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a b s t r a c t 

Vasculogenesis is the earliest process in development for spontaneous formation of a primitive capillary 

network from endothelial progenitor cells. When human umbilical vein endothelial cells (HUVECs) are 

cultured on Matrigel, they spontaneously form a network structure which is widely used as an in vitro 

model of vasculogenesis. Previous studies indicated that chemotaxis or gel deformation was involved in 

spontaneous pattern formation. In our study, we analyzed the mechanism of vascular pattern formation 

using a different system, meshwork formation by HUVECs embedded in fibrin gels. Unlike the others, this 

experimental system resulted in a perfusable endothelial network in vitro. We quantitatively observed 

the dynamics of endothelial cell protrusion and developed a mathematical model for one-dimensional 

dynamics. We then extended the one-dimensional model to two-dimensions. The model showed that 

random searching by endothelial cells was sufficient to generate the observed network structure in fibrin 

gels. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The circulatory system is the first organ system to function dur-

ng development ( Drake, 2003; Gilbert, 2014 ). Initially, aggrega-

ions of hemangioblasts, called blood islands, appear and connect

ith one another to form a primitive vascular plexus. This pro-

ess is called vasculogenesis . After establishment of these primi-

ive blood vessels, additional new blood vessels are generated by

prouting from preexisting vessels. This process is called angiogen-

sis ( Adams and Alitalo, 2007 ). 

In previous studies, human umbilical vein endothelial cells (HU-

ECs) cultivated on Matrigel (Matrigel system) were used as an ex-

erimental system of vasculogenesis. It is well known that some

ndothelial cells form a meshwork resembling a capillary plexus

n Matrigel ( Kubota et al., 1988; Miura and Tanaka, 2009 ). Sev-

ral mathematical models of this system were proposed. One

lass of models used a deformation of the extracellular matrix

 Manoussaki et al., 1996; van Oers et al., 2014 ). Another type of

odels used chemotaxis toward vascular endothelial growth factor

VEGF) ( Serini et al., 2003 ) ( Fig. 1 ). 
∗ Corresponding author. 
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Methods to create artificial vascular plexuses have been exten-

ively studied in the field of bioengineering ( Miura and Yokokawa,

016 ). These methods may be classified into two categories: pre-

esigned method and self-organizing method ( Hasan et al., 2014 ).

s an example of the latter, we utilized meshwork formation by

UVECs embedded in fibrin gels (fibrin gel system) ( Kim et al.,

013 ). This system is functionally better than the Matrigel system

ecause it spontaneously develops a perfusable capillary meshwork

ithout any artificial scaffolds or patterns. However, the mecha-

ism of meshwork formation in this system has not been eluci-

ated. 

In our study, we monitored the time course of pattern forma-

ion in fibrin gel by confocal microscopy, finding that the pattern

ormation mechanism in fibrin gel was very different from that on

atrigel. Meshwork formation by random endothelial protrusion

t the early phase of culture determined the network pattern ulti-

ately formed in this system. Based on our observations, we for-

ulated a one-dimensional (1D) model of the extension/collapse

ynamics of the cell protrusions. We analytically derived the con-

ection probability between cells in this system. We then devel-

ped a two-dimensional (2D) model by incorporating cell size and

istribution. Numerical simulation of the model reproduced the

xperimentally observed meshwork morphology. We assayed two

http://dx.doi.org/10.1016/j.jtbi.2017.06.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.06.012&domain=pdf
http://dx.doi.org/10.1016/j.jtbi.2017.06.012
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On Matrigel

In Fibrin gel

Chemotaxis

Mechanisms

Gel deformation

Not elucidated

Fig. 1. Mechanisms of in vitro vasculogenesis. When endothelial cells are cultivated 

on Matrigel or in a fibrin gel, they form network-like structures. Proposed mecha- 

nisms of pattern formation on Matrigel were chemotaxis toward VEGF ( Serini et al., 

2003 ) and mechanical gel deformation ( Manoussaki et al., 1996; van Oers et al., 

