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Preface 

Animals sense signals from physical and biological environments to make decisions critical 

for their survival and reproduction. Some animals emit signals for attracting prey and mate 

or avoiding predators. There are animals that sense and respond these signals to gain the 

benefit or reduce the fitness loss resulting from the interaction with signal senders. A series 

of studies about how and when signals organisms emit, which sensors organisms have 

evolved, and how organisms select their behaviors in response to signals are called 

“sensory ecology”. In recent years, sensory ecology becomes an increasingly popular 

research area (Stevens 2013). 

Interactions between signal senders and signal receivers start when signals are 

emitted. This step is called “signaling”. In the field of behavioral ecology, communication 

takes place when some signals are emitted by an individual in order to change the behavior 

of other individual(s) (Wilson 1975). The signals are highly diverse: they can be visual (i.e. 

coloration, shape), chemical (i.e. smell, pheromone), or auditory (i.e. voice, buzzing) 

(Endler 1992; Chivers and Smith, 1998; Partan and Marler, 2005; Goepfert and Henning 

2016). Signals would be optimized to increase fitness of the signal sender during evolution. 

The evolution of signals is well studied in mimicking organisms. Some organisms mimic 

the signal emitted by others to cheat other individuals to increase survival and reproductive 

success (Ruxton et al. 2004). Many species of Eristalis mimic color patterns of distasteful 

bees for avoiding predation by birds (Rettenmeyer 1970), and parasitic ants steal food items 

from other colonies by mimicking smells of other colonies (Dettner & Liepert, 1994). In 

contrast, emitting signals may be sometime costly as it would increase predation risks. Haff 

and Magrath (2011) reported that the begging calls of birds attract predators, increasing the 

predation risk . Understanding the trade-off between benefit and cost of signal emission is 

the critical issue in sensory ecology. 
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 After signals are emitted, the signals need to be received by other individual(s) 

who may or may not be conspecifics of the signal sender. This step is called "sensing". 

Sensors are highly diversified because of the demand to receive a variety of signals. To 

receive light signals effectively, the animal needs to have light sensors (eyes). To 

discriminate colors, an animal must have a sensor which reacts the specific wavelength 

(color vision). To detect shapes, an animal must have light sensors with sufficiently high 

resolution. In the process of sensing, organisms pick out a part of environmental 

information even if they receive an overwhelming amount of stimuli from environment 

(Stevens 2013). Communication and subsequent behaviors do not occur if sensors do not 

match signals. The characters of each sensor such as a detectable wavelength have been 

studied for a long time. The reason why animals have evolved each specific sensor is being 

studied in sensory ecology in recent years. Evolutionary histories of sensors are well 

discussed in a simple system such as the relationship between the chemical sensors of 

pollinator and chemical signals from flowers (Bromenshenk et al 2015). Which sensors 

organisms have and the reason why the sensors have evolved are another important 

question in sensory ecology. 

 After organisms receive signals, they select appropriate behaviors. This step is 

called "decision making". Decision making has been studied not only in ecology and 

animal behavior but also in psychology and economics. An example of decision making 

can be found even in a simple organism. Bacteria change their orientation when they 

receive some chemical signals (Adler 1975). Higher organisms process the signals and 

information in nerve systems and make appropriate decisions based on their experiences 

and situations. When animals select foraging patches, they decide whether to move away 

from the patch or stay by predicting their future benefit and cost based on their experiences 

(Pyke et al., 1977). However, how animals make decisions under more complicated 



 6

biological interactions remain unresolved. Understanding the mechanism of decision 

making under complex situations is the final goal in sensory ecology. 

 The types of signals, characters of sensors, and styles of decision-making may 

differ depending on species, habitats and individuals. Many experiments have been 

conducted for different species, and the knowledge about the characteristics of signals, 

sensors, and decision making of organisms have been accumulated rapidly.  

Theoretical studies for decision making have been performed for a long time (e.g. Staddon 

and Gendron 1983; Jones 1978). However, only a small number of theoretical studies about 

sensors and signals have been performed, which is in sharp contrast with a wealth of 

experimental studies accumulated in sensory ecology. General and commonly used ways to 

study sensor and signals with mathematical models do not exist, though there are many 

frameworks for considering the problem of decision making. It is clear that theoretical 

studies are necessary for understanding the evolution and adaptation of sensors and signals. 

Theoretical frameworks that integrate three important processes, signaling, sensing, and 

decision making, are increasingly demanded.  

 In this thesis, I report my theoretical studies on each important question in 

sensory ecology: signaling, sensing, and decision making. In chapter 1 and 2, I constructed 

mathematical models for the evolution of singles and sensors based on interactions via 

chemical and visual signals. In chapter 3, I constructed a mathematical model that 

integrates evolution and learning in decision making. These studies will open a new 

window to study animal behaviors from the view point of sensory ecology. In the following, 

I summarize the contents of each chapter:  

 

Chapter 1: Chemical mimicry or crypsis–the evolutionary game played by parasitic ants 

invading other colonies 
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Some ant species are specialized parasites that invade the nests of other ants and steal their 

food, larvae, and eggs. To be successful, they must evade detection by patrolling hosts who 

attack invaders. Ants distinguish invaders from individuals of their own nest through the 

cuticular hydrocarbon profile, as their nestmates have a similar mixture of coating 

chemicals. To circumvent this, some parasites adopt mimicry, using a mixture of chemicals 

that has a similar composition to that of their hosts, while others adopt crypsis, with a 

reduced amount of chemicals. Here we develop a mathematical model to describe the 

conditions under which each of these strategies evolves, assuming that the parasites and 

hosts are ants with their own colonies. Host ants distinguish their nestmates from parasites 

through differences in their chemical traits, which are represented in multi-dimensional 

space. Parasitic ants engage in competition with other conspecific colonies, which is more 

intense between colonies with similar chemical traits, jeopardising the advantage of cryptic 

parasites. We then define parasites’ fitness with respect to chemical profiles and discuss the 

evolution of their chemical strategies. Cryptic parasites evolve when competition among 

colonies is weak, when many types of host colonies exist, and when host recognition 

accuracy is high. Mimetic parasites evolve under the opposite conditions. 

 

Chapter 2: When Faster Moving Animals should Have Better Visual Ability?-- 

Computational Study of Leuckart's Law. 

  Leuckart’s Law states that among vertebrates, swifter animals should have larger eyes. A 

positive correlation between movement speed and eye size is a plausible hypothesis 

because faster-moving animals need to have a higher level of visual acuity to recognize 

food items and obstacles while they are still far away and because the ability of eyes to 

resolve images is known to increase with their size. A small number of empirical studies 

suggest that Leuckart’s Law is supported for mammals but rejected for birds. We ask, when 
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faster moving animals should have better visual ability? We conducted computer 

simulation studies of an animal moving on a plane that contains many food items as well as 

obstacles. The animal moves at a constant speed but changes its directional angle when it 

recognizes food items or obstacles. We examined the number of food items the animal 

consumed and the number of obstacles it collided with. Given a small cost of visual acuity, 

we obtained the optimal visual acuity, which depended on several parameters such as 

visible distance, visible angle, turning ability, movement speed, and densities of foods and 

obstacles in the field. Assuming that the animal’s visual acuity is close to the optimal value 

predicted by the model, Leuckart’s Law mostly holds when animals are in an environment 

with similar densities of food items and obstacles. The positive correlation between 

movement speed and visual distance was stronger with more obstacles and fewer food 

items. However, Leuckart’s Law may not hold if food is abundant, obstacles are rare, and 

collision damage is small.  

 

Chapter 3: An integrated theoretical framework bridging evolution and learning 

behaviors in response to uncertain signals 

Animals receive many signals from the environment, and use these signals to decide their 

behavior. Many studies discuss how animals decide their behavior in response to signals, 

with many theoretical studies focusing on this problem. Many animals decide their actions 

based on both innate traits and their experience. However, the question on when animals 

adopt innate decision-making and when animals behave based on their experience remain. 

It is difficult to resolve this question using existing mathematical models. Here, we 

constructed a mathematical model that included decision-making using both innate and 

learning behaviors by extending the Bayesian learning model. In particular, we assumed an 

initial prior distribution in the learning model as an evolutionary trait. This approach 
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allowed us to construct a simple framework to consider decision-making by both innate and 

learnt behavior. Furthermore, we applied this model to avoidance behavior, and analyzed 

when animals avoid signals innately and when animals avoid signals by using their 

experiences. We showed that innate avoidance evolves when the cost of attacking signals 

and the frequency of the signal is high. In contrast, animals avoid signals based on 

experiences under the opposite conditions. 
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Introduction 

Under mimicry, an organism (called a mimic) simulates another organism (called a 

model), and a third organism identifies the mimic as an example of the model (Dettner & 

Liepert, 1994). Animals adopt mimicry to avoid attack by other animals or to successfully 

attack their prey. Many observations suggest that it provides the mimetic organism some 

fitness benefit. For example, ant-mimicking jumping spider of genus Myrmarachne reduce 

the chance of being eaten by larger jumping spiders (Haung et al., 2010). Animals may 

improve the effectiveness of attacking their own prey through ‘aggressive mimicry’ 

(Stevens, 2013). For example, bluestriped fangblennies (Plagiotremus rhinothynchos) 

mimic juvenile cleaner wrass (Labroides dimidiatus), which remove ectoparasites from the 

bodies of other coral reef fishes, allowing them to approach coral reef fishes and obtain 

their body tissues as food (Cheney, 2012). These mimics have body colourations and 

behaviours similar to those of the model, making their victims accept them. 

Nearly all animals, especially terrestrial arthropods, use chemical cues to communicate 

with other members of their species and to perceive individuals of other species, such as 

prey, predators, or competitors. Consequently, many organisms employ ‘chemical mimicry’ 

(Pasteur, 1982), whereby they simulate chemical cues to avoid predation or to effectively 

attack other animals. For example, the blister beetle (Meloe franciscanus) parasitises nest of 

a solitary bee (Habropoda pallida) by exploiting its chemical cues (Saul-Gershenz & Millar, 

2006). Female H. pallida emit sex pheromones that attract male bees searching for mates. 

Blister beetles attract male H. pallida using pheromone-like chemicals that mimic those 

emitted by female bees to invade the bees’ nest by attaching to the attracted males. 

