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概要 

 古典的な群論において、与えられた群に対して、⽣成系、あるいは有限位数
の元のみからなる⽣成系を具体的に与える問題がある。写像類群に関しても古
くからこの問題についての結果がある。 
 この論⽂では、有向曲⾯と⾮有向曲⾯の写像類群について、有限位数の元の
みからなる⽣成集合を考える。 
 有向曲⾯の場合、Lanier (2018)は、𝑘 ≥ 6、種数が 𝑘 − 1 & + 1以上の時につ
いて、写像類群が位数𝑘の元3つで⽣成されることを⽰している。また、彼は
𝑘 ≥ 8または𝑘 = 6の時に、⾮負整数𝑎, 𝑏について種数が𝑎𝑘 + 𝑏(𝑘 − 1) > 0に等し
い時に位数𝑘の元3つ、種数が𝑎𝑘 + 1	 𝑎 ≥ 1 に等しい時に位数𝑘の元4つで写像
類群が⽣成されることを⽰した。本論⽂の最初の主結果は、位数6の元のみか
らなる写像類群の⽣成系を新しく構成し、彼の結果を𝑘 = 6に限定した時に種
数が7,8,9,13,14,19である場合について改善したことである。 
 ⾮有向曲⾯の場合、Szepietowski (2004)が involutions(位数 2 の元)のみから
なる点付き写像類群の⽣成系を構成したが、彼の⽣成系の個数は種数と点の個
数に依存する。involutions のみからなる⽣成系で⽣成元の個数が種数や点の個
数に依存しないようなものが構成できるかという問題が考えられる。点の個数
が0の場合、Szepietowski (2006)は写像類群が4つの involutions で⽣成できる
ことを⽰し、この問題に肯定的な解答を与えた。点の個数が1以上の場合、こ
の問題に対する解答は知られていなかった。これに対して、本論⽂では点付き
の写像類群が、種数が奇数かつ13以上の場合に8個、種数が偶数かつ14以上の
場合に11個の involutions で⽣成できることを⽰し、肯定的な回答を与える。 
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Abstract. Let Σg,n (resp. Ng,n) denote the closed orientable (resp. non-
orientable) surface of genus g with n punctures and let Mod(Σg,n) (resp.
Mod(Ng,n)) denote the mapping class group of Σg,n (resp. Ng,n).

In this thesis, we consider finite generating sets for the mapping class groups
Mod(Σg,n) and Mod(Ng,n) which consist of elements of finite order.

In the orientable case, Lanier proved that Mod(Σg,0) is generated by three
elements of order k for k ≥ 6 and g ≥ (k−1)2+1. For k ≥ 8 or k = 6 and non-
negative integers a and b, he also showed that Mod(Σg,0) is generated by three
(resp. four) elements of order k if g = ak+ b(k− 1) (resp. g = ak+1 (a ≥ 1)).
In this thesis, we construct a new finite generating set for Mod(Σg,0) which
consits only of elements of order six. When we restict Lanier’s theorem to
k = 6, we improve his theorem for g = 7, 8, 9, 13, 14, and 19.

In the non-orientable case, Szepietowski showed that Mod(Ng,n) is gener-
ated by finitely many involutions. The number of elements in his generating
set depends linearly on g and n. In the case of n = 0, Szepietowski found an
involution generating set in such a way that the number of its elements does
not depend on g, showing that Mod(Ng,0) is generated by four involutions. As
our second main theorem of this thesis, for n ≥ 0, we prove that Mod(Ng,n)
is generated by eight involutions if g ≥ 13 is odd and by eleven involutions if
g ≥ 14 is even.

1. Introduction

For n ≥ 0, let Σg,n (resp. Ng,n) denote the closed connected orientable (resp.
non-orientable) surface of genus g with arbitrarily chosen n distinct points which we
call punctures. The mapping class group Mod(Σg,n) (resp. Mod(Ng,n)) is the group
of isotopy classes of orientation preserving diffeomorphisms (resp. diffeomorphisms)
of Σg,n (resp. Ng,n) which preserve the set of punctures. Denote by PMod(Σg,n)
(resp. PMod(Ng,n)) the subgroup of Mod(Σg,n) (resp. Mod(Ng,n)) consisting of the
isotopy classes of diffeomorphisms which fix each puncture.

In the orientable case, Dehn [De] and Lickorish [Li1] first proved that Mod(Σg,0)
is generated by Dehn twists. Lickorish [Li2] showed that certain 3g − 1 Dehn
twists generate Mod(Σg,0) for g ≥ 1. This number was improved to be 2g + 1 by
Humphries [Hu] for g ≥ 3. Moreover, Humphries showed that Mod(Σg,0) cannot
be generated by 2g (or less) Dehn twists for any g ≥ 2. Johnson [J] proved that
2g + 1 Dehn twists also generate Mod(Σg,1). If we allow generators other than
Dehn twists, then we can obtain smaller generating sets for Mod(Σg,n). Lu [Lu]
found a generating set of Mod(Σg,0) which consists of three elements, where two
of the generators are of finite order. For n = 0, 1, Wajnryb showed that the group
Mod(Σg,n) is generated by two elements, one of which has finite order [W2].

It has been extensively studied the problem of finding smaller sets of generators
and torsion generators for finite groups and mapping class groups. The study of
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finding torsion generating sets for Mod(Σg,n) was started by Maclachlan [Ma]. He
proved that Mod(Σg,0) is generated by torsion elements and used this result to
show that the moduli space of Riemann surfaces of genus g is simply connected
as a topology space. Patterson [P] showed that Mod(Σg,n) is generated by torsion
elements for g ≥ 3 and n ≥ 1. Korkmaz [Ko2] showed that Mod(Σg,n) is generated
by two elements of order 4g+2 for g ≥ 3 and n = 0, 1. McCarthy and Papadopoulos
[MP] proved that Mod(Σg,0) is generated by infinitely many conjugates of a certain
involution. Luo [Luo] showed that Mod(Σg,n) is generated by 12g + 1 involutions
for g ≥ 3, n ≤ 1. In his paper, Luo asked the following question: Is there a unversal
upper bound which is independent of g and n for the number of torsion elements
necessary to generate Mod(Σg,n)? Brendle and Farb [BF] gave a positive answer
to Luo’s question for n = 0, 1. They found a generating set for Mod(Σg,0) which
consists of six involutions. Moreover, they showed that Mod(Σg,n) can be realized
as a quotient of a Coxeter group on six generators. For every n ≥ 0, Kassabov [Ka]
proved that Mod(Σg,n) is generated by four (resp. five or six) involutions if g ≥ 8
(resp. if g ≥ 6 or if g ≥ 4). Monden [Mo1] proved that Mod(Σg,n) is generated by
four (resp. five) involutions if g ≥ 7 (resp. if g ≥ 5). He also showed the following
theorem ([Mo2]).

Theorem 1.1 (Monden, 2011). For g ≥ 3, Mod(Σg,0) is generated by three ele-
ments of order three and by four elements of order four.

Recently, Lanier showed the following theorems ([La]).

Theorem 1.2 (Lanier, 2018). For k ≥ 6 and g ≥ (k − 1)2 + 1, Mod(Σg,0) is gen-
erated by three elements of order k. Also, Mod(Σg,0) is generated by four elements
of order 5 when g ≥ 8.

Theorem 1.3 (Lanier, 2018). (1) Let k ≥ 5 and let g > 0 be of the form ak+b(k−1)
with non-negative integer a and b or of the form ak + 1 with integer a > 0. Then
Mod(Σg,0) is generated by four elements of order k. (2) Let k ≥ 8 or k = 6 and
let g > 0 be of the form ak + b(k − 1) with non-negative integer a and b. Then
Mod(Σg,0) is generated by three elements of order k. If instead k = 7 and g is of
the form 7+7a+6b with integer a, b > 0, then three elements of order 7 also suffice.

In this paper, we first construct a generating set of Mod(Σg,0) which consists of
elements of order six. For g = 7, 8, 9, 13, 14, and 19, our generating set improves
Lanier’s theorem if k = 6.

Theorem 1.4. (1) For g ≥ 7, Mod(Σg,0) is generated by three elements of order
six. (2) For g = 5, 6, Mod(Σg,0) is generated by four elements of order six.

