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Vasculogenesis is the earliest process in development for spontaneous formation of a primitive capillary
network from endothelial progenitor cells. When human umbilical vein endothelial cells (HUVECs) are
cultured on Matrigel, they spontaneously form a network structure which is widely used as an in vitro
model of vasculogenesis. Previous studies indicated that chemotaxis or gel deformation was involved in
spontaneous pattern formation. In our study, we analyzed the mechanism of vascular pattern formation

Keywords: using a different system, meshwork formation by HUVECs embedded in fibrin gels. Unlike the others, this
Vasculogenesis experimental system resulted in a perfusable endothelial network in vitro. We quantitatively observed
HUVEC the dynamics of endothelial cell protrusion and developed a mathematical model for one-dimensional
Eattterl? lfotrrnation dynamics. We then extended the one-dimensional model to two-dimensions. The model showed that
ytoskeleton

random searching by endothelial cells was sufficient to generate the observed network structure in fibrin

Delay differential equation gels.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The circulatory system is the first organ system to function dur-
ing development (Drake, 2003; Gilbert, 2014). Initially, aggrega-
tions of hemangioblasts, called blood islands, appear and connect
with one another to form a primitive vascular plexus. This pro-
cess is called vasculogenesis. After establishment of these primi-
tive blood vessels, additional new blood vessels are generated by
sprouting from preexisting vessels. This process is called angiogen-
esis (Adams and Alitalo, 2007).

In previous studies, human umbilical vein endothelial cells (HU-
VECs) cultivated on Matrigel (Matrigel system) were used as an ex-
perimental system of vasculogenesis. It is well known that some
endothelial cells form a meshwork resembling a capillary plexus
on Matrigel (Kubota et al., 1988; Miura and Tanaka, 2009). Sev-
eral mathematical models of this system were proposed. One
class of models used a deformation of the extracellular matrix
(Manoussaki et al., 1996; van Oers et al., 2014). Another type of
models used chemotaxis toward vascular endothelial growth factor
(VEGF) (Serini et al., 2003) (Fig. 1).

* Corresponding author.

http://dx.doi.org/10.1016/.jtbi.2017.06.012
0022-5193/© 2017 Elsevier Ltd. All rights reserved.

Methods to create artificial vascular plexuses have been exten-
sively studied in the field of bioengineering (Miura and Yokokawa,
2016). These methods may be classified into two categories: pre-
designed method and self-organizing method (Hasan et al., 2014).
As an example of the latter, we utilized meshwork formation by
HUVECs embedded in fibrin gels (fibrin gel system) (Kim et al.,
2013). This system is functionally better than the Matrigel system
because it spontaneously develops a perfusable capillary meshwork
without any artificial scaffolds or patterns. However, the mecha-
nism of meshwork formation in this system has not been eluci-
dated.

In our study, we monitored the time course of pattern forma-
tion in fibrin gel by confocal microscopy, finding that the pattern
formation mechanism in fibrin gel was very different from that on
Matrigel. Meshwork formation by random endothelial protrusion
at the early phase of culture determined the network pattern ulti-
mately formed in this system. Based on our observations, we for-
mulated a one-dimensional (1D) model of the extension/collapse
dynamics of the cell protrusions. We analytically derived the con-
nection probability between cells in this system. We then devel-
oped a two-dimensional (2D) model by incorporating cell size and
distribution. Numerical simulation of the model reproduced the
experimentally observed meshwork morphology. We assayed two
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Fig. 1. Mechanisms of in vitro vasculogenesis. When endothelial cells are cultivated
on Matrigel or in a fibrin gel, they form network-like structures. Proposed mecha-
nisms of pattern formation on Matrigel were chemotaxis toward VEGF (Serini et al.,
2003) and mechanical gel deformation (Manoussaki et al., 1996; van Oers et al.,
2014). Pattern formation mechanisms in fibrin gels, however, were not previously
examined. Panels showing Matrigel model simulations were reprinted from van
Oers et al. (2014); Serini et al. (2003).

functional characteristics of the network, percolation and island
size distribution. Our model should be useful for controlling net-
work structures in vitro.