Chemical mimicry associated with the recognition of nestmates and parasites by ants is 

well studied. Ants distinguish their nestmates from non-nestmates through cuticular 

hydrocarbon profiles on their bodies (Singer, 1998; Akino et al., 2002, 2004; Howard & 
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Blomquist, 2005; Ozaki & Wada-Katsumata, 2010), which are usually exchanged 

whenever ants encounter each other in the same colony. Consequently, individuals from 

different colonies can be distinguished by their chemical profiles, allowing invaders to be 

detected and removed or immediately killed. 

Some ant species are specialised parasites that can invade other colonies by mimicking 

the odour of the host. Following invasion, these parasitic species exhibit several alternative 

behaviours, such as [1] coexisting with host ants in the same nest (Ward, 1996; Maschwitz 

et al., 2000; Sumner et al., 2003), [2] taking over the host colony (Topoff & Zimmerli, 

1993; Mori, D’Ettoree, & Le Moli, 1995); [3] laying and rearing their eggs in the host nest 

(Maschwitz et al., 2004; Witte et al., 2009; Lhomme et al., 2012); and [4] stealing resources 

from the host nest and transporting them to their own colonies (Perfecto & Van der Meer, 

1993; Breed et al., 2012). 

Species parasitising ant nests adopt different chemical mimicking strategies, which we 

classify as ‘chemical mimicry’ and ‘chemical crypsis’, following Dettner and Liepert 

(1994), Lenoir et al., (2001), von Beeren et al., (2011), and Kilner & Langmore (2011). 

Chemical mimicry implies the chemical resemblance of another species through the 

biosynthesis of chemical cues or the acquisition of chemicals from host colonies. Host ants 

accept mimetic parasites because they have similar recognition cues. In contrast, chemical 

crypsis implies a lack of such cues. Ants have low levels of cuticular hydrocarbons 

immediately after emergence and gain colony-specific chemical cues during growth (Fielde, 

1905; Lenoir et al., 1999; Lenoir et al., 2001). Hence, host ants do not distinguish cryptic 

parasites from their own young workers. Consequently, host ants readily accept cryptic 

parasites. Thus, crypsis is considered an effective invasion strategy (Kilner & Langmore, 

2011).  



 14

Some species are known to adopt both strategies. For example, Acromyrmex insinuator, 

a parasitic ant, is chemically insignificant when they invade host colonies and then 

gradually acquire host colony-specific chemical profiles (Nehring et al., 2015). 

Many theoretical investigations have been done on the role of mimicry in host-parasite 

systems (e.g. Gavrilets, 1997; Rodriguez-Girones & Lotem, 1999), particularly brood 

parasites such as cuckoos and parasites of ants. However, to our knowledge, published 

research does not consider the evolution of traits in parasites employing a cryptic strategy. 

In this paper, we construct a mathematical model to investigate the conditions for 

crypsis and mimicry to evolve in the chemical strategies of parasitic ants. We define the 

fitness of a parasite according to the chemical profiles, and discuss the evolution of diverse 

chemical strategies. We show that cryptic parasites evolve when colonies weakly compete, 

when many types of host colonies exist, and when hosts recognise parasites with high 

accuracy. Mimetic parasites evolve under the opposite conditions. 

 

Model–the chemical profile game 

Figure. 1 illustrates the model. Assumptions are: parasites and hosts are ants with their 

own colonies; colonies of the same parasitic species exist in the same habitat and easily 

contact each other; parasitic ants steal resources from the host nests and return them to their 

own nests; host ants distinguish their nestmates from non-nestmates through their chemical 

profiles and parasites employ chemical strategies to trick host ants and sneak into their 

colonies. 

We consider two multi-dimensional chemical traits as follows: x represents a vector (x1, 

x2, …, xn) of the chemical traits of the host colony, and y represents a vector (y1, y2, …, yn) 

of the chemical traits of the parasite. We define the two parasitic strategies as follows: 

mimetic strategy is represented by the parasite’s traits similar to those of the host (࢞ ൎ ࢟), 
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and the cryptic strategy is represented by the parasite’s traits with small amount of 

chemicals (‖࢟‖ ൎ 0). Here we focus on their chemical profile at the time of invading host 

colonies. We are not concerned about events after they invade successfully. For example, 

some parasites may use crypsis in the invading process, but change to mimesis after 

successfully invading the host colony, which is treated as a crypsis strategy in the following 

analysis. 

According to empirical observations, we assume the rules of host acceptance as follows: 

[1] Ants accept other individuals whose blend of chemicals is similar to their own (van 

Zweden & d’Ettorre, 2010); and [2] ants tend to accept other individuals whose absolute 

amount of chemicals is small (Lenoir et al., 2001; Kilner & Langmore, 2011), because their 

own juveniles have small amounts of chemicals (Fielde, 1905; Morel et al., 1988; Van der 

Meer & Morel, 1998; Lenoir et al., 2001). Specifically, we assume that a host with 

chemical traits x will accept a parasite with chemical traits y with the following probability: 

݂ሺ࢟; ࢞, ௛ሻߚ ൌ expሾെߚ௛ሺ‖࢞ െ ࢟‖ ൅ ‖࢟‖ െ ‖࢞‖ሻሿ ,  (1) 

where βh indicates the accuracy of host recognition. This probability equals 1 along a line 

segment y = kx, where 0 ≤ k ≤ 1, but it is smaller than 1 and it decreases as y diverges from 

the line segment (Figure. 2). When βh is large, the value of function (1) decreases very 

quickly and has a sharp edge along the line segment, indicating that the host rejects 

individuals possessing traits slightly different from the host’s. Hence, βh represents the 

host’s recognition accuracy. 

Most parasitic and non-parasitic ants express chemical phenotypes similar to those of 

other colonies of the same species located nearby in the chemical profile space. Thus, ants 

are generally exposed to attacks by parasites of other species as well as by other colonies of 

conspecific ants through resource robbing (Ryti & Case, 1986; Gordon, 1991; Yamaguchi, 

1995). Here we assume that parasites compete with each other, and that the competition 
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incurs a large cost. In a similar manner as host ants, parasitic ants accept or reject invaders. 

Thus, the probability of a parasite with chemical traits y to accept a non-nestmate with 

chemical traits z is 

 ݂൫࢟; ,ࢠ ௣൯ߚ ൌ expൣെߚ௣ሺ‖࢟ െ ‖ࢠ ൅ ‖ࢠ‖ െ ‖࢟‖ሻ൧      ,  (2) 

where βp indicates the recognition accuracy of the parasite, which can differ from βh, the 

recognition accuracy of the host. 

Using Eqs. 1 and 2, we can calculate the fitness of a parasite with chemical traits y as 

 lnܹሺ࢟ሻ ൌ ln ଴ܹ ൅ ܽ ∑ ݂ሺ࢞௜; ࢟, ௛ሻߚ
௡
௜ୀଵ െ ܾ ∑ ݂൫࢟; ,௝ࢠ ௣൯ߚ െ ܿ‖࢟‖௠

௝ୀଵ  , (3) 

In Eqs. 3, xi represents the chemical traits of host i, y represents the focal parasite traits and 

zj represents the parasite traits in other colonies around the focal parasite. Note that there 

can be multiple hosts differing in chemical profiles. n represents the number of host types 

and m represents the number of parasite colonies. Here, the number of host type means the 

number of host that have different chemical trait. The first term of the right-hand side of Eq. 

(3) is for the baseline fitness of parasites regardless of interaction with hosts and 

hydrocarbon production. The second term of equation (3) represents the benefit that is 

gained by successfully invading host colonies. If many host colonies are available, the 

parasite can acquire additional benefits. The third term reflects the risk of incorrectly 

accepting non-nestmates of the same species. The last term is the cost for production and 

maintenance of chemicals.  

 Mimetic parasite colonies can use host colonies in a different manner from each 

other, which makes them use chemical traits that differ from those of other colonies of the 

same parasite species. In contrast, cryptic parasites must use similar traits, which are near 

the origin of the chemical profile space. If many parasite colonies employ a cryptic strategy, 

they will have more conspecific colonies with chemical traits similar to themselves than a 

colony employing a mimetic strategy. Hence, a very strong intraspecific competition exerts 
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a large effect among colonies with similar chemical traits, jeopardising cryptic parasites 

more strongly than mimic parasites. 

 

Evolutionary dynamics in the chemical profile space 

Here, we consider the evolutionary dynamics of the location of colonies in the chemical 

profile space. For simplicity, we consider a chemical profile with two dimensions in which 

axes are the first (y1) and the second (y2) components of ant chemicals. We divide the 

competition among parasites into two steps: the first step describes competition between 

colonies generated from the same colony, whilst the second step is the competition among 

colonies that survive the first step competition, which takes place in the whole area. The 

first step competition is severer than the second step not only because of the similarity of 

their traits, but also because they are spatially close to each other in the physical space. To 

represent the effect of physical proximity of colonies just produced from the same parental 

colony, we separated the competition among colonies in two steps. These dynamics are 

realised as follows:  

The location of a colony in chemical profile space is characterised by the queen’s 

chemical profile (Figure. 3-a). In the first step of competition, a colony of the parasite 

species produces new queens who are daughters of the queen. Their chemical profiles differ 

slightly from their mother’s, due to mutations. We assume nine types of new queens. The 

trait values of a new queen are made by adding either minus 0.01 or plus 0.01 with equal 

probability to those of her mother (Figure. 3-b). The new queen with the highest fitness 

(calculated using Eq. 3) among them is assigned as the next queen and reorganises the 

colony’s chemical traits with her own chemical profile (Figure. 3-c). We conduct this 

process for each colony of the parasite. As a consequence, each colony engages in an 

adaptive ‘evolutionary random walk’ on the chemical profile space. 
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The second step of competition takes place between all parasite colonies in the chemical 

profile space. We calculate the fitness of each colony and the fitness value averaged over 

all colonies. We remove the colonies with fitness less than 80% of the mean fitness. To 

maintain the number of colonies in the area, we duplicate the colonies with high fitness 

(Figure. 3-d). The colonies that are duplicated are selected from those with the highest 

fitness among the colonies in the population. We chose the number of colonies duplicated 

equal to the number of colonies removed (i.e. the colonies with low fitness). According to 

numerical analyses for a range of parameters, in most cases, the fitness of the colonies 

allowed to duplicate is more than 1.1-times larger than the mean fitness of all colonies. 

