.e. internal state

of the program) and the output, while real data blocks do. The adversary can use a

debugger and record all internal states in each step then modifies blocks and observes if

any difference will be incurred by the modification.

Kyushu University

Chapter 5 Active Attack against ORAM 79

5.2 Preliminaries

A program access RAM to obtain data block to complete its functionality, that is,

data blocks are the minimum set of blocks required by the program. Oblivious RAM can

add dummy blocks to hide the access pattern of the given program. Therefore, dummy

blocks do not affect the functionality of the program. We say block when it can be either

data or dummy.

5.2.1 Side Channel Attack against ORAM

As ORAM can hide the access patterns made by a program, the program can be se-

curely executed even if the program is on malicious system with a aid of secure processors.

However, timing information of ORAM accesses can leak information. ORAM accesses

are only made when the necessary data misses processor’s cache. Fletcher et al. [31]

evaluated the upper bound on timing channel leakage and proposed a countermeasure

which only impose reasonable overheads.

Bao and Srivastava [5] also investigated the security of Path ORAM against timing

attacks and showed the adversary can obtain secret information though timing. Even

though the security of Path ORAM is proven, its proof is under the assumption that

CPU is trusted. This assumption, however, sometimes can not be met when ORAM

is executed along with malicious program. Bao and Srivastava assumed the malicious

program which makes continuance requests to ORAM and can measure the time between

the request of a data block and its completion. If the victim program includes data

dependent operations and these operations involve ORAM access, it affects the request

completion time of the malicious program, which can reveal secret data of the victim

program.

5.2.2 Ren et al.’s Active Attack

Ren et al. [76] considered the security of Path ORAM under active adversaries. Their

attack enables the active adversary to distinguish two access patterns: (a) repeated

Kyushu University

Chapter 5 Active Attack against ORAM 80

accesses to the same data block, and (b) accesses to different data blocks. Assume the

adversary tries to distinguish access patterns of 2-level recursive ORAM (ORAM0 and

ORAM1), one first initialise two labels `∗0, `∗1 and P ← ⊥. Then their attack has following

four steps:

1. first perform access(ORAM1, `1) and if `∗1 = `1 go to step 4, if not go to step 2;

2. set P ← `1 and `∗1 = `1, and perform access(ORAM1, `1);

3. perform access(ORAM0, `0) and set `∗0 = `0, and go to step 1;

4. perform access(ORAM0, `′0), if `′0 = `0, then guess the pattern is repeated accesses

to the same block, otherwise accesses to different block.

They also proposed a countermeasure to the active adversary, which ensures authen-

ticity and freshness of retrieved data block. They added another tree, called authenti-

cation tree, to that of Path ORAM and each node of authentication tree contains hash

value of corresponding bucket in ORAM tree. More precisely i-th node of authentication

tree contains the hash value of hashi = HASH(Bi||hash2i+1||hash2i+2), where HASH

is a secure hash function, Bi is i-th bucket of ORAM tree and hash2i+1||hash2i+2 is the

concatenation of hash values of two children of ith node of hash tree. All hash values

hashi(i > 1) can be stored unsecure memory except the root hash hash0. This counter-

measure, however, requires calculating hash values for all buckets of ORAM tree upon

the initialisation of the ORAM. They also proposed a countermeasure which does not

require the initialisation of authentication tree.

In the following sections, we consider the active attack further, that is, try to identify

the access pattern of the program.

5.3 Identifying Dummy Blocks

Both Square root ORAM and our scheme attach a secure region to ORAM’s main

memory and copying blocks from main memory to the secure region. They also share

Kyushu University

Chapter 5 Active Attack against ORAM 81

Table 5.1: Probabilities that the adversary can detect dummy blocks
Scheme Probability

square root
√
NpS

N+
√
N

ours 1+pM
2
· d
N+d

Algorithm 3 Identifying Dummy Blocks
Require: ORAM data set D = (D1, D2, . . . DN)

Ensure: Identified dummy blocks

I = ((D1, data/dummy), . . . , (DN , data/dummy))

1: Init← initial state

2: Out← output of the program

3: for 1 ≤ m ≤ N do

4: revert to Init

5: Dm ← random number et

6: Out′ ← output of the program

7: if Out = Out′ then

8: Im ← (Dm, dummy)

9: else

10: Im ← (Dm, data)

11: end if

12: end for

the idea that dummy blocks will be added to the original blocks. In order to hide the

access pattern, one block (two blocks in our scheme) is always copied to the secure region.

Therefore, by observing if these copied blocks affect the behaviour of the program, the

adversary has chance to identify all dummy blocks efficiently. Algorithm 3 gives the

attack description. The Table 5.1 summaries the probabilities.

Kyushu University

Chapter 5 Active Attack against ORAM 82

5.3.1 Identifying Dummy Blocks in Square Root ORAM

In square root ORAM, the data block copied into the shelter will be determined if

it is already inside the shelter. When the block a is already in the shelter, a block will

be randomly chosen. Otherwise the block a will be chosen. We consider the probability

that the adversary can identify the dummy block in two cases.

(1) a ∈ S

When the block a is inside the shelter S, a block is randomly chosen and copied into

the shelter. Let pS be the probability which the data block a is inside the shelter, the

probability that the block copied to the shelter is dummy is given by the following:
√
NpS

N +
√
N
.

(2) a /∈ S

When block a is not inside the shelter, it is copied into the shelter, hence it cannot be

dummy block.

From discussions of (1) a ∈ S and (2) a /∈ S, the probability which the adversary can

distinguish dummy block is following:
√
NpS

N +
√
N
.

From 0 ≤ pS ≤ 1, the following inequation also holds, which imply that the adversary

does not gain any advantage in detecting dummy block:
√
NpS

N +
√
N
≤

√
N

N +
√
N
.

5.3.2 Identifying Dummy Blocks in Our Proposal

In our scheme, at least one of two blocks copied into the bufferM is randomly chosen.

Their scheme has three possible cases depending on (1) the block is inside the buffer, (2)

the block is not inside the buffer but inside the history and (3) the block is not inside the

buffer and the history. In the following we consider the probability which the adversary

can identify the dummy block.

Kyushu University

Chapter 5 Active Attack against ORAM 83

(1) a ∈M

Since the required data is in the buffer, both two blocks are randomly chosen. However,

the adversary does not know which block is being accessed and if that block is in the

buffer, we assume he marks one of the two blocks as randomly chosen block. Let pM

be the probability of a ∈ M, the adversary can detect randomly chosen block with the

probability of pM .

(2) a /∈M, ia ∈ H

In this case, the block chosen from history is the required data and another block is

randomly chosen. Therefore, the adversary can detect the randomly chosen block with

the probability of 1/2, if he chooses one of the two blocks. Let pH be the probability of

ia ∈ H, the probability of a /∈ M and ia ∈ H will be given by (1 − pM)pH . Hence, the

probability which the adversary can detect the randomly chosen block will be

(1− pM)pH
2

.

(3) a /∈M, ia /∈ H

One block is randomly chosen from history and a will be copied to the buffer. Therefore,

the adversary can detect the randomly chosen block with the probability of 1/2, if he

chooses one of the two blocks. The probability that a /∈ M, ia /∈ H happens will be

given by (1 − pM)(1 − pH). Hence, the probability which the adversary can detect the

randomly chosen block will be

(1− pM)(1− pH)

2
.

As the probability that a randomly chosen block is dummy can be denoted as d/(N+

d), the discussions of (1) a ∈M, (2) a /∈ M, ia ∈ H and (3) a /∈ M, ia /∈ H give the

adversary can detect dummy block with the following probability:

1 + pM
2

· d

N + d
.

Similar to the conclusion in section 5.3.1, the adversary cannot gain any advantage in

detecting dummy blocks when he modifies the copied block.

Kyushu University

Chapter 5 Active Attack against ORAM 84

5.4 Identifying Access Pattern

We consider another attack where an active adversary modifies the block in the initial

state of a program. The adversary we assume in this section has abilities to repeat the

execution of the program step-by-step with the same setting and have full access to the

internal states. When data block is modified by the adversary, it should affect the output

of the program, while modifying dummy should not. By exploiting this fact, the active

adversary can identify the access pattern of the given program.

First, the adversary saves the initial state of the program and ORAM. Then he runs

the program while recording all observable accesses, internal states of the program and

the output. After the initial run of the program he reverts the states of the program

and ORAM into the initial state. Next he adds a modification to one of the blocks

and re-run the program step-by-step, while comparing the observable access and the

internal states of the program. Once he notices any difference to the internal state of

the program, he marks the modified block with in which step the difference occurred. If

any difference to the internal state or the output of the program, he marks the chosen

block as dummy. The adversary can repeat this process until all blocks are marked. We

have a pseudocode of our attack in Algorithm 4. Here, Algorithm 4 takes ORAM data

set D = (D1, D2, . . . DN) as input and it outputs I = ((D1, i1), . . . , (DN , iN)), which

indicates block Di being accessed in step i.