2014 ). Pattern formation mechanisms in fibrin gels, however, were not previously 

examined. Panels showing Matrigel model simulations were reprinted from van 

Oers et al. (2014) ; Serini et al. (2003) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Endothelial pattern formation inside the microdevice did not have the char- 

acteristics observed in the Matrigel system. (a) On Matrigel, VEGF was accumu- 

lated around HUVECs (reprinted from Köhn-Luque et al. (2013) ). (b) In fibrin gels, 

VEGF accumulation around cells was not observed. (c) On Matrigel, each cell ex- 

erted strong traction forces. Small fluorescent particles were mixed with Matrigel 

and time-lapse images were obtained. Then gel movements were analyzed using 

particle image velocitometry (PIV). (d) In fibrin gels, cell traction of the extracellu- 

lar matrix was not evident. Scale bars = 50 μm. 
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functional characteristics of the network, percolation and island

size distribution. Our model should be useful for controlling net-

work structures in vitro. 

2. Experimental observation: endothelial meshwork formation 

during vasculogenesis in fibrin gels 

2.1. The mechanism of meshwork formation in fibrin gels was 

different from that on Matrigel. 

In mathematical studies of the Matrigel system, two mecha-

nisms of meshwork formation were proposed, chemotaxis toward

VEGF and gel deformation. These phenomena were confirmed ex-

perimentally ( Fig. 2 a, c). However, in fibrin gels, there was no VEGF

gradient observed around cells ( Fig. 2 b) and no detectable defor-

mation of the extracellular matrix ( Fig. 2 d). Detailed experimental

procedures for the VEGF gradient visualization were described in

Köhn-Luque et al. (2013) . The difference in gel traction was statis-

tically significant (See Appendix B and Supplemental video 1). In

addition, cell movements were different in the Matrigel and fib-

rin gel systems. In the Matrigel system, cells moved collectively

to form initial aggregates. In contrast, cells barely moved in fibrin

gels. Therefore, the mechanism of endothelial meshwork formation

in fibrin gels was different from that on Matrigel. 

2.2. Observation of meshwork formation 

We observed capillary formation and found that the initial

meshwork pattern within 24 h determined that of the perfusable

capillary network formed after a week ( Fig. 3 a). From this obser-

vation, we focused on cellular connections made by protrusions to

elucidate the mechanism of generating the initial meshwork pat-

tern. 

We observed that connections by cellular protrusions enabled

meshwork formation without cell movement. Time-lapse observa-

tions of fibrin gel cultures revealed that: 

1. Cells did not move, but actively formed protrusions ( Fig. 3 b). 

2. Protrusions underwent repeated cycles of extension and col-

lapse ( Fig. 3 c). 
3. When a protrusion collided with the surface of an adjacent cell,

a connection was usually established (23/20) ( Fig. 3 d). 

4. Collisions between protrusions (8/21) were fewer than colli-

sions between a protrusion and cell body (13/21). 

5. Formation of the protrusion was not affected by neighboring

cells ( Fig. 3 e, f). 

6. Speed of collapse was greater than that of extension ( Fig. 3 g,

h). 

7. Two neighboring cells had a higher probability of connecting

when they were closer to one another. 

. Model definition 

.1. Discrete-time stochastic model for protrusion dynamics 

We formulated a model for protrusion dynamics using a

iscrete-time stochastic process. A protrusion whose initial length

s 0 extends at a rate c (It was assumed to be a positive integer

or simplicity.) per unit time and it connects to a neighboring cell

hen it collides with the surface of that cell. The protrusion col-

apses at probability p ( > 0) per unit time and the length then

nstantaneously becomes 0. Assuming the length of a protrusion at

ime τ is A τ , this process is expressed as follows: 

P r(A τ+1 = A τ + c) = 1 − p 
P r(A τ+1 = 0) = p. 