Here we assume that each new colony has chemical traits slightly different from the 

parental colony by mutation. The values of an offspring colony are made by adding minus 

0.01 or plus 0.01 (with 50% chance) to the values of the parental colony.  

In the initial population, we placed 100 parasites colonies (m=100) in two-dimensional 

chemical profile space and conducted the evolutionary procedure described above. We 

chose the value of initial traits (y1 and y2) of parasites randomly between 0 and 1 with 

uniform probability distribution. Traits of each hosts (x1 and x2) are chosen randomly 

between 0.2 and 1 with uniform probability distribution. The fitness given by Eq. 3 depends 

on the distances of traits from other conspecific colonies and from host colonies. Therefore, 

the fitness landscape changes as traits of the parasites change, generating frequency 

dependent natural selection. In the end, all colonies ceased to show large conspicuous 

changes, which we regard as the evolutionary equilibrium. In this way, we calculated 

evolutionary outcomes and its parameter dependence numerically. We found that 

parameters a, b, n, m, and βh had large effects to outcomes, and other parameters had 

smaller effect than these. 
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Evolutionary outcomes 

Figure 4-a illustrates an evolutionary outcome. Here we operationally define parasites’ 

strategy according to their chemical traits as follows: (i) cryptic, if the magnitude of the 

parasite traits’ vector (‖࢟‖) is ൑ 0.4; (ii) intermeditate, if 0.4 ൏ ‖࢟‖ ൏ 0.8; and (iii) 

mimetic, if ‖࢟‖ is ൒ 0.8. Since there are no criteria for real ants to distinguish two 

strategies, we use above values operationally.  

At evolutionary endpoints, parasites are cryptic when the strength of intraspecific 

competition (b) is small and when the number of host types (n) is large; and parasites are 

mimetic when b is large and the number of host types is small. These results can be 

interpreted as follows: Parasites employing a cryptic strategy are likely to be accepted by 

hosts of more diverse types than mimetic parasites. On the other hand, they suffer from 

severe competition among themselves more than mimetic parasites.  

Parameter m (the number of parasites) has a similar effect to b, because the loss by 

competition is determined by b times the number of competitors. Parasites evolved to be 

mimic if m is large, and evolved to be cryptic if m is small. At the boundary between the 

parameter region for mimicry and that for crypsis, there was a narrow region with an 

intermediate strategy evolved, but we never observed the coexistence of multiple types (see 

below for more details).  

Figure. 4-b illustrates the evolutionary outcome when βh, host recognition accuracy is 

much larger than that shown in Figure. 4-a. As the host’s recognition accuracy βh becomes 

larger, the cryptic strategy (rather than mimic strategy) evolves even for fewer host types. 

This can be interpreted as follows: When host recognition accuracy is limited, parasites 

with chemical profiles different from the host can be accepted. In such cases, a parasite 

mimicking one host colony (with a chemical profile very similar to a particular host) will 

be accepted also by other host colonies even if chemical profiles of the host colonies are 
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slightly different from that of the parasite. This is the reason why mimic strategy works 

well under limited host recognition accuracy. In contrast, if the host’s recognition accuracy 

is very high, a parasite with a profile close to a host colony will be rejected by the other 

host colonies, which makes the mimic strategy less profitable. 

We carefully examined the evolutionary outcome near the boundary between the 

parameter region for mimicry and the region for crypsis with different b values. In 

particular, we examined the model with b changing by small steps (0.01-fold difference) 

near the boundary between two regions. Figure. 5 illustrates the evolutionary endpoints 

with different b value. Horizontal axis represents b and vertical axis represents the 

magnitude of chemical traits of parasites (‖࢟‖). We never observed the coexistence of two 

strategies in the same population. However, we observed the evolution of an intermediate 

strategy in a very small parameter range.  

Parameter a also affects the result strongly. Figure. 6 illustrates the evolutionary 

outcome with different a and b. Horizontal axis represents the intensity of competition, b, 

and vertical axis represents the benefit from host, a. Parasites employing cryptic strategy 

suffer from more severe competition among themselves, but they can exploit more diverse 

host types than mimic parasites. Therefore, cryptic strategy tends to evolve when the 

benefit from a host (a) is large. From this figure, we conclude that the successful strategy is 

decided by the balance between the benefit from host, a, and the loss by competition among 

parasites, b.  

Parameter c changes the results quantitatively, although it has smaller impact than other 

parameters mentioned above. When the cost of chemicals, c, becomes larger, the boundary 

between mimic and cryptic in Figure.4 shifts toward right, implying that the parameter 

region for cryptic strategy to evolve becomes larger. The reason is that parasites which 

have no chemicals are favored when the cost of chemicals is large. 
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Discussion 

In this paper, we analysed the conditions under which the chemical strategies of crypsis 

and mimicry evolve in parasitic ants that invade colonies of host ants. We assumed that 

parasitic ants possess their own colonies and that parasitic and non-parasitic ants prevent 

invaders from entering their own nest by detecting chemical cues. We evaluated the 

chemical strategies that occur at the evolutionary end point and identified factors that 

strongly influence the optimal strategy as follows: 

i) Competition intensity and benefit from host 

First, the model predicts that a cryptic strategy evolves when competition among 

parasite colonies is mild and parasites can obtain a large benefit from the host, whereas a 

mimetic strategy evolves when competition is intense and benefit from host is small. 

Cryptic parasites do not have strong chemical components. On the chemical profile space, 

they are represented by points near the origin. Since they get close to each other, they are 

likely to engage in competition among themselves. The cryptic parasites experience 

stronger competition among themselves than mimetic parasites, and they are defeated by 

mimetic parasites when competition is intense. In contrast, when competition is mild, 

cryptic parasites enjoy larger benefits, because they can invade more host colonies than 

mimetic parasites. 

Our theory predicts that the chemical strategy should correspond to the strength of 

competition b and the size of benefit from host a. Some ant species kill non-nestmates on 

contact (Holldobler, 1976b, 1983; Yamaguchi, 1995), while others exclude conspecific 

invaders through ritualised combat (Ettershank & Ettershank, 1982). Hence the strength of 

competition can be guessed for some species. However, at this moment, there is no report 

available which measures the size of the benefit from host quantitatively. Hence, although 
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ant chemical strategies are known for many species (Akino, 2008), we cannot test the 

theory because no study was done on quantitative measurements of both a and b for the 

same species. 

ii) Number of host types 

Second, the model predicts that a cryptic strategy is more likely to evolve when there are 

many host types, whereas a mimetic strategy is likely to evolve under the opposite 

conditions. The diversity of ant colonies’ phenotypes may vary between habitats and 

between local populations (e.g. Nash et. al., 2008). To test the model’s prediction, we need 

to know the relationship between diversity of host colonies and chemical strategies of 

parasites.  

iii) Recognition accuracy of the host 

Third, the model predicts that cryptic strategies are more likely to evolve if host 

recognition accuracy is high. Nestmate recognition accuracy and intraspecific aggression 

vary greatly among species (e.g. Cini et al., 2009; Furst et al 2012; Cappa et al 2014). Cini 

et al. (2009) reported a quantitative recognition threshold for paper wasp Polistes 

dominulus. The wasp is a social insect, like most ants, and it recognises nestmates using 

hydrocarbons on the body; and Cappa et al. (2014) measured the recognition threshold in 

honeybee Apis mellifera quantitatively. Furst (2012) reported the relationship between 

aggression level and distance of chemicals. However, to test our predictions, we need to 

focus not only on chemical distances but also on the types of chemical strategies (crypsis or 

mimesis).  

An important finding of the present study is that the evolution of mimetic and cryptic 

strategies can be explained by considering the effect of intraspecific competition among 

colonies. Intraspecific competition occurs among ants (Hölldobler, 1976, 1983; Yamaguchi, 

1995; Ettershank & Ettershank, 1982, Cronin et. al., 2012, Jandt et. al., 2015), although the 
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relationship between their competitive behaviours and chemical strategies is unknown. Our 

model predicts that the strength of competition affects the chemical strategy of parasites -- a 

mimic strategy is likely to evolve when parasite colonies engage in strong competition with 

each other. This remains to be tested empirically. 

iv) Difficulty of Coexistence of Cryptic and Mimic Strategies 

In our model, there was no instance of coexistence of the cryptic strategy with the mimic 

strategy. In addition, we never observed evolutionary bistability. The outcome was 

invariably one or the other in all the 10 runs with different initial conditions. This 

theoretical result is consistent with findings that most parasitic ants are cryptic or mimic, 

depending on species. However, the model also allows subpopulations of the same species 

living in different habitats to take different chemical strategies. In fact, in Protomognathus 

americanus, individuals from some colonies has strong odors similar to one host species, 

whilst individuals from other colonies have weak odors, which is not very similar to the 

host's odors, and that they live in different habitats (Brandt et al., 2005). Former individuals 

exploit one host species and latter individuals exploit multiple host species. The theoretical 

results of the model suggest that colonies employing a cryptic strategy live in habitats with 

numerous host species, while colonies employing a mimic strategy live in an environment 

with a few host species. This predicted pattern is consistent with a field study of P. 

americanus (Brandt et al., 2005). 

At the boundary between the parameter region for mimicry and the one for crypsis, there 

is a narrow region in which an intermediate strategy evolved. In ants, it is difficult to 

discuss an intermediate strategy because there are no quantitative criteria between cryptic 

and mimic strategy. However, it is quite interesting to search for a case with an 

intermediate strategy, which may be possible when a subtle balance holds between benefit 

from host and loss by competition among parasites.  
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v) Possible Extrapolation to Other Species 

In this paper, we developed a model targeting parasitic ants, but we may extend the 

model to chemical strategies of other species that attack colonies of social insects. An 

obvious extension is for non-ant species of hymenopteran social insects, which adopt 

chemical odours to distinguish nestmates from non-nestmates. Among them, particularly 

social wasps, parasite species invade other colonies and steal food and other resources 

(Sledge et al., 2001). These social wasp species recognise individuals from other colonies 

using chemical signals, and mimic and cryptic species exist among parasites, similar to ants 

(Cini et al., 2009). We conjecture that the same theory applies to parasitic wasps that attack 

other social wasps. 

