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Abstract

Background: Recent developments in hardware and software for PET technologies have resulted in wide variations
in basic performance. Multicentre studies require a standard imaging protocol and SUV harmonization to reduce
inter- and intra-scanner variability in the SUV. The Japanese standardised uptake value (SUV) Harmonization
Technology (J-Hart) study aimed to determine the applicability of vendor-neutral software on the SUV derived from
positron emission tomography (PET) images. The effects of SUV harmonization were evaluated based on the
reproducibility of several scanners and the repeatability of an individual scanner.
Images were acquired from 12 PET scanners at nine institutions. PET images were acquired over a period of 30 min
from a National Electrical Manufacturers Association (NEMA) International Electrotechnical Commission (IEC) body
phantom containing six spheres of different diameters and an 18F solution with a background activity of 2.65 kBq/
mL and a sphere-to-background ratio of 4. The images were reconstructed to determine parameters for
harmonization and to evaluate reproducibility. PET images with 2-min acquisition × 15 contiguous frames were
reconstructed to evaluate repeatability. Various Gaussian filters (GFs) with full-width at half maximum (FWHM) values
ranging from 1 to 15 mm in 1-mm increments were also applied using vendor-neutral software. The SUVmax of
spheres was compared with the reference range proposed by the Japanese Society of Nuclear Medicine (JSNM)
and the digital reference object (DRO) of the NEMA phantom. The coefficient of variation (CV) of the SUVmax

determined using 12 PET scanners (CVrepro) was measured to evaluate reproducibility. The CV of the SUVmax

determined from 15 frames (CVrepeat) per PET scanner was measured to determine repeatability.

Results: Three PET scanners did not require an additional GF for harmonization, whereas the other nine required
additional FWHM values of GF ranging from 5 to 9 mm. The pre- and post-harmonization CVrepro of six spheres
were (means ± SD) 9.45% ± 4.69% (range, 3.83–15.3%) and 6.05% ± 3.61% (range, 2.30–10.7%), respectively.
Harmonization significantly improved reproducibility of PET SUVmax (P = 0.0055). The pre- and post-harmonization
CVrepeat of nine scanners were (means ± SD) 6.59% ± 1.29% (range, 5.00–8.98%) and 4.88% ± 1.64% (range, 2.65–6.
72%), respectively. Harmonization also significantly improved the repeatability of PET SUVmax (P < 0.0001).

Conclusions: Harmonizing SUV using vendor-neutral software produced SUVmax for 12 scanners that fell within the
JSNM reference range of a NEMA body phantom and improved SUVmax reproducibility and repeatability.
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Background
18F-fluoro-2-deoxy-2-D-glucose (18F-FDG) positron emis-
sion tomography (PET) is a valuable imaging tool for the
diagnosis, staging and assessment of the responses of vari-
ous malignancies to therapy [1–5]. Reports indicate that
18F-FDG PET is a more effective biomarker of treatment
responses than morphological information because it
measures glucose metabolism [6–9]. The standardised
uptake value (SUV) has served as a semi-quantitative
metric of 18F-FDG uptake by tumours.
The SUV must be highly reproducible and repeatable to

serve as a reliable biomarker in multicentre trials using vari-
ous PET scanners, because SUV variability among scanners
can contribute to uncertainty in results. The Quantitative
Imaging Biomarker Alliance (QIBA), which was organised
by the Radiological Society of North America (RSNA), rec-
ommended definitions for reproducibility and repeatability
[10, 11]. In short, reproducibility refers to the consistency of
values derived from repeated tests of one individual by dif-
ferent operators, different scanners, software, or at different
sites and times. Repeatability refers to the consistency of
values derived from repeated tests of one individual by a sin-
gle operator using the same scanner and software. That is,
reproducibility refers to inter-scanner variability, whereas re-
peatability refers to intra-scanner variability.
Recent developments in hardware and software for

