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GENERATING MAPPING CLASS GROUPS OF SURFACES BY
TORSION ELEMENTS

KAZUYA YOSHIHARA

ABSTRACT. Let X4, (resp. Ngn) denote the closed orientable (resp. non-
orientable) surface of genus g with n punctures and let Mod(Xy,n) (resp.
Mod(Ng,n)) denote the mapping class group of X4, (resp. Ng.n).

In this thesis, we consider finite generating sets for the mapping class groups
Mod(Xg,n) and Mod(Ng,») which consist of elements of finite order.

In the orientable case, Lanier proved that Mod(Xg,0) is generated by three
elements of order k for k > 6 and g > (k—1)2+1. For k > 8 or k = 6 and non-
negative integers a and b, he also showed that Mod(24,0) is generated by three
(resp. four) elements of order k if g = ak+b(k —1) (resp. g = ak+1 (a > 1)).
In this thesis, we construct a new finite generating set for Mod(Xy 0) which
consits only of elements of order six. When we restict Lanier’s theorem to
k = 6, we improve his theorem for g = 7,8,9,13,14, and 19.

In the non-orientable case, Szepietowski showed that Mod(Ng,») is gener-
ated by finitely many involutions. The number of elements in his generating
set depends linearly on g and n. In the case of n = 0, Szepietowski found an
involution generating set in such a way that the number of its elements does
not depend on g, showing that Mod(Ny,0) is generated by four involutions. As
our second main theorem of this thesis, for n > 0, we prove that Mod(Ng,»)
is generated by eight involutions if g > 13 is odd and by eleven involutions if
g > 14 is even.

1. INTRODUCTION

For n > 0, let ¥, , (resp. N, ,) denote the closed connected orientable (resp.
non-orientable) surface of genus g with arbitrarily chosen n distinct points which we
call punctures. The mapping class group Mod (2, ) (resp. Mod(Ny ,,)) is the group
of isotopy classes of orientation preserving diffeomorphisms (resp. diffeomorphisms)
of X, (resp. N, ,) which preserve the set of punctures. Denote by PMod(%, )
(resp. PMod(N, ,,)) the subgroup of Mod(X, ,,) (resp. Mod(N, ,,)) consisting of the
isotopy classes of diffeomorphisms which fix each puncture.

In the orientable case, Dehn [De| and Lickorish [Lil] first proved that Mod (X o)
is generated by Dehn twists. Lickorish [Li2] showed that certain 3¢ — 1 Dehn
twists generate Mod(X, ) for g > 1. This number was improved to be 2g + 1 by
Humphries [Hu] for g > 3. Moreover, Humphries showed that Mod (X, ) cannot
be generated by 2¢ (or less) Dehn twists for any g > 2. Johnson [J] proved that
2g + 1 Dehn twists also generate Mod(X,,1). If we allow generators other than
Dehn twists, then we can obtain smaller generating sets for Mod(X, ). Lu [Lu]
found a generating set of Mod(3,,0) which consists of three elements, where two
of the generators are of finite order. For n = 0,1, Wajnryb showed that the group
Mod(%,,,) is generated by two elements, one of which has finite order [W2].

It has been extensively studied the problem of finding smaller sets of generators
and torsion generators for finite groups and mapping class groups. The study of
1
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finding torsion generating sets for Mod(X, ,,) was started by Maclachlan [Ma]. He
proved that Mod(X, ) is generated by torsion elements and used this result to
show that the moduli space of Riemann surfaces of genus ¢ is simply connected
as a topology space. Patterson [P] showed that Mod(X, ) is generated by torsion
elements for g > 3 and n > 1. Korkmaz [Ko2] showed that Mod(3, ,,) is generated
by two elements of order 4g+2 for g > 3 and n = 0, 1. McCarthy and Papadopoulos
[MP] proved that Mod(X, ) is generated by infinitely many conjugates of a certain
involution. Luo [Luo] showed that Mod(X, ) is generated by 12g + 1 involutions
for g > 3,n < 1. In his paper, Luo asked the following question: Is there a unversal
upper bound which is independent of g and n for the number of torsion elements
necessary to generate Mod (3, ,,)? Brendle and Farb [BF] gave a positive answer
to Luo’s question for n = 0,1. They found a generating set for Mod(X, ) which
consists of six involutions. Moreover, they showed that Mod(%, ) can be realized
as a quotient of a Coxeter group on six generators. For every n > 0, Kassabov [Ka]
proved that Mod(X, ) is generated by four (resp. five or six) involutions if g > 8
(resp. if g > 6 or if g > 4). Monden [Mol] proved that Mod(%, ,,) is generated by
four (resp. five) involutions if g > 7 (resp. if g > 5). He also showed the following
theorem ([Mo2]).