2. Experimental observation: endothelial meshwork formation
during vasculogenesis in fibrin gels

2.1. The mechanism of meshwork formation in fibrin gels was
different from that on Matrigel.

In mathematical studies of the Matrigel system, two mecha-
nisms of meshwork formation were proposed, chemotaxis toward
VEGF and gel deformation. These phenomena were confirmed ex-
perimentally (Fig. 2a, c). However, in fibrin gels, there was no VEGF
gradient observed around cells (Fig. 2b) and no detectable defor-
mation of the extracellular matrix (Fig. 2d). Detailed experimental
procedures for the VEGF gradient visualization were described in
Kohn-Luque et al. (2013). The difference in gel traction was statis-
tically significant (See Appendix B and Supplemental video 1). In
addition, cell movements were different in the Matrigel and fib-
rin gel systems. In the Matrigel system, cells moved collectively
to form initial aggregates. In contrast, cells barely moved in fibrin
gels. Therefore, the mechanism of endothelial meshwork formation
in fibrin gels was different from that on Matrigel.

2.2. Observation of meshwork formation

We observed capillary formation and found that the initial
meshwork pattern within 24 h determined that of the perfusable
capillary network formed after a week (Fig. 3a). From this obser-
vation, we focused on cellular connections made by protrusions to
elucidate the mechanism of generating the initial meshwork pat-
tern.

We observed that connections by cellular protrusions enabled
meshwork formation without cell movement. Time-lapse observa-
tions of fibrin gel cultures revealed that:

1. Cells did not move, but actively formed protrusions (Fig. 3b).
2. Protrusions underwent repeated cycles of extension and col-
lapse (Fig. 3c).

On Matrigel In Fibrin Gels

(a) (b)

Fig. 2. Endothelial pattern formation inside the microdevice did not have the char-
acteristics observed in the Matrigel system. (a) On Matrigel, VEGF was accumu-
lated around HUVECs (reprinted from Kéhn-Luque et al. (2013)). (b) In fibrin gels,
VEGF accumulation around cells was not observed. (¢) On Matrigel, each cell ex-
erted strong traction forces. Small fluorescent particles were mixed with Matrigel
and time-lapse images were obtained. Then gel movements were analyzed using
particle image velocitometry (PIV). (d) In fibrin gels, cell traction of the extracellu-
lar matrix was not evident. Scale bars = 50 pm.

3. When a protrusion collided with the surface of an adjacent cell,
a connection was usually established (23/20) (Fig. 3d).

4. Collisions between protrusions (8/21) were fewer than colli-
sions between a protrusion and cell body (13/21).

5. Formation of the protrusion was not affected by neighboring
cells (Fig. 3e, f).

6. Speed of collapse was greater than that of extension (Fig. 3g,
h).

7. Two neighboring cells had a higher probability of connecting
when they were closer to one another.

3. Model definition
3.1. Discrete-time stochastic model for protrusion dynamics

We formulated a model for protrusion dynamics using a
discrete-time stochastic process. A protrusion whose initial length
is 0 extends at a rate ¢ (It was assumed to be a positive integer
for simplicity.) per unit time and it connects to a neighboring cell
when it collides with the surface of that cell. The protrusion col-
lapses at probability p( > 0) per unit time and the length then
instantaneously becomes 0. Assuming the length of a protrusion at
time t is A, this process is expressed as follows:

Pr(A;;1=Ar+c)=1-p 1)
Pr(Acy1 =0) =p.

The transition diagram of the process is expressed in Fig. 4a.
We can describe the model by a transition matrix as follows:
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Fig. 3. Observation of protrusion dynamics and meshwork formation. (a) Observation of meshwork formation in fibrin gels for 24 h. HUVECs mixed with fibrin gels were
injected into a microchannel separated by hexagonal pillars. Cells extended protrusions and formed networks within 24 h. (b) Observation of protrusions. HUVECs were
stained with UEA1-Alexa 488 (green) and embedded in fibrin gels and their movements were observed for 12 h. HUVECs extended many thin protrusions, with lengths of
up to 100 pm. (c) Kymograph of a protrusion. Protrusions showed frequent extensions and collapses, while nuclei seldom moved. Nuclei were stained with Hoechst 33342
(bottom of the picture). (d) Establishment of a connection by collision of a protrusion with a cell body (red arrows). Scale bars = 50 pm. (e) Effects of an adjacent cell on
protrusion formation. We defined the angle between the line connecting the centers of cells and the protrusion as 6. (f) Rose diagram of protrusion formation. We used
maximum intensity projection of 8 cells, 29 protrusions. Degrees around the circle are 6 and radii of sectors are frequency. Formation of protrusions was not affected by
adjacent cells. (g) Differences in speed of extension and collapse. (h) Collapse speed (~ 1.75 pm/min) was higher than extension speed (~ 0.86 pm/min). The difference was