PET technologies have resulted in wide variations in
basic performance. The SUV considerably varies due
to biological and technical factors involving the model
of the PET scanner, acquisition protocols, reconstruc-
tion algorithm and parameters [12–15]. For example,
ordered subset expectation maximization (OSEM)
with a point spread function (PSF) algorithm im-
proves the spatial resolution, but it causes edge arti-
facts as overestimation [16, 17]. Therefore,
multicentre studies require a standard imaging proto-
col and SUV harmonization to reduce inter- and
intra-scanner variability in the SUV.
Several organizations have published guidelines to

standardise 18F-FDG PET imaging protocols and
harmonize SUV harmonization [14, 18–20]. In terms
of SUV harmonization, the European Association of
Nuclear Medicine (EANM) and the Japanese Society
of Nuclear Medicine (JSNM) have proposed a speci-
fied range of recovery coefficients (RC) as a function
of sphere size [21]. “Harmonization” is defined herein
as a PET image smoothed with an additional Gauss-
ian filter (GF) so that the RC of each sphere falls
within the specified range of the body phantom. This
harmonization strategy minimises variations in SUV
measurements during scan acquisition and processing
[22–24] and reduces reconstruction-dependent vari-
ability in the PET Response Criteria in Solid Tumours
(PERCIST) classification [25].

The usefulness of commercially available software for
harmonization was first determined using EQ.PET software
[23]. However, a costly, software-specific workstation pro-
vided by the Siemens Healthineers is required. The recently
commercially available GI-PET software (AZE VirtualPlace
Hayabusa, Tokyo, Japan) adjusts the RC of PET images
into a reference RC using an additional GF. This
vendor-neutral quantitative software can be installed in
general personal computers.
We designed the Japanese SUV Harmonization Technol-

ogy (J-Hart) study based on this background to determine
the applicability of vendor-neutral software to multicentre
PET SUV harmonization. We also assessed the effects of
SUV harmonization on SUV reproducibility and
repeatability.

Methods
Phantom
We used a NEMA 2001 International Electrotechnical
Commission (IEC) body phantom (Data Spectrum
Corp., Durham, NC, USA), consisting of six spheres
(Model PET/IEC–BODY/P) of 10, 13, 17, 22, 28 and
37 mm in diameter, with a wall thickness of 1 mm in
a quasi-cylindrical cavity (280 × 210 × 180 mm). All
spheres and the background were filled with solutions
containing 10.6 and 2.65 kBq/mL (at the midpoint of
30-min acquisitions), respectively, of 18F-FDG to ob-
tain a sphere-to-background ratio of 4.

PET/CT scanners
Data were acquired at nine Japanese institutions using
12 popular PET systems (Table 1): Discovery ST Elite
Performance (DSTEP), Discovery ST Elite (DSTE),
Discovery 600 Motion (D600), Discovery 690 (D690)
and Discovery IQ (DIQ) scanners (General Electric
Medical Systems, Milwaukee, WI, USA); Biograph 64
True Point (BioTP), Biograph mCT 3ring (Bio3R) and
Biograph mCT flow 4ring (Bio4R) scanners (Siemens
Healthineers, Erlangen, Germany); GEMINI-TF16
(GTF), Gemini GXL (GXL) scanners (Philips Medical
Systems, Cleveland, OH, USA); Aquiduo (Aquiduo)
and Celesteion PCA-9000A (Celesteion) scanners
(Toshiba Medical Systems, Otawara, Japan). The col-
laborating institutions comprised five university hospi-
tals, three cancer centres and one research institution
that normally conduct many oncological PET studies.
The dose calibrator and each PET scanner of all eval-
uated PET/CT systems were cross-calibrated before
data acquisition from the phantom according to the
guidelines [19].

Region of interest
The SUVmax of the six hot spheres was determined
from circular regions of interest (ROIs) placed on the
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centre slice of images of each sphere. The diameter
of each ROI was equal to that of each hot sphere (10,
13, 17, 22, 28 and 37 mm). Twelve circular ROIs with
a diameter of 10 mm were placed on the background
region at the centre slice of the PET image; the aver-
age SUV was calculated from twelve ROIs as the
SUVmean of the background. The acceptance criterion
for the SUVmean of the background region was 1.00 ±
0.05. Table 1 shows the average SUVmean of the back-
ground region after cross-calibration.