The model studied in this paper may be applicable to parasites of colonies of social 

insects, even if parasites themselves are not social insects. For example, the silverfish 

Malayatelura ponerophila is a specialized parasite often observed in ant colonies. 

Silverfish have very little cuticular hydrocarbons, which help them invade ant colonies (von 

Beeren et al., 2011). Our model considers this a cryptic strategy. Silverfish are not social, 

but live without forming colonies and do not engage in inter-colonial competition. 

Therefore, b (strength of competition among colonies) in our model should approach zero. 

The model then predicts that silverfish should adopt a cryptic, rather than a mimic strategy. 

Similarly, blue butterfly Eumaeus atala catapillars and ant spiders Mirmanachne spp. are 

accepted in ant colonies, and both adopt a cryptic strategy (Bowers & Larin, 1989; Elgar & 

Allan, 2004), which is consistent with our model. These results indicate that the magnitude 

of inter-colony competition is important for the evolution of the mimicry of chemical 

profiles. 

 

Future developments 
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In the present study, we considered the traits of host colonies as fixed. However, host traits 

may coevolve with those of parasites. Many studies focus on the coevolution of hosts and 

mimetic parasites. For example, Gavrilets (1997) found that host traits evolve in the 

opposite direction from parasite traits, resulting in an evolutionary arms race. However, few 

studies analyse the evolution of hosts in response to cryptic parasites. Kilner and Langmore 

(2011) suggest that host colonies exposed to cryptic parasitism may decrease their chemical 

recognition cues and evolve to detect their cryptic parasites. Thus, a question for future 

theoretical studies is the evolutionary direction of host colonies that are simultaneously 

exposed to mimetic and cryptic parasites. 

For simplicity, we assumed two-dimensional chemical traits. However, in reality, the 

number of recognition cues may be greater than two and may vary among species. In a 

review article, Martin (2009) compared cuticular hydrocarbon profiles of 78 ants, some ants 

have 20 or more types of hydrocarbons, other ants have less than 5 types. A larger number of 

recognition cues should make it easier to distinguish parasites from other colonies, 

weakening the strength of competition. This suggests that cryptic parasites may receive 

more benefit when there are many chemical traits than when there are only two chemical 

traits. 

In reality, life cycle and chemical strategy of ants are more complex than assumed in the 

model. In the present study, we focused on the chemical strategy when a parasite invades 

host colonies, and we classified the strategy into two: cryptic and mimic. However, some 

parasites adopt cryptic strategy before invasion and mimic strategy after invasion by 

gaining and maintaining the chemical profile by contacting host ants (Nehring et al., 2015). 

In future, the model should be constructed by considering this strategy and it will be helpful 

to verify the predictions by experimental studies. 
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 Mimicry system is common and has been the subject of numerous theoretical studies. In 

contrast, the strategies of mimicry are diverse, and their evolutionary outcomes may 

critically depend on the nature of sensor and recognition systems. Further theoretical 

studies of possible outcomes of evolution of different systems are required to understand 

the evolution of chemical mimicry and chemical crypsis. 
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Figures 

Figure 1 

 

 
 

 

Figure 1. Schematic diagram of the model. We consider the situation where there are 

multiple host and parasitic ant colonies. Parasitic ants invade the host colonies and steal 

their resources. Host ants distinguish invaders from their nestmates and decide whether to 

accept them as described by function f. Parasitic ants compete with each other by stealing 

resources, and they also distinguish invaders from their nestmates. 
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Figure 2 

 

 
 

Figure 2. Probability for an ant’s colony to accept a parasite individual. Two axes indicate 

two chemical traits of a parasite (y1 and y2, respectively). The height indicates the 

acceptance probability (i.e. the probability for an invader to be accepted by the host ants). 

The host ants’ traits are (0.5, 0.5). If the parasites’ traits are larger than the hosts’ traits, 

they will be rejected, i.e. the acceptance probability is small. However, if the parasites’ 

traits are weaker than the hosts’ traits, they will be accepted if the proportion of chemical 

components is similar to the hosts’. Parameters are x = (0.5, 0.5) and βh = 5. 
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      Figure 3 

 

 

Figure 3. Schematic illustrations of the simulation. Horizontal axis represents the first 

component of the two chemicals (x1 or y1) and vertical axis represents the second 

component (x2 or y2). (a) There are two colonies of hosts and three colonies of parasites in 

chemical profile space. (b) New queens are produced in each colony of parasitic species. 

Their traits are slightly different from mother’s traits. (c) Only one colony wins the 

competition among daughter colonies from a mother queen and all the others are eliminated 

in the first step competition. (d) Those colonies that survive the first-step competition 

engage in the second-step competition. Colonies which have the high fitness multiply, and 

colonies which have low fitness go extinct. 
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Figure 4 

 

 (a)    (b) 

 
 

Figure 4. Relative abundance of the two strategies for different parameter values where host 

recognition accuracy was (a) low (βh = 2) or (b) high (βh = 20). Horizontal axis represents 

the strength of competition among parasites, b, and vertical axis represents the number of 

host types, n. The black region indicates cases where all colonies adopted a cryptic strategy, 

and the white region represents cases in which all colonies employed a mimetic strategy. 

Parameters: a = 80, c = 1, m = 100 and βp = 10. 
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Figure 5 

 

 

Figure 5. Magnitude of parasites’ trait to evolve for different b values. Horizontal axis 

represents the strength of competition among parasites, b, and vertical axis represents the 

magnitude of chemical traits of parasites. Each circle of this figure indicates the magnitude 

of traits (||y||) of each colony. The quantity is the magnitude of the chemical traits, 

indicating the distance from the origin in chemical profile space. Parameters are: a=80, c=1, 

n=10, m=100, βp=10, and βh=2. 
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Figure 6 

Figure 6. Contour plot of the parasites’ strategy in the evolutionary endpoint. Horizontal 

axis represents the strength of competition among parasites, b, and vertical axis represents 

benefit from host, a. The black region indicates cases where all colonies adopted a cryptic 

strategy, and the white region represents cases in which all colonies employed a mimetic 

strategy. Parameters are: c=1, n=10, m=100, βp=10, βh=2 
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Chapter 2 

When faster moving animals have better visual ability?  

-- computational study of Leuckart’s law 

 

 

 

 

 

 

 

 

 

The study of this chapter, done in collaboration with Dr. Yoh Iwas, was published in 

Evolutionary Ecology Research (16, 8, pp.649-661) in 2015 
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Introduction  

Animals obtain information regarding their physical and social environments through 

diverse sensory organs, receiving visual, auditory, tactile, and chemical signals. The size, 

position, and ability of sensory organs likely evolved based on their costs and benefits to 

the organism (Walls, 1942; Eisthen, 1977; Hughes, 1977; Fay and Popper, 2000). Eyes are 

sensory organs for light, and almost all animals are equipped with eyes or organs with a 

similar function. The size of eyes is affected by many factors, such as body size (Schultz, 

1940; Kiltie, 2000; Howland et al., 2004; Burton, 2008), activity pattern (Kay and Kirk, 

2000; Garamszegi et al., 2002; Hall and Ross, 2006; Kirk, 2006; Werner and Seifan, 2006; 

Hall, 2008), and diet (Garamszegi et al., 2002; Lisney and Collin, 2007). 

 Leuckart (1876) proposed that swifter animals tend to have larger eyes compared to 

slower-moving species. Leuckart’s Law predicts a positive correlation between locomotive 

speed and eye size of animals if other aspects of their lives are equal (Leuckart, 1876; 

Walls, 1942; Hughes, 1977). Eyesight involves two different features: sensitivity and 

resolution. Sensitivity allows nocturnal vision, and a high sensitivity allows animals to see 

surroundings under limited light conditions. In contrast, resolution refers to the precision of 

eyes, and animals with eyes capable of high resolution can see surroundings clearly and in 

fine detail. Both sensitivity and resolution are improved with larger eyes (Land and Nilsson, 

2012).  

 Swift animals need to recognize surrounding objects while they are still far away, so 

they need eyes with high resolution that allow them to see distant objects clearly (Hughes, 

1997; Heard-Booth and Kirk, 2012). Higher resolution is achieved by larger eyes, so 

Leuckart’s proposal of a positive correlation between locomotive speed and eye size is a 

plausible hypothesis. However, because of the difficulty of measuring the movement speed 

of animals, Leuckart’s Law has not been empirically examined for the more than 100 years 
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since its proposal. Brooks et al. (1999) studied the relationship between eye mass and flight 

speed predicted by fluid mechanics in 104 flying bird species and confirmed a positive 

correlation between the two variables. They also found that eye mass was smaller among 

flightless birds than among flying birds, after controlling for body mass. Kirk (2006) 

demonstrated that patas monkeys, which move quickly, have a relatively large eye size 

among primates.  

 However, Hall and Heesy (2011) examined axial eye diameter and flight speed in 

88 avian species, representing the first test of Leuckart’s Law based on direct 

measurements of flight speed (earlier studies only estimated flight speed). They were 

unable to detect a correlation in birds between eye size and movement speed. Furthermore, 

they observed a negative correlation between relative eye size and movement speed, which 

appears to contradict Leuckart’s Law (Hall and Heesy, 2011). They concluded that 

variation in bird eye size is mainly driven by factors other than movement speed. 

Heard-Booth and Kirk (2012) examined axial eye diameter and running speed in 50 species 

from 10 mammalian orders. They found a significantly positive correlation between 

absolute eye size and running speed in mammals. Moreover, the relationship between eye 

size and running speed was still significant when the effects of body mass and phylogeny 

were statistically controlled (Heard-Booth and Kirk, 2012). Thus, these two comparative 

studies, conducted using different taxonomic groups, reached different conclusions.  

  Here, I examine the conditions under which Leuckart’s Law holds, i.e., when eye 

size and movement speed are positively correlated, and when the inclination of the linear 

regression between moving speed and eye size increases that means Leuckart’s Law holds 

conspicuously. I conducted computer simulations of an animal moving on a plane that 

contains many food items as well as obstacles. The animal moved at a constant speed but 

changed its directional angle when it recognized food items or obstacles. By considering 



 43

the number of food items consumed, the number of obstacles with which the animal 

collided, as well as a small cost of visual acuity, I obtained the optimal visual acuity. I 

explored how this value depends on parameters such as visible distance, visible angle, 

turning ability, movement speed, and densities of food and obstacles in the field. If the 

animal’s visual acuity is close to the optimal value and if the visual distance is greater for 

large eye size, the positive correlation between movement speed and eye size is greater 

when obstacles are more abundant, food items are rare, and the damage due to collision is 

large. In contrast, Leuckart’s Law may not hold in environments with abundant food, rare 

obstacles, and small collision damage.  