Theorem 1.1 (Monden, 2011). For g > 3, Mod(X, ) is generated by three ele-
ments of order three and by four elements of order four.

Recently, Lanier showed the following theorems ([La]).

Theorem 1.2 (Lanier, 2018). For k > 6 and g > (k— 1) + 1, Mod(X,,0) is gen-
erated by three elements of order k. Also, Mod(2,,0) is generated by four elements
of order 5 when g > 8.

Theorem 1.3 (Lanier, 2018). (1) Let k > 5 and let g > 0 be of the form ak+b(k—1)
with non-negative integer a and b or of the form ak + 1 with integer a > 0. Then
Mod(Xg,0) is generated by four elements of order k. (2) Let k > 8 or k = 6 and
let g > 0 be of the form ak + b(k — 1) with non-negative integer a and b. Then
Mod(X2,,0) is generated by three elements of order k. If instead k = 7 and g is of
the form 7+ 7a+6b with integer a,b > 0, then three elements of order 7 also suffice.

In this paper, we first construct a generating set of Mod(X, o) which consists of
elements of order six. For g = 7,8,9,13, 14, and 19, our generating set improves
Lanier’s theorem if £ = 6.

Theorem 1.4. (1) For g > 7, Mod(X, ) is generated by three elements of order
siz. (2) For g =>5,6, Mod(X,,0) is generated by four elements of order siz.

The idea of proof is as follows: By using lantern relation, we write one of ele-
ments of Humphries’s generator set as a product of elements of order six. And, we
construct mapping classes of order six which map the simple closed curves corre-
sponding to above element to simple closed curves corresponding another generator.
Although the basic idea is similar to the cases of order two, three, and four, the
consutructions for mapping classes of order six are more complicated. The pre-
sentations of Mod(X,) are given by Wajnryb ([W1]). But a presentations of this
groups with only torsion generators are not known except Korkmaz’s one. Since
the generators in Korkmaz’s presentation depend on g, it is not known such a pre-
sentation that generators are independent of g. Using Theorem 1.4 to Wajnryb’s
presentation, we expect to get such a presentaion.
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In the non-orientable case, Lickorish [Li3] first proved that Mod(N, ) is gen-
erated by Dehn twists and Y-homeomorphisms. Chillingworth [C] found a finite
set of generators of this group. Korkmaz [Kol] found finite generating sets for the
groups Mod(Ny ,,) and PMod(N, ,,). The number of Chillingworth’s generators is
improved to g + 1 by Szepietowski [S2]. Hirose [Hi] proved that his generating set
is the minimal generating set by Dehn twists and Y-homemorphisms. Szepietowski
[S1] proved that Mod(Ny ) is generated by involutions. The cardinality of his
generating set of involutions depends linearly on g and n. We can consider Luo’s
problem for Mod(Ny,,): Is there a unversal upper bound which is independent of g
and n for the number of torsion elements necessary to generate Mod(Ny )7 In the
case n = 0, Szepietowski gave a positive answer and found four involutions which
generate Mod(Ny o) for g > 4 [S3]. But, in the case n # 0, it is not known. We will
gave a positive answer for this problem.

Theorem 1.5. Let n be a non-negative integer. Then, for g odd with g > 13,
Mod(Ny,») is generated by eight involutions. For g even with g > 14, Mod(Ny.»,)
is generated by eleven involutions.