(1)

The transition diagram of the process is expressed in Fig. 4 a.

e can describe the model by a transition matrix as follows: 
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Fig. 3. Observation of protrusion dynamics and meshwork formation. (a) Observation of meshwork formation in fibrin gels for 24 h. HUVECs mixed with fibrin gels were 

injected into a microchannel separated by hexagonal pillars. Cells extended protrusions and formed networks within 24 h. (b) Observation of protrusions. HUVECs were 

stained with UEA1-Alexa 488 (green) and embedded in fibrin gels and their movements were observed for 12 h. HUVECs extended many thin protrusions, with lengths of 

up to 100 μm. (c) Kymograph of a protrusion. Protrusions showed frequent extensions and collapses, while nuclei seldom moved. Nuclei were stained with Hoechst 33342 

(bottom of the picture). (d) Establishment of a connection by collision of a protrusion with a cell body (red arrows). Scale bars = 50 μm. (e) Effects of an adjacent cell on 

protrusion formation. We defined the angle between the line connecting the centers of cells and the protrusion as θ . (f) Rose diagram of protrusion formation. We used 

maximum intensity projection of 8 cells, 29 protrusions. Degrees around the circle are θ and radii of sectors are frequency. Formation of protrusions was not affected by 

adjacent cells. (g) Differences in speed of extension and collapse. (h) Collapse speed ( � 1.75 μm/min) was higher than extension speed ( � 0.86 μm/min). The difference was 

statistically significant ( p < 0.005, Mann-Whitney U test). Even with the outlier removed, the difference remained statistically significant. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Definition of the stochastic model. (a) Transition probability of length. (b) 

Intuitive explanation of the last term of the recurrence equation. The condition “to 

connect at time (t + 1) for the first time” must satisfy three requirements: 1. The 

protrusion does not collide from time 1 to time (t − l/c) . 2. Collapse occurs at time 

(t − l/c + 1) . 3. A protrusion of length l is established at time (t + 1) . (c) A graph of 

P ( t, l ) function. It shows an increasing function for time and P ( t, l ) → 1 for t → ∞ . 

Parameters are l = 50 , p = 0 . 0562 and c = 0 . 86 . (d) Two cells are present in a two- 

dimensional field. Assuming that cells are circles, protrusions extend straight and 

each cell has an average number of a protrusions, we consider the situation that a 

protrusion from cell 1 collides with cell 2. 

⎛
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⎞ 
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×

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

P r(A τ = 0) 
P r(A τ = c) 

P r(A τ = 2 c) 
. . . 

P r(A τ = l − c) 
P r(A τ = l) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (2)

We also assumed a time for meshwork formation as t , the dis-

tance between the neighboring cells as l and a connection proba-

bility function as P ( t, l ). When 

l 
c is an integer, the following recur-

rence relation holds: 

P (t + 1 , l) = P r(A t+1 = l) 

= P r(A t = l) + P r(A t = l − c)(1 − p) 
= P r(A t = l) + P r(A t−1 = l − 2 c)(1 − p) 2 

= . . . 

= P r(A t = l) + P r(A t− l 
c +1 = 0)(1 − p) 

l 
c 

= P r(A t = l) + p 

l 
c −1 ∑ 

i = −∞ 

P r(A t− l 
c 

= ci )(1 − p) 
l 
c 

= P r(A t = l) + p{ 1 − P r(A t− l 
c 

= l) } (1 − p) 
l 
c 

= P (t, l) + p{ 1 − P (t − l 

c 
, l) } (1 − p) 

l 
c . (3)

For all positive integers t and l, P ( t, l ) can be evaluated from this

ecurrence relation and the boundary conditions 

P (t, l) = 0 (t < l/c) 

P (t, l) = (1 − p) 
l 
c (t = l/c) . 

(4)

The boundary conditions are obtained as follows: (i) When t <

 / c , the length of a protrusion is smaller than l because the highest

ossible length is ct ( < l ). Therefore P (t, l) = 0 . (ii) When t = l/c,

 connection is established only if the protrusion has been extend-

ng continuously during previous intervals of time. The connection

robability is equal to the probability of the protrusion continuing

o extend (See also Fig. 4 b). 

.2. Continuum limit of the recurrence relation 

The continuum limit of the recurrence relation is obtained by

xtending to real t and l greater or equal to 0. Replacing the time

tep by �t , (3) is expressed as follows: 

 (t + �t, l) = P (t, l) + P r(A t = l − c�t)(1 − p�t) 

= P (t, l) + P r(A t−�t = l − 2 c�t)(1 − p�t) 2 

= . . . 