 

Model 

Using computation simulations, I considered an animal moving in a field, avoiding 

obstacles and foraging for food items, and examined how its performance depends on 

visual ability. Figure 1 illustrates a simulated field, in which many obstacles and food items 

are randomly distributed. The field is modeled as a 10,000 × 10,000 square lattice with 

periodic boundary conditions. A fan-shaped object on the plane indicates the area visible to 

a moving animal located at the pivot of the fan. Large and small circles represent obstacles 

and food items, respectively. The location of the focal animal, or the pivot of the fan, is 

specified by two coordinates, (x, y). The animal also has a direction to move, which is given 

by the directional angle (θ). I assume that the animal moves at a constant speed v. These 

three variables specify the state of the animal.  

 The entire field contains a number of food items and obstacles that are not mobile 

and are distributed following Poisson point processes with constant densities. The animal is 

modeled as a point. When the animal encounters a food item, it consumes it; in contrast, 
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when the animal hits an obstacle, it incurs damage. The number of obstacles is r, and the 

number of food items is f.  

 

Movement and reorientation of the animal 

The maneuvering ability of the animal is characterized by four parameters: visible distance 

R specifies how far the animal can see, and visible angle  represents how wide an area 

the animal can see. The animal moves at a constant speed v. The spatial area the animal can 

see is in the shape of a fan (or a sector), the pivot of which is the animal’s body. When the 

animal finds a food item or an obstacle, it may turn the direction of its locomotion to 

capture the food item or to avoid the obstacle. The maximum speed of change in the 

orientation per step is specified by the turning ability s. Thus, six parameters in total specify 

the simulation model: four parameters specify the animal’s maneuvering ability, while two 

parameters describe the environment (densities of food items f and obstacles r).  

 The animal can see food items and obstacles that exist within the visible area (the 

fan-shaped area with radius R and angle , with the pivot directly on the animal’s body). 

If there are no obstacles to avoid within the visible area and if there are one or more food 

items, then the animal attempts to reach them. The animal first examines the reachability to 

each food item as well as the distance to it, considering its turning ability. Among food 

items that are reachable, it attempts to reach the closest one. After consuming it, the same 

procedure repeats. In order to keep the number of food items constant, the food item 

consumed disappears and a food item appears at other point. 

 In contrast, if there are one or more obstacles within the visible area, the animal 

attempts to avoid collision, considering its turning ability. In calculating the path to avoid 

collision, the animal starts turning at the last moment that allows it to avoid collision. 

Avoiding collision with an obstacle has priority over food consumption. If there are 

2

2
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multiple food items in the visible area, the animal first calculates the possible ways to reach 

each food item, considering its own turning ability as well as the possibility of collision 

with an obstacle on the way. If it is not possible to reach the food item without colliding 

with an obstacle, the animal excludes the food item from consideration. In other words, 

animals only approach food items that are accessible without collision.  

 

Initial conditions 

Before beginning the simulation, the ‘radius for avoidance’ is calculated to each obstacle. 

The radius for avoidance is defined as the radius of the circumference of a circle within 

which the moving animal can avoid certain obstacles if it engages in reorientation. This 

radius is determined when the radius of obstacles, movement speed, and turning ability are 

given.  

 The simulation was conducted using the following steps. A set of parameter values 

, the spatial distributions of obstacles and food items, and the initial position of 

the moving animal were defined. The distributions of obstacles and food items were 

determined to avoid overlap with other obstacles and food items. The initial position of the 

moving animal was also set to avoid overlap with obstacles and food items. 

 The distribution of food items and obstacles and initial position of the animal were 

initially determined using random numbers. The animal then moved around in the 

simulated field for 10,000 steps. One movement step consists of reorientation, straight 

movement, and judgment of possible collision and possible food consumption. To remove 

the effect of the choice of initial conditions, the animal was allowed to move the first 100 

movement steps without recording. I then began to record the number of collisions with 

obstacles and the number of food items consumed. 

 

R, v, s, 
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Number of encounters with food items and obstacles  

Figure 2-a presents a contour plot of the results of simulations for the number of food items 

consumed. The horizontal axis is movement speed v, and the vertical axis is visible distance 

R. When the movement speed is slow, the animal cannot increase the number of food items 

consumed by adopting a longer visible distance (Fig. 2-a). In contrast, if the animal can 

move sufficiently quickly, it has a longer visible distance and consumes more food items 

than the animal with a shorter visible distance. Therefore, possessing a long visible distance 

is effective when the movement speed is sufficiently fast. 

 Figure 2-b illustrates a contour plot for the number of collisions with obstacles. If 

the movement speed is slow, the animal does not need a long visible distance, because it 

can avoid obstacles with a moderately long visible distance. In contrast, if the movement 

speed is fast, an animal with a short visible distance undergoes many collisions; hence, a 

swiftly moving animal requires a long visible distance. 

 

Cost of vision and optimal visible distance 

To explore the optimal visible distance for a given movement speed, I introduced the cost 

of vision. The cost of constructing and maintaining eyes is likely to be higher for elaborate 

eyes than for simple eyes, although there has been no clear experimental measurement of 

this cost. I assume that the fitness is:   

  .    (1) 

The number of food items consumed g and the number of collisions d can be calculated 

from computer simulations, as explained below. The constant h indicates the damage due to 

collision, relative to the benefit of food intake. I assume that the cost of eye size increases 

with visual ability in a quadratic manner. c is the coefficient of the cost of elaborating eyes.  

  g  dh   exp cR2 
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 I can obtain the optimal visible distance, Ropt , as the value that maximizes fitness φ 

for a given movement speed v. An optimal eye size exists and depends on the cost of eye 

size, as illustrated in Fig. 3.  

 

Optimal visible distance increases with movement speed 

I generated a number of simulation runs with different visible distances R and obtained the 

optimal visible distance Ropt. I then compared this value for different movement speeds v. 

Leuckart’s Law postulates that Ropt and v should be positively correlated.  

 Figure 5 shows that the optimal visible distance is longer for faster-moving animals 

than for slower animals. This finding supports Leuckart’s Law, i.e., movement speed and 

visual ability are positively correlated if I consider a positive correlation between eye size 

and visible distance (Land and Nilsson, 2012). Figure 4 shows that lnRopt and lnv exhibit a 

linear relationship. I can consider the linear regression of the logarithmic value of optimal 

visible distance and the logarithmic value of movement speed lnv: . 

From a number of simulation results with different v, I can estimate the speed sensitivity   

as follows:  

                 (2) 

which indicates the magnitude of dependence of Ropt on v. It is a quantity of no dimension, 

and is called ‘elasticity.’ In population biology, elasticity has been used to analyze 

proportional sensitivity (Kroon et al., 1986; Caswell, 2000). 

 I obtained the value of  , Eq. (2), which was always positive. Hence, Leuckart's 

Law holds in our model. However, the magnitude of speed sensitivity   varied with 

parameter sets, so I next examined the dependence of   on different parameters.  

 Figure 5 illustrates how speed sensitivity   depends on four parameters in the 

model, namely r, f, d, and c. I first set a standard set of parameter values and then examined 

ln Ropt  ln v

 Cov(ln Ropt, lnv) /Var(lnv)
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how   changed when one of the parameters, e.g., k, increased after being multiplied by 

factors 1.3, 1.6, 1.9, 2.1, 2.4, and 2.7, while all other parameters remained at their standard 

values. Speed sensitivity  increased or decreased almost linearly with ln(k/k0), where k0 is 

the standard value of parameter k. The slope indicates the dependence of speed sensitivity 

  on the parameter k. I performed this procedure for each of the four parameters. In the 

example shown in Figure. 6, speed sensitivity   increased as r and d increased but 

decreased as f increased. Speed sensitivity did not strongly depend on c.  

 This observed parameter dependence of   may depend on the choice of the 

standard set of parameters. To determine the variability of the slope for each parameter 

when the choice of the standard set of parameters changed, I performed a similar analysis 

for 16 different parameter sets, generated by considering high and low standard values for 

each parameter, the ranges of which differed by two-fold. I performed a sensitivity analysis 

for each of these 16 sets of parameters, as shown in Figure. 5. I then obtained the variability 

of the slope, namely the sensitivity of   to each parameter. Despite considerable 

variability in the slope, I never observed a change in the sign (see Figure. 6), which 

confirms that speed sensitivity   increased with the number of obstacles r and the 

collision damage d but decreased with the number of food items f.   was almost 

independent of the cost of eyes c.  

 Next, I performed a multi-variable analysis to assess how speed sensitivity 

depends on the four parameters r, d, f, and c. It is important to note that interactions 

between different parameters are possible, which was excluded from the above analysis. I 

pooled all simulation   values for different combinations of the four parameters and 

performed a regression analysis on lnr, lnd, lnf, lnc, and their combinations, e.g., (lnr)(lnd) 

or (lnr)(lnf). This is a standard method for a generalized linear model (Kasuya, 2012). I 
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then obtained the following regression formula, which excludes terms whose weights were 

not significant: 

 

  0.106 0.744 lnr  0.387ln f  0.237ln d  0.260 lnr ln d  0.432 lnr ln f   (3) 

 

The results again indicate that   depends on r, f, and d, but is independent of c. However, 

I also observed that the interaction terms between lnd and lnr and between lnf and lnr were 

statistically significant. Therefore, I present parameter dependence in contour plots in 

Figures. 7 and 8. Figure 7 is a contour plot of  . The horizontal axis is the logarithm of 

the number of obstacles, and the vertical axis is the logarithm of the damage of collisions. 

This figure suggests that a large r and a large d cause   to increase. Figure 8 includes two 

contour plots of   for f and r. The horizontal axes are for the logarithm of the number of 

obstacles, and the vertical axes are for the logarithm of the number of food items. From 

these results, I can conclude that large f (food abundance) and small r (obstacle density) 

cause   to decrease.  