The idea of proof is as follows: First, we consider Korkmaz’s generating set
for PMod(XV,,,) which consists of Dehn twists, Y-homeomorphism, and puncture
slides. We write one of Dehn twists, one of puncture slides, and Y-homeomorphism
as products of involutions which are allowed permutation of punctures. Next, we
construct involutions to map simple closed curves corresponding to above Dehn
twist and puncture slide to simple closed curves corresponding other Dehn twist
and other puncture slide in Korkmaz’s generating set, respectively. Then, a sub-
group G generated by these involutions includes PMod(Ny ). There is a surjection
from Mod(Ny,,) to a symmetric group on n letters by an action of Mod(N, ) on
n puctures. We note that we construct involutions as in which a restriction this
surjection to G is also surjection onto the symmetric group. It is well known that
the abelianization of Mod(Ny,,) is isomorphic to Zo @ Zs @ Zs for g > 7. By
Theorem 1.5, a minimal number of involutions which need to generate Mod(Ny )
is three or more and eight (resp. eleven) or less if g is odd (resp. even). Presen-
tations of Mod(Ny ) are given by Szepietowski, Omori, Paris-Szepietowski, and
Stukow ([S4],[O],[PS],[St2]). But a presentations of Mod(N,,) with only torsion
generators are not known. Theorem 1.5 is one of the approaches for obtaining such
presentations. As a Corollary of Theorem 1.5, there is a surjection from the Coxeter
group with 8 or 11 generators onto Mod(N,) for g > 13, n > 0. If this kernel
is finitely generated, we can get a presentation of Mod(N,,,,) with generating set
which only consist of involutions. As a Corollary of Theorem 1.5, a Dehn twist
along a non-separating simple closed curve, a Y-homeomorphism, and a puncture
slide are products of two involutions. Generally, we have the question of whether
there is a number C such that every element in Mod(Ny,,) can be written as a
product of at most C' involutions. But this is not known.

The paper is organized as follows. In Section 2 we recall the properties of Dehn
twists, Y-homeomorphisms and puncture slides. In Section 3 in order to prove the
Theorem 1.4, we construct elements of order six and show a single Dehn twist is
written as a product of elements of order six. In Section 4 we construct involutions
of Mod(N, ) and prove the theorem 1.5. Finally, in Section 5, We note that
Theorem 1.5 implies that Mod(Ny ,,) is the quotient of 8 or 11 generator Coxeter
groups. And we consider some problems for Theorem 1.5.



4 KAZUYA YOSHIHARA

2. PRELIMINARIES

2.1. Orientable surfaces.

Let ¥, ,, denote a closed oriented surface of genus g with n punctures. The set of
orientation preserving diffeomorphisms of 3, ,, which preserve the set of punctures
obviously forms a group, which we denote by Diff (%, ,,). Let Diff§ (2,.,) be the
subset consisting of all elements of Diff " (3, ,) that are isotopic to the identity,
where the isotopies fix punctures. It is immediately seen that Diffg(Zg’n) is a
normal subgroup of DiﬁH(Eg’n). The mapping class group of 3, ,,, denoted by
Mod(%,.,), is the quotient group Diff " (3, ,,)/Diff§ (X,.,). Usually we identify a
diffeomorphism with its isotopy class. We assign the orientation of ¥, ,, as in Fig. 1.
For a simple closed curve a on ¥ ,, the right handed Dehn twist t, along a is the
isotopy class of the diffeomorphism obtained by cutting X, ,, along a, twisting one
of the sides by 27 to the right and gluing the two sides of a back to each other (see
Fig. 1). We recall the following lemmas and theorems. These are well known (see
[FM]).

FI1GURE 1. Dehn twist along a simple closed curve a

Lemma 2.1. Let a be a simple closed curve on X4, and let f be any element in
Mod(%2,,,). Then we have

ftaf ™" =ti(a)-
Lemma 2.2. Let a and b be simple closed curves on X, .
(1) If a is disjoint from b, then we have
taly = tptq.-
(2) If a and b intersect transversely at one point, then we have
tatotq = tptalty.

Lemma 2.3 (lantern relation). Let S be a four-holed sphere and x1, x2, T3, y1,
Y2, Y3 and y4 be simple closed curves in S as shown in Fig. 2. Then we have

oy tastoy =y tystysty, -

Lantern relation was discovered by Dehn, and later by Johnson. We say that an
ordered set c1,ca, ..., c, of simple closed curves on X, forms an n-chain if ¢; and
¢;+1 intersect transversely at one point for i = 1,2,...,n—1 and ¢; is disjoint from
e if [i—j|>2.

Lemma 2.4 (chain relation). Let ¢1,¢a,..., ¢, be an n-chain. For n odd, we have
(tertes - te,)" Tt =ta ta,,

and for n even, we have
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FIGURE 2. Simple closed curves 1, x2, T3, Y1, Y2, y3 and y4 on
four-holed sphere

where dy and do (resp. d) are the boundary components of the reqular neighbor-
hood of this n-chain if n is odd (resp. even).

Fori=1,2,...,gand j = 1,2,...,9 — 1, a;, b; and ¢; are simple closed curves
on X4 as in Fig. 3.

Lickorish proved the following theorem.