= P (t, l) + P r(A t− l 
c +�t = 0)(1 − p�t) 

l 
c�t 

= P (t, l) + { 1 − P (t − l 

c 
, l) } p�t(1 − p�t) 

l 
c�t . (5)

Taking the limit of �t → 0, we obtain a differential equation

ith boundary conditions, 

 

 

 

dP 
dt 

= pe −
lp 
c { 1 − P (t − l 

c 
, l) } 

P (t, l) = 0 (t < 

l 
c 
) 

P ( l 
c 
, l) = e −

lp 
c . 

(6)

e can obtain the same equation from the probability density

unction of protrusion length (See Appendix C ). 

.3. Analytical solution 

Now an analytical solution of the Eq. (6) can be obtained. Al-

hough (6) is a delay differential equation, it is solved as follows,

sing periodicity: 

P (t, l) 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

[ ct 
l 

] ∑ 

k =1 

{ (−p) k −1 

k ! c k 
e −

lp 
c k (ct − kl) k −1 (kc − klp + cpt) } (ct ≥ l) 

0 (ct < l) 

(7)

here [ ct 
l 

] shows the largest integer which does not exceed 

ct 
l 

. The

etailed derivation is described in Appendix D . 
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Fig. 5. Results of numerical simulations. (a) Kymographs obtained from experimental data and from a numerical simulation of the model. Model dynamics reproduced the 

experimental observations. (b) Meshwork morphology obtained from observation and numerical simulation. 
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.4. Derivation of connection probability for two cells in two 

imensions 

Now we consider cell-cell connections by protrusion. Using P ( t,

 ), we obtained the connection probability of two cells, cells 1 and

, in a two-dimensional field, P cell ( t, l ). We assume that cells are

ircles of radius r and that protrusions extend straight in a circum-

erential direction ( Fig. 4 d). We define an average number of pro-

rusions per cell as a . The probability that one protrusion extends

n a connectable direction is 2 θ
2 π � 

sin θ
π = 

r 
π(2 r+ l) and the probabil-

ty that a protrusion from cell 1 collides with cell 2 can be approx-

mated as P ( t, l ). P cell ( t, l ) is the complement of the event in which

one of a protrusions establishes a connection. Therefore P cell ( t, l )

s expressed as follows: 

 cell (t, l) � 1 − { 1 − r 

π(2 r + l) 
P (t, l) } a . (8) 

. Numerical experiment 

.1. Model implementation 

Numerical simulations were performed using Mathematica .

ource codes are provided in supplemental material. 

.2. The discrete-time stochastic model reproduced protrusive 

ynamics 

Fig. 5 a shows kymographs obtained from experimental data

nd from a numerical simulation of the model. Model dynamics

nd experimental observations were similar in that protrusion ex-

ended and collapsed and collapse speed was greater than exten-

ion speed. See also supplemental video 2. 

.3. Simulation of meshwork formation 

Before simulating meshwork formation, we obtained unknown

arameters by length-connection probability relationships de-

ived from experimental observations. In this experiment, t = 12 ×
0( min ) , c = 0 . 86(μm / min ) and r � 15(μm). By the least squares

ethod, we derived values of unknown parameters as a = 6 . 784

nd p = 0 . 0562 ( Appendix E ). Using t, c, r, a and p , we obtained

 connection probability as a function of distance l . To reduce the

mount of calculations, we regarded P cell ( t, l )| l < 10 as P cell ( t , 10).

ell number per focal plane was assumed to be 100. We neglected

onnections between protrusions because they are not responsible
or meshwork morphology and crossing between protrusions can

xpress clustering of cells. Numerical simulation reproduced the

orphology of the observed endothelial meshworks ( Fig. 5 b). We

lso reproduced the time course of meshwork formation ( Fig. 5 b

nd Supplemental video 3, with the detailed mechanism described

n Appendix F ). In both experimental observations and numerical

imulations, neighboring cells were connected to one another to

orm clusters within first 3 h, followed by meshwork formation by

nter-cluster connections. In the 0 h image from experimental ob-

ervations, several connections were already established because

ells started extending protrusions during fibrin gel solidification

nd lectin staining. 