Digital reference object
The QIBA suggested that computational imaging
models or phantom data might play an important role
in reproducibility assessment [26] and thus developed
an 18F-FDG PET/CT digital reference object (DRO),
which is a synthetic test object in Digital Imaging and
Communications in Medicine (DICOM) format [27].
We obtained the DRO from the QIBA [28]. The
mathematically developed DRO of the NEMA body
phantom is an ideal object with a uniform back-
ground with a transaxial diameter of 20 cm that sim-
ulates a human abdominal cross section with an SUV
of 1.00. Six spheres with diameters of 10, 13, 17, 22,
28 and 37 mm contained an 18F-FDG solution with
an SUV of 4.00. The SUV of a central cylinder with a
diameter of 5 cm was 0.00. A three-dimensional
(3-D) GF was applied to the DRO to simulate a PET
image with relatively low spatial resolution. The RC
of the DRO was included in the JSNM reference
range for a GF with a full-width at half maximum
(FWHM) value of 10–13 mm, and the RC was high-
est at a 10-mm FWHM of GF (Fig. 1). We adopted
DRO10mm as the reference SUV (SUVref ) for
harmonization.

Data acquisition and processing
Emission data were acquired from the phantom over
a period of 30 min using list mode with the bed in

position 1. A PET image with 30-min acquisition was
reconstructed to determine the parameters for
harmonization and to evaluate reproducibility. PET
images with 2-min acquisition × 15 contiguous frames
were reconstructed to evaluate the repeatability. The
reconstruction parameters were individually deter-
mined according to the clinical setting at each institu-
tion (Table 1). All reconstructed PET images were
output in DICOM format.

Harmonization
We used GI-PET software on a personal computer for
harmonization processing. Stand-alone GI-PET soft-
ware can quantify PET images and it is typically used
to adjust spatial resolution to harmonize PET images
using a 3-D GF.
The harmonization procedure of GI-PET was as fol-

lows: Firstly, reconstructed PET images with 30-min
acquisitions in DICOM format were loaded into the
GI-PET software. The original voxels were converted
into isotropic voxels of an equivalent size in the x, y
and z directions using the bi-linear method because
the 3D-GF of GI-PET requires isotropic data. A 3-D
GF with various FWHM values of 1–15 mm in 1-mm
increments was applied to the PET images, and then,
a graph of the SUVmax of the spheres was generated
as a function of the diameter. The FWHM of the GF
that provided an SUVmax within the reference range
proposed by the JSNM [21] was determined. The ref-
erence ranges of the lower to the upper limits of the
SUVmax on 10-, 13-, 17-, 22-, 28- and 37-mm hot
spheres were 1.19–2.00, 1.52–3.04, 2.58–3.71, 3.25–
4.09, 3.56–4.21 and 3.82–4.17, respectively. If only
one FWHM provided an SUVmax within the reference
range, then that FWHM was taken as the optimal
parameter of GF for harmonization. On the other
hand, if several FWHM provided SUVmax within the
reference range, we compared the root mean square
error (RMSE) with DRO10mm. The RMSE is the

Fig. 1 Development of reference recovery coefficient from digital reference object and three-dimensional Gaussian filter
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square root of the variance in the SUVmax of the six
spheres between PET images and DRO10mm and is
calculated as:
Finally, we determined the optimal FWHM that

provided the smallest RMSE (Fig. 2). RSME is a
simple mathematical measure that has been used
extensively in nuclear medicine and molecular im-
aging for several years. Combining RSME with DRO
is reportedly useful to create appropriate reconstruc-
tion conditions for other types of nuclear medicine
image [29].