When the block is accessed many times, the active adversary can detect the first

access to it by modifying the data and monitor the behaviour of the program. However,

the second and onward accesses cannot be detected as the modification to the initial state

will cause unexpected behaviour to the program. To detect the repeated accesses to the

same block, the adversary also needs modify the block while executing the program.

First he modifies the block in the initial state and observes the effect to the behaviour

of the program. Also he needs to observe a new location of the modified block after the

first access. Then, he goes back to the initial state and reverts the modified block to the

original one and executes the program right after the first access to it. After the first

Kyushu University

Chapter 5 Active Attack against ORAM 85

access, this block will be moved to the new location, then the adversary adds another

modification to it. If this block is accessed second time, he can detect this access by

observing its effect to the behaviour of the program. He can repeat the same process to

detect the third and onwards accesses.

In the following, we consider applying the attack to three ORAM schemes.

5.4.1 Identifying Access Pattern in Square Root ORAM

There are two cases where the block is copied to the shelter: 1) because the block is

requested by the program or 2) because the block is chosen at random. In the case of 1),

the modified block is not copied into the shelter until it is required by the program, and

when it is accessed, it affects the behaviour of the program. The adversary will notice the

effect of his modification by monitoring the update of the internal state. In the case of

2), the modified block is copied to the shelter as a randomly chosen block. The adversary

might notice that the modified block has been copied, however, his modification will not

affect the behaviour as it will not be accessed in this step by the program. After several

steps, the program might access it and then the behaviour will be affected. Even though

the separation between the step in which the modified block being copied to the shelter

and the actual access by the program, the adversary can still identify in which step the

modified block is accessed by monitoring its effect to the internal state.

In square root ORAM, all blocks are periodically re-shuffled according to a new

permutation with re-encryption. As the permutation is secret to the adversary, and the

encryption is probabilistic, a passive adversary cannot link the blocks before and after

the re-shuffle. An active adversary, however, can track a block before and after the re-

shuffle. The adversary first observes the re-shuffle. Then he modifies a block and let

the ORAM to perform the same re-shuffle again while observing. Since he only modified

one block there should be only one block which is different from the first re-shuffle. By

iterating the process N times, the adversary can identify where each block is allocated

after the re-shuffle. When the total number of accesses done by the program is given

by X, the re-shuffle will be performed X/N . Therefore the cost for the attack against

Kyushu University

Chapter 5 Active Attack against ORAM 86

re-shuffle will be X.

5.4.2 Identifying Access Pattern in Hierarchical ORAM

Similar discussion to square root ORAM can by applied to hierarchical ORAM. The

main difference is that in square root ORAM only one block is copied to the shelter in

each access while in hierarchical ORAM multiple blocks can be copied to the shelter.

In hierarchical scheme, one block will be chosen from each level. When making access

to a block a, block stored in HASHi(a) will be retrieved from each level i until the block

a is found. After the block is found, block stored in a dummy location HASHi(dummy)

will be retrieved from each level. As multiple blocks are copied to the shelter on each

access, there is slightly higher chance of the modified block being copied to the shelter

when the program is requesting different block. Still, the modified block will not affect

the behaviour of the program until it is being requested by the program.

When level i gets full, all blocks in level i are pushed one level down (to level i+1) with

a new permutation and re-encrypting all blocks in level. Since we assume the adversary

modifies only one block at a time, the modified block is traceable even when the block

is moved between levels. Therefore, when the adversary modifies one block at the initial

state, he can trace when that block is moved into which location also by comparing the

behaviour of the program the adversary can guess correctly when the block is accessed

by the program.

5.4.3 Identifying Access Pattern in Our Proposal

Our scheme always picks two blocks, one looks randomly chosen and the other looks

chosen from the past accesses, and moves them to the buffer. The modified block can be

moved to the buffer even when it is not being accessed by the program. In this case, the

modified block will stay inside the buffer until it is kicked back to the unsecure region.

While it is inside the buffer, the block can be accessed by the program. Then the ORAM

will move two blocks into the buffer and both of them are actually not the block required

by the program. However, the adversary knows which block he modified and since the

Kyushu University

Chapter 5 Active Attack against ORAM 87

only one block has been modified, if the behaviour of the program has been affected,

it must be by the block which he modified. Therefore, the adversary can identify the

access to a block.

5.4.4 Identifying Access Pattern in Path ORAM

We consider an example where the adversary chooses to modify a data block in bucket

4 as described in Fig 5.1. After modifying the block, he executes program step-by-step.

In a certain step, this modified block will be read by the program to update its internal

state. The behaviour of the program will be affected by the modification, and it will

be observable to the adversary as a difference of the internal state between the original

bucket 4 and modified bucket 4. This difference can be detected by the adversary using

a debugger without accessing protected region of ORAM. Sometimes, the modification

does not affect the transition of the states and the final output of the program. Then

the adversary can conclude that the chosen block is dummy.

When any of buckets 4, 9, 10, 19, 20, 21 or 22 is being accessed, bucket 4 will be

copied to the stash before the program make read/write access to data. Then data in

stash will be evicted to buckets on a new path. As we make modification to only a block,

the adversary can locate the bucket in which the target block is stored.

During the eviction to a new path, empty space will be filled with dummy blocks.

From the assumption that the adversary can repeat the behaviour of ORAM, the same

dummy blocks are generated and stored in the same bucket every time one repeat the

ORAM. Therefore, only the modified block has a difference and the adversary can locate

the updated path.

5.5 Experiment

We applied the proposed attack to AES with Path ORAM. We use the implementa-

tion of Path ORAM available at https://github.com/AmarSaggu/ORAM.

AES has been standardised by NIST as FIPS197 [67]. It is now one of the most widely

Kyushu University

https://github.com/AmarSaggu/ORAM

Chapter 5 Active Attack against ORAM 88

!" !# !$!% !& '('! '' ') '* '" '# '$ '% '&)(

$ % & !(!! !' !) !*

) * " #

! '

(

(! ') * " # $ % & !(!! !' !) !* !"+,-./0

Figure 5.1: Modifying bucket 4

used symmetric key encryption algorithms. It makes use of a substitution-permutation

network. It supports three different key lengths: 128-bits, 192-bits and 256-bits. We

use AES-128, which has 10 rounds, in our experiment. In each round, following four

functions are applied to the state (AddRoundKey is applied before the first round and

MixColumn is omitted in the final round):

• SubBytes applies 8-to-8-bit substitution to the state;

• ShiftRows shifts the i-th row of the state to i positions to the left;

• MixColumn mixes the column C by multiplying a 4× 4 maximum distance sep-

arable matrix M as C ←M × C;

• AddRoundKey adds a round key to the state.

A key expansion is applied in the initialisation, which takes 128-bit initial key to generate

ten 128-bit round keys.

In the implementation, each node contains an IV block and three blocks in the fol-

lowing format: IV ||block1||block2||block3. Blocks 1 and 2 have two data blocks each,

which can be represented as: bid1||data1||bid2||data2 and block 3 is the pudding block,

Kyushu University

Chapter 5 Active Attack against ORAM 89

therefore each bucket has 4 blocks. Here bid and data are size of 4bytes, each block

contains 16 bytes. Path ORAM has four levels and 30 nodes in total.

During the experiment, we first modify 4 bytes data after the initialisation of AES

to 0xffffffff. Then we execute the encryption and detect in which round the modi-

fication will affect the internal state. We use 00112233445566778899aabbccddeeff as

a plaintext and 000102030405060708090a0b0c0d0e0f as a key. Hence the ciphertext

should be 69c4e0d86a7b0430d8cdb78070b4c55a. Table. 5.2 and Table. 5.3 are the lists

of all modifications which cause differences in ciphertexts and in which round the mod-

ification affects the internal state. The column ’node ID’ shows the node ID where the

block is modified and the column ’byte’ shows the specific modified bytes in the node,

for example, 04-07 means from fifth to eighth bytes are modified. The column ’affected

round’ shows the number of round in which internal state of AES has been affected.

Table. 5.2 shows the result with ORAM’s storage encryption enabled while Table. 5.3

shows the result with the storage encryption disabled. In both cases, round keys are

stored in the same nodes. When the ORAM’s encryption is enabled, we can only apply

modifications to encrypted blocks.