The idea of proof is as follows: By using lantern relation, we write one of ele-
ments of Humphries’s generator set as a product of elements of order six. And, we
construct mapping classes of order six which map the simple closed curves corre-
sponding to above element to simple closed curves corresponding another generator.
Although the basic idea is similar to the cases of order two, three, and four, the
consutructions for mapping classes of order six are more complicated. The pre-
sentations of Mod(Σg,0) are given by Wajnryb ([W1]). But a presentations of this
groups with only torsion generators are not known except Korkmaz’s one. Since
the generators in Korkmaz’s presentation depend on g, it is not known such a pre-
sentation that generators are independent of g. Using Theorem 1.4 to Wajnryb’s
presentation, we expect to get such a presentaion.
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In the non-orientable case, Lickorish [Li3] first proved that Mod(Ng,0) is gen-
erated by Dehn twists and Y-homeomorphisms. Chillingworth [C] found a finite
set of generators of this group. Korkmaz [Ko1] found finite generating sets for the
groups Mod(Ng,n) and PMod(Ng,n). The number of Chillingworth’s generators is
improved to g + 1 by Szepietowski [S2]. Hirose [Hi] proved that his generating set
is the minimal generating set by Dehn twists and Y-homemorphisms. Szepietowski
[S1] proved that Mod(Ng,n) is generated by involutions. The cardinality of his
generating set of involutions depends linearly on g and n. We can consider Luo’s
problem for Mod(Ng,n): Is there a unversal upper bound which is independent of g
and n for the number of torsion elements necessary to generate Mod(Ng,n)? In the
case n = 0, Szepietowski gave a positive answer and found four involutions which
generate Mod(Ng,0) for g ≥ 4 [S3]. But, in the case n ̸= 0, it is not known. We will
gave a positive answer for this problem.

Theorem 1.5. Let n be a non-negative integer. Then, for g odd with g ≥ 13,
Mod(Ng,n) is generated by eight involutions. For g even with g ≥ 14, Mod(Ng,n)
is generated by eleven involutions.

The idea of proof is as follows: First, we consider Korkmaz’s generating set
for PMod(Ng,n) which consists of Dehn twists, Y-homeomorphism, and puncture
slides. We write one of Dehn twists, one of puncture slides, and Y-homeomorphism
as products of involutions which are allowed permutation of punctures. Next, we
construct involutions to map simple closed curves corresponding to above Dehn
twist and puncture slide to simple closed curves corresponding other Dehn twist
and other puncture slide in Korkmaz’s generating set, respectively. Then, a sub-
group G generated by these involutions includes PMod(Ng,n). There is a surjection
from Mod(Ng,n) to a symmetric group on n letters by an action of Mod(Ng,n) on
n puctures. We note that we construct involutions as in which a restriction this
surjection to G is also surjection onto the symmetric group. It is well known that
the abelianization of Mod(Ng,n) is isomorphic to Z2

⊕
Z2

⊕
Z2 for g ≥ 7. By

Theorem 1.5, a minimal number of involutions which need to generate Mod(Ng,n)
is three or more and eight (resp. eleven) or less if g is odd (resp. even). Presen-
tations of Mod(Ng,n) are given by Szepietowski, Omori, Paris-Szepietowski, and
Stukow ([S4],[O],[PS],[St2]). But a presentations of Mod(Ng,n) with only torsion
generators are not known. Theorem 1.5 is one of the approaches for obtaining such
presentations. As a Corollary of Theorem 1.5, there is a surjection from the Coxeter
group with 8 or 11 generators onto Mod(Ng,n) for g ≥ 13, n ≥ 0. If this kernel
is finitely generated, we can get a presentation of Mod(Ng,n) with generating set
which only consist of involutions. As a Corollary of Theorem 1.5, a Dehn twist
along a non-separating simple closed curve, a Y-homeomorphism, and a puncture
slide are products of two involutions. Generally, we have the question of whether
there is a number C such that every element in Mod(Ng,n) can be written as a
product of at most C involutions. But this is not known.

The paper is organized as follows. In Section 2 we recall the properties of Dehn
twists, Y-homeomorphisms and puncture slides. In Section 3 in order to prove the
Theorem 1.4, we construct elements of order six and show a single Dehn twist is
written as a product of elements of order six. In Section 4 we construct involutions
of Mod(Ng,n) and prove the theorem 1.5. Finally, in Section 5, We note that
Theorem 1.5 implies that Mod(Ng,n) is the quotient of 8 or 11 generator Coxeter
groups. And we consider some problems for Theorem 1.5.



4 KAZUYA YOSHIHARA

2. Preliminaries

2.1. Orientable surfaces.

Let Σg,n denote a closed oriented surface of genus g with n punctures. The set of
orientation preserving diffeomorphisms of Σg,n which preserve the set of punctures
obviously forms a group, which we denote by Diff+(Σg,n). Let Diff+

0 (Σg,n) be the
subset consisting of all elements of Diff+(Σg,n) that are isotopic to the identity,
where the isotopies fix punctures. It is immediately seen that Diff+

0 (Σg,n) is a
normal subgroup of Diff+(Σg,n). The mapping class group of Σg,n, denoted by
Mod(Σg,n), is the quotient group Diff+(Σg,n)/Diff+

0 (Σg,n). Usually we identify a
diffeomorphism with its isotopy class. We assign the orientation of Σg,n as in Fig. 1.
For a simple closed curve a on Σg,n, the right handed Dehn twist ta along a is the
isotopy class of the diffeomorphism obtained by cutting Σg,n along a, twisting one
of the sides by 2π to the right and gluing the two sides of a back to each other (see
Fig. 1). We recall the following lemmas and theorems. These are well known (see
[FM]).

Figure 1. Dehn twist along a simple closed curve a

Lemma 2.1. Let a be a simple closed curve on Σg,n and let f be any element in
Mod(Σg,n). Then we have

ftaf
−1 = tf(a).

Lemma 2.2. Let a and b be simple closed curves on Σg,n.

(1) If a is disjoint from b, then we have

tatb = tbta.

(2) If a and b intersect transversely at one point, then we have

tatbta = tbtatb.

Lemma 2.3 (lantern relation). Let S be a four-holed sphere and x1, x2, x3, y1,
y2, y3 and y4 be simple closed curves in S as shown in Fig. 2. Then we have

tx1tx2tx3 = ty1ty2ty3ty4 .

Lantern relation was discovered by Dehn, and later by Johnson. We say that an
ordered set c1, c2, . . . , cn of simple closed curves on Σg forms an n-chain if ci and
ci+1 intersect transversely at one point for i = 1, 2, . . . , n− 1 and ci is disjoint from
cj if | i− j |≥ 2.

Lemma 2.4 (chain relation). Let c1, c2, . . . , cn be an n-chain. For n odd, we have

(tc1tc2 . . . tcn)
n+1 = td1td2 ,

and for n even, we have
(tc1tc2 . . . tcn)

2n+2 = td,
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Figure 2. Simple closed curves x1, x2, x3, y1, y2, y3 and y4 on
four-holed sphere

where d1 and d2 (resp. d) are the boundary components of the regular neighbor-
hood of this n-chain if n is odd (resp. even).

For i = 1, 2, . . . , g and j = 1, 2, . . . , g − 1, ai, bi and cj are simple closed curves
on Σg,0 as in Fig. 3.

Lickorish proved the following theorem.

Theorem 2.5. For g ≥ 3, Mod(Σg,0) is generated by 3g − 1 Dehn twists ta1 , ta2 ,
. . ., tag , tr1 , tr2 , . . ., trg−1 , tb1 , tb2 , . . ., tbg .

Humphries reduced Lickorish’s system of generators for Mod(Σg,0) as follows.

Theorem 2.6. For g ≥ 3, Mod(Σg,0) is generated by 2g + 1 Dehn twists ta1 , ta2 ,
tr1 , tr2 , . . ., trg−1 , tb1 , tb2 , . . ., tbg .

We call the curves a1, a2, r1, r2, . . . , rg−1, b1, b2, . . . , bg Humphries’s curves.

Figure 3. Simple closed curves a1, . . . , ag, b1, . . . , bg, and c1, . . . , cg−1

2.2. Non-orientable surfaces.

Let Ng,n be the closed non-orientable surface of genus g with n punctures and
let ∆ be the set of punctures of Ng,n. We represent the surface Ng,n as a connected
sum of an orientable surface and one or two projective planes (one for g odd and
two for g even). In Figs. 4 and 5, each encircled cross mark represents a crosscap:
the interior of the encircled disk is to be removed and each pair of antipodal points
on the boundary are to be identified.
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Figure 4. Surface Ng,n for g = 2r + 1 and its simple closed curves

Figure 5. Surface Ng,n for g = 2r + 2 and its simple closed curves

The set of all diffeomorphisms of Ng,n which preserve the set of punctures obvi-
ously forms a group, which we denote by Diff(Ng,n). Let Diff0(Ng,n) be the subset
consisting of all elements of Diff(Ng,n) that are isotopic to the identity, where
the isotopies fix ∆. It is immediately seen that Diff0(Ng,n) is a normal subgroup
of Diff(Ng,n). The mapping class group of Ng,n, denoted by Mod(Ng,n), is the
quotient group Diff(Ng,n)/Diff0(Ng,n). We denote by PMod(Ng,n) the subgroup
of Mod(Ng,n) consisting of the isotopy classes of diffeomorphisms which fix each
puncture. Let Symn be a symmetric group on n letters. Clearly we have the exact
sequence

1→ PMod(Ng,n)→ Mod(Ng,n)
π→ Symn → 1,

where the last projection is given by the restriction of homeomorphism to its action
on the puncture points. Let c be a simple closed curve on Ng,n. If the regular
neighborhood of c, denoted by Nc, is an annulus (resp. a Möbius band), we call c
two-sided (resp. one-sided) simple closed curve. Let a be a two-sided simple closed
curve on Ng,n. By the definition, the regular neighborhood of a is an annulus, and
it has two possible orientation. Now, we fix one of its two possible orientations.
For two sided simple closed curve a, we can also define the Dehn twist ta.