.4. Size distribution of islands in the simulation and the experiment 

To assess the similarity of patterns in the numerical simula-

ion and the experiment, we examined size distribution of the is-

ands ( Fig. 6 ). Analysis was performed using snapshots after 12 h.

e ignored islands with sizes of less than 100 μm 

2 because small

slands represented noise in the experimental data and minute

ivisions by clusters of cells in the simulation results. The two

istograms were similar and both distributions showed linearity

n log-log plots, indicating that both sets of data obeyed certain

ower laws. Scaling exponents were −0 . 949 for experimental and

0 . 950 for simulation data (blue line in Fig. 6 b). 

.5. Effects of simulation parameters on percolation 

Whether the network is functional depends on whether it per-

olates. We defined the top five cells as the top end and bottom

ve cells as the bottom end. Meshworks were considered to per-

olate when connections existed between top and bottom ends.

imulations were performed 100 times for each parameter set.

he same parameter set ( t = 12 × 60( min ) , c = 0 . 86(μm / min ) , r

 15(μm), a = 6 . 784 , p = 0 . 0562 ) was used, other than the param-

ter of interest. 

Some percolation threshold appeared to exist in this system.

he original parameter set was close to the percolation threshold

dashed line of Fig. 7 ), indicating that only a minor change in these

arameters could result in loss of percolation. 

We also compared critical density for percolation with a previ-

us report on a Matrigel system ( Gamba et al., 2003 ). A total of 94

ells/mm 

2 in a Matrigel system and 251 cells/mm 

2 in a fibrin gel

ystem were required for percolation. This reflected the immobility

f cell bodies in fibrin gels systems. 
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Fig. 6. Size distribution of islands. (a) Histograms of size distribution obtained from experimental and numerical simulation data. (b) Log-log plots of size distributions. 
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5. Discussion 

In our study, we showed that a random searching model re-

produced meshwork formation observed in a microdevice, with-

out requiring additional mechanisms. To our knowledge, this is the

first report of a mechanism for the intrinsic property of endothelial

cells to make perfusable networks in fibrin gels. Previous models,

using experiments on Matrigel, attributed mechanics ( Manoussaki

et al., 1996; van Oers et al., 2014 ) or chemotaxis ( Köhn-Luque et al.,

2011; 2013; Merks et al., 2006; Serini et al., 2003 ) as mechanisms

for spontaneous pattern formation. In these models, the system

was formulated by partial differential equations and pattern size

obtained by deriving the fastest growing wavenumber by linear

stability analysis. Although cell shape is known to modify the fi-

nal pattern in one of these models ( Merks et al., 2006 ), random

search by protrusions was not considered. Our results showed that

chemotaxis or mechanical deformation of the extracellular matrix

were unnecessary to produce a network pattern in this case. 

Relationships with percolation theory were considered in our

system and a similar analysis was performed in the Matrigel sys-

tem ( Serini et al., 2003 ). Whether a network percolates is func-

tionally important because it determines whether the endothelial

meshwork is perfusable. However, it was still difficult to analyti-

cally obtain a percolation threshold in our system. We could ob-

tain a percolation threshold analytically with regular nodes, but

our model uses randomly dispersed nodes. In addition, the connec-

tion probability function P ( t, l ) is not simple in our model, making

analysis even more difficult. 

We tried to obtain a characteristic length of protrusions by di-

mensional analysis. The characteristic length of protrusions had a
imension of c/p = 15 . 3(μm) . The average length of protrusions

bserved experimentally was ≈ 50 μm. Therefore, the characteris-

ic length obtained from dimensional analysis was comparable to

he actual characteristic length in the experimental pattern. 

The mechanisms by which endothelial cells in fibrin gels extend

ong protrusions are not clear. Biologically there are two types of

ells that are known to extend protrusions, tip cells and mesenchy-

al cells. In the first hypothesis, the state of cells in fibrin gels was

imilar to that of the tip cells, specialized cells residing in the tip of

he expanding vasculature. The tip cells are known to extend mul-

iple protrusions ( Blanco and Gerhardt, 2013 ). In the second hy-

othesis, cells extending protrusions have mesenchymal character-

stics, having undergone Epithelial–Mesenchimal Transition (EMT).