Due to the encryption applied to entire blocks of the node, modification to 4 bytes

of data will also incur difference to other bytes when it is decrypted. As a result, we

observe the internal state after round 0 is affected by 12 bytes, while the internal state

after round 6 is affected by only 4 bytes. For example, bytes 4 to 7 and 12 to 15 of node

1, where 10th round key is stored, are destroyed by modifying bytes 20 to 23. Bytes 20

to 23 are misidentified as 10th round key. Bytes 20 to 23 of node 2 are misidentified as

8th round key, which is actually 10th round key, because modification to bytes 20 to 23

destroys bytes 12 to 15, which is 8th round key, and incurs difference in 8th round.

Kyushu University

Chapter 5 Active Attack against ORAM 90

Table 5.2: Modified Bytes and Affected Rounds in AES

Encryption when ORAM Storage is Encrypted

node ID byte affected round node ID byte affected round

(w/ enc) (w/ enc)

1 04–07 10 17 04–07 0

1 12–15 10 17 20–23 -

1 20–23 - 17 28–31 -

1 28–31 - 20 04–07 0

2 04–07 10 20 12–15 1

2 12–15 8 20 20–23 7

2 20–23 10 20 28–31 -

2 28–31 - 22 04–07 5

3 04–07 8 22 12–15 8

3 20–23 - 22 20–23 6

3 28–31 - 22 28–31 4

4 04–07 9 23 04–07 4

4 20–23 - 23 20–23 -

4 28–31 - 23 28–31 -

8 04–07 1 24 04–07 2

8 20–23 - 24 12–15 5

8 28–31 - 24 20–23 -

9 04–07 7 24 28–31 -

9 12–15 8 25 04–07 0

9 20–23 - 25 12–15 3

9 28–31 - 25 20–23 1

10 04–07 9 25 28–31 -

10 20–23 - 27 04–07 0

10 28–31 - 27 20–23 -

Table continues to the next page

Kyushu University

Chapter 5 Active Attack against ORAM 91

Table 5.2: Modified Bytes and Affected Rounds in AES

Encryption when ORAM Storage is Encrypted

node ID byte affected round node ID byte affected round

12 04–07 6 27 28–31 -

12 20–23 - 28 04–07 3

12 28–31 - 28 12–15 2

14 04–07 9 28 20–23 -

14 12–15 9 28 28–31 -

14 20–23 1 29 04–07 4

14 28–31 - 29 20–23 -

15 04–07 5 29 28–31 -

15 12–15 6 30 04–07 5

15 20–23 6 30 12–15 7

15 28–31 2 30 20–23 3

16 04–07 7 30 28–31 4

16 12–15 3

16 20–23 2

16 28–31 -

Table 5.3: Modified Bytes and Affected Rounds in AES

Encryption when ORAM Storage is NOT Encrypted

node ID byte affected round node ID byte affected round

(w/ enc) (w/ enc)

1 04–07 10 17 04–07 0

1 12–15 10 17 20–23 0

1 20–23 10 17 28–31 0

1 28–31 10 20 04–07 0

Table continues to the next page

Kyushu University

Chapter 5 Active Attack against ORAM 92

Table 5.3: Modified Bytes and Affected Rounds in AES

Encryption when ORAM Storage is NOT Encrypted

node ID byte affected round node ID byte affected round

(w/ enc) (w/ enc)

2 04–07 10 20 12–15 1

2 12–15 8 20 20–23 0

2 20–23 8 20 28–31 0

2 28–31 8 22 04–07 5

3 04–07 8 22 12–15 8

3 20–23 8 22 20–23 5

3 28–31 8 22 28–31 4

4 04–07 9 23 04–07 4

4 20–23 9 23 20–23 4

4 28–31 9 23 28–31 4

8 04–07 1 24 04–07 2

8 20–23 1 24 12–15 5

8 28–31 1 24 20–23 2

9 04–07 7 24 28–31 2

9 12–15 8 25 04–07 0

9 20–23 7 25 12–15 3

9 28–31 7 25 20–23 0

10 04–07 9 25 28–31 0

10 20–23 9 27 04–07 0

10 28–31 9 27 20–23 0

12 04–07 6 27 28–31 0

12 20–23 6 28 04–07 3

12 28–31 6 28 12–15 2

14 04–07 9 28 20–23 2

Table continues to the next page

Kyushu University

Chapter 5 Active Attack against ORAM 93

Table 5.3: Modified Bytes and Affected Rounds in AES

Encryption when ORAM Storage is NOT Encrypted

node ID byte affected round node ID byte affected round

(w/ enc) (w/ enc)

14 12–15 9 28 28–31 2

14 20–23 1 29 04–07 4

14 28–31 9 29 20–23 4

15 04–07 5 29 28–31 4

15 12–15 6 30 04–07 5

15 20–23 5 30 12–15 7

15 28–31 2 30 20–23 3

16 04–07 7 30 28–31 4

16 12–15 3

16 20–23 2

16 28–31 3

5.6 Countermeasures

In this section, we consider countermeasures for active attacks. The adversary uses

effect of modified block to the intermediate state or the output of the program in order

to detect dummy or the access pattern, we can prevent the attack by detecting the mod-

ification by the adversary and/or making the modification incur unexpected behaviour

to the program.

5.6.1 Parallelism

Multiple ORAMs can be implemented in parallel and checks if the all blocks matches.

If one of the blocks is different from others, it is likely that the adversary modified one

of the blocks and the program should be terminated. In case more than two ORAMs

are implemented, the modification can be reverted with majority voting. However, this

Kyushu University

Chapter 5 Active Attack against ORAM 94

countermeasure has a flow that the adversary can modify the blocks without being

detected if the adversary modifies all corresponding blocks of ORAMs implemented in

parallel. This countermeasure also impose even higher overhead than applying single

ORAM.

5.6.2 Integrity Checking

Similar to Ren et al.’s [76] proposal, we consider adding checksums to all blocks to

realise any modification made by the adversary can be detected. However, the adversary

can identify the location where the checksum is stored and modify the checksum so that

it matches to the modified block. In order to provide better security, we can use a keyed

hash as follows:

H(data||index||key),

where key must be stored in a secure region. The checksum can be located along with

the blocks. When ORAM is accessing a block, the checksum is also copied into the secure

region and ORAM compares two checksums.

5.7 Conclusion of This Chapter

We considered two active attacks against ORAM, one is identifying dummy blocks

another is identifying access pattern. As we showed the adversary with ability to repeat

ORAM with the same setting can identify the access pattern by comparing the behaviour

of the program with and without modification to blocks. We applied our scheme to AES

implemented with Path ORAM and showed the location of round keys can be obtained.

Therefore, the countermeasure to active attack should be applied to ORAM schemes.

Kyushu University

Chapter 5 Active Attack against ORAM 95

Algorithm 4 Attack Description for Detecting Access Pattern
Require: ORAM data set D = (D1, D2, . . . DN)

Ensure: Identified pattern I = ((D1, T1), . . . , (DN , TN))

1: Init← initial state

2: for 0 ≤ i ≤ Len do

3: execute step i of the program

4: Inti ← internal state

5: end for

6: Out← output of the program

7: for 1 ≤ m ≤ N do

8: revert to Init

9: modify block m

10: for 0 ≤ i ≤ Len do

11: execute step i of the program

12: Int′i ← internal state

13: if Inti 6= Int′i then

14: Im ← (Dm, i)

15: break

16: end if

17: end for

18: Out′ ← output of the program

19: if Out = Out′ then

20: Im ← (Dm,⊥)

21: end if

22: end for

Kyushu University

Chapter 6 Application of ORAM 96

Chapter 6

Application of ORAM

6.1 Volume Encryption

In order to protect sensitive data stored on a hard disk, entire volume can be en-

crypted and only a legitimate user who knows a password to decrypt the volume can

access data. When the encrypted volume is visible to an adversary, the owner of the

device might be forced to enter the correct password. Therefore, there is a need for a so-

lution which hides the existence of encrypted volume. TrueCrypt, for example, provides

this functionality. This functionality of TrueCrypt is called ’hidden volume’. When this

is enabled, the user can create two encrypted volumes, instead of one, and the first en-

crypted volume contains public data while the second one contains private data. When

the adversary asks the user to give the password, the user reveals the one for the first

volume and keeps the other. Then the adversary can not tell the existence of the sec-

ond encrypted volume. However, TrueCrypt fails to hide the hidden volume when the

adversary has an ability to take multiple snapshot of the hard disk [23].

Blass et al. [11] presented HIVE which is resistant to attacks using multiple snapshots.