statistically significant (p < 0.005, Mann-Whitney U test). Even with the outlier removed, the difference remained statistically significant. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Definition of the stochastic model. (a) Transition probability of length. (b)
Intuitive explanation of the last term of the recurrence equation. The condition “to
connect at time (t + 1) for the first time” must satisfy three requirements: 1. The
protrusion does not collide from time 1 to time (t —I/c). 2. Collapse occurs at time
(t —1/c+1). 3. A protrusion of length [ is established at time (t + 1). (c) A graph of
P(t, I) function. It shows an increasing function for time and P(t, [) — 1 for t — oc.
Parameters are | = 50, p = 0.0562 and c = 0.86. (d) Two cells are present in a two-
dimensional field. Assuming that cells are circles, protrusions extend straight and
each cell has an average number of a protrusions, we consider the situation that a
protrusion from cell 1 collides with cell 2.

Pr(Acs1 =0) p p p p 0
Pr(A;i1 =0) 1-p 0 0 0 o0
Pr(A;;1 = 20) 0 1-p O 0 0

Pr(A;;1=1-0) 0 0 0 0 0
Pr(A;;1 =1) 0 0 0 1-p 1

Pr(A; =0)
Pr(A; =c¢)
Pr(A; = 2¢)
x . (2)
Pr(A; =1-0¢)
Pr(A; =1)

We also assumed a time for meshwork formation as ¢, the dis-
tance between the neighboring cells as | and a connection proba-
bility function as P(t, I). When % is an integer, the following recur-
rence relation holds:

P(t+1,1) =Pr(Aisq =1)
=Pr(Ar=1)+Pr(Ar=1-¢c)(1-Dp)

=Pr(A;=1)+Pr(A_1 =1—-2c)(1 - p)?

= Pr(Ac =) +Pr(A_1,, =0)(1 - p)
[

=Pr(Ac=D+p Y Pr(A_, =ci)(1-p)*
i=—o00

= Pr(Ac=1) + p{1 - Pr(A_. =D}(1 - p)

= P(e.D) +p{1 P~ L D)1~ p)t. 3

For all positive integers t and I, P(t, [) can be evaluated from this
recurrence relation and the boundary conditions

P(t,1) =0 (t <1/c)
Pt )=(1—-p)¢ (t=1/c).

The boundary conditions are obtained as follows: (i) When t <
I/c, the length of a protrusion is smaller than [ because the highest
possible length is ct( < ). Therefore P(t,l) = 0. (ii) When t = l/c,
a connection is established only if the protrusion has been extend-
ing continuously during previous intervals of time. The connection
probability is equal to the probability of the protrusion continuing
to extend (See also Fig. 4b).

(4)

3.2. Continuum limit of the recurrence relation

The continuum limit of the recurrence relation is obtained by
extending to real t and [ greater or equal to 0. Replacing the time
step by At, (3) is expressed as follows:

P(t + At, 1) = P(t,]) + Pr(A; =l — cAt)(1 — pAt)
P(t,1) + Pr(Ac_ar = | — 2cAt)(1 — pAt)?

=P(t, 1) +Pr(A =0)(1 — pAt)a

t—L+Ae
=Pt )+ {1-P(t— é DIpAt(1 — pAt)a.  (5)

Taking the limit of At — 0, we obtain a differential equation
with boundary conditions,

& _ pe-?{1-P(t - L 1))
Pt,)=0 (t<l) (6)
P(L D) =e 2.

We can obtain the same equation from the probability density
function of protrusion length (See Appendix C).