MT is induced by various growth factors or extracellular matrix

omponents ( Lamouille et al., 2014 ). 

Molecules regulating protrusion dynamics may be useful to

ontrol meshwork structures. Mechanisms of filopodia formation,

longation and collapse have been well studied ( Mattila and Lap-

alainen, 2008 ). If protrusions of endothelial cells in fibrin gels are

omologous to filopodia, protrusion dynamics could be controlled

y modifying the actin cytoskeleton. In this case, cofilin, integrin

r mDia2 ( Shibue et al., 2013 ) are potential targets for changing

rotrusion lengths and numbers. Actin polymerization might also

e chemically blocked by cytochalasin D or latrunculin A. The thin

nd long protrusions may also contain microtubules ( Even-Ram

t al., 2007; Sagar et al., 2015 ) because protrusion lengths for en-

othelial cells in fibrin sometimes exceed 100 μm. Mechanisms

ontrolling microtubules have also been well studied ( Conde and

áceres, 2009 ). For microtubules, potential target molecules are

icrotubule associating proteins (MAPs), plus-end tracking pro-
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Fig. 7. Effects of parameter changes on percolation threshold. The original value of the parameter is indicated by a dashed line. (a) Collapse probability of a protrusion 

p -percolation probability graph. (b) Protrusion speed c -percolation probability graph. (c) Number of protrusions per cell a -percolation probability graph. (d) Cell radius 

r -percolation probability graph. (e) Cell number per focal plane n -percolation probability graph. 
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eins ( + TIPs), katamin and stathmin. Chemicals available to block

icrotubule polymerization include colchicine. 

Our model of cellular protrusions could be applied to various

ther processes. The dynamics of this model are similar to those

f the cytoskeleton, both involving slower extension and faster col-

apse of one-dimensional structures ( Sagar et al., 2015; Tsygankov

t al., 2014 ). This model can be applied to analyze various pro-

esses consisting of constant accumulation and stochastic extinc-

ion. 
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ppendix A. Vasculogenesis in fibrin gels 

HUVECs were cultivated in EGM-2 medium (Lonza Inc. Basel,

witzerland). Cells were used at passages lower than three for this

tudy. For assays, cells were mixed with 5 mg/ml fibrin gels and
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injected in a microdevice ( Kim et al., 2013 ). Human lung fibrob-

lasts were also injected in a different lane of the microdevice to

support HUVEC morphogenesis. HUVECs were stained with UEA-

1-Alexa 488. Meshwork formation was observed with a Nikon A1

confocal microscope for 12 h (1 frame/5 min). Statistical analysis

by the Mann-Whitney U test was performed using Mathematica . 

Appendix B. Particle image velocimetry (PIV) 

HUVECs were cultivated in EGM-2 medium and in/on gels on

4-well CELLview cell culture dish (Grainer Bio One International

GmbH. Kremsmünster, Austria). Cells were embedded in fibrin gels

or seeded on Matrigel. Both gels contained polymer microspheres

(Duke Scientific Corp., Palo Alto, California, US), that were mixed

with gels to visualize gel deformation. HUVECs were stained with

UEA-1-Alexa 488. Meshwork formation was observed with a Nikon

A1 confocal microscope for 12 h (1 frame/5 min). Particle Im-

age Velocimetry (PIV) was performed using a PIV plugin for Im-

ageJ ( https://sites.google.com/site/qingzongtseng/piv) . Supplemen-

tal video 1 was obtained by iterative PIV for all time-steps. Means

of norm of deformation vectors were 0.17 pixel/frame (in fibrin

gels) and 1.73 pixel/frame (on Matrigel). Statistical analysis by the

T test was performed using Mathematica . The difference was sta-

tistically significant ( p = 1 . 98 × 10 −4043 ). 

Appendix C. Advection equation representing the protrusion 

length distribution 

Eq. (2) shows the probability distribution of protrusion length.

Now we consider the continuous model of protrusive dynamics.