 

Discussion  

Leuckart’s Law predicts that faster-moving animals tend to have larger eyes than 

slower-moving animals, because large eyes improve visual ability. Additionally, 

faster-moving animals need high visual acuity to avoid obstacles or to forage. Although this 

law seems plausible, the few empirical studies about this law have reached conflicting 

conclusions. In this study, I examined the conditions under which Leuckart’s Law holds, 

i.e., when a faster-moving animal would have larger eye size. I conducted computer 

simulations of an animal moving on a plane that contains many food items to consume as 

well as obstacles to avoid. After a sufficiently long simulation run, I obtained the number of 



 50

food items consumed and the number of collisions with obstacles. The results confirmed 

that fast-moving animals need a long visible distance, whereas slow-moving animals need 

only a short visible distance. Because long visible distance is made possible by large eye 

size (Land and Nilsson, 2012), these results suggest that faster-moving animals are likely to 

have larger eyes, supporting Leuckart’s Law. These findings suggest that obstacle 

avoidance and foraging for food items are the mechanisms behind Leuckart’s Law. Walls 

(1942) stated that faster-moving animals have large eyes because of the necessity of 

collision avoidance, and other studies have concluded that avoiding collisions and 

navigating food resources over greater distances are the mechanisms behind this law 

(Brookes et al., 1999; Hall and Heesy, 2011; Heard-Booth and Kirk, 2012). 

 I obtained the optimal visual acuity by considering the number of food items 

consumed by a moving animal, the number of obstacles with which it collides, and a small 

cost of visual acuity. The optimal visible distance tended to increase with movement speed, 

forming a linear relationship when plotted on a logarithmic scale. I denoted the slope of the 

linear regression as  , i.e., ‘speed sensitivity.’ I then examined the parameter dependence 

of   and found that a larger number of obstacles r and more damage by collisions d tend 

to cause  to increase, whereas a larger number of food items f tends to cause   to 

decrease. In contrast,   did not depend on cost c of visual acuity. 

 Hall and Heesy (2011) directly measured eye size and flight speeds of birds and 

concluded that Leuckart’s Law does not hold in birds, but Heard-Booth and Kirk (2012) 

concluded that the law does hold in mammals. Our theoretical results suggest that birds 

may navigate environments in which food availability is high and obstacles are relatively 

rare, whereas mammals may live in environments with low food availability, many 

obstacles, and high levels of damage from collisions. However, determining the identity 
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and numbers of specific obstacles or food items and collision damage for each species 

would be difficult.  

 I cannot conclude that the different findings of the two previous direct 

measurements of Leuckart’s Law can be entirely explained by variation in the abundances 

of obstacles and food items, damage from collisions, and the cost of visual acuity, as eye 

size is likely to be determined by selection pressures and constraints other than the four 

parameters I investigated. Activity pattern is another important factor determining eye size 

(Kay and Kirk, 2000; Garamszegi et al., 2002; Hall and Ross, 2006; Kirk, 2006; Werner 

and Seifan, 2006; Hall, 2008). Although almost none of the birds analyzed in Hall and 

Heesy (2011) were nocturnal, the dataset for mammals used by Heard-Booth and Kirk 

(2012) included several types of activity patterns: diurnal, cathemeral, and nocturnal, an 

aspect that was not addressed in our analysis. Future simulations should also consider 

chasing prey versus foraging, or include more complex avoidance behavior. However, to 

our knowledge, this paper is the first report that theoretically considers the conditions 

pertinent to Leuckart’s Law, and I hope that our work will stimulate more theoretical 

research considering factors that were not addressed here, as well as empirical research 

focusing on other factors affecting eye size. 
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Figures 

Figure 1 

 

 

Figure 1. Scheme of the model. The area in which the animal moves is modeled as a 

10,000 × 10,000 square lattice with periodic boundary conditions. The fan-shaped object 

represents the area visible to the moving animal. Large and small circles represent obstacles 

and food items, respectively. 
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Figure 2 

(a)    (b) 

 

 

Figure 2. Results of simulations shown in contour plots. (a) Number of food items 

consumed. The horizontal axis is movement speed v, and the vertical axis is visible distance 

R. More food items are consumed with longer visual distances R and faster movement 

speeds v. (b) Number of collisions. Axes are the same as in (a). The risk of collision is 

higher for short visual distances R and faster movement speeds v. Parameters are: r = 30, f 

= 40. 
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Figure 3 

 (a) 

 

 (b) 

 

Figure 3. Optimal eye size. (a) Number of food items consumed and number of collisions 

versus visible distance. The horizontal axis is visible distance R. (b) Fitness calculated 

using Eq. (1). The horizontal axis is visible distance R, and the vertical axis is fitness 

calculated using Eq. (1). Parameters are: r = 20, f = 40, v = 20. 
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Figure 4 

 

 

Figure 4. Optimal visible distance versus movement speed. The horizontal axis is the 

logarithm of movement speed lnv, and the vertical axis is the logarithm of optimal visible 

distance lnRopt . Different symbols indicate different sets of values for the number of food 

items f and the number of obstacles r. Other parameters are: c = 3, d = 5. The slope of the 

regression line is denoted by   and is called the ‘speed sensitivity.’ 
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Figure 5 

 

 

Figure 5. Speed sensitivity   depends on four parameters (r, f, c, and d). I chose the 

standard values of parameters as: f = 40, r = 20, c = 3, and d = 3. I increased the four 

parameters (e.g., k) by multiplying them by 1.3, 1.6, 1.9, 2.1, 2.4, and 2.7, with the other 

parameters unchanged. The horizontal axis is the change in the logarithm of k (i.e., 

ln[k / k0 ]), and the vertical axis is the change in   (i.e., /0). Different symbols 

represent different parameters that were changed: crosses represent the number of obstacles 

r; circles represent the number of food items f; triangles represent the cost of eyes c; and 

squares represent the damage by collisions d.  
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Figure 6 

 

 

 

Figure 6. Sensitivity of   for each parameter. I performed the analysis shown in Figure. 5 

for 16 different parameter sets, generated by combinations of high and low values of four 

parameters (ranges differed by two-fold). Parameters are: f = 20 and 40, r = 10 and 20, c = 

3 and 6, d = 3 and 6. 

  

f r d c 
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Figure 7 

  

 (a)    (b) 

 

 

Figure 7. Contour plot of speed sensitivity  . The horizontal axis is the logarithm of the 

number of obstacles (lnr), and the vertical axis is the logarithm of the damage of collision 

(lnd). Dark color indicates a small  . Other parameters are: (a) f = 30, c = 5; and (b) f = 60, 

c = 5. Contours that are not parallel to each other indicate an interaction between the two 

parameters.  

 

 

 

 

  



 62

Figure 8 

 (a)     (b) 

 

 

Figure 8. Contour plot of speed sensitivity  . The horizontal axis is the logarithm of the 

number of obstacles (lnr), and the vertical axis is the logarithm of the number of food items 

(lnf). Other parameters are: (a) d = 2, c = 5. (b) d = 4, c = 5. 
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Chapter 3 

An integrated theoretical framework bridging evolution 

and learning behaviors in response to uncertain signals 
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Introduction 

All animals are constantly confronting the issue of which organisms to attack or not. This 

issue is associated with how animals respond to signals emitted by other individuals. For 

instance, insects that are not toxic have a similar coloration to the toxic species, termed 

Batesian mimicry. Consequently, many predators are faced with the choice of whether or 

not to eat the colorful insect (Nur 1970; Charlesworth and Charlesworth 1975; Turner 

1987; Gavrilets and Hastings 1998; Holmgren and Enquist 1999; Speed 1999; Blows and 

Wimmer 2005). Animals confront the same problem when they sense the signals from 

potential predators or parasites. Cuckoo birds lay their eggs in the nests of other species 

(Brooke and Davies 1988; Rowland et al. 2007; Langmore et al. 2009; Stevens and 

Merilaita 2009; Stoddard and Stevens 2010; Stevens 2016). Regardless of the major fitness 

losses, host species sometimes attack their own eggs instead of parasite eggs as a wrong 

choice (Lotem et al. 1992; Moskát and Hauber 2007).  

 To understand the mechanism underlying decision making in response to signals, 

many mathematical frameworks have been proposed. Signal detection theory (Staddon and 

Gendron 1983; Wiley 1994; Wiley 2006) and multiarmed model (Bellman 1956; Bradt et al. 

1956; Jones 1978) are commonly used frameworks and they are widely applied to 

biological phenomena. Each model describes the mechanism of decision making by 

different approaches. In signal detection theory, two signals are assumed: (1) “True signal,” 

which should be attacked, and (2) “False signal,” which should be not attacked. These two 

signals are slightly different, and the signals are sent to receivers with noise. This model is 

designed to determine the best threshold level of signals above which signal receivers 

decide to attack. If the threshold is very small, then almost all signals should be judged as 

“True,” and receivers will attack many “False” signals by mistake. Alternatively, if the 

threshold is very large, receivers refuse many “True” signals. The best threshold is 
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determined by this tradeoff, and we consider this to be the basis of optimal decision making 

of animals. 

Signal detection theory is frequently applied to many biological problems. 

Sherratt (2002) used this framework to describe the problem of imperfect mimicry in 

Batesian mimicry. Mimic organisms, which have slightly different phenotypes from the 

model species, are maintained. There are many hypotheses why imperfect mimicry is 

maintained (Edmunds 2000). Sherratt (2002) used signal detection theory to explore which 

hypothesis is supported. This article support “relaxed selection hypothesis,” which means 

imperfect mimicry is maintained because selection pressure is suddenly relaxed when 

similarity reaches a certain level. Penney et al. (2012) tested this hypothesis experimentally, 

and obtained consistent results with the model. Rodriguez-Girones and Lotem (1999) 

applied the hypothesis to cuckoo birds. The authors changed the similarity between host 

and cuckoo eggs. They investigated which eggs are accepted if the host species decides to 

accept the eggs using the signal detection theory. Quite similar eggs are accepted, and 

dissimilar eggs are refused. Interestingly, host species only refuse their own eggs when the 

similarity between cuckoo eggs and host eggs is intermediate. This phenomenon is 

experimentally supported. Signal detection theory is widely applied to discuss the 

evolutionary threshold in decision making.  

There are also many models that describe decision making with learning. These 

models basically describe the situation when animals receive some information and 

gradually change their behavior based on experience. Determining whether animals gather 

more information or change their behavior by using the received information is called 

“exploration-exploitation trade-off” (Cohen et al. 2007), and the basis of this trade-off is 

described in the “multiarmed bandit” model (Bellman 1956; Bradt et al. 1956; Jones 1978). 