The key point of their solution is using Oblivious RAM to hide the access pattern. The

reason TrueCrypt fails to hide the hidden volume is that the accesses to first volume and

second volume are distinguishable as the second volume (or hidden volume) is stored

separately from the first volume. By using ORAM, the accesses to first volume and

Kyushu University

Chapter 6 Application of ORAM 97

second one will be indistinguishable and the adversary, even with ability to take multiple

snapshots, cannot tell the existence of the hidden volume. When applying ORAM to disk

encryption solution, the overhead imposed by ORAM can be huge. Therefore, Blass et al.

proposed a more efficient ORAM which only hides the write accesses, while conventional

ORAM schemes hide both read and write accesses. Based upon the efficient write only

ORAM, they built HIVE.

Paterson and Strefler [72] evaluated the security of HIVE. Even though Blass et al.

analysed the security of HIVE and gave security proof, the implementation of HIVE had

a flaw which was biases of RC4 keystreams [32, 61]. The HIVE implementation uses

two encryption algorithms, RC4 and AES CBC mode. RC4 is used to fill free space

with pseudorandom data and AES is used to encrypt actual blocks. Since RC4 and AES

are used for different purposes and keystream of RC4 is biased, the adversary can tell if

the disk space of his interest is encrypted either RC4 or AES and the disk has hidden

volumes. Note that the attack is only possible due to the biases of RC4 and can be

prevented by using other secure algorithms.

Kyushu University

Chapter 7 Conclusion 98

Chapter 7

Conclusion

In this paper, we first studied a key extraction attack and a memory access pattern

protection scheme.

In Chapter 2, we analysed security concerns in software protection and showed fol-

lowing five issues:

1. memory dump,

2. cold boot attack,

3. cache timing attack

4. debugging tool,

5. bug.

We also introduced related works in Chapter 2.

Chapter 3 showed one of the critical threats against cryptographic programs and

demonstrated that sensitive information used by them can be easily recovered if any

protection mechanism is not applied.

ORAM can mitigate these threat, however, even the most efficient ORAM scheme

imposes impractical overhead to the performance. In Chapter 4, we proposed very

lightweight scheme to overcome large overheads of ORAM schemes. The empirical per-

formance of the proposed scheme was further improved by applying the following:

Kyushu University

Chapter 7 Conclusion 99

1. Efficient management of data blocks in the buffer,

2. Construction of a secure area,

3. Efficient use of blocks.

In Chapter 5, we evaluated the security of ORAM under more powerful adversary.

In general, security of ORAM is analysed under the assumption that the adversary

is ’honest-but-curious’, that is, he tries to learn only by observing the access pattern.

In some scenarios, however, the adversary can be more powerful, that is, he can not

only observe but modify data blocks stored inside ORAM server and observe how the

modification affects the program. We applied this attack to AES implemented with Path

ORAM and showed the adversary can identify in which node the secret key is stored.

We discussed applications of ORAM to hard disk encryption in Chapter 6.

By using ORAM or similar scheme, the security of software can be improved. The

drawback of applying countermeasures are performance overhead. After the first intro-

duction of ORAM by Goldreich in 1987, many improvements have been proposed and

computational cost of ORAM is getting smaller. Yet it may not be realistic to protect

entire software as its size increases, so does the performance overhead. In order to achieve

both security and performance levels acceptable in practice, there are two options. One

is to limit the coverage of protection. There could be a lot of operations performed

inside software but only the part of them are critical for its security. By limiting the

operations to be protected by ORAM, the computational overhead caused by ORAM

can be smaller and acceptable. As the software becomes more and more complicated, it

also becomes harder and harder to determine which operations are critical to security

and need to be protected. It may be required to develop a systematic tool to analyse the

entire software to determine which operations are critical and require ORAM protection.

Another approach is the one we took in this thesis, that is, considering a new scheme

much lighter than ORAM. The new scheme may not be as secure as ORAM, but the

lower security level could be more than enough considering the actual threat. It will be

required to analyse the threats and consider how the protection should be.

Kyushu University

Chapter 7 Conclusion 100

Other than improving the performance, considering a new application is also impor-

tant. By using ORAM, the access pattern from ORAM client to ORAM server can be

hidden. This characteristic can be utilise in order to improve user’s privacy in many

applications.

Kyushu University

Acknowledgements 101

Acknowledgements

First of all, I would like to express my sincere gratitude to Professor Kouichi Saku-

rai, in Department of Informatics at Kyushu University, who has been my supervisor

since the beginning of my study. He provided me with many helpful suggestions, im-

portant advices, and constant encouragement during this work. He also gave me many

opportunities and advantages for my research activities. I wish to express my sincere

appreciation to Professor Koji Inoue in Department of I&E Visionaries and Associate

Professor Masaya Yasuda in Institute of Mathematics for Industry at Kyushu University

who gave me many helpful suggestions and important advice. I also wish to express my

sincere appreciation to Professor Kazuo Ohta and Associate Professor Mitsugu Iwamoto

in Department of Informatics at The University of Electro-Communications who made

many valuable suggestions and gave constructive advices.

I wish to present my deep gratitude to Dr. Toshiaki Tanaka, the executive vice pres-

ident at KDDI Research, Inc., for his continuous support, helpful comments. I could

challenge anything new under his kind supervising and help. I wish to present my heart-

felt appreciation to Dr. Shinsaku Kiyomoto, the senior manager of Information Security

Laboratory at KDDI Research, Inc. for his constant encouragement, kind leading, and

constructive comments on my research, and giving me a chance to study in external

Ph.D. course. His comments provided me with many insightful ideas. I wish to present

my heartfelt appreciation to Dr. Yutaka Miyake, the senior manager of Smart Secu-

rity Laboratory at KDDI Research, Inc. for his constant encouragement, kind leading,

and constructive comments on my research. His comments provided me with many in-

sightful ideas. My keen appreciation goes to the members of Security department at

Kyushu University

Acknowledgements 102

KDDI Research Inc., for kind support and useful comments. Discussions with them

were remarkably helpful and fruitful to carry out my research.

Last but by no means least, I would like to thank my family, especially my wife and

children, for their supports during my study and writing this thesis.

Kyushu University

References 103

References

[1] Miklós Ajtai. Oblivious RAMs without cryptographic assumptions. In Leonard J.

Schulman, editor, Proceedings of the 42nd Annual ACM Symposium on Theory of

Computing, STOC 2010, pages 181–190. ACM, 2010.

[2] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) Sorting Net-

work. In David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel,

Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest,

Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM

Symposium on Theory of Computing, STOC 1983, pages 1–9. ACM, 1983.

[3] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Mo-

riai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher suitable

for multiple platforms - design and analysis. In Douglas R. Stinson and Stafford E.

Tavares, editors, Selected Areas in Cryptography, 7th Annual International Work-

shop, SAC 2000, volume 2012 of LNCS, pages 39–56. Springer, 2001.

[4] Dmitri Asonov and Johann Christoph Freytag. Almost Optimal Private Infor-

mation Retrieval. In Roger Dingledine and Paul F. Syverson, editors, Privacy

Enhancing Technologies, volume 2482 of LNCS, pages 209–223. Springer, 2002.

[5] Chongxi Bao and Ankur Srivastava. Exploring timing side-channel attacks on path-

orams. In 2017 IEEE International Symposium on Hardware Oriented Security and

Trust, HOST, pages 68–73. IEEE Computer Society, 2017.

[6] Feng Bao, Robert H. Deng, and Peirong Feng. An Efficient and Practical Scheme

Kyushu University

References 104

for Privacy Protection in the E-Commerce of Digital Goods. In Dongho Won,

editor, ICISC, volume 2015 of LNCS, pages 162–170. Springer, 2000.

[7] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,

Salil P. Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating Programs.

In Joe Kilian, editor, CRYPTO, volume 2139 of LNCS, pages 1–18. Springer, 2001.

[8] Kenneth E. Batcher. Sorting Networks and Their Applications. In AFIPS Spring

Joint Computing Conference, volume 32 of AFIPS Conference Proceedings, pages

307–314. Thomson Book Company, Washington D.C., 1968.

[9] Amos Beimel and Yoav Stahl. Robust Information-Theoretic Private Information

Retrieval. J. Cryptology, 20(3):295–321, 2007.

[10] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and

Yan Huang. Practicing Oblivious Access on Cloud Storage: the Gap, the Fallacy,

and the New Way Forward. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,

editors, ACM SIGSAC Conference on Computer and Communications Security,

pages 837–849. ACM, 2015.