These equations represent continuous probability distribution of

length: 

∂u 

∂t 
+ c 

∂u 

∂x 
= −pu (x, t) (9)

u (0 , t) = 

p 

c 

∫ l 

−∞ 

u (x, t) dx (10)

u (x, 0) = δ(x ) . (11)

(9) states that a protrusion extends at a rate c and collapses with

a probability of p per unit time. (10) represents the boundary con-

dition that the length becomes 0 instantaneously if protrusion col-

lapses. (11) describes initial condition. (10) is justified as follows:

In the discrete model, 

P r(A t+�t = 0) = 

l 
c�t 

−1 ∑ 

i = −∞ 

P r(A t = ic�t) × p�t. (12)

Now P r(A t = x ) in a discrete model is equivalent to u ( x, t ) c �t in a

continuous model. Therefore, (12) is rewritten as follows: 

u (0 , t + �t) = 

l 
c�t 

−1 ∑ 

i = −∞ 

u (ic�t, t) c�t × p 

c 
. (13)

Taking the limit of �t → 0, 

u (0 , t) = 

p 

c 

∫ l 

−∞ 

u (x, t) dx. (14)

Numerical simulations showed that probability distribution by

this advection equation was the same as that by the recurrence

relation. 

We define the connection probability P c ( t, l ) as 1 −∫ l 
−∞ 

u (x, t) dx. In the discrete model, 

P (t, l) = 1 −
l 

c�t 
−1 ∑ 

i = −∞ 

P r(A t = ic�t) (15)
= 1 −
l 

c�t 
−1 ∑ 

i = −∞ 

u (ic�t , t ) c�t (16)

aking the limit of �t → 0, 

 c (t, l) = 1 −
∫ l 

−∞ 

u (x, t) dx. (17)

Considering the probability that a protrusion reaches x = l dur-

ng t ∼ t + �t, we obtain the following equation: 

 c (t + �t, l) − P c (t, l) = c�t u (l, t ) 

= c�te −
lp 
c u (0 , t − l 

c 
) 

= c�te −
lp 
c 

p 

c 

∫ l 

−∞ 

u (x, t − l 

c 
) dx 

= pe −
lp 
c { 1 − P c (t − l 

c 
, l) } �t. (18)

y taking limit �t → 0 we obtain following ODE: 

dP c 

dt 
= pe −

lp 
c { 1 − P c (t − l 

c 
, l) } . (19)

ccording to (6) and (19) , we can obtain the same connection

robability from the recurrence relation as from the probability

ensity function. Furthermore, using the analytical solution of P ( t,

 ) (see also Appendix D ), we can obtain the analytical solution of

 ( x, t ). 

 (x, t) = e −
px 
c u (0 , t − x 

c 
) 

= e −
px 
c 

p 

c 

∫ l 

−∞ 

u (y, t − x 

c 
) dy 

= e −
px 
c 

p 

c 
{ 1 − P (t − x 

c 
, l) } . (20)

ppendix D. Derivation of the analytical solution 

1. The analytical solution can be calculated recursively. 

In this subsection, we show that the delay differential Eq. (6) is

olved in a stepwise fashion. 

For simplicity, we define α = pe −
l p 
c , β = 

l 
c . 

(i) When 0 ≤ t < β , 

 (t, l) | 0 ≤t<β = 0 . (21)

ii) When β ≤ t ≤ 2 β , 

dP 

dt 
= α{ 1 − 0 } = α (22)

P (β, l) = 

α

p 
. (23)

rom (22) and (23) we obtain 

 (t, l) | β≤t≤2 β = −αβ + 

α

p 
+ αt. (24)

iii) When 2 β ≤ t ≤ 3 β , 

 (t, l) | 2 β≤t≤3 β = −2 α2 β2 − αβ + 

2 α2 β

p 
+ 

α

p 
− α2 t 

p 
− 1 

2 

α2 t 2 

+2 α2 βt + αt. (25)

iv) When 3 β ≤ t ≤ 4 β , 

https://sites.google.com/site/qingzongtseng/piv)
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 (t, l) | 3 β≤t≤4 β = −9 α3 β3 

2 

−2 α2 β2 −αβ+ 

9 α3 β2 

2 p 
+ 

2 α2 β

p 
+ 

α

p 

+ 

α3 t 2 

2 p 
−3 α3 βt 

p 
−α2 t 

p 
+ 

α3 t 3 

6 

−3 

2 

α3 βt 2 − α2 t 2 

2 

+ 

9 

2 

α3 β2 t + 2 α2 βt + αt. (26) 

P (t, l) | nβ≤t≤(n +1) β can be obtained by repeating this procedure. 