Hypothetical agents manipulate a slot machine that have two arms. The average rewards 
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from the two arms are different. Optimal agents first manipulate both arms and try to 

estimate the average reward form each arm. Finally, they only pull the best arm decided by 

their experience. This model had been widely applied to the choice of foraging sites (Green 

1980; Ollason 1980; Iwasa et al. 1981; McNamara and Houston 1985).  

The “Multiple bandit” is also used in models describing decision making to 

signals. Sherratt (2011) applied this model to the problem of a predator choosing prey items 

that emit unknown signals. The author showed if the frequency of encountering the signal 

is high, animals sample the signal many times and gain information. However, if the signal 

is rare, animals reject the signal after a few sampling events. Furthermore, if animals have a 

low chance of predation, they become pessimistic. Thus, it was argued that neophobia is 

observed if animals behave using the multiple bandit model.  

Each model represents biological phenomena in a certain situation. However, 

animals usually decide their behavior using both instinct and plasticity. The problem which 

behavior is based on instinct (innate) and which is on plasticity (acquired) is considered as 

innate acquired problem (Bateson and Mameli 2007). Many studies discuss whether a 

behavior is innate or acquired in many organisms. Kawamura et al. (2017) showed that the 

juvenile African cat fish Clarias griepinus prefers red and blue colored food items, and 

concluded that this behavior is an innate trait. In another study, Bhadra and Bhadra (2014) 

found that adult dogs prefer meat, but pups have no preference from meat, and argued that 

the preference for meat by adults is an acquired trait, not innate. However, it remains 

difficult to distinguish when animals behave innately and when they behave based on 

learning. This problem cannot be solved by existing models.  

Here, we construct a new model to describe innate acquired problems. We extend 

the learning model of Sherratt (2011) by considering evolutionary processes. In particular, 

we represent innate behavior as the change of parameters of the initial prior distribution in 
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the learning model. Using this model, we apply one example of an existing biological 

problem, which is aversion by innate or learning. We show that when the cost of attack to 

the signals (toxicity, predation rate, or something) is high, and when the frequency of 

unfavorable signals is high, animals avoid the signals by innate behavior. In contrast, 

animals avoid signals by learning under the opposite conditions. 

 

Model and results 

The learning model is basically the same as that developed by Sherratt (2011). Here, we 

describe the model conditions briefly (see Sherratt (2011) for more details). The model 

describes the scenario in which a predator encounters a relatively novel prey that emits 

some signals and the predator decides to eat the prey or not. This prey is chemically 

defended with probability p, and is palatable with probability 1-p. Both unpalatable and 

palatable prey emit the same signals for predators and predators cannot distinguish the prey 

should be attacked from prey should be avoided. If the predator attacks the prey, the 

predator incurs a cost c with probability p, or gains benefit b with probability 1-P. It is clear 

that the predator should attack the prey if p < b/(b+c), because this equation means the 

probability of encountering chemically defended prey is less than the mean benefit gained 

from attack. In contrast, the predator should not attack if p > b/(b+c). However, predators 

do not know the true value of p; thus, they do not know how frequently prey individuals are 

chemically defended. Predators can gain information about the frequency of encountering 

chemically defended prey, and update their estimated p value. Finally, predators decide to 

eat prey based on this experience. 
It is assumed that the predator encounters prey individuals that are chemically 

defended r times in a total of n prey items sampled (r < n). Thus, the probability that the 

event occurs is described by binominal probability as:  
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  Prሺܺ ൌ ሻݎ ൌ ቀ
݊
ቁݎ ݌

௥ሺ1 െ  ሻ௡ି௥݌

If we assume the prior distribution of the learning process as beta distribution, posterior 

distribution is also explained by beta distribution. In particular, when prior distribution is  

Beta(αp, βp), posterior distribution can be explained as Beta(αp+r, βp+n+r).  

 We use the payoff to decide whether the predator should attack or not. There is a 

total of N prey items in the environment that the predator could potentially sample in its 

lifetime. The predator encounters prey individuals n times and eats chemically defended 

prey items r times. With any predator experience state (r, n), the maximum payoff from the 

remaining (N-n) trials is represented by S(r, n). If the predator does not attack at all in 

future (N-n) trials, the future reward of SD(r,n) = 0. Alternatively, if the predator attacks 

prey individuals, it risks eating chemically defended prey, but it also gains information and 

enhances the accuracy of estimating P, which is the exploration-exploitation trade-off. This 

payoff is denoted as SA(r,n), and we explain S(r,n) as;  

 

ܵሺݎ, ݊ሻ ൌ max	ሾܵ஽ሺݎ, ݊ሻ, ஺ܵሺݎ, ݊ሻሿ 

where 

ܵ஽ሺݎ, ݊ሻ ൌ 0 

and 

஺ܵሺݎ, ݊ሻ ൌ ,ݎ௣ሺߨ ݊ሻሾܵሺݎ ൅ 1, ݊ ൅ 1ሻ െ ܿሿ ൅ ቀ1 െ ,ݎ௣ሺߨ ݊ሻቁ ሾܵሺݎ, ݊ ൅ 1ሻ ൅ ܾሿ 

πp is the estimated value of P (frequency of unpalatable prey) in its experience state (r, n). 

We used the mean value of beta distribution: πp = (α+r)/(α+β+n). The value of πp changes 

when the predator encounters prey individuals. The predator stops attacking at Sd > Sa when 

it encounters many unpalatable prey individuals and πp becomes larger.  
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Many analyses are conducted in Sherrat (2011) using this model. All of the 

results in Sherratt (2011) use the parameters α = 1, β = 1; thus, the parameters in the initial 

prior distributions are fixed. However, the results of this model completely change 

depending on the parameters in prior distributions.  

Figure 1 presents the score value of each (α, β) parameter set. Predators are 

pessimistic if α is larger than β, and optimistic if β is larger than α. Predators eat prey items 

in accordance with the optimal sampling rule, and they encounter 500 prey items (N = 500). 

The score value is equal to b × (the number of palatable prey items eaten) – c × (the number 

of unpalatable prey items eaten). Thus, the maximum and minimum score values are 500 

and -500, respectively. Figure 1-a is a contour plot where p = 1.0, which means that all prey 

items are chemically defended. Predators perform the maximum score (= 0) with large α 

and small β. Pessimistic predators are favored because all prey items are unpalatable. 

Figure 1-b is a contour plot with p = 0, which means that all prey items are undefended. 

Predators perform the maximum score (= 500) with large β and small α. Predators receive 

large benefits if predators eat prey items positively. 

Figure 2-a and 2-b presents the cost dependence of the score when all prey items 

are chemically defended (p = 1). c is 0.2 in figure 2-a, and 3 in figure 2-b. When the cost 

declines, the area where predators perform the maximum score becomes narrower. 

Predators eat prey items more positively because the risk of predating unpalatable prey is 

low. In contrast, when the cost rises, the area where predators perform the maximum score 

widens, because predating risk is high. Figure 2-c and 2-d demonstrates the cost 

dependence of the score when all prey items are chemically undefended (p = 0). c is 0.2 in 

figure 2-c, and 3 in figure 3-d. This result shows the same tendency to the case of p = 1. 

Figures 1 and 2 are under the condition that p = 1 and 0. Figure 3 presents 0 < p < 

1. Under this condition, the score differs with predator experience, thus we conducted 
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stochastic simulation. Each value is the mean value of 1,000 iterations. Here, predators 

encounter 500 prey items (N = 500), and the benefit and cost from predation is 1 (b = c = 1). 

Figure 3-a is a contour plot with p = 0.5. The score values are about 0 in each parameter set 

(α, β). Pessimistic predators do not eat prey items and the score becomes 0. Optimistic 

predators eat prey items, of which almost half are palatable and almost half are unpalatable, 

so the score becomes 0. Figure 3-b is a contour plot with p = 0.8, whereby 80% of prey 

items are unpalatable. Under this condition, pessimistic predators (large α and small β) 

obtain high scores because more than half of prey items are unpalatable. If p is less than 0.5, 

the tendency becomes to be reversed. 

Figure 4 presents the cost dependence of the score (p = 0.8). c is 0.2 in figure 4-a, 

and 3 in figure 4-b. When c increases, the score decreases. There are two reasons for this 

change: (1) they do not eat prey items positively (shown in result 2); (2) the negative effect 

of the score increases when they eat unpalatable prey. If c increases, pessimistic predators 

become favorable. This threshold should be defined as the balance among cost, benefit, and 

the frequency of defended prey. When c decreases, the score increases larger and the 

parameter area where they do not attack prey items becomes narrower. This phenomenon 

occurs because predators know that the risk of eating unpalatable prey is small and they can 

be more optimistic predators. 

These results are generated by changing the parameters of the initial prior 

distribution values. These values are fixed in Sherratt (2011) because animals without 

learning are considered to have no information about the environment. Changing the 

parameters in the initial prior distributions is corresponding to that animals have 

information about the environment without learning. In other words, the values in prior 

distributions parameters are innate (evolutionary) traits. We constructed the joint model of 
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leaning (acquired) and evolution (innate) by assuming that the parameters in the initial prior 

distribution are evolutionary parameters. 

 

Evolutionary Analysis 

Overview 

We assumed the parameters in the initial prior distributions (α, β) were evolutionary 

parameters, and we calculated the distributions of these parameters at evolutionary end 

points. An individual has an initial parameter set (α, β). It starts the learning process from 

its initial parameter set (α, β). We calculated the score based on the number of palatable and 

unpalatable prey items it ate after experiencing N trials, as well as the process described in 

the learning model section. Animals with high scores produce many offspring with similar 

initial traits to the parent. We ran this procedure repeatedly and stopped the calculation 

when the distribution of the frequency of the initial prior distribution no longer changed. 