3.3. Analytical solution

Now an analytical solution of the Eq. (6) can be obtained. Al-
though (6) is a delay differential equation, it is solved as follows,
using periodicity:

P(t. 1)
(] (_ )k—]
Z{ﬁ‘f%k(“ — kD)1 (ke — kIp + cpt)} (ct = 1)
16 (ct <)
™)

where [ ] shows the largest integer which does not exceed . The
detailed derivation is described in Appendix D.
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Fig. 5. Results of numerical simulations. (a) Kymographs obtained from experimental data and from a numerical simulation of the model. Model dynamics reproduced the
experimental observations. (b) Meshwork morphology obtained from observation and numerical simulation.

3.4. Derivation of connection probability for two cells in two
dimensions

Now we consider cell-cell connections by protrusion. Using P(t,
1), we obtained the connection probability of two cells, cells 1 and
2, in a two-dimensional field, P.(t, I). We assume that cells are
circles of radius r and that protrusions extend straight in a circum-
ferential direction (Fig. 4d). We define an average number of pro-
trusions per cell as a. The probability that one protrusion extends
in a connectable direction is 2 ~ siné — #@-7; and the probabil-
ity that a protrusion from cell 1 collides with cell 2 can be approx-
imated as P(t, I). Py(t, I) is the complement of the event in which
none of a protrusions establishes a connection. Therefore P.(t, I)
is expressed as follows:

r

Py (8, D) ~1—{1- MT—H)

P(t, D} (8)

4. Numerical experiment
4.1. Model implementation

Numerical simulations were performed using Mathematica.
Source codes are provided in supplemental material.

4.2. The discrete-time stochastic model reproduced protrusive
dynamics

Fig. 5a shows kymographs obtained from experimental data
and from a numerical simulation of the model. Model dynamics
and experimental observations were similar in that protrusion ex-
tended and collapsed and collapse speed was greater than exten-
sion speed. See also supplemental video 2.

4.3. Simulation of meshwork formation

Before simulating meshwork formation, we obtained unknown
parameters by length-connection probability relationships de-
rived from experimental observations. In this experiment, t = 12 x
60(min), ¢ = 0.86(wm/min) and r = 15(um). By the least squares
method, we derived values of unknown parameters as a = 6.784
and p =0.0562 (Appendix E). Using t, ¢, 1, a and p, we obtained
a connection probability as a function of distance . To reduce the
amount of calculations, we regarded P.y(t, I)|; - 10 as Peey(t, 10).
Cell number per focal plane was assumed to be 100. We neglected
connections between protrusions because they are not responsible

for meshwork morphology and crossing between protrusions can
express clustering of cells. Numerical simulation reproduced the
morphology of the observed endothelial meshworks (Fig. 5b). We
also reproduced the time course of meshwork formation (Fig. 5b
and Supplemental video 3, with the detailed mechanism described
in Appendix F). In both experimental observations and numerical
simulations, neighboring cells were connected to one another to
form clusters within first 3 h, followed by meshwork formation by
inter-cluster connections. In the 0 h image from experimental ob-
servations, several connections were already established because
cells started extending protrusions during fibrin gel solidification
and lectin staining.

4.4. Size distribution of islands in the simulation and the experiment

To assess the similarity of patterns in the numerical simula-
tion and the experiment, we examined size distribution of the is-
lands (Fig. 6). Analysis was performed using snapshots after 12 h.
We ignored islands with sizes of less than 100 um?2 because small
islands represented noise in the experimental data and minute
divisions by clusters of cells in the simulation results. The two
histograms were similar and both distributions showed linearity
in log-log plots, indicating that both sets of data obeyed certain
power laws. Scaling exponents were —0.949 for experimental and
—0.950 for simulation data (blue line in Fig. 6b).

4.5. Effects of simulation parameters on percolation

Whether the network is functional depends on whether it per-
colates. We defined the top five cells as the top end and bottom
five cells as the bottom end. Meshworks were considered to per-
colate when connections existed between top and bottom ends.
Simulations were performed 100 times for each parameter set.
The same parameter set (t = 12 x 60(min), ¢ = 0.86(jvm/min), r
~ 15(um), a = 6.784, p = 0.0562) was used, other than the param-
eter of interest.

Some percolation threshold appeared to exist in this system.
The original parameter set was close to the percolation threshold
(dashed line of Fig. 7), indicating that only a minor change in these
parameters could result in loss of percolation.