[11] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. Toward

robust hidden volumes using write-only oblivious RAM. In Gail-Joon Ahn, Moti

Yung, and Ninghui Li, editors, Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, pages 203–214. ACM, 2014.

[12] Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote Oblivious Storage:

Making Oblivious RAM Practical. Technical Report MIT-CSAIL-TR-2011-018,

Massachusetts Institute of Technology, 2011.

[13] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and ap-

plications. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography -

13th International Conference, TCC 2016-A, Part II, volume 9563 of LNCS, pages

175–204. Springer, 2016.

Kyushu University

References 105

[14] David Brumley and Dan Boneh. Remote Timing Attacks are Practical. Computer

Networks, 48(5):701–716, 2005.

[15] T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM: Unifying Statistically and

Computationally Secure ORAMs and OPRAMs. In Yael Kalai and Leonid Reyzin,

editors, TCC, volume 10678 of LNCS, pages 72–107. Springer, 2017.

[16] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious Parallel RAM: Improved

Efficiency and Generic Constructions. In Eyal Kushilevitz and Tal Malkin, editors,

Theory of Cryptography - 13th International Conference, TCC 2016-A, Part II,

volume 9563 of LNCS, pages 205–234. Springer, 2016.

[17] Benny Chor and Niv Gilboa. Computationally Private Information Retrieval (Ex-

tended Abstract). In Frank Thomson Leighton and Peter W. Shor, editors, Proceed-

ings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,

STOC 1997, pages 304–313. ACM, 1997.

[18] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Infor-

mation Retrieval. In FOCS, pages 41–50. IEEE Computer Society, 1995.

[19] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private Infor-

mation Retrieval. J. ACM, 45(6):965–981, 1998.

[20] Codenomicon Ltd. The Heartbleed Bug. http://heartbleed.com, 2014.

[21] Don Coppersmith. Small solutions to polynomial equations, and low exponent rsa

vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[22] Dallas Semiconductor Corporation. DS1955 Java-Powered Cryptographic

iButton. http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/

140sp111.pdf, 2000.

[23] Alexei Czeskis, David J. St. Hilaire, Karl Koscher, Steven D. Gribble, Tadayoshi

Kohno, and Bruce Schneier. Defeating encrypted and deniable file systems: True-

crypt v5.1a and the case of the tattling OS and applications. In Niels Provos,

Kyushu University

http://heartbleed.com
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp111.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp111.pdf

References 106

editor, 3rd USENIX Workshop on Hot Topics in Security, HotSec’08. USENIX

Association, 2008.

[24] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. In Jean-Jacques

Quisquater and Bruce Schneier, editors, CARDIS, volume 1820 of LNCS, pages

277–284. Springer, 1998.

[25] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly Secure

Oblivious RAM without Random Oracles. In Yuval Ishai, editor, TCC, volume

6597 of LNCS, pages 144–163. Springer, 2011.

[26] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally robust private in-

formation retrieval. In Proceedings of the 21st USENIX Conference on Security

Symposium, Security’12, Berkeley, CA, USA, 2012. USENIX Association.

[27] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version

1.2. RFC 5246, 2008.

[28] Xuhua Ding, Yanjiang Yang, and Robert H. Deng. Database access pattern pro-

tection without full-shuffles. IEEE Trans. Information Forensics and Security,

6(1):189–201, 2011.

[29] Jack Doerner and Abhi Shelat. Scaling ORAM for secure computation. In Bha-

vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM

CCS, pages 523–535. ACM, 2017.

[30] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. Three-party

ORAM for secure computation. In Tetsu Iwata and Jung Hee Cheon, editors,

ASIACRYPT, volume 9452 of LNCS, pages 360–385. Springer, 2015.

[31] Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan,

and Srinivas Devadas. Suppressing the Oblivious RAM Timing Channel While

Making Information Leakage and Program Efficiency Trade-offs. In 20th IEEE

Kyushu University

References 107

International Symposium on High Performance Computer Architecture, HPCA

2014, pages 213–224. IEEE Computer Society, 2014.

[32] Scott R. Fluhrer and David A. McGrew. Statistical analysis of the alleged RC4

keystream generator. In Bruce Schneier, editor, Fast Software Encryption, 7th

International Workshop, FSE, volume 1978 of LNCS, pages 19–30. Springer, 2000.

[33] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Protocol

Version 3.0. RFC 6101, 2011.

[34] Kazuhide Fukushima, Shinsaku Kiyomoto, Toshiaki Tanaka, and Kouichi Saku-

rai. Analysis of Program Obfuscation Schemes with Variable Encoding Technique.

IEICE Transactions, 91-A(1):316–329, 2008.

[35] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana

Raykova, and Daniel Wichs. Optimizing oram and using it efficiently for secure

computation. In Emiliano De Cristofaro and Matthew Wright, editors, Privacy

Enhancing Technologies, volume 7981 of LNCS, pages 1–18. Springer, 2013.

[36] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data

privacy in private information retrieval schemes. In Jeffrey Scott Vitter, editor,

Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,

STOC 1998, pages 151–160. ACM, 1998.

[37] Ian Goldberg. Percy++ project. SourceForge, http://percy.sourceforge.net/.

[38] Ian Goldberg. Improving the robustness of private information retrieval. In IEEE

Symposium on Security and Privacy, pages 131–148. IEEE Computer Society, 2007.

[39] Oded Goldreich. Towards a Theory of Software Protection and Simulation by

Oblivious RAMs. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM

Symposium on Theory of Computing, STOC 1987, pages 182–194. ACM, 1987.

[40] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on

Oblivious RAMs. J. ACM, 43(3):431–473, 1996.

Kyushu University

References 108

[41] Shafi Goldwasser and Guy N. Rothblum. On Best-Possible Obfuscation. In Salil P.

Vadhan, editor, TCC, volume 4392 of LNCS, pages 194–213. Springer, 2007.

[42] Michael T. Goodrich. Data-Oblivious External-Memory Algorithms for the Com-

paction, Selection, and Sorting of Outsourced Data. In Rajmohan Rajaraman and

Friedhelm Meyer auf der Heide, editors, SPAA, pages 379–388. ACM, 2011.

[43] Michael T. Goodrich and Michael Mitzenmacher. Privacy-Preserving Access of

Outsourced Data via Oblivious RAM Simulation. In Luca Aceto, Monika Hen-

zinger, and Jiri Sgall, editors, ICALP (2), volume 6756 of LNCS, pages 576–587.

Springer, 2011.

[44] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. Oblivious RAM simulation with Efficient Worst-Case Access Overhead.

In Christian Cachin and Thomas Ristenpart, editors, CCSW, pages 95–100. ACM,

2011.

[45] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. Practical Oblivious Storage. In Elisa Bertino and Ravi S. Sandhu,

editors, CODASPY, pages 13–24. ACM, 2012.

[46] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. Privacy-Preserving Group Data Access via Stateless Oblivious RAM

Simulation. In Yuval Rabani, editor, SODA, pages 157–167. SIAM, 2012.

[47] Steven Gordon, Xinyi Huang, Atsuko Miyaji, Chunhua Su, Karin Sumongkayothin,

and Komwut Wipusitwarakun. Recursive matrix oblivious RAM: an ORAM con-

struction for constrained storage devices. IEEE Trans. Information Forensics and

Security, 12(12):3024–3038, 2017.

[48] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William

Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

Kyushu University

References 109

Felten. Lest we remember: cold-boot attacks on encryption keys. Commun. ACM,

52(5):91–98, 2009.

[49] Ryan Henry, Femi G. Olumofin, and Ian Goldberg. Practical PIR for electronic

commerce. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM

Conference on Computer and Communications Security, pages 677–690. ACM,

2011.

[50] Yizhou Huang and Ian Goldberg. Outsourced Private Information Retrieval. In

Ahmad-Reza Sadeghi and Sara Foresti, editors, WPES, pages 119–130. ACM, 2013.

[51] Anatoly A. Karatsuba and Y. Ofman. Multiplication of multidigit numbes on

automata. Soviet Physics Doklady, 7:595–596, 1963.

[52] Neal Kobliz. Elliptic curve cryptosystems. Mathematics of Computation,

48(177):203–209, 1987.

[53] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (In)security of Hash-

based Oblivious RAM and a New Balancing Scheme. In Dana Randall, editor,

SODA, pages 143–156. SIAM, 2012.

[54] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT Needed: SIN-

GLE Database, Computationally-Private Information Retrieval. In FOCS, pages

364–373. IEEE Computer Society, 1997.

[55] Jacob R. Lorch, James W. Mickens, Bryan Parno, Mariana Raykova, and Joshua

Schiffman. Toward Practical Private Access to Data Centers via Parallel ORAM.