It is well known that Mod(Ng,n) is not generated by Dehn twists. We need an-
other class of diffeomorphisms, called Y-homeomorphism, to generate Mod(Ng,n).
A Y-homeomorphism is defined as follow. For a one-sided simple closed curve m
and a two-sided oriented simple closed curve a which intersects m transversely
in one point, the regular neighborhood K of m ∪ a is homomeomorphic to the
Klein bottle with one hole. Let M be the regular neighborhood of m. Then the
Y-homeomorphism Ym,a is the isotopy class of the diffeomorphism obtained by
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pushing M once along a keeping the boundary of K fixed (see Fig. 6).

Figure 6. Y-homeomorphism on K

Furthermore, to generate the groups Mod(Ng,n) and PMod(Ng,n) we need a
puncture slide. A puncuter slide is defined as follow. Let M denote a Möbius band
with a puncture x embedded in Ng,n. For a one-sided simple closed curve α based
at x on M , we push the puncture x once along α keeping the boundary of M fixed.
Then a puncture slide on M is described as the result.

Figure 7. Puncture slide on M

These diffeomorphisms have the following properties.

Lemma 2.7. For any diffeomorphism f of the surface Ng,n and a two-sided simple
closed curve a, we have

tϵf(a) = ftaf
−1,

where if f |Na is an orientation preserving diffeomorphism (resp. orientation re-
versing diffeomorphism), then ϵ = 1 (resp. ϵ = −1).

Lemma 2.8. For a one-sided simple closed curve m and a two-sided simple closed
curve a, we have the following.
(1) Ym−1,a = Ym,a.
(2) Ym,a−1 = Y −1

m,a.
(3) For any element f in Mod(Ng,n), we have fYm,af−1 = Yf(m),f(a).

Lemma 2.9. Let v be a puncture slide of x along a one-sided simple closed curve
α.
For any element f in Mod(Ng,n), fvf−1 is the puncture slide of f(x) along f(α).
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3. Proof of Theorem 1.4

In this section, we prove that Mod(Σg,0) is generated by elements of order six.
Let m be a positive integer.

3.1. Construction of elements of order six.

We construct two elements of order six.

3.1.1. Case of g = 5m for some integer m ≥ 2.

We construct an element f1 in Mod(Σg,0) which has order six as follows. We
cut the surface Σg,0 along the curves a3, c1, c2, ϵ1, c4, c5, a5i−3, c5i−3, c5i−2,
c5i−1, c5i, a5i+1 (i = 2, 3, . . . ,m− 1) as shown in Fig. 8 and obtain m− 1 surfaces
L1,1, L1,2, . . . , L1,m−1. The surface L1,1 is a surface of genus 4 with 6m boundary
components, L1,i is a sphere with 6 boundary components bounded by a5i−3, c5i−3,
c5i−2, c5i−1, c5i and a5i+1 (i = 2, 3, . . . ,m − 1). Let L′

1,1 be a subsurface of genus
4 in L1,1 bounded by δg−1. Let f1,1, f1,2, . . ., f1,m−1 be the π/3 rotation as shown
in Fig. 9. Note that in this picture δg−4 is on the back side and the map f1,1 keeps
the subsurface L′

1,1 fixed. We found that (f1,1)6 produces a twsit tδg−4 . In order
to cancel the twist tδg−4 , we define f ′

1,1 as a composition of f1,1 and f1,m which
defined as follow.

f1,m = (tag−3tbg−3tcg−3tbg−2ta′
g−2

)−1(tag−1tbg−1tcg−1tbg tag ).

Since the diffeomorphisms f ′
1,1, f1,2, . . ., f1,m−1 coincide on the boundaries, they

define a diffeomorphism f1 : Σg,0 → Σg,0 of order six.

We construct an element h1 in Mod(Σg,0) of order six. We cut the surface Σg,0

along the curves a1, a2, c2, c3, ϵ2, ϵ3, a5i−5, c5i−5, c5i−4, c5i−3, c5i−2, a5i−1 (i =
2, 3, . . . ,m) as shown in Fig. 10 and obtain m+1 surfaces M1,1, M1,2, . . . ,M1,m+1.
The surface M1,1 is a surface with 6m boundary components, M1,i is a sphere with
6 boundary components bounded by a5i−5, c5i−5, c5i−4, c5i−3, c5i−2, a5i−1 (i =
2, 3, . . . ,m) and M1,m+1 is a sphere with 6 boundary components bounded by a1,
a2, c2, c3, ϵ2, ϵ3. Let h1,1, h1,2, . . ., h1,m+1 be π/3 rotation as shown in Fig. 11.

Since the diffeomorphisms h1,1, h1,2, . . ., h1,m+1 coincide on the boundaries, they
define a diffeomorphism h1 : Σg,0 → Σg,0 of order six.

The diffeomorphism f1 acts on the curves on Σg,0 as follows:

(f1)
5(a3) = (f1)

4(c5) = (f1)
3(c1) = (f1)

2(c4) = (f1)(c2) = ϵ1,

(f1)
5(a5i−3) = (f1)

4(c5i−3) = (f1)
3(c5i−2) = (f1)

2(c5i−1) = (f1)(c5i) = a5i+1,

(f1)
4(b5i−3) = (f1)

3(b5i−2) = (f1)
2(b5i−1) = (f1)(b5i) = b5i+1 (i = 2, 3, . . . ,m− 1),

(f1)
4(ag−1) = (f1)

3(bg−1) = (f1)
2(cg−1) = (f1)(bg) = ag.

The diffeomorphism h1 acts on the curves on Σg,0 as follows:

(h1)
5(a1) = (h1)

2(c3) = (h1)(c2) = a2,

(h1)
4(b1) = (h1)

3(bg) = (h1)
2(b4) = (h1)(b3) = b2,

(h1)
5(a5i−5) = (h1)

4(c5i−5) = (h1)
3(c5i−4) = (h1)

2(c5i−3) = (h1)(c5i−2) = a5i−1,

(h1)
4(b5i−5) = (h1)

3(b5i−4) = (h1)
2(b5i−3) = (h1)(b5i−2) = b5i−1 (i = 2, 3, . . . ,m).
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Figure 8. Cutting the surface I
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Figure 9. Z6-symmetry of Σg,0 I



GENERATING MAPPING CLASS GROUPS OF SURFACES 11

Figure 10. Cutting the surface II
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Figure 11. Z6-symmetry of Σg,0 II
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3.1.2. Case of g = 5m+ 1 for some integer m ≥ 2.

We construct an element f2 in Mod(Σg,0) which has order six as follows. We
cut the surface Σg,0 along the curves a3, c1, c2, ϵ1, c4, c5, a5i−3, c5i−3, c5i−2, c5i−1,
c5i, a5i+1 (i = 2, 3, . . . ,m) as shown in Fig. 12 and obtain m surfaces L2,1, L2,2,
. . . , L2,m. The surface L2,1 is a surface with 6m+6 boundary components, L2,i is a
sphere with 6 boundary components bounded by a5i−3, c5i−3, c5i−2, c5i−1, c5i and
a5i+1 (i = 2, 3, . . . ,m). Let f2,1, f2,2, . . ., f2,m be π/3 rotation as shown in Fig. 13.

Since the diffeomorphisms f2,1, f2,2, . . ., f2,m coincide on the boundaries, they
define a diffeomorphism f2 : Σg,0 → Σg,0 of order six.

We construct an element h2 in Mod(Σg,0) of order six. We cut the surface Σg,0

along the curves a1, a2, c2, c3, ϵ4, ϵ5, a5i−5, c5i−5, c5i−4, c5i−3, c5i−2, a5i−1 (i =
2, 3, . . . ,m) as shown in Fig. 14 and obtain m+1 surfaces M2,1, M2,2, . . . ,M2,m+1.
The surface M2,1 is a torus with 6m boundary components, M2,i is a sphere with
6 boundary components bounded by a5i−5, c5i−5, c5i−4, c5i−3, c5i−2, a5i−1 (i =
2, 3, . . . ,m), M2,m+1 is a sphere with 6 boundary components bounded by a1, a2,
c2, c3, ϵ4, ϵ5. Let M ′

2,1 be a subsurface of genus 1 in the surface M2,1 bounded by
δg−1. Let h2,1, h2,2, . . ., h2,m be π/3 rotation as shown in Fig. 15. Note that in this
picture δg−1 is on the back side and the map h2,1 keeps M ′

2,1 fixed. We found that
(h2,1)6 produces a twist tδg−1 . In order to cancel the twist tδg−1 , we define h′

2,1 as
a composition of h2,1 and h2,m+2 which defined as follow.

h2,m+2 = (tag tbg )
−1.