 

Model and results 

We assumed that M = I×J type parameter sets were generated by the combination 

of α and β. I is corresponding to the number of patterns of α values and J is corresponding 

to the number of patterns of β values and and we defined the fitness of each initial 

parameter set as follows: 

௜ܹ௝ ൌ
଴ܹ ൅ ௜௝ܣ

1
∑ܯ ∑ ሺ ௜ܹ௝ ൅ ௜௝ሻூܣ

௜
௃
௝

 

where W0 is the baseline fitness, and Aij is the score after N trials in the learning process. Aij 

was calculated as; Aij = b×[number of palatable prey that were attacked]-c×[number of 

unpalatable prey that were attacked], using the same score as in the previous results. By 

using this fitness value, we conducted the evolutionary simulation. We assume that the 
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individual reproduce offspring by proportional to their fitness. We also assume the 

mutation as the individual with parameter (α, β) reproduce the offspring with slightly 

different parameter set (i.e. combination of ߙ േ ߚ and ߙ or ߙ∆ േ  with (ߚ or ߚ∆

probability μ. We did not assume any competition between predators or natural death, and 

all types increased over time. The results are shown with the frequency of each trait, and we 

stopped the calculation when the frequency of each type no longer changed.  

Figure 5 presents the fraction of each strategy at the evolutionary endpoint. Here, 

p = 0.8, whereby 80% of prey items are unpalatable. The light color means high frequency, 

and the dark color means low frequency. Based on this result, pessimistic prior evolves. It 

is an intuitive result, because most prey items are unpalatable, so pessimistic predators are 

favored. The trait with the parameter that has a similar value to the best parameter also has 

high frequency. This result is obtained because the fitness is not so different from the 

fitness of individuals, with the best parameter being due to their traits being immediately 

adjusted in learning process.  

By using the model that we constructed, we are able to explore an example of 

innate acquired problems. Figure 6 shows that the condition that predators should avoid 

prey items innately or by learning. Here, we conducted the evolutionary calculation and 

classified it as avoiding innately if pessimistic predators evolve (large α and small β), 

because predators with large α and small β do not eat prey items completely. The horizontal 

axis in Figure 6 is the cost of predation, c, and vertical axis is the frequency of unpalatable 

prey, p. The light area is where a predator which avoid signals innately evolves. The dark 

area is where a predator which avoids signals by learning evolves. Based on this result, 

animals use innate avoidance when the cost of attacking unprofitable signals is high, and 

they avoid by it leaning when the cost is low. Furthermore, animals avoid signals innately 
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when they encounter signals frequently, and the animals avoid signals by learning when the 

signals are relatively rare.  

 

Discussion 

When animals receive some signal from the environment, they decide what action to take 

(attack, avoidance, staying, and so on). This decision-making process is decided by both, or 

either, innate and acquired traits. Animals seem to behave appropriately depending on the 

situation. There are extensive discussions about innate acquired problems, but the rules 

driving these two types of decision-making processes (innate/acquired) remain poorly 

understood. Here, we constructed an extended learning model with evolution to determine 

the situation when animals behave innately or by leaning. We assumed that the parameters 

in initial prior distribution are innate traits, and we conducted our evolutionary analysis by 

assuming that the parameters in the prior distribution were evolutionary traits. 

 

Dependence on parameters in the initial prior distribution 

We found that the results of the learning process noticeably change when the parameters in 

the initial prior distribution changes. In particular, pessimistic predators immediately stop 

attacking when they attack unprofitable prey a few times, whereas optimistic predators 

continue attacking until they eat unpalatable prey many times. Shettleworth (1972) reported 

how experience influences preferences in birds. The birds had already learned that blue 

water is palatable. After that, the birds were presented with blue water that had an 

unprofitable taste or clear water with the same taste as the blue water. The authors showed 

that birds needed more time to avoid blue water that was pre-perceived as good tasting than 

to avoid clear water that they had never experienced. This result supports our model 
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findings, whereby the time that animals spend learning and deciding varies depending on 

the prior distribution. 

 
Evolutionary Analysis 

There are many reports about instinctive behavior, whereby animals have some information 

about signals without learning and experience (Marler 1990; Schiestl 2017). For instance, 

Chamaille-Jammes et al. (2014) reported avoidance behavior in deer. The authors showed 

that black-tailed deer (Odocoilus hemionus sitkensis) avoid models of wolves (Canis lupus), 

which became extinct over 100 years ago, more strongly than models of black bears (Ursus 

americanus), which still coexist with deer. Deer could not learn the wolf signals because 

the wolf no longer exists. Therefore, the authors concluded that deer strongly avoid wolves 

by innate preference. Our model assumed that animals have some way of evaluating signals 

(e.g., palatable or unpalatable) without learning, and that this assumption supports innate 

behavior in nature.  

 Our model simply predicted that profitable traits in the environment evolve. The 

trait with the parameter set that had the highest score, and that had parameters of similar 

value to the best parameter, increase. Individuals with parameters that had similar values to 

the best parameter might increase because fitness is similar to that of individuals with the 

best parameter, due to their adjusting their traits immediately through the learning process. 

Thus, fitness is decided through a process in which some initial prior distributions are 

adjusted to better traits depending on the environment. Darmaillacq et al. (2004) reported 

the adjustment of innate preference by experience. Cuttlefish (Sepia officinalis) choose 

shrimp (Crangon crangon) as food when the choice test is done soon after hatching; thus, 

cuttlefish prefer shrimp as prey items, innately. However, cuttlefish start to prefer other 
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prey items more than shrimp when given other prey items, repeatedly, as juveniles; thus, 

they adjust their food preference through experience, despite having the initial trait (prior 

distribution without learning) of preferring shrimp. Thus, our model description, in which 

initial prior distribution is adjusted through leaning, strongly reflects actual situations in 

nature. 

 

Avoidance by innate or acquired behavior 

The model predicts that animals use innate avoidance when the cost of attacking 

unprofitable signals is high, and they avoid these signals by learning when the cost is low. 

In fact, animals avoid some signals where cost seems high, innately. Sea turtles avoid shark 

models (visual signal) innately (Bostwick et al. 2014). The Barton Springs Salamander, 

Eurycea sosorum, avoids the smell (chemical signal) of Largemouth Bass, Micropterus 

salmoides, innately (Desantis et al. 2013). Domestic chicks avoid the agitated buzzing 

(auditory signal) of Bombus terrestris, innately (Rowe and Guilford 1999). All of these 

signals these induce major damage or death if animals do not avoid them.  

Botham et al. (2006) explored the response of guppies (Poecilia reticulata) to 

signals with different costs (three predators the pike cichlid, Crenicichla frenata; the blue 

acaracichlid, Aequidens pulcher; and the wolf fish, Hoplias malabaricus) under laboratory 

conditions. The pike cichlid is the greatest predator of guppies, eating them frequently in 

nature. The other two species eat guppies if given as food, but do not eat guppies much in 

nature. The guppies responds more strongly to pike cichlids than to other predators because 

they had a higher cost to guppies, supporting our model prediction.  

Our model predicts that animals avoid signals innately when they encounter 

signals frequently; thus, animals avoid by learning when signals are relatively rare. This 

prediction is supported by the experimental results of Stapley (2003) on the lizard, 
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Pseudomoia entrecastauxii, and three predators (white-lipped snake, Drysdalia coronoides; 

red-bellied black snake, Pseudechis porphyriacus; and small-eyed snake, Rhinoplocephalus 

nigrescens). The density of white-lipped snakes is relatively higher than the other two 

species in the area where the lizard is found. Stapley (2003) found that laboratory-reared 

lizards (i.e., no prior experience of snakes) avoided the smell of white-lipped snake (high 

density) more than the smell of the other two snake species (low density). The largest 

difference among these three predators is frequency of the lizard encountering them. Thus, 

this experimental result supports our model prediction that animals avoid signals innately 

when it is encountered frequently.  

 

Model extension and future works 

This study presented a simple model of learning and evolution for decision based on signals. 

This model could be extended and analyzed in various ways. For instance, if the effect of 

competition or the way of learning is explained based on how certain animals are 

introduced, the model could be used to discuss the actual behavior of real animals. The 

variation of prey or environmental change can be considered as simple extension. Animals 

exhibit plasticity (e.g. learning) to cope with uncertainty and environmental change (Dukas 

1998). Rhoades et al. (2018) demonstrated that the innate preference of cats significantly 

differs both within and among species. Variance in innate preferences may differ among 

species due to differences in their life cycles or environmental changes. If we could explain 

a given environmental change or key components of the life cycles of each species with our 

model, we could explore what drives differences in innate preferences.  

Innate acquired problems have been discussed for many animals, but many 

problems still remain. However, knowledge remains limited about when animals adopt 

innate behavior versus acquired behavior. Our study suggested a model to resolve this 
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problem, with mathematical models possibly representing a first step towards 

understanding innate acquired problems. The framework we constructed in this paper is 

quite simple and could be expanded in many ways. In conclusion, we anticipate that the 

model developed here could enhance future studies seeking to understand how animals use 

innate acquired behavior. 
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Figure 1 

 

(a)     (b) 

 

 

Figure 1. Score plot of each parameter set for the initial prior distribution. Horizontal axis 

represents α and vertical axis represents β; the frequency of unpalatable prey, p, is (a) 1.0 

and (b) 0. Parameters are; b = 1, c = 1, N = 500. 
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Figure2 

(a)     (b) 

 
 

(c)     (d) 

 

Figure 2. Cost dependence of the score plot. (a) p = 1 and c = 0.2, and (b) p = 1 and c = 2, 

(c) p = 0 and c = 0.2, and (d) p = 0 and c = 2. Other parameters are the same as in Figure 1. 
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Figure 3 

 

(a)     (b) 

 
 

Figure 3. Score plot of each parameter set of the initial prior distribution for the 

intermediate p value. (a) p = 0.5, and (b) p = 0.8. Other parameters are the same as in 

Figure 1. 
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Figure 4 

(a) (b) 

 
 

 

Figure 4. Cost dependence of the score plot for the intermediate p (p = 0.8). (a) c = 0.2, and 

(b) c = 2. Other parameters are the same as in Figure 1. 
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Figure 5 

 

 

Figure 5. Figure of each strategy in the evolutionary endpoint. Parameters are; b = 1, c =1, 

N = 500, p = 0.8, M = 900, μ = 0.01, W0 = 100.  
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Figure 6 

 

Figure 6. Condition at which predators should avoid prey items innately or by learning. 

Horizontal axis represents the cost of attacking unpalatable prey, c, and the vertical axis 

represents the frequency of unpalatable prey, p. The white area is where a predator should 

avoid signals innately. The black area is where a predator should avoid signals by learning. 

Parameters are the same as in Figure 5. 
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