IACR ePrint, 2012:133, 2012.

[56] Steve Lu and Rafail Ostrovsky. Distributed Oblivious RAM for Secure Two-Party

Computation. IACR ePrint, 2011:384, 2011.

[57] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive Results and Techniques

for Obfuscation. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT,

volume 3027 of LNCS, pages 20–39. Springer, 2004.

Kyushu University

References 110

[58] Carsten Maartmann-Moe, Steffen E. Thorkildsen, and André íRnes. The persis-

tence of memory: Forensic identification and extraction of cryptographic keys.

Digit. Investig., 6:S132–S140, September 2009.

[59] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. Pri-

vacy and access control for outsourced personal records. In 2015 IEEE Symposium

on Security and Privacy, SP 2015, pages 341–358. IEEE Computer Society, 2015.

[60] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. Ma-

liciously Secure Multi-Client ORAM. In Dieter Gollmann, Atsuko Miyaji, and

Hiroaki Kikuchi, editors, Applied Cryptography and Network Security - 15th Inter-

national Conference, ACNS 2017, volume 10355 of LNCS, pages 645–664. Springer,

2017.

[61] Itsik Mantin. Predicting and distinguishing attacks on RC4 keystream generator.

In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, volume 3494 of LNCS, pages 491–506. Springer, 2005.

[62] Carlos Aguilar Melchor, Guilhem Castagnos, and Philippe Gaborit. Lattice-based

homomorphic encryption of vector spaces. In Frank R. Kschischang and En-Hui

Yang, editors, ISIT, pages 1858–1862. IEEE, 2008.

[63] Carlos Aguilar Melchor and Philippe Gaborit. A fast private information re-

trieval protocol. In Frank R. Kschischang and En-Hui Yang, editors, ISIT, pages

1848–1852. IEEE, 2008.

[64] Peter L. Montgomery. Modular multiplication without trial division. Mathematics

of Computation, 44:519–521, 1985.

[65] Tilo Müller and Michael Spreitzenbarth. Frost - forensic recovery of scrambled

telephones. In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel,

Kyushu University

References 111

and Reihaneh Safavi-Naini, editors, ACNS, volume 7954 of LNCS, pages 373–388.

Springer, 2013.

[66] Yuto Nakano, Carlos Cid, Shinsaku Kiyomoto, and Yutaka Miyake. Memory Ac-

cess Pattern Protection for Resource-Constrained Devices. In Stefan Mangard,

editor, CARDIS, volume 7771 of LNCS, pages 188–202. Springer, 2012.

[67] NIST. Advanced Encryption Standard (AES). FIPS 197 https://nvlpubs.nist.

gov/nistpubs/fips/nist.fips.197.pdf, 2001.

[68] NIST. Secure hash standard. FIPS 180-3 http://csrc.nist.gov/publications/

fips/fips180-3/fips180-3_final.pdf, 2008.

[69] NIST. Digital Signature Standard (DSS). FIPS 186-4 http://nvlpubs.nist.

gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf, 2013.

[70] Femi G. Olumofin and Ian Goldberg. Revisiting the Computational Practicality of

Private Information Retrieval. In George Danezis, editor, Financial Cryptography,

volume 7035 of LNCS, pages 158–172. Springer, 2012.

[71] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermea-

sures: The Case of AES. In David Pointcheval, editor, CT-RSA, volume 3860 of

LNCS, pages 1–20. Springer, 2006.

[72] Kenneth G. Paterson and Mario Strefler. A practical attack against the use of

RC4 in the HIVE hidden volume encryption system. In Feng Bao, Steven Miller,

Jianying Zhou, and Gail-Joon Ahn, editors, Proceedings of the 10th ACM Sympo-

sium on Information, Computer and Communications Security, ASIA CCS, pages

475–482. ACM, 2015.

[73] Benny Pinkas and Tzachy Reinman. Oblivious RAM Revisited. In Tal Rabin,

editor, CRYPTO, volume 6223 of LNCS, pages 502–519. Springer, 2010.

[74] Nicholas Pippenger and Michael J. Fischer. Relations Among Complexity Mea-

sures. J. ACM, 26(2):361–381, April 1979.

Kyushu University

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

References 112

[75] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi,

Marten van Dijk, and Srinivas Devadas. Constants Count: Practical Improvements

to Oblivious RAM. In Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX

Security Symposium, USENIX Security 15, pages 415–430. USENIX Association,

2015.

[76] Ling Ren, Christopher W. Fletcher, Xiangyao Yu, Marten van Dijk, and Srinivas

Devadas. Integrity Verification for Path Oblivious-RAM. In HPEC, pages 1–6.

IEEE, 2013.

[77] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,

get off of my cloud: exploring information leakage in third-party compute clouds.

In Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS,

pages 199–212. ACM, 2009.

[78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtain-

ing digital signatures and public-key cryptosystems (reprint). Commun. ACM,

26(1):96–99, 1983.

[79] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher (blow-

fish). In Ross J. Anderson, editor, Fast Software Encryption, Cambridge Secu-

rity Workshop, Cambridge, UK, December 9-11, 1993, Proceedings, volume 809 of

LNCS, pages 191–204. Springer, 1993.

[80] Claus-Peter Schnorr and Markus Jakobsson. Security of Signed ElGamal Encryp-

tion. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of LNCS, pages

73–89. Springer, 2000.

[81] R. Seggelmann, M. Tuexen, and M. Williams. Transport Layer Security (TLS)

and Datagram Transport Layer Security (DTLS) Heartbeat Extension. https:

//tools.ietf.org/html/rfc6520, 2012.

[82] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM

Kyushu University

https://tools.ietf.org/html/rfc6520
https://tools.ietf.org/html/rfc6520

References 113

with O((logN)3) Worst-Case Cost. In Dong Hoon Lee and Xiaoyun Wang, editors,

ASIACRYPT, volume 7073 of LNCS, pages 197–214. Springer, 2011.

[83] S. W. Smith and D. Safford. Practical private information retrieval with secure

coprocessors. Technical report, IBM Research Division, 2000.

[84] S. W. Smith and D. Safford. Practical server privacy with secure coprocessors.

IBM SYSTEMS JOURNAL, 40(3):683–695, 2001.

[85] Emil Stefanov and Elaine Shi. ObliviStore: High Performance Oblivious Cloud

Storage. In IEEE Symposium on Security and Privacy, pages 253–267. IEEE

Computer Society, 2013.

[86] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM.

CoRR, abs/1106.3652, 2011.

[87] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards Practical Oblivious

RAM. In NDSS. The Internet Society, 2012.

[88] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path oram: an extremely simple oblivious

ram protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,

ACM CCS, pages 299–310. ACM, 2013.

[89] Shruti Tople, Yaoqi Jia, and Prateek Saxena. PRO-ORAM: Constant Latency

Read-Only Oblivious RAM. IACR Cryptology ePrint Archive, 2018:220, 2018.

[90] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness of the

Goldreich-Ostrovsky Lower Bound. In Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15, pages 850–861,

New York, NY, USA, 2015. ACM.

[91] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil

Stefanov, and Yan Huang. Oblivious Data Structures. In Gail-Joon Ahn, Moti

Kyushu University

References 114

Yung, and Ninghui Li, editors, Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, pages 215–226. ACM, 2014.

[92] Peter Williams and Radu Sion. Usable PIR. In NDSS. The Internet Society, 2008.

[93] Peter Williams and Radu Sion. Single round access privacy on outsourced stor-

age. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS, pages

293–304. ACM, 2012.

[94] Peter Williams and Radu Sion. SR-ORAM: Single Round-trip Oblivious RAM. In

ACNS, industrial track, pages 19–33, 2012.

[95] Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: a parallel oblivious file

system. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS,

pages 977–988. ACM, 2012.

[96] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA Nonces Using

the FLUSH+RELOAD Cache Side-channel Attack. Cryptology ePrint Archive:

Report 2014/140, 2014.

[97] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution, Low Noise,

L3 Cache Side-Channel Attack. Cryptology ePrint Archive: Report 2013/448,

2013.

[98] Samee Zahur, Xiao Shaun Wang, Mariana Raykova, Adrià Gascón, Jack Doerner,

David Evans, and Jonathan Katz. Revisiting square-root ORAM: efficient random

access in multi-party computation. In IEEE S&P, pages 218–234. IEEE Computer

Society, 2016.

[99] Xiaotong Zhuang, Tao Zhang, Hsien-Hsin S. Lee, and Santosh Pande. Hardware

Assisted Control Flow Obfuscation for Embedded Processors. In Mary Jane Irwin,

Wei Zhao, Luciano Lavagno, and Scott A. Mahlke, editors, CASES, pages 292–302.