We also compared critical density for percolation with a previ-
ous report on a Matrigel system (Gamba et al., 2003). A total of 94
cellsy/mm? in a Matrigel system and 251 cells/mm? in a fibrin gel
system were required for percolation. This reflected the immobility
of cell bodies in fibrin gels systems.
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Fig. 6. Size distribution of islands. (a) Histograms of size distribution obtained from experimental and numerical simulation data. (b) Log-log plots of size distributions.

5. Discussion

In our study, we showed that a random searching model re-
produced meshwork formation observed in a microdevice, with-
out requiring additional mechanisms. To our knowledge, this is the
first report of a mechanism for the intrinsic property of endothelial
cells to make perfusable networks in fibrin gels. Previous models,
using experiments on Matrigel, attributed mechanics (Manoussaki
et al., 1996; van Oers et al., 2014) or chemotaxis (K6hn-Luque et al.,
2011; 2013; Merks et al., 2006; Serini et al., 2003) as mechanisms
for spontaneous pattern formation. In these models, the system
was formulated by partial differential equations and pattern size
obtained by deriving the fastest growing wavenumber by linear
stability analysis. Although cell shape is known to modify the fi-
nal pattern in one of these models (Merks et al., 2006), random
search by protrusions was not considered. Our results showed that
chemotaxis or mechanical deformation of the extracellular matrix
were unnecessary to produce a network pattern in this case.

Relationships with percolation theory were considered in our
system and a similar analysis was performed in the Matrigel sys-
tem (Serini et al., 2003). Whether a network percolates is func-
tionally important because it determines whether the endothelial
meshwork is perfusable. However, it was still difficult to analyti-
cally obtain a percolation threshold in our system. We could ob-
tain a percolation threshold analytically with regular nodes, but
our model uses randomly dispersed nodes. In addition, the connec-
tion probability function P(t, [) is not simple in our model, making
analysis even more difficult.

We tried to obtain a characteristic length of protrusions by di-
mensional analysis. The characteristic length of protrusions had a

dimension of c¢/p = 15.3(iwm). The average length of protrusions
observed experimentally was ~ 50 pm. Therefore, the characteris-
tic length obtained from dimensional analysis was comparable to
the actual characteristic length in the experimental pattern.

The mechanisms by which endothelial cells in fibrin gels extend
long protrusions are not clear. Biologically there are two types of
cells that are known to extend protrusions, tip cells and mesenchy-
mal cells. In the first hypothesis, the state of cells in fibrin gels was
similar to that of the tip cells, specialized cells residing in the tip of
the expanding vasculature. The tip cells are known to extend mul-
tiple protrusions (Blanco and Gerhardt, 2013). In the second hy-
pothesis, cells extending protrusions have mesenchymal character-
istics, having undergone Epithelial-Mesenchimal Transition (EMT).
EMT is induced by various growth factors or extracellular matrix
components (Lamouille et al., 2014).

Molecules regulating protrusion dynamics may be useful to
control meshwork structures. Mechanisms of filopodia formation,
elongation and collapse have been well studied (Mattila and Lap-
palainen, 2008). If protrusions of endothelial cells in fibrin gels are
homologous to filopodia, protrusion dynamics could be controlled
by modifying the actin cytoskeleton. In this case, cofilin, integrin
or mDia2 (Shibue et al., 2013) are potential targets for changing
protrusion lengths and numbers. Actin polymerization might also
be chemically blocked by cytochalasin D or latrunculin A. The thin
and long protrusions may also contain microtubules (Even-Ram
et al., 2007; Sagar et al., 2015) because protrusion lengths for en-
dothelial cells in fibrin sometimes exceed 100 um. Mechanisms
controlling microtubules have also been well studied (Conde and
Caceres, 2009). For microtubules, potential target molecules are
microtubule associating proteins (MAPs), plus-end tracking pro-
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r-percolation probability graph. (e) Cell number per focal plane n-percolation probability graph.

teins (+TIPs), katamin and stathmin. Chemicals available to block
microtubule polymerization include colchicine.