Since the diffeomorphisms h′
2,1, h2,2, . . ., h2,m coincide on the boundaries, they

define a diffeomorphism h2 : Σg,0 → Σg,0 of order six.

For i = 2, 3, . . . ,m, f2 acts on the curves on Σg,0 as follows:

(f2)
5(a3) = (f2)

4(c5) = (f2)
3(c1) = (f2)

2(c4) = (f2)(c2) = ϵ1,

(f2)
5(a5i−3) = (f2)

4(c5i−3) = (f2)
3(c5i−2) = (f2)

2(c5i−1) = (f2)(c5i) = a5i+1,

(f2)
4(b5i−3) = (f2)

3(b5i−2) = (f2)
2(b5i−1) = (f2)(b5i) = b5i+1.

For i = 2, 3, . . . ,m, h2 acts on the curves on Σg,0 as follows:

(h2)
5(a1) = (h2)

2(c3) = (h2)(c2) = a2,

(h2)
4(b1) = (h2)

3(bg−1) = (h2)
2(b4) = (h2)(b3) = b2,

(h2)
5(a5i−5) = (h2)

4(c5i−5) = (h2)
3(c5i−4) = (h2)

2(c5i−3) = (h2)(c5i−2) = a5i−1,

(h2)
4(b5i−5) = (h2)

3(b5i−4) = (h2)
2(b5i−3) = (h2)(b5i−2) = b5i−1

h2(bg) = ag.
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Figure 12. Cutting the surface III
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Figure 13. Z6-symmetry of Σg,0,III
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Figure 14. Cutting the surface IV
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Figure 15. Z6-symmetry of Σg,0,IV
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3.1.3. Case of g = 5m+ 2 for some integer m ≥ 1.

We construct an element f3 in Mod(Σg,0) which has order six as follows. We
cut the surface Σg,0 along the curves a3, c1, c2, ϵ1, c4, c5, a5i−3, c5i−3, c5i−2, c5i−1,
c5i, a5i+1 (i = 2, 3, . . . ,m) as shown in Fig. 16 and obtain m surfaces L3,1, L3

2,
. . . , L3

m. The surface L3,1 is a torus with 6m + 6 boundary components, L3,i is a
sphere with 6 boundary components bounded by a5i−3, c5i−3, c5i−2, c5i−1, c5i and
a5i+1 (i = 2, 3, . . . ,m). Let L′

3,1 be a subsurface of genus 1 in L3,1 bounded by
δg−1. Let f3,1, f3,2, . . ., f3,m be π/3 rotation as shown in Fig. 17. Note that in this
picture δg−1 is on the back side and the map f3,1 keeps L′

3,1 fixed. We found that
(f3,1)6 produces a twist tδg−1 . In order to cancel the twist tδg−1 , we define f ′

3,1 as
a composition of f3,1 and f3,m+1 which defined as follow.

f3,m+1 = (tag tbg )
−1.

Since the diffeomorphisms f ′
3,1, f3,2, . . ., f3,m coincide on the boundaries, they

define a diffeomorphism f3 : Σg,0 → Σg,0 of order six.

We construct an element h3 in Mod(Σg,0) of order six as follows. We cut the
surface Σg,0 along the curves a1, a2, c2, c3, ϵ6, ϵ7, a5i−5, c5i−5, c5i−4, c5i−3, c5i−2,
a5i−1 (i = 2, 3, . . . ,m) as shown in Fig. 18 and obtain m + 1 surfaces M3,1, M3,2,
. . . ,M3,m+1. The surface M3,1 is a surface of genus 2 with 6m boundary com-
ponents, M3,i is a sphere with 6 boundary components bounded by a5i−5, c5i−5,
c5i−4, c5i−3, c5i−2, a5i−1 (i = 2, 3, . . . ,m), M3,m+1 is a sphere with 6 boundary
components bounded by a1, a2, c2, c3, ϵ6, ϵ7. Let M ′

3,1 be a subsurface of genus 2
in M3,1 bounded by δg−2. Let h3,1, h3,2, . . ., h3,m+1 be π/3 rotation as shown in
Fig. 19. Note that in this picture δg−2 is on the back side and the map h3,1 keeps
M ′

3,1 fixed. We found that (h3,1)6 produces a twist tδg−2 . In order to cancel the
twist tδg−2 , we define h′

3,1 as a composition of h3,1 and h3,m+2 which defined as
follow.

h3,m+2 = (tag−1tbg−1tcg−1tbg tag )
−1.

Since the diffeomorphisms h′
3,1, h3,2, . . ., h3,m+1 coincide on the boundaries, they

define a diffeomorphism h3 : Σg,0 → Σg,0 of order six.

For i = 2, 3, . . . ,m, f3 acts on the curves on Σg,0 as follows:

(f3)
5(a3) = (f3)

4(c5) = (f3)
3(c1) = (f3)

2(c4) = (f3)(c2) = ϵ1,

(f3)
5(a5i−3) = (f3)

4(c5i−3) = (f3)
3(c5i−2) = (f3)

2(c5i−1) = (f3)(c5i) = a5i+1,

(f3)
4(b5i−3) = (f3)

3(b5i−2) = (f3)
2(b5i−1) = (f3)(b5i) = b5i+1.

For i = 2, 3, . . . ,m, h3 acts on the curves on Σg,0 as follows:

(h3)
5(a1) = (h3)(c3) = a2,

(h3)
4(b1) = (h3)

3(bg−2) = (h3)
2(b4) = (h3)(b3) = b2,

(h3)
5(a5i−5) = (h3)

4(c5i−5) = (h3)
3(c5i−4) = (h3)

2(c5i−3) = (h3)(c5i−2) = a5i−1,

(h3)
4(b5i−5) = (h3)

3(b5i−4) = (h3)
2(b5i−3) = (h3)(b5i−2) = b5i−1,

(h3)
−3(bg−1) = (h3)

−2(cg−1) = (h3)
−1(bg) = ag.
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Figure 16. Cutting the surface V
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Figure 17. Z6-symmetry of Σg,0,V
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Figure 18. Cutting the surface VI
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Figure 19. Z6-symmetry of Σg,0,VI
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3.1.4. Case of g = 5m+ 3 for some integer m ≥ 1.

We construct an element f4 in Mod(Σg,0) which has order six as follows. We
cut the surface Σg,0 along the curves a3, c1, c2, ϵ1, c4, c5, a5i−3, c5i−3, c5i−2, c5i−1,
c5i, a5i+1 (i = 2, 3, . . . ,m) as shown in Fig. 20 and obtain m surfaces L4,1, L4,2,
. . . , L4,m. The surface L4,1 is a surface of genus 2 with 6m+6 boundary components,
L4,i is a sphere with 6 boundary components bounded by a5i−3, c5i−3, c5i−2, c5i−1,
c5i and a5i+1 (i = 2, 3, . . . ,m). Let L′

4,1 be a subsurface of genus 2 in L4,1 bounded
by δg−2. Let f4,1, f4,2, . . ., f4,m be π/3 rotation as shown in Fig. 21. Note that in
this picture δg−2 is on the back side and the map f4,1 keeps L′

4,1 fixed. We found
that (f4,1)6 produces a twist tδg−2 . In order to cancel the twist tδg−2 , we define f

′
4,1

as a composition of f4,1 and f4,m+1 which defined as follow.

f4,m+1 = (tag−1tbg−1tcg−1tbg tag )
−1.

Since the diffeomorphisms f ′
4,1, f4,2, . . ., f4,m coincide on the boundaries, they

define a diffeomorphism f4 : Σg,0 → Σg,0 of order six.

We construct an element h4 in Mod(Σg,0) of order six as follows. We cut the
surface Σg,0 along the curves a1, a2, c2, c3, ϵ8, ϵ9, a5i−5, c5i−5, c5i−4, c5i−3, c5i−2,
a5i−1 (i = 2, 3, . . . ,m) as shown in Fig. 22 and obtain m + 1 surfaces M4,1, M4,2,
. . . ,M4,m+1. The surface M4,1 is a surface of genus 3 with 6m boundary com-
ponents, M4,i is a sphere with 6 boundary components bounded by a5i−5, c5i−5,
c5i−4, c5i−3, c5i−2, a5i−1 (i = 2, 3, . . . ,m), M4,m+1 is a sphere with 6 boundary
components bounded by a1, a2, c2, c3, ϵ8, ϵ9. Let M ′

4,1 be a subsurface of genus
3 in M4,1 bounded by δg−3. Let h4,1, h4,2, . . ., h4,m+1 be π/3 rotation as shown
in Fig. 23. Note that in this picture δg−3 is on the back side and the map h4,1

keeps M ′
4,1 fixed. We found that (h4,1)6 produces a twist tδg−3 . In order to cancel

the twist tδg−3 , we define h′
4,1 as a compostion of h4,1 and h4,m+2 which defined as

follow.
h4,m+2 = (tag−2tbg−2tcg−2tbg−1ta′

g−1
)−1(tag tbg ).