Reproducibility and repeatability
We calculated the coefficients of variation (CV) of
the SUVmax on images of spheres with different diam-
eters acquired over a period of 30 min by 12 PET
scanners to evaluate the reproducibility of quantita-
tion and defined the CV across the scanners as CVre-

pro. We then compared CVrepro between the pre- and
post-harmonized images calculated as the mean ±
standard deviation (SD). The CV is the ratio of the
standard deviation (SD) of the mean calculated as:

CV ¼ SD
.
mean

� 100 %ð Þ

We calculated the CV of SUVmax on PET images
with 2-min acquisitions × contiguous 15 frames for
each PET scanner and each sphere size to evaluate
the repeatability of quantitation and then defined the
CV across the frames as CVrepeat. We then compared
CVrepeat between the pre- and post-harmonized im-
ages calculated as the mean ± SD.

Statistical analyses
Differences in CVrepro and CVrepeat were compared
among six and 54 pairs, respectively, between pre-
and post-harmonization by Wilcoxon signed-rank
tests using JMP® 13 (SAS Institute Inc., Cary, NC,
USA). P values < 0.05 were considered statistically
significant.

Results
Harmonization
The SUVmax fell within the JSNM reference range in
three PET scanners (DSTE, DSTEP and GXL) with-
out adding a GF (Table 2). Thus, adjustment was not
required for harmonization. The FWHM values of
the additional GF that resulted in an SUVmax within
the JSNM reference range were 5–7, 5–9, 8–10, 9,
6–10, 8–9, 6–9, 6–9 and 5–7 mm for the Aquiduo,
Bio3R, Bio4R, BioTP, Celesteion, DIQ, D600, D690
and GTF, respectively. The RMSE compared with
DRO10mm was the smallest at FWHM values of 5, 5,
8, 9, 6, 8, 6, 6 and 5 mm, respectively (Table 2). The
SUVmax of these nine scanners fell within the JSNM
reference range only after harmonization. Figure 3
shows the pre- and post-harmonization RC of 12
PET scanners.

Reproducibility
Figure 4 shows the pre- and post-harmonization CVrepro

of the 30-min PET images among 12 PET scanners. The
(means ± SD) pre- and post-harmonization CVrepro of six
spheres were 9.45% ± 4.69% (range, 3.83–15.3%) and
6.05% ± 3.61% (range, 2.30–10.7%), respectively.
Harmonization significantly improved the reproducibility
of the PET SUVmax (P = 0.0055).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

X
i¼10;13;17;22;28;37 mm

SUV max in PET scanner;i−SUV max in DRO10mm;i
� �2

s

Fig. 2 Flow chart used to determine the optimal FWHM of additional Gaussian filter for harmonization
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Repeatability
Figure 5 shows the CVrepeat of images across 15 frames
acquired from each PET scanner. The
post-harmonization CVrepeat of the nine PET scanners
that required an additional GF for harmonization (Aqui-
duo, Bio3R, Bio4R, BioTP, Celesteion, DIQ, D600, D690
and GTF) was lower than that at pre-harmonization
(Table 3). The pre- and post-harmonization CVrepeat

(means ± SD) of nine scanners were 6.59% ± 1.29%
(range, 5.00–8.98%) and 4.88% ± 1.64% (range, 2.65–
6.72%), respectively. Harmonization significantly im-
proved the repeatability of the PET SUVmax (P < 0.0001).

Discussion
The J-Hart study examined whether a vendor-neutral
software could harmonize SUV across 12 PET scan-
ners from various manufacturers. We obtained an ap-
propriate FWHM of GF for harmonization by
comparing the SUVmax of 12 PET scanners at nine in-
stitutions with both the JSNM reference range and
the DRO10mm. Harmonization significantly improved
the reproducibility and repeatability of the SUVmax.
Our harmonization process was based on the simple

down-smoothing method proposed by Boellaard et al.
[30]. This strategy has been widely applied to SUV
harmonization [15, 31] and provides a pair of PET
images with relatively high and low resolution. With
a comparable SUV across different scanners as well as
in EQ.PET software, not only high-resolution images
for lesion detection but also harmonized images can
be obtained [23]. The EANM provides the strategy
for harmonization applied to RC [19], whereas JSNM
recommends harmonization applied to SUVmax that
can detect errors such as cross-calibration. Therefore,
SUVmax data are presented in graphs of the present
study.
Quak et al. validated a proprietary software tool