ACM, 2004.

Kyushu University

References 115

[100] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. HIDE: an infrastructure for

efficiently protecting information leakage on the address bus. In Shubu Mukherjee

and Kathryn S. McKinley, editors, ASPLOS, pages 72–84. ACM, 2004.

Kyushu University

Index 116

Index

δ-length ε-security, 32

active attack, 54

AES, 13

Chinese Remainder Theorem, 12

circuit ORAM, 20

cold boot attack, 10

computational PIR, 1

dd, 9

GORAM, 20

Hardware-assisted Control Flow Obfus-

cation, 5

heartbleed, 13

hidden volume, 71

Hierarchical ORAM, 17

History Table, 34

HIVE, 71

Identifying Access Pattern, 59

Identifying Dummy Blocks, 55

information theoretic PIR, 1

Integrity Checking, 69

Lightweight Access Pattern Protection,

26

ltrace, 17

Memory dump, 9

Obfuscation, 45

Oblivious Data Structures, 0

Oblivious Parallel RAM, 0

Open SSL, 13

Parallelism, 68

Path ORAM, 18

PIR-MCORAM, 21

Private Information Retrieval, 1

PRO-ORAM, 21

Process Peeping Tool, 17

ptrace, 9, 12

quadratic non-residue, 2

quadratic residue, 2

Ring ORAM, 20

RSA, 12

Secure Sockets Layer, 10

Square Root ORAM, 16

Transport Layer Security, 10

TrueCrypt, 71

Volume Encryption, 71

Kyushu University

List of Publications 117

List of Publications

Related Papers

Journal Papers

1. Yuto Nakano, Shinsaku Kiyomoto, Yutaka Miyake, and Kouichi Sakurai. Compari-

son of access pattern protection schemes and proposals for efficient implementation.

IEICE Transactions, 97-D(10):2576–2585, 2014.

International Conference Papers

1. Yuto Nakano, Carlos Cid, Shinsaku Kiyomoto, and Yutaka Miyake. Memory Ac-

cess Pattern Protection for Resource-Constrained Devices. In Stefan Mangard,

editor, Smart Card Research and Advanced Applications - 11th International Con-

ference, CARDIS 2012, Graz, Austria, November 28-30, 2012, Revised Selected Pa-

pers, volume 7771 of Lecture Notes in Computer Science, pages 188–202. Springer,

2012.

2. Yuto Nakano, Anirban Basu, Shinsaku Kiyomoto, and Yutaka Miyake. Key ex-

traction attack using statistical analysis of memory dump data. In Javier López,

Indrajit Ray, and Bruno Crispo, editors, Risks and Security of Internet and Sys-

tems - 9th International Conference, CRiSIS 2014, Trento, Italy, August 27-29,

2014, Revised Selected Papers, volume 8924 of Lecture Notes in Computer Science,

pages 239–246. Springer, 2015.

3. Yuto Nakano, Seira Hidano, Shinsaku Kiyomoto, and Kouichi Sakurai Active

Kyushu University

List of Publications 118

Attack Against Oblivious RAM. In Leonard Barolli, Makoto Takizawa, Tomoya

Enokido, Marek R. Ogiela, Lidia Ogiela, and Nadeem Javaid, editors, 32nd IEEE

International Conference on Advanced Information Networking and Applications,

AINA 2018, Krakow, Poland, May 16-18, 2018, pages 744–751. IEEE Computer

Society, 2018.

Domestic Conference Papers

1. Yuto Nakano, Shinsaku Kiyomoto and Yutaka Miyake. Implementation of Memory

Access Pattern Protection [in Japanese]. The 31st Symposium on Cryptography

and Information Security, 2014.

2. Yuto Nakano, Shinsaku Kiyomoto and Yutaka Miyake. Access pattern protection

considering biased accesses [in Japanese]. IEICE Society Conference, 2014

3. Yuto Nakano, Seira Hidano, Shinsaku Kiyomoto and Koichi Sakurai. Security

Evaluation of Memory Access Pattern Protection against Active Adversaries [in

Japanese]. Computer Security Symposium, 2017.

Other Papers

Journal Papers

1. Yuto Nakano, Kazuhide Fukushima, Shinsaku Kiyomoto, Tsukasa Ishiguro, Yutaka

Miyake, Toshiaki Tanaka, and Kouichi Sakurai. Fast implementation of kcipher-2

for software and hardware. IEICE Transactions, 97-D(1):43–52, 2014.

2. Takafumi Hibiki, Naofumi Homma, Yuto Nakano, Kazuhide Fukushima, Shinsaku

Kiyomoto, Yutaka Miyake, and Takafumi Aoki. Chosen-iv correlation power anal-

ysis on kcipher-2 hardware and a masking-based countermeasure. IEICE Transac-

tions, 97-A(1):157–166, 2014.

Kyushu University

List of Publications 119

International Conference Papers

1. Ryu Watanabe, Yuto Nakano, and Toshiaki Tanaka. Single sign-on techniques

with pki-based authentication for mobile phones. In Hamid R. Arabnia, Kevin

Daimi, Michael R. Grimaila, George Markowsky, Selim Aissi, Victor A. Clincy,

Leonidas Deligiannidis, Donara Gabrielyan, Gevorg Margarov, Ashu M. G. Solo,

Craig Valli, and Patricia A. H. Williams, editors, Proceedings of the 2010 Interna-

tional Conference on Security & Management, SAM 2010, July 12-15, 2010, Las

Vegas Nevada, USA, 2 Volumes, pages 152–156. CSREA Press, 2010.

2. Yuto Nakano, Jun Kurihara, Shinsaku Kiyomoto, and Toshiaki Tanaka. On a

construction of stream-cipher-based hash functions. In Sokratis K. Katsikas and

Pierangela Samarati, editors, SECRYPT 2010 - Proceedings of the International

Conference on Security and Cryptography, Athens, Greece, July 26-28, 2010, SE-

CRYPT is part of ICETE - The International Joint Conference on e-Business and

Telecommunications, pages 334–343. SciTePress, 2010.

3. Yuto Nakano, Carlos Cid, Kazuhide Fukushima, and Shinsaku Kiyomoto. Anal-

ysis of message injection in stream cipher-based hash functions. In Javier López

and Gene Tsudik, editors, Applied Cryptography and Network Security - 9th In-

ternational Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings,

volume 6715 of Lecture Notes in Computer Science, pages 498–513, 2011.

4. Shinsaku Kiyomoto, Matthew Henricksen, Wun-She Yap, Yuto Nakano, and Kazuhide

Fukushima. MASHA - low cost authentication with a new stream cipher. In Xuejia

Lai, Jianying Zhou, and Hui Li, editors, Information Security, 14th International

Conference, ISC 2011, Xi’an, China, October 26-29, 2011. Proceedings, volume

7001 of Lecture Notes in Computer Science, pages 63–78. Springer, 2011.

5. Yuto Nakano, Jun Kurihara, Shinsaku Kiyomoto, and Toshiaki Tanaka. Stream

cipher-based hash function and its security. In Mohammad S. Obaidat, George A.

Tsihrintzis, and Joaquim Filipe, editors, e-Business and Telecommunications - 7th

Kyushu University

List of Publications 120

International Joint Conference, ICETE 2010, Athens, Greece, July 26-28, 2010,

Revised Selected Papers, volume 222 of Communications in Computer and Infor-

mation Science, pages 188–202. Springer, 2012.

6. Takafumi Hibiki, Naofumi Homma, Yuto Nakano, Kazuhide Fukushima, Shinsaku

Kiyomoto, Yutaka Miyake, and Takafumi Aoki. Chosen-iv correlation power anal-

ysis on kcipher-2 and a countermeasure. In Emmanuel Prouff, editor, Constructive

Side-Channel Analysis and Secure Design - 4th International Workshop, COSADE

2013, Paris, France, March 6-8, 2013, Revised Selected Papers, volume 7864 of

Lecture Notes in Computer Science, pages 169–183. Springer, 2013.

7. Shinsaku Kiyomoto, Andre Rein, Yuto Nakano, Carsten Rudolph, and Yutaka

Miyake. LMM - A common component for software license management on cloud.

In Pierangela Samarati, editor, SECRYPT 2013 - Proceedings of the 10th Interna-

tional Conference on Security and Cryptography, Reykjavík, Iceland, 29-31 July,

2013, pages 284–295. SciTePress, 2013.