Since the diffeomorphisms h′
4,1, h4,2, . . ., h4,m+1 coincide on the boundaries, they

define a diffeomorphism h4 : Σg,0 → Σg,0 of order six.

For i = 2, 3, . . . ,m, f4 acts on the curves on Σg,0 as follows:

(f4)
5(a3) = (f4)

4(c5) = (f4)
3(c1) = (f4)

2(c4) = (f4)(c2) = ϵ1,

(f4)
5(a5i−3) = (f4)

4(c5i−3) = (f4)
3(c5i−2) = (f4)

2(c5i−1) = (f4)(c5i) = a5i+1,

(f4)
4(b5i−3) = (f4)

3(b5i−2) = (f4)
2(b5i−1) = (f4)(b5i) = b5i+1,

(f4)
−3(bg−1) = (f4)

−2(cg−1) = (f4)
−1(bg) = ag.

For i = 2, 3, . . . ,m, h4 acts on the curves on Σg,0 as follows:

(h4)
5(a1) = (h4)

2(c3) = h4(c2) = a2,

(h4)
4(b1) = (h4)

3(bg−3) = (h4)
2(b4) = (h4)(b3) = b2,

(h4)
5(a5i−5) = (h4)

4(c5i−5) = (h4)
3(c5i−4) = (h4)

2(c5i−3) = (h4)(c5i−2) = a5i−1,

(h4)
4(b5i−5) = (h4)

3(b5i−4) = (h4)
2(b5i−3) = (h4)(b5i−2) = b5i−1,

(h4)
−2(bg−2) = (h4)

−1(cg−2) = bg−1, (h4)
−1(bg) = ag.
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Figure 20. Cutting the surface VII
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Figure 21. Z6-symmetry of Σg,0,VII
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Figure 22. Cutting the surface VIII



GENERATING MAPPING CLASS GROUPS OF SURFACES 27

Figure 23. Z6-symmetry of Σg,0,VIII
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3.1.5. Case of g = 5m+ 4 for some integer m ≥ 1.

We construct an element f5 in Mod(Σg,0) which has order six as follows. For
i = 2, 3, . . . ,m, we cut the surface Σg,0 along the curves a3, c1, c2, ϵ1, c4, c5, a5i−3,
c5i−3, c5i−2, c5i−1, c5i, a5i+1 as shown in Fig. 24 and obtain m surfaces L5,1, L5,2,
. . . , L5,m. The surface L5,1 is a surface of genus 3 with 6m+6 boundary components,
L5,i is a sphere with 6 boundary components bounded by a5i−3, c5i−3, c5i−2, c5i−1,
c5i, a5i+1. Let L′

5,1 be a subsurface of genus 3 in L5,1 bounded by δg−3. Let f5,1,
f5,2, . . ., f5,m be π/3 rotation as shown in Fig. 25. Note that in this picture δg−3 is
on the back side and the map f5,1 keeps L′

5,1 fixed. We found that (f5,1)6 produces
a twist tδg−3 . In order to cancel the twist tδg−3 , we define f ′

5,1 as a composition of
f5,1 and f5,m+1 which defined as follow.

f5,m+1 = (tag−2tbg−2tcg−2tbg−1ta′
g−1

)−1(tag tbg ).

Since the diffeomorphisms f ′
5,1, f5,2, . . ., f5,m coincide on the boundaries, they

define a diffeomorphism f5 : Σg,0 → Σg,0 of order six.

We construct an element h5 in Mod(Σg,0) of order six as follows. For i =
2, 3, . . . ,m, we cut the surface Σg,0 along the curves a1, a2, c2, c3, ϵ10, ϵ11, a5i−5,
c5i−5, c5i−4, c5i−3, c5i−2, a5i−1 as shown in Fig. 26 and obtain m+1 surfaces M5,1,
M5,2, . . . ,M5,m+1. The surface M5,1 is a surface of genus 4 with 6m boundary
components, M5,i is a sphere with 6 boundary components bounded by a5i−5,
c5i−5, c5i−4, c5i−3, c5i−2, a5i−1, M5,m+1 is a sphere with 6 boundary components
bounded by a1, a2, c2, c3, ϵ10, ϵ11. Let M ′

5,1 be a subsurface of genus 4 in M5,1

bounded by δg−4. Let h5,1, h5,2, . . ., h5,m+1 be π/3 rotation as shown in Fig. 27.
Note that in this picture δg−4 is on the back side and the map h5,1 keeps M ′

5,1 fixed.
We found that (h5,1)6 produces a twist tδg−4 . In order to cancel the twist tδg−4 , we
define h′

5,1 as a composition of h5,1 and h5,m+2 which defined as follow.

h5,m+2 = (tag−3tbg−3tcg−3tbg−2ta′
g−2

)−1(tag−1tbg−1tcg−1tbg tag ).

Since the diffeomorphisms h′
5,1, h5,2, . . ., h5,m+1 coincide on the boundaries, they

define a diffeomorphism h5 : Σg,0 → Σg,0 of order six.

For i = 2, 3, . . . ,m, f5 acts on the curves on Σg,0 as follows:

(f5)
5(a3) = (f5)

4(c5) = (f5)
3(c1) = (f5)

2(c4) = (f5)(c2) = ϵ1,

(f5)
5(a5i−3) = (f5)

4(c5i−3) = (f5)
3(c5i−2) = (f5)

2(c5i−1) = (f5)(c5i) = a5i+1,

(f5)
4(b5i−3) = (f5)

3(b5i−2) = (f5)
2(b5i−1) = (f5)(b5i) = b5i+1,

(f5)
−2(bg−2) = (f5)

−1(cg−2) = bg−1, (f5)
−1(bg) = ag.

For i = 2, 3, . . . ,m, h5 acts on the curves on Σg,0 as follows:

(h5)
5(a1) = (h5)

2(c3) = h5(c2) = a2,

(h5)
4(b1) = (h5)

3(bg−4) = (h5)
2(b4) = (h5)(b3) = b2,

(h5)
5(a5i−5) = (h5)

4(c5i−5) = (h5)
3(c5i−4) = (h5)

2(c5i−3) = (h5)(c5i−2) = a5i−1,

(h5)
4(b5i−5) = (h5)

3(b5i−4) = (h5)
2(b5i−3) = (h5)(b5i−2) = b5i−1,

(h5)
−2(bg−3) = (h5)

−1(cg−3) = bg−2,

(h5)
3(bg−1) = (h5)

2(cg−1) = (h5)(bg) = ag.
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Figure 24. Cutting the surface IX
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Figure 25. Z6-symmetry of Σg,0,IX
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Figure 26. Cutting the surface X
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Figure 27. Z6-symmetry of Σg,0,X
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3.1.6. Case of g = 5.

We construct an element f6 in Mod(Σ5,0) which has order six as follows. We cut
the surface Σ5,0 along the curves a3, a5, c1, c2, c4, ϵ1 as shown in Fig. 28 and obtain
2 six holed spheres L6,1 and L6,2.

Figure 28. Simple Closed Curves on Σ5,0

Let f6,1 and f6,2 be π/3 rotation as shown in Fig. 29. Since the diffeomorphisms
f6,1 and f6,2 coincide on the boundaries, they define a diffeomorphism f6 : Σ5,0 →
Σ5,0 of order six.

Figure 29. Z6-symmetry of Σ5,0,XI

We construct an element h6 in Mod(Σ5,0) which has order six. We cut the surface
Σ5,0 along the curves a1, a2, c2, c3, c4, ϵ12 as shown in Fig. 28 and obtain two spheres
with 6 boundary components M6,1 and M6,2. Let h6,1 and h6,2 be π/3 rotation as
shown in Fig. 30.

Since the diffeomorphisms h6,1 and h6,2 coincide on the boundaries, they define
a diffeomorphism h6 : Σ5,0 → Σ5,0 of order six. In this case, for i = 1, 2, . . . , 4 and
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Figure 30. Z6-symmetry of Σ5,0,XII

j = 1, 2, . . . , 5, since there is no element which maps from ai and ci to bj , we need
such element. we define r6 as follow:

r6 = (a1b1)(a2b2c2b3a
′
3)

−1(a4b4c4b5a5).