Our model of cellular protrusions could be applied to various
other processes. The dynamics of this model are similar to those
of the cytoskeleton, both involving slower extension and faster col-
lapse of one-dimensional structures (Sagar et al., 2015; Tsygankov
et al., 2014). This model can be applied to analyze various pro-
cesses consisting of constant accumulation and stochastic extinc-
tion.
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Appendix A. Vasculogenesis in fibrin gels

HUVECs were cultivated in EGM-2 medium (Lonza Inc. Basel,
Switzerland). Cells were used at passages lower than three for this
study. For assays, cells were mixed with 5 mg/ml fibrin gels and
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injected in a microdevice (Kim et al., 2013). Human lung fibrob-
lasts were also injected in a different lane of the microdevice to
support HUVEC morphogenesis. HUVECs were stained with UEA-
1-Alexa 488. Meshwork formation was observed with a Nikon Al
confocal microscope for 12 h (1 frame/5 min). Statistical analysis
by the Mann-Whitney U test was performed using Mathematica.

Appendix B. Particle image velocimetry (PIV)

HUVECs were cultivated in EGM-2 medium and in/on gels on
4-well CELLview cell culture dish (Grainer Bio One International
GmbH. Kremsmiinster, Austria). Cells were embedded in fibrin gels
or seeded on Matrigel. Both gels contained polymer microspheres
(Duke Scientific Corp., Palo Alto, California, US), that were mixed
with gels to visualize gel deformation. HUVECs were stained with
UEA-1-Alexa 488. Meshwork formation was observed with a Nikon
A1 confocal microscope for 12 h (1 frame/5 min). Particle Im-
age Velocimetry (PIV) was performed using a PIV plugin for Im-
age] (https://sites.google.com/site/qingzongtseng/piv). Supplemen-
tal video 1 was obtained by iterative PIV for all time-steps. Means
of norm of deformation vectors were 0.17 pixel/frame (in fibrin
gels) and 1.73 pixel/frame (on Matrigel). Statistical analysis by the
T test was performed using Mathematica. The difference was sta-
tistically significant (p = 1.98 x 10-4043),

Appendix C. Advection equation representing the protrusion
length distribution

Eq. (2) shows the probability distribution of protrusion length.
Now we consider the continuous model of protrusive dynamics.
These equations represent continuous probability distribution of
length:

% + c% = —pu(x.t) )
p [

u(0,t) = E/foou(x,t)dx (10)

u(x,0) =8(x). (11)

(9) states that a protrusion extends at a rate ¢ and collapses with
a probability of p per unit time. (10) represents the boundary con-
dition that the length becomes 0 instantaneously if protrusion col-
lapses. (11) describes initial condition. (10) is justified as follows:
In the discrete model,

cAr

Z Pr(A: =

i=—o00

Now Pr(A; = x) in a discrete model is equivalent to u(x, t)cAt in a
continuous model. Therefore, (12) is rewritten as follows:

Pr(Aiiae = icAt) x pAt. (12)

i
a1

p

At) = icA A —. 1
u(0,t + At) i;; u(icAt, t)cAt x : (13)
Taking the limit of At — O,

I
u(0,) = %/ u(x, £)dx. (14)

Numerical simulations showed that probability distribution by
this advection equation was the same as that by the recurrence
relation.

We define the connection probability Pt ) as 1-
fioo u(x, t)dx. In the discrete model,
-1
P(t.1) =1- ) Pr(A =icAt) (15)

i=—o00

1
a1

=1- )" u(icAt, t)cAt (16)

i=—oc0

Taking the limit of At — 0,

Pt ) =1— /’ u(x, t)dx. (17)

Considering the probability that a protrusion reaches x = I dur-
ing t ~t + At, we obtain the following equation:

P.(t + At, 1) — P(t, 1) = cAtu(l, t)

cAte‘l?pu(O, t— é)

cAte u(x, t—

_up !
<. E)dx

:pe"?p{l—Pc(t—é,l)}At. (18)

By taking limit At — 0 we obtain following ODE:

dpP. i 1
ar = Pe c{l—Pc(t .D}. (19)

According to (6) and (19), we can obtain the same connection
probability from the recurrence relation as from the probability
density function. Furthermore, using the analytical solution of P(,
I) (see also Appendix D), we can obtain the analytical solution of
u(x, t).

u(x,t) = e*%u(O, t— %)

I
= e*%B/ u(y, t — ﬁ)dy

- f“’n_p(r_f D). (20)

Appendix D. Derivation of the analytical solution
D1. The analytical solution can be calculated recursively.