(EQ.PET) to harmonize SUV across three PET sys-
tems independently of the applied reconstruction al-
gorithm [23]. They reported that all RC of SUVmax

fell within EANM curve after applying the EQ.PET
filter. The present study confirmed that
vendor-neutral GI-PET software could harmonize the
SUVmax across 12 PET scanners. As a result, all SUV-
max fell within in the JSNM reference range on
GI-PET after adding a GF. Therefore, we consider
that GI-PET and EQ.PET are equally useful for

Table 2 Full-width at half maximum for SUV harmonization of
PET scanners

PET scanner Range of FWHM for GF
for inclusion in JSNM
reference range (mm)

Optimum FWHM for GF
to obtain smallest RMSE
compared with
DRO10mm (mm)

Aquiduo 5–7 5

Bio3R 5–9 5

Bio4R 8–10 8

BioTP 9 9

Celesteion 6–10 6

DIQ 8, 9 8

DSTE No filter No filter

DSTEP No filter No filter

D600 6–9 6

D690 6–9 6

GTF 5–7 5

GXL No filter No filter

DRO digital reference object, FWHM full-width at half maximum, GF Gaussian
filter, RMSE root mean square error

Fig. 3 Recovery coefficients of 12 PET scanners obtained from 30-min PET image. Comparison among a pre- and b post-harmonization RC
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harmonization. The post-harmonization SUVmax of
various PET scanners became comparable based on
the same standard, which is relevant to multicentre
and follow-up studies that use various PET scanners.
E Q.PET is a proprietary software that can only be
installed on its own dedicated workstation with PET
system. In contrast, GI-PET is a vendor-neutral
software that can be applied at any institution using
only a personal computer, regardless of the PET sys-
tem. Although the present study used the JSNM ref-
erence range of SUVmax, the EANM reference range
can be used in vendor-neutral software.
Harmonization of the SUV improved the CVrepro of

SUVmax across 12 scanners in the present study.
Takahashi et al. reported a maximum difference of
45.7% in the SUVmax with a 27-mm sphere across five
different PET scanners [32]. Such a substantial vari-
ation is a problem for reproducibility. Quak et al.
evaluated harmonization across three PET scanners
using EQ.PET for 1380 FDG-avid tumours [23]. They
reported that the mean ratio with and without PSF of
the SUVmax for 1380 tumour lesions was 1.46 (95%CI
0.86–2.06) before and 1.02 (95%CI 0.88–1.16) after
harmonization. Because the mean value, + 1.96 × SD,
was the upper limit of the CI, the SD before
harmonization was 0.31, thus yielding a CV of 21%.
The SD after harmonization was 0.07, thus yielding a
CV of 7%. The present study found that GI-PET im-
proved the range of CVrepro across 12 PET scanners
from 3.83–15.3% to 2.30–10.7%, suggesting that
inter-scanner variability was improved equally well by
GI-PET and EQ.PET. Harmonization is thought to de-
crease differences in variations among acquisition

protocols (2D, 3D, TOF, etc.), machine specificities
(such as type of crystal) and other elements (clock
synchronisation, activity preparation and injection).
However, their study included 517 patients with tu-
mours who were examined using three PET scanners,
whereas we examined a NEMA IEC body phantom
using 12 PET scanners. The difference may also be af-
fected by the biological features of tumours and pa-
tients. Patients should ideally be clinically assessed
using the same scanner. However, patients often
undergo PET evaluations with different scanners
within the same institution. Multicentre studies usu-
ally have different scanners, and thus, therapeutic ef-
fects can be assessed using various scanners, and
patients are often transferred to other hospitals for
advanced specialist care.
Harmonization of the SUV also improved the CVre-