By chain relation, the element r6 has order six.

f6 acts on the curves on Σ5,0 as follows:

(f6)
5(a3) = (f6)

4(c5) = (f6)
3(c1) = (f6)

2(c4) = (f6)(c2) = ϵ1,

(f6)
2(b5) = b4.

h6 acts on the curves on Σ5,0 as follows:

(h6)
5(a1) = (h6)

4(ϵ12) = (h6)
3(c4) = (h6)

2(c3) = (h6)(c2) = a2,

(h6)
4(b1) = (h6)

3(b5) = (h6)
2(b4) = (h6)(b3) = b2.

r6 acts on the curves on Σ5,0 as follows:

(r6)(a1) = b1,

(r6)
3(a2) = (r6)

2(b2) = (r6)(c2) = b3,

(r6)
4(a4) = (r6)

3(b4) = (r6)
2(c4) = (r6)(b5) = a5.

3.1.7. Case of g = 6.

We construct an element f7 in Mod(Σ6,0) which has order six. We cut the surface
Σ6,0 along the curves a3, c1, c2, c4, c5, ϵ1 as shown in Fig. 31 and obtain a sphere
with 12 boundary components.

Let f7,1 be π/3 rotation as shown in Fig. 32 and let f7 be a diffeomorphism
which is obtained from f7,1 by bluing each boundary.

We construct an element h7 in Mod(Σ6,0) which has order six. We cut the surface
Σ6,0 along the curves a1, a2, c2, c3, c4, ϵ12 as shown in Fig. 31 and obtain a sphere
with 6 boundary components M7,1, a torus with 6 boundary components M7,2. Let
M ′

7,2 be a subsurface of genus 1 in M7,2 bounded by δ5.

Let h7,1 and h7,2 be π/3 rotation as shown in Fig. 33 . Note that in this picture δ5
is on the back side and the map h7,2 keeps M ′

7,2 fixed. We found that (h7,2)6 = tδ5 .



GENERATING MAPPING CLASS GROUPS OF SURFACES 35

Figure 31. Simple Closed Curves on Σ6,0

Figure 32. Z6-symmetry of Σ6,0,XIII

In order to cancel the twist tδ5 , we define h′
7,2 as a composition of h7,2 and h7,3

which defined as follow.
h7,3 = (ta6tb6)

−1.

Since the diffeomorphisms h7,1 and h′
7,2 coincide on the boundaries, they define

a diffeomorphism h7 : Σ6,0 → Σ6,0 of order six. In this case, for i = 1, 2, . . . , 5 and
j = 1, 2, . . . , 6, since there is no element which maps from ai and ci to bj , we need
such element. we define r7 as follow:

r7 = (a1b1c1b2a
′
2)(a3b3c3b4a

′
4)

−1(a5b5c5b6a6).

By chain relation, the element r7 has order six.

The diffeomorphism f7 acts on the curves on Σ6,0 as follows:

(f7)
5(a3) = (f7)

4(c5) = (f7)
3(c1) = (f7)

2(c4) = (f7)(c2) = ϵ1,
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Figure 33. Z6-symmetry of Σ6,0,XIV

The diffeomorphism h7 acts on the curves on Σ6,0 as follows:

(h7)
5(a1) = (h7)

4(ϵ12) = (h7)
3(c4) = (h7)

2(c3) = (h7)(c2) = a2,

(h7)
4(b1) = (h7)

3(b5) = (h7)
2(b4) = (h7)(b3) = b2.

The diffeomorphism r7 acts on the curves on Σ6,0 as follows:

(r7)
3(a1) = (r7)

2(b1) = (r7)(c1) = b2,

(r7)
4(a3) = (r7)

3(b3) = (r7)
2(c3) = (r7)(b4) = c4,

(r7)
4(a5) = (r7)

3(b5) = (r7)
2(c5) = (r7)(b6) = a6.

3.2. Generating a Dehn twist by elements of order six.

In this subsection, we use the lantern relation in order to generate the Dehn
twist by 3 elements of order 6. We embed the four-holed sphere S in Σg,0 as shown
in Fig. 34.

Figure 34. Curves x1 and x2.

By Lantern relation, we have

ta1tc1tc2ta3 = tx1tx2ta2 ,

where the curves a1, a2, c1, c2, a3, x1 and x2 are shown in Fig. 34. By contructions
fi and hi (i = 1, 2, . . . , 7), we have

(fi)
4(a2) = x1, (fi)

2(a2) = x2,

(fi)
4(c2) = c1, (fi)

2(c2) = a3,

(hi)(c2) = a2.
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Now, we put ki as a product tc2(hi)−1t−1
c2 . We remark that ki has a six order.

We see that
ta2t

−1
c2 = thi(c2)t

−1
c2 = hitc2(hi)

−1t−1
c2 = hiki,

tx1t
−1
c1 = t(fi)4(a2)(t(fi)4(c2))

−1 = (fi)
4ta2t

−1
c2 (fi)

−4 = (fi)
4hiki(fi)

−4,

tx2t
−1
a3

= t(fi)2(a2)(t(fi)2(c2))
−1 = (fi)

2ta2t
−1
c2 (fi)

−2 = (fi)
2hiki(fi)

−2.

Hence, by the lantern relation and above equations, we have

ta1 = ((fi)
4hiki(fi)

−4)((fi)
2hiki(fi)

−2)(hiki).

3.3. Generating mapping class groups by elements of order six.

Now we begin the proof of the theorem 1.4. Let Gi denote the subgroup of
Mod(Σg,0) generated by fi, hi and ki for i = 1, 2, . . . , 5 and let Gj denote the
subgroup of Mod(Σg,0) generated by fj , hj , ki, and rj for j = 6, 7. In previous
subsection, we can find ta1 is in Gi for i = 1, 2, . . . , 7. Let a and b be simple closed

curves on Σg,0. For f ∈ Gi, the symbol a
f←→ b means that f(a) = b or f−1(a) = b.

In the case of g = 5m, f1 and h1 can map a1 to all bi and ci as shown in Fig.
35. Hence, we have, for all i, tbi and tci are in G1. Since we have (h1)5(a1) = a2,
ta2 is in G1. Therefore, all Humphries’s generators are in G1. As is the case with
g = 5m, in the case of g = 5m+1, g = 5m+2, g = 5m+3, g = 5m+4 and g = 5, 6
for j = 2, 3, . . . , 7, fj and hj can map a1 to all bi and ci as shown in Fig. 36, 37,
38, 39, 40 and 41 respectively. Hence, we have ,for all i, tbi and tci are in Gj . Since
we have (hj)5(a1) = a2, ta2 is in Gj . Therefore, all Humphries’s generators are in
Gj . We prove that Gi is equal to Mod(Σg,0) for g ≥ 7 and i = 1, 2, . . . , 7.

Figure 35
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Figure 36

Figure 37

Figure 38
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Figure 39

Figure 40

Figure 41
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4. Proof of Theorem 1.5

In this section, we proof theorem 1.5. We use the following lemma in order to
prove theorem 1.5.

Lemma 4.1. Let G and N be groups and let H and K be subgroups of G. Suppose
that the sequence

1→ H
i→ G

π→ N → 1

is exact. If K contains i(H) and the restriction of π to K is a surjection onto N ,
then we have that K = G.

Proof. Let g be any element of G. If g is in i(H), then K contains g by the
assumption i(H) ⊂ K. We suppose that g is not in i(H). Since the restriction π |K
is surjection, there exists k ∈ K such that π(g) = π(k). Since π(gk−1) = e, we see
that gk−1 ∈ Ker π = Im i. Therefore, there exists h ∈ H such that gk−1 = i(h).
Since i(h) ∈ K, we have g = i(h)k ∈ K. Hence, G ⊂ K. !

Since we have the following exact sequence

1→ PMod(Ng,n)→ Mod(Ng,n)
π→ Symn → 1,

we have following corollary.

Corollary 4.2. Let K denote the subgroup of Mod(Ng,n). If K contains PMod(Ng,n)
and the restriction π to K is a surjection to Symn, then K is equal Mod(Ng,n).

We recall the Korkmaz’s generating set for PMod(Ng,n). Let Λ be the set of
simple closed curves indicated in Fig. 4 for g = 2r+1, and in Fig. 5 for g = 2r+2.
Hence

Λ = {a1, a2, . . . , ar, b1, b2, . . . , br, c1, c2, . . . , cr−1, d1, d2, . . . , dr, e1, e2, . . . , en−1}

for g = 2r + 1, and

Λ = {a1, a2, . . . , ar, b1, b2, . . . , br+1, c1, c2, . . . , cr, d1, d2, . . . , dr, e1, e2, . . . , en−1}

fro g = 2r + 2. In the figures, we choose orientations of local neighbourhoods of
simple closed curves in lambda, the orientation is that the arrow points to the right
if we approach the curve. Therefore for the simple closed curve a in Λ, the Dehn
twist about a is determined by this particular choice of orientation.