In this subsection, we show that the delay differential Eq. (6) is
solved in a stepwise fashion.

For simplicity, we define o = pe~ ¢, B = L
(i) When 0 <t < B,
P(t.Do<t<p = 0. (21)
(ii) When B < t < 28,
dP
- el1-0= (22)
o
P(B,1)=—. (23)
p
From (22) and (23) we obtain
P(t. )] pereap = —f + % +at. (24)

(iii) When 28 < t < 38,

2o o’t 1
P(t, D]2p<t<3p = —20%p - p'B 3 p p 2 i

+20% Bt + at. (25)

af +

(iv) When 38 <t < 48,


https://sites.google.com/site/qingzongtseng/piv)
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93B3 9382 2028 «
P(t, Dl3p<t<ap = —Tﬂ—Zazﬂz—aﬂ+ 2;1:8 +T'3 +5
342 3 2 3.3 2.2
@t 30pt @'t @ 3 55, o1
2p p p 6 2 2
+§a3ﬂ2t+2a2ﬂt+at. (26)

P(t,1)|np<t<(ns1)p €an be obtained by repeating this procedure.
D2. Differences between functions show certain regularity.

Now we define Qu(t) as follows:

Qn(t) = P(t, I)lnﬂgtg(nﬂ)ﬂ - P(t, l)|(n—1)ﬂ§t5nﬂ~ (27)
Then

Qi (t) = a(—,B—l— % +t)
a?(t—2B)(pt —2Bp+2)

Q(t) = - 2p
a3 (t-3B)*(pt —3Bp+3)
CHOR 6 :

From this relation, we expect Qu(t) as follows:
(=)™ 'e"(t —np)" ' (pt —nBp+n)

Q) = "5 (28)
If (28) holds, we solve the delay differential Eq. (6).
n
P(t’ l)|nﬁst5(n+l)ﬂ = ZQk(t) = Rn(t)- (29)

k=1

D3. Derivation of the analytical solution by mathematical induction
for (29).

(i) For n =1, (29) holds since Ry (t) = Qq(t).
(ii) Suppose (29) is true for some n = j > 1. Then

J
Rj(t>:ZQI<(t)- (30)

k=1
When n = j+ 1, we have

Ri 1 (t) = —aR(t - B) + (31)

J

Ria(®) = —a 3 ([ Quit - prae) +o [ e

k=1

J
> Qi () +at +C (32)

k=1
where (; is a constant of integration. R is continuous at t = (j +

1B,
Riii((G+1DB) =Ri((G+1B)
G = %—aﬂ- (33)

Therefore,

j
Ri1(6) = 3 Qe (O) +at + % —ap

k=1
j+1 j+1

=D Q) + Qi (t) =D Q). (34)
k=2 k=1

Consequently, (29) holds for arbitrary positive integer n.

Appendix E. Parameter fitting

Experimental period t, elongation speed ¢ and mean cell radius
r were already known from the experimental data. We also ob-
tained the relationship between distance | and connection prob-
ability P(t, I). Mean protrusion number a and collapse probability
per unit time p are difficult to obtain from experimental data. To
obtain a and p, we substituted t, ¢ and r by experimentally ob-
tained values. Then P(t, ) were fitted to the experimentally ob-
tained distance-connection probability relation by the least squares
method. The obtained values are considered as reasonable because
they reproduce meshwork morphology effectively.

Appendix F. Derivation of conditional probability of connection
to express the time course of meshwork formation

We define Pr(t) =P(t,1),Pr(t) =1—P(t,]). Considering the
conditional probability Pr(t;|f;) (t, > t;), we obtain the connec-
tion probability from time t; to t,.

Pr()f) = 7”1(3’:(2;2)
_ 1=Pr(tynty) — Pr(ty nf) — Pr(t; nty)
- 1- Pr(t1)
_ 1 —PT'(H)—O—(]—PT(tz))
- 1- Pr(ﬁ)
Pr(ty) — Pr(t1)
= T 1-pPrm) (35)

Therefore, conditional probability can be obtained from P(¢, [).

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jtbi.2017.06.012.
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