2. Differences between functions show certain regularity. 

Now we define Q n ( t ) as follows: 

 n (t) = P (t, l) | nβ≤t≤(n +1) β − P (t, l) | (n −1) β≤t≤nβ. (27) 

hen 

 1 (t) = α
(
−β + 

1 

p 
+ t 

)

 2 (t) = −α2 (t − 2 β)(pt − 2 βp + 2) 

2 p 

 3 (t) = 

α3 (t − 3 β) 2 (pt − 3 βp + 3) 

6 p 
. 

From this relation, we expect Q n ( t ) as follows: 

 n (t) = 

(−1) n −1 αn (t − nβ) n −1 (pt − nβp + n ) 

n ! p 
. (28) 

If (28) holds, we solve the delay differential Eq. (6) . 

 (t, l) | nβ≤t≤(n +1) β = 

n ∑ 

k =1 

Q k (t) ≡ R n (t) . (29) 

3. Derivation of the analytical solution by mathematical induction 

or (29) . 

(i) For n = 1 , (29) holds since R 1 (t) = Q 1 (t) . 

(ii) Suppose (29) is true for some n = j ≥ 1 . Then 

 j (t) = 

j ∑ 

k =1 

Q k (t) . (30)

hen n = j + 1 , we have 

 

′ 
j+1 (t) = −αR j (t − β) + α (31) 

 j+1 (t) = −α
j ∑ 

k =1 

{ 
∫ 

Q k (t − β) dt} + α

∫ 
dt 

= 

j ∑ 

k =1 

Q k +1 (t) + αt + C j (32) 

here C j is a constant of integration. R is continuous at t = ( j +
) β, 

 j+1 (( j + 1) β) = R j (( j + 1) β) 

C j = 

α

p 
− αβ. (33) 

herefore, 

 j+1 (t) = 

j ∑ 

k =1 

Q k +1 (t) + αt + 

α

p 
− αβ

= 

j+1 ∑ 

k =2 

Q k (t) + Q 1 (t) = 

j+1 ∑ 

k =1 

Q k (t) . (34) 

onsequently, (29) holds for arbitrary positive integer n . 
ppendix E. Parameter fitting 

Experimental period t , elongation speed c and mean cell radius

 were already known from the experimental data. We also ob-

ained the relationship between distance l and connection prob-

bility P ( t, l ). Mean protrusion number a and collapse probability

er unit time p are difficult to obtain from experimental data. To

btain a and p , we substituted t, c and r by experimentally ob-

ained values. Then P ( t, l ) were fitted to the experimentally ob-

ained distance-connection probability relation by the least squares

ethod. The obtained values are considered as reasonable because

hey reproduce meshwork morphology effectively. 

ppendix F. Derivation of conditional probability of connection

o express the time course of meshwork formation 

We define P r(t) = P (t, l) , P r( ̄t ) = 1 − P (t, l) . Considering the

onditional probability P r(t 2 | ̄t 1 ) (t 2 > t 1 ) , we obtain the connec-

ion probability from time t 1 to t 2 . 

 r(t 2 | ̄t 1 ) = 

P r( ̄t 1 ∩ t 2 ) 

P r( ̄t 1 ) 

= 

1 − P r(t 1 ∩ t 2 ) − P r(t 1 ∩ t̄ 2 ) − P r( ̄t 1 ∩ t̄ 2 ) 

1 − P r(t 1 ) 

= 

1 − P r(t 1 ) − 0 − (1 − P r(t 2 )) 

1 − P r(t 1 ) 

= 

P r(t 2 ) − P r(t 1 ) 

1 − P r(t 1 ) 
(35) 

herefore, conditional probability can be obtained from P ( t, l ). 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jtbi.2017.06.012 . 
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