Let αi be the one-sided simple closed curve based at xi for i = 1, 2, . . . , n as in
Fig. 42. If g = 2r + 2, let βi be the one-sided simple closed curve based at xi as
in Fig. 42. For i = 1, 2, . . . , n, let vi and wi be puncture slides along αi and βi,
respectively.

Let y be a crosscap slide such that y2 is the Dehn twist along ξ.

Theorem 4.3. For g ≥ 3, the pure mapping class group PMod(Ng,n) is generated
by

(i) {tl | l ∈ Λ} ∪ {vi | 1 ≤ i ≤ n} ∪ {y} if g is odd, and

(ii) {tl | l ∈ Λ} ∪ {vi, wi | 1 ≤ i ≤ n} ∪ {y} if g is even.

The following theorem can be deduced from Korkmaz’s generating set by using
the method of Humphries. Set

Λ′ = {a1, a2, . . . , ar, b1, b2, c1, c2, . . . , cr−1, d1, d2, e1, e2, . . . , en−1}
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Figure 42. Simple closed curves α1, . . . ,αn and β1, . . . ,βn.

Figure 43. Simple closed curve ξ.

for g = 2r + 1, and

Λ′ = {a1, a2, . . . , ar, b1, b2, br+1, c1, c2, . . . , cr, d1, d2, e1, e2, . . . , en−1}
fro g = 2r + 2.

Theorem 4.4. For g ≥ 3, the pure mapping class group PMod(Ng,n) is generated
by

(i) {tl, vi, y | l ∈ Λ′, 1 ≤ i ≤ n} if g is odd and

(i) {tl, vi, wi, y | l ∈ Λ′, 1 ≤ i ≤ n} if g is even.

4.1. In the case of odd genus. In this subsection, we suppose that g = 2r + 1
for a positive integer r ≥ 6. Let us consider the two models of Ng,b as shown in
Fig. 44 and 45. (In these pictures, we will suppose that r = 2k and the number of
punctures b = 2l + 1 is odd for a interger l ≥ 0.) We deform the surface in Fig. 44
from the surface in Fig. 4 by diffeomorphism ψ such that the simple closed curves
and the punctures in Fig. 4 map to the curves and punctures with same label in
Fig. 44, and the deformed surface is symmetrical about a plane across the central
of this surface, which we call mirror. Let σ′ be a reflection of this surface in the
mirror and let σ be a product ψ−1σψ. Then σ is involution in Mod(Ng,n). In the
same way, we can define a involution τ as a reflection in a mirror in Fig. 45.

We will construct the third involution I. We cut the surface Ng,n along ak+3 ∪
bk ∪ ck ∪ ck+1 ∪ x to obtain the surfaces S1 and S2.(see Fig.46) S1 is a sphere
bounded by ak+3 ∪ bk ∪ ck ∪ ck+1 ∪ x and S2 is a non-orientable surface of genus
g − 8 with b punctures and 5 boundaries. Fig. 47 gives the involutions I and Ĩ on
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Figure 44. Involution σ : Ng,n → Ng,n

Figure 45. Involution τ : Ng,n → Ng,n

S1 and S2, respectively. Since I and Ĩ coincide on the boundaries, they natually
define a involution I : Ng,n → Ng,n.

Figure 46. The curves ak+3, bk, ck, ck+1 and x

From the construction of I, we see the following:

I(ak+3) = ck+1, I(ck) = bk,

I(b1) = d1, I(b2) = d2.

Let ρ1 be the product τ ta1 . Since τ fixes a1 and the restriction τ |Na1
reverses

the orientation, by Lemma 2.7, we see that

τ ta1τ = t−1
a1

.
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Figure 47. Involutions I and Ĩ

Hence, τ is an involution. Then we can get following lemma.

Lemma 4.5. Dehn twists ta1 , ta2 , . . . , tar , tb1 , tb2 , tc1 , tc2 , . . . , tcr−1 ,td1 and td2 are
products of involutions σ,τ ,ρ1 and I.

Proof. Let R be the product τσ. We can see that R acts as following by Fig. 44
and Fig. 45.

(1)R(a1) = a2, R(a2) = a3, . . . , R(ak) = ak+1, R(ak+1) = ak+2, . . . , R(ar−1) = ar.

(2)R(b1) = b2, R(b2) = b3, . . . , R(bk) = bk+1, R(bk+1) = bk+2, . . . , R(br−1) = br.

(3)R(c1) = c2, R(c2) = c3, . . . , R(ck) = ck+1, R(ck+1) = ck+2, . . . , R(cr−2) = cr−1.

Clearly, we can see that ta1 is a product of τ and ρ1. By (1) and Lemma 2.7,

tai = Rtai−1R
−1.(i = 2, 3, . . . , r)

So ta1 , ta2 , . . . , tar are products of σ, τ , and ρ1.

By construction of I and Lemma 2.7, we have

tck+1 = It−1
ak+3

I.

By (3) and Lemman 2.7, we see that

tcj = Rtcj−1R
−1, (j = k + 2, k + 3, . . . , r − 1)

tcj = R−1tcj+1R. (j = 1, 2, . . . , k)

Hence, tc1 , tc2 , . . . , tcr−1 are products of σ, τ, ρ1, and I.

Also, we have
tbk = It−1

ck I.

Similar to the above, by (2) and Lemma 2.7, we see that

tbi = Rtbi−1R
−1, (i = k + 1, k + 3, . . . , r)
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tbi = R−1tbi+1R. (i = 1, 2, . . . , k − 1)

Hence, tb1 , tb2 , . . . , tbr are product of σ, τ, ρ1, and I.

Finally, Since I(b1) = d1 and I(b2) = d2, we have

td1 = It−1
b1

I, td2 = It−1
b2

I.

td1 and td2 are products of σ, τ, ρ1, and I. !

τ maps α1 to itself but reverses the orientation of α1. By Lemma 2.9, we see
that

τv1τ = v−1
1 .

Now let ρ2 denote a product of τv1.Then ρ2 is a involution.

Figure 48. Involutions σ and τ

Lemma 4.6. Puncture slides vi(i = 1, 2, . . . , n) is a products of involutions σ, τ
and ρ2.

Proof. v1 is a product of τ and ρ2. In Fig. 48, we fucus the figures which define σ
and τ on αi. R = τσ acts on αi as follow.

(4)R(α1) = α2, R(α2) = α3, . . . , R(αl) = αl+1, R(αl+1) = αl+2, . . . , R(αn−1) = αn.

By (4) and Lemma 2.9, we see that

vj = Rvj−1R
−1. (j = 2, 3, . . . , n)

Hence, vi is a product of involution σ, τ and ρ2. !

We consider the diffeomorphism Φ on Ng,n which satisfies ΦyΦ−1 = Ym,a and
fixes each puncuters. The right figure in Fig. 49 gives the involution w. Since w
fixes m and a but reverses the orientation of m and a, we can see that wYm,aw =
Ym−1,a−1 = Y −1

m,a.

Let W be a product of Φ−1wΦ and let ρ3 be a product of Wy. Clearly, we can
see that W is an involution. Since we have

WyW = Φ−1w(ΦyΦ−1)wΦ

= Φ−1(wYm,aw)Φ

= Φ−1Y −1
m,aΦ = y−1,
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Figure 49. Diffeomorphism Φ

ρ3 is a involution. So we can get the following lemma.

Lemma 4.7. The Y-homeomorphism y is the product of involutions W and ρ3.

We need the another involution to generate te1 , te2 , . . . , ten−1 . Fig. 50 gives the
involution J which is a reflection in the mirror.

Figure 50. Involution J

Lemma 4.8. te1 , te2 , . . . , ten−1 are products of involutions σ, τ, I, J and ρ1.
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Proof. Since we have J(n1) = e1, te1 = Jt−1
n1

J . te1 is the product of σ, τ , I, J , ρ1.
Let T denote the product of JI. We see that T acts as following.

(5)T (e1) = e2, T (e2) = e3, . . . , T (el) = el+1, T (el+1) = el+2, . . . , T (en−2) = en−1.

Hence, for (i = 2, 3, . . . , n−1), we can see that tei = Ttei−1T
−1. So, tei is a product

of σ, τ, I, J and ρ1. !

Let the subgroup G of Mod(Ng,n) be generated by σ, τ,W, I, J, ρ1, ρ2 and ρ3.

Proof of Theorem 1.5 for genus g = 2r + 1. We see that G contains PMod(Ng,n)
since all Korkmaz’s generators for PMod(Ng,n) are in G by Lemma 4.5, 4.6, 4.7
and 4.8.

When we consider the actions of σ, τ and W on the punctures, we can see that

π(σ) = (1, n)(2, n− 1) . . . (l, l + 2)(l + 1),

π(τ) = (2, n)(3, n− 1) . . . (l + 1, l + 2)(1),

π(W ) = (2, n− 1)(3, n− 2) . . . (l, l + 2)(1)(l + 1)(n).