peat of SUVmax across 15 frames in each scanner.
Velasquez et al. evaluated SUV repeatability in a
study of 18F-FDG PET and found that the
intra-subject CV for SUVmax was 10.7% [33]. Doot et
al. evaluated the influence of the FWHM of a GF on
the repeatability of phantom data and found that in-
crease of smoothing parameter decreased the standard
deviation (SD) of the RC [34]. Kelly et al. evaluated
the effects of harmonization on quantitative variation
in the SUVmax relative to the reconstruction protocol.
They found that the CV of the SUVmax across 15 re-
peat scans pre-harmonization was 2.81%, 3.25% and
4.69% for OSEM, OSEM+PSF and OSEM+PSF+ time
of flight (TOF), respectively, whereas those values
after harmonization were 2.28%, 2.00% and 2.58%, re-
spectively [31]. Harmonization is considered to im-
prove the repeatability of any reconstruction protocol.
The CVrepeat of all scanners and spheres was < 10%

except for that with the 10-mm sphere using the
DSTE. With respect to CV repeatability, Lodge et al.
reported that the within-subject CV of a tumour SUV
was 10% when acquired with careful attention to the
protocol [35]. Data acquisition with the DSTE for
clinical examinations requires 3 min per bed position,
whereas our phantom study acquired data for 2 min
per frame in the evaluation of repeatability. This
might be why the CVrepeat of the 10-mm sphere using
DSTE was > 10%.
The SUVmax of all PET scanners in the present

study was above the lower limit of the reference SUV
range. Lasnon et al. examined the RC using Biograph
TrueV and found that the RC for a 10-mm sphere on
OSEM images was slightly below the lower limit of
the EANM proposed range [15]. Harmonization using
a GF is available when the RC is above the lower
limit of the reference range, and it cannot proceed
when the RC is below this limit. However, since some

Fig. 4 Effects of harmonization on reproducibility. Pre- and post-
harmonization comparisons of coefficients of variation of SUVmax for
12 PET scanners (CVrepro)

Tsutsui et al. EJNMMI Research  (2018) 8:83 Page 7 of 10



older PET and PET/CT findings of low spatial reso-
lution might have an SUVmax below the reference
range, the reconstruction settings (including recon-
struction methods, matrix, pixel size, iterations, sub-
sets and post-filter) should be carefully considered to
obtain an RC within the reference range.
Several limitations are associated with the present

study. The basic performance of PET/CT has im-
proved in recent years as the technology has pro-
gressed. Therefore, the reference range of the SUV
might change with future advancements in PET/CT.
We only assessed the SUVmax, although other metrics,
such as metabolic tumour volume and total lesion
glycolysis, are also useful [36]. The reproducibility
and repeatability of new metrics that might be reliable
biomarkers should be evaluated. Differences in the
voxel size depending on the reconstruction protocol

require consideration. GI-PET automatically converts
the original voxel size to the isotropic voxel size,
which might result in the SUV differing from the
value obtained on a proprietary workstation. A
vendor-neutral software for SUV harmonization
should be able to apply a 3D-GF to original (non-iso-
tropic voxel) data. The present study is evaluated
using only the phantom. Therefore, the feasibility of
vendor-neutral software in clinical practice requires
validation by further clinical studies.

Conclusions
We harmonized quantitative values among 12 PET
scanners using a commercial vendor-neutral software.
This harmonization strategy based on the simple
down-smoothing method improved the reproducibility
and the repeatability of the SUV determined from a

Fig. 5 Effects of harmonization on repeatability. Pre- and post-harmonization comparisons of coefficients of variation of the SUVmax for 15 frames
(CVrepeat). The asterisk symbol indicates three PET scanners (DSTE, DSTEP and GXL) did not require additional Gaussian filter for harmonization
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hot lesion. Therefore, this software might enable com-
parison of SUV directly across different scanners and
facilitate multicentre oncology PET studies.
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