8. Yuto Nakano, Youssef Souissi, Robert Nguyen, Laurent Sauvage, Jean-Luc Dan-

ger, Sylvain Guilley, Shinsaku Kiyomoto, and Yutaka Miyake. A pre-processing

composition for secret key recovery on android smartphone. In David Naccache

and Damien Sauveron, editors, Information Security Theory and Practice. Secur-

ing the Internet of Things - 8th IFIP WG 11.2 International Workshop, WISTP

2014, Heraklion, Crete, Greece, June 30 - July 2, 2014. Proceedings, volume 8501

of Lecture Notes in Computer Science, pages 76–91. Springer, 2014.

9. Juan Camilo Corena, Anirban Basu, Yuto Nakano, Shinsaku Kiyomoto, and Yu-

taka Miyake. A multiple-server efficient reusable proof of data possesion from

private information retrieval techniques. In Mohammad S. Obaidat, Andreas

Holzinger, and Pierangela Samarati, editors, SECRYPT 2014 - Proceedings of

the 11th International Conference on Security and Cryptography, Vienna, Austria,

28-30 August, 2014, pages 307–314. SciTePress, 2014.

Kyushu University

List of Publications 121

10. Juan Camilo Corena, Anirban Basu, Yuto Nakano, Shinsaku Kiyomoto, and Yu-

taka Miyake. Data storage on the cloud under user control. In IEEE 6th Interna-

tional Conference on Cloud Computing Technology and Science, CloudCom 2014,

Singapore, December 15-18, 2014, pages 739–742. IEEE Computer Society, 2014.

11. Kazuhide Fukushima, Youssef Souissi, Seira Hidano, Robert Nguyen, Jean-Luc

Danger, Sylvain Guilley, Yuto Nakano, Shinsaku Kiyomoto, and Laurent Sauvage.

Delay PUF assessment method based on side-channel and modeling analyzes: The

final piece of all-in-one assessment methodology. In 2016 IEEE Trustcom/Big-

DataSE/ISPA, Tianjin, China, August 23-26, 2016, pages 201–207. IEEE, 2016.

12. Seira Hidano, Yuto Nakano, and Shinsaku Kiyomoto. An evaluation framework for

fastest oblivious RAM. In Víctor Méndez Muñoz, Gary Wills, Robert John Walters,

Farshad Firouzi, and Victor Chang, editors, Proceedings of the 3rd International

Conference on Internet of Things, Big Data and Security, IoTBDS 2018, Funchal,

Madeira, Portugal, March 19-21, 2018., pages 114–122. SciTePress, 2018.

Domestic Conference

1. Yuto Naknao, Hidenori Kuwakado and Masakatu Morii. Inspection of sufficient

conditions of MD5 [in Japanese]. IEICE Tech. Rep., vol. 106, no. 175, ISEC2006-

27, pp. 133-139, July 2006.

2. Yuto Naknao, Hidenori Kuwakado and Masakatu Morii. Reexamination of Col-

lision Conditions of MD5 [in Japanese]. The 29th Symposium on Information

Theory and its Applications (SITA2006), pp.109–112, 2006

3. Yuto Nakano, Hidenori Kuwakado, and Masakatu Morii. Redundancy of the wang-

yu sufficient conditions. IACR Cryptology ePrint Archive, 2006:406, 2006.

4. Yuto Nakano, Jun Kurihara, Shinsaku Kiyomoto and Toshiaki Tanaka. A Study

on Stream Cipher Based Hash Functions [in Japanese]. IEICE Tech. Rep., vol.

109, no. 113, ISEC2009-29, pp. 153-159, July 2009.

Kyushu University

List of Publications 122

5. Yuto Nakano, Jun Kurihara, Shinsaku Kiyomoto and Toshiaki Tanaka. A Con-

struction of Stream-cipher-based Hash Function. The 27th Symposium on Cryp-

tography and Information Security, 2010.

6. Yuto Nakano, Jun Kurihara, Shinsaku Kiyomoto and Toshiaki Tanaka. A Message

Injection in SCH [in Japanese]. IEICE General Conference, 2010.

7. Matt Henricksen, Wun-she Yap, Chee-hoo Yian, Yuto Nakano, Kazuhide Fukushima,

Shinsaku Kiyomoto, and Toshiaki Tanaka. Side-channel Analysis and Countermea-

sures of K2 [in Japanese]. IEICE Tech. Rep., vol. 110, no. 44, ISEC2010-2, pp.

5–10, May 2010.

8. Yuto Nakano, Shinsaku Kiyomoto and Toshiaki Tanaka. Comparison of Message

Injection Functions for SCH [in Japanese]. IEICE Society Conference, 2010.

9. Yuto Nakano, Kazuhide Fukushima, Shinsaku Kiyomoto and Toshiaki Tanaka. On

the Hardware Implementation of K2 Stream Cipher [in Japanese]. IEICE General

Conference, 2011

10. Takafumi Hibiki, Kazuya Saito, Naofumi Homma, Takafumi Aoki, Yuto Nakano,

Kazuhide Fukushima, Shinsaku Kiyomoto and Yutaka Miyake. Correlation Power

Analysis on KCipher-2 and Its Countermeasures [in Japanese]. The 29th Sympo-

sium on Cryptography and Information Security, 2012

11. Takafumi Hibiki. A countermeasure against power analysis attacks on KCipher-2

and its evaluation [in Japanese]. Computer Security Symposium, 2012.

12. Hajime Uno, Sho Endo, Naofumi Homma, Takafumi Aoki, Yuto Nakano, Shinsaku

Kiyomoto and Yutaka Miyake. A Study on Correlation Electromagnetic Anal-

ysis against KCipher-2 Implemented on a Microcontroller for ZigBee Device [in

Japanese]. IEICE Tech. Rep., vol. 113, no. 484, ISEC2013-88, pp. 35–40, March

2014.

Kyushu University

List of Publications 123

13. Hajime Uno, Sho Endo, Naofumi Homma, Takafumi Aoki, Yuto Nakano, Shin-

saku Kiyomoto and Yutaka Miyake. Implementation and Evaluation of KCipher-2

Software for Smart Cards [in Japanese]. Computer Security Symposium, 2014.

14. Yuto Nakano, Shinsaku Kiyomoto and Yutaka Miyake. A Key Protection Mech-

anism for Cryptographic Applications [in Japanese]. IEICE General Conference,

2015.

Kyushu University

	Summary
	Summary (Japanese)
	Introduction
	Background
	Contribution of This Paper
	Organisation of This Paper

	Security Issues in Software Protection
	Threats against Software and its Data
	Memory Dump
	Cold Boot Attack
	Cache Timing Attack
	ptrace System Call
	Vulnerabilities

	Related Works
	Oblivious RAM
	Oblivious Data Structures
	Oblivious Parallel RAM
	Private Information Retrieval
	Difference between ORAM and PIR
	Hardware-assisted Control Flow Obfuscation

	Key Extraction Attack
	Introduction
	Background: RSA and AES
	RSA Description
	AES Description

	Attack Scenarios and Key Extraction Attack
	Attack Scenarios
	Attack against RSA
	Attack against AES

	Process Peeping Tool (PPT)
	Key Extraction from Memory Dump
	RSA
	AES

	Conclusion of This Chapter

	Lightweight Access Pattern Protection
	Introduction
	Access Pattern Protection Problem
	Our Scheme for Memory Access Pattern Protection
	Assumptions
	Set-up
	Instance 1: Construction with Secure Memory
	Instance 2: Construction without Secure Memory
	Applying to Other Structures

	Security Analysis
	Access Pattern Hiding
	Parameters: Size of Secure Memory and History Table
	How much dummy data should we use?
	Access Timing Hiding
	Copying More Than Two Blocks

	Comparison
	Small Example of Proposed Scheme
	Implementation Issues
	Managing Data in Buffer Using Flags
	Constructing Secure Region
	Reducing Storage Overhead
	Implementation Result

	Performance Comparison with Path ORAM
	Conclusion of This Chapter

	Active Attack against ORAM
	Introduction
	Preliminaries
	Side Channel Attack against ORAM
	Ren et al.'s Active Attack

	Identifying Dummy Blocks
	Identifying Dummy Blocks in Square Root ORAM
	Identifying Dummy Blocks in Our Proposal

	Identifying Access Pattern
	Identifying Access Pattern in Square Root ORAM
	Identifying Access Pattern in Hierarchical ORAM
	Identifying Access Pattern in Our Proposal
	Identifying Access Pattern in Path ORAM

	Experiment
	Countermeasures
	Parallelism
	Integrity Checking

	Conclusion of This Chapter

	Application of ORAM
	Volume Encryption

	Conclusion
	Acknowledgements
	References
	Index
	List of Publications