By the following lemma, the restriction π |G: G→ Symn is a surjection. Hence,
we can see that G = Mod(Ng,n) by Lemma 4.1. !
Lemma 4.9. The group Symn is generated by folllowing elements,

r1 = (1, b)(2, n− 1) . . . (l, l + 2)(l + 1),

r2 = (2, b)(3, n− 1) . . . (l + 1, l + 2)(1),

r3 = (2, n− 1)(3, n− 2) . . . (l, l + 2)(1)(l + 1)(n).

4.2. In the case of even genus. In this section, We suppose that g = 2r + 2.
Similar to odd case, let us consider the two models of Ng,n as shown in Fig. 51 and
52. (In these pictures, we will suppose that r = 2k+1 and the number of punctures
b = 2l is even.) Each pictures gives a involution of the Ng,n, which is the reflection
in the mirror.

Figure 51. Involution σ : Ng,n → Ng,n

We will construct third involution I. We cut the surface Ng,n along ak+3 ∪ bk ∪
ck ∪ ck+1 ∪ x to obtain the surfaces S1 and S2.(see Fig.53) S1 is a sphere bounded
by ak+3 ∪ bk ∪ ck ∪ ck+1 ∪ x and S2 is a non-orientable surface of genus g − 8 with
b punctures and 5 boundaries. Fig.54 gives the involutions I and Ĩ on S1 and
S2, respectively. Since I and Ĩ coincide on the boundaries, they natually define a
involution I : Ng,n → Ng,n.
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Figure 52. Involution τ : Ng,n → Ng,n

Figure 53. The curves ak+3, bk, ck, ck+1 and x

Figure 54. involutions I and Ĩ

From the construction of I, we see the following:

I(ak+3) = ck+1, I(ck) = bk,
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I(b1) = d1, I(b2) = d2.

Let ρ1 be the product τ ta1 . As in the odd genus case, ρ1 is an involution. We will
prepare three involutions to prove following Lemma. Fig .55 gives the involution J
which is a reflection in the mirror. Let ρ4 and ρ5 be the products Jtbr+1 and Jtcr ,
respectively. We can found that ρ4 and ρ5 are involutions.

Figure 55. Involution J

Lemma 4.10. Dehn twists ta1 , ta2 , . . ., tar , tb1 , tb2 , tbr+1 , tc1 , tc2 , . . ., tcr , td1 ,
td2 , te1 , te2 , . . ., ten−1 are products of involutions σ, τ , ρ1, ρ4, ρ5, I, and J .

Proof. Let R be the product τσ. We can see that R acts as following by Fig. 51
and Fig. 52.

(1)R(a1) = a2, R(a2) = a3, . . . , R(ak) = ak+1, R(ak+1) = ak+2, . . . , R(ar−1) = ar.

(2)R(b1) = b2, R(b2) = b3, . . . , R(bk) = bk+1, R(bk+1) = bk+2, . . . , R(br−1) = br.

(3)R(c1) = c2, R(c2) = c3, . . . , R(ck) = ck+1, R(ck+1) = ck+2, . . . , R(cr−2) = cr−1.

Clearly, we can see that ta1 is a product of τ and ρ1. By (1) and Lemma 2.7,

tai = Rtai−1R
−1.(i = 2, 3, . . . , r)

So ta1 , ta2 , . . . , tar are products of σ, τ , and ρ1.

By construction of I and Lemma 2.7, we have

tck+1 = It−1
ak+3

I.

By (3) and Lemman 2.7, we see that

tcj = Rtcj−1R
−1, (j = k + 2, k + 3, . . . , r − 1)

tcj = R−1tcj+1R. (j = 1, 2, . . . , k)

Hence, tc1 , tc2 , . . . , tcr−1 are products of σ, τ, ρ1, and I.

Also, we have
tbk = It−1

ck I

. Similar to the above, by (2) and Lemma 2.7, we see that

tbi = Rtbi−1R
−1, (i = k + 1, k + 3, . . . , r)

tbi = R−1tbi+1R. (i = 1, 2, . . . , k − 1)

Hence, tb1 , tb2 , . . . , tbr are product of σ, τ, ρ1, and I.
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By the constructions about ρ4 and ρ5,we have tbr+1 = Jρ4 and tcr = Jρ5.

Since I(b1) = d1 and I(b2) = d2, we have

td1 = It−1
b1

I, td2 = It−1
b2

I.

td1 and td2 are products of σ, τ, ρ1, and I. !

We want to generate puncture slides v1, v2, . . . , vn and w1, w2, . . . , wn by involu-
tions. we will construct an involution K which fixes α1 and reverses the orientation
of α1. The involution K is a reflection in the mirror in Fig. 56. Let ρ2 be the
product Kv1.

Figure 56. Involution K

Lemma 4.11. Puncture slides vi and wi(i = 1, 2, . . . , n) are products of involutions
σ, τ ,K and ρ2.

Proof. Since v1 is equal to Kρ2, we can write v1 as a product of two involutions.
Let S and R be products τσ and στ , respectively. By the constructions of σ and
τ , we have

S(α1) = α2, S(α2) = α3, . . . , S(αn−1) = αn,

R(βn) = βn−1, R(βn−1) = βn−2, . . . , R(β2) = β1,

σ(α1) = βn.

By lemma 2.9, we can prove this lemma. !

We will write y as a product of involutions. We consider the diffeomorphism
Φ : Ng,n → Ng,n which satisfies ΦyΦ−1 = Ym,a and fixes each punctures as shown
Fig. 57.

Let ω be reflection in the mirror as shown bottom figure in Fig. 57. Since ω fixes
m and a but reverses the orientation of m and a, we can see that ωYm,aω = Y −1

m,a.
Let W be the product Φ−1ωΦ and let ρ3 be the product Wy. We can see that W
and ρ3 are involutions. We can see the following lemma.

Lemma 4.12. The Y-homeomorphism y is the product of involutions W and ρ3.

Let G be the subgroup of Mod(Ng,n) generated by σ, τ,W, I, J,K, ρ1, ρ2, ρ3, ρ4
and ρ5.
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Figure 57. Diffeomorphism Φ

Proof of Theorem 1.5 for genus g = 2r + 2. We see that G contains PMod(Ng,n)
since all Korkmaz’s generators for PMod(Ng,n) are in G by Lemma 4.10, 4.11
and 4.12.

When we consider the actions of σ, τ and W on the punctures, we can see that

π(σ) = (1, n)(2, n− 1) . . . (l, l + 1),

π(τ) = (2, n)(3, n− 1) . . . (l, l + 2)(1)(l + 1),

π(W ) = (2, n− 1)(3, n− 2) . . . (l, l + 1)(1)(n).

By the following lemma, the restriction π |G: G→ Symn is a surjection. Hence,
we can see that G = Mod(Ng,n) by Lemma 4.1. !
Lemma 4.13. The group Symn is generated by folllowing elements,

r1 = (1, n)(2, n− 1) . . . (l, l + 1),

r2 = (2, n)(3, n− 1) . . . (l, l + 2)(1)(l + 1),

r3 = (2, n− 1)(3, n− 2) . . . (l, l + 1)(1)(n).

5. Concluding Remarks

Sezpietowski showed that Mod(Ng,0) is generated by four involutions, but the
number of involution generators in Theorem 1.5 is more than Sezpietowski’s one.
Then we can consider following problem:
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Problem 5.1. For g ≥ 4 and n ≥ 1, can the mapping class group Mod(Ng,n) be
generated by 4 involutions?

The Coxter group C is defined as a group with the presentation

⟨x1, x2, . . . , xn | (xixj)
mij=1⟩

where mii = 1, mij ≥ 2 for i ̸= j and mij means no relation between xi and xj .
Let Cn be the coxter group with following presentation

⟨x1, x2, . . . , xn | (xi)
2 = 1(i = 1, 2, . . . , n)⟩.

By theorem 1.1, we have the following epimorphisms:

Π : C8 → Mod(Ng,n) if g ≥ 13 and g is odd, and

Π : C11 → Mod(Ng,n) if g ≥ 14 and g is even.

Corollary 5.2. For an odd g ≥ 13, Mod(Ng,n) can be realized as a quotient of a
Coxter group on 8 generators.
For an even g ≥ 14, Mod(Ng,n) can be realized as a quotient of a Coxter group on
11 generators.

A presentation of Mod(Ng,n) which consists of involutions as generators are isn’t
known. If kerΠ is finite (normally) generated, we have such a presentation.

Problem 5.3. For g ≥ 13 and n ≥ 1, can the kernel kerΠ be finite generated?

We have the following corollary by construction of involutions in theorem 1.5:

Corollary 5.4. Let c be a two-sided simple closed curve. The Dehn twist tc, a
Y-homeomorphism, and a puncture slide are products of two involutions.

We have the following question.

Problem 5.5. Whether there is a number C such that f can be written as a product
of at most C involutions for any f in Mod(Ng,n)?
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