Theorem 2.5. For g > 3, Mod(X, ) is generated by 3g — 1 Dehn twists tq,, ta,,
v tays by tras o bry s Toys gy ey -

Humphries reduced Lickorish’s system of generators for Mod(X,,0) as follows.

Theorem 2.6. For g > 3, Mod(X,,0) is generated by 2g + 1 Dehn twists tq,, ta,,
bras tras ooos oy s toys s <o -

We call the curves ay,az,71,72,...,79-1,b1,b2,...,by Humphries’s curves.

FIGURE 3. Simple closed curves aq,...,aq, b1,...,by, and cy,...,cq9—1

2.2. Non-orientable surfaces.

Let Ny, be the closed non-orientable surface of genus g with n punctures and
let A be the set of punctures of Ny ,. We represent the surface Ny ,, as a connected
sum of an orientable surface and one or two projective planes (one for g odd and
two for g even). In Figs. 4 and 5, each encircled cross mark represents a crosscap:
the interior of the encircled disk is to be removed and each pair of antipodal points
on the boundary are to be identified.
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FIGURE 5. Surface N, for g = 2r 4+ 2 and its simple closed curves

The set of all diffeomorphisms of N, ,, which preserve the set of punctures obvi-
ously forms a group, which we denote by Diff (N, ,,). Let Diffq(Ny ) be the subset
consisting of all elements of Diff(N, ) that are isotopic to the identity, where
the isotopies fix A. It is immediately seen that Diffo(Ny,,) is a normal subgroup
of Diff (N ,). The mapping class group of N ,, denoted by Mod(N,,), is the
quotient group Diff(Ny ,,)/Diffo(Ny n). We denote by PMod(N, ;) the subgroup
of Mod(Ny ) consisting of the isotopy classes of diffeomorphisms which fix each
puncture. Let Sym,, be a symmetric group on n letters. Clearly we have the exact
sequence

1 — PMod(Ny ) — Mod(N,,,,) = Sym,, — 1,

where the last projection is given by the restriction of homeomorphism to its action
on the puncture points. Let ¢ be a simple closed curve on Ny ,. If the regular
neighborhood of ¢, denoted by N, is an annulus (resp. a Mdbius band), we call ¢
two-sided (resp. one-sided) simple closed curve. Let a be a two-sided simple closed
curve on Ny ,,. By the definition, the regular neighborhood of a is an annulus, and
it has two possible orientation. Now, we fix one of its two possible orientations.
For two sided simple closed curve a, we can also define the Dehn twist ¢,.

It is well known that Mod(Ny ) is not generated by Dehn twists. We need an-
other class of diffeomorphisms, called Y-homeomorphism, to generate Mod (N, ).
A Y-homeomorphism is defined as follow. For a one-sided simple closed curve m
and a two-sided oriented simple closed curve a which intersects m transversely
in one point, the regular neighborhood K of m U a is homomeomorphic to the
Klein bottle with one hole. Let M be the regular neighborhood of m. Then the
Y-homeomorphism Yy, , is the isotopy class of the diffeomorphism obtained by
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pushing M once along a keeping the boundary of K fixed (see Fig. 6).

m va,a r
>

FIGURE 6. Y-homeomorphism on K

Furthermore, to generate the groups Mod(Ny ) and PMod(Ny ) we need a
puncture slide. A puncuter slide is defined as follow. Let M denote a M&bius band
with a puncture x embedded in N, ,. For a one-sided simple closed curve o based
at x on M, we push the puncture x once along « keeping the boundary of M fixed.
Then a puncture slide on M is described as the result.

x > UQ @

FIGURE 7. Puncture slide on M

These diffeomorphisms have the following properties.

Lemma 2.7. For any diffeomorphism f of the surface Ny, and a two-sided simple
closed curve a, we have

-1
t;(a) = ftaf ",
where if f |n, is an orientation preserving diffeomorphism (resp. orientation re-
versing diffeomorphism), then e =1 (resp. e = —1).

Lemma 2.8. For a one-sided simple closed curve m and a two-sided simple closed
curve a, we have the following.

(1) Ym_17a = Ym,a'

(2) Ym,a*1 = Y’V‘;,%l'

(3) For any element f in Mod(Ny.,,), we have fY of 1 = Yi(m) f(a)-

Lemma 2.9. Let v be a puncture slide of x along a one-sided simple closed curve
a.
For any element f in Mod(Ny,,), fof~! is the puncture slide of f(z) along f().
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3. PROOF OF THEOREM 1.4

In this section, we prove that Mod(X,,) is generated by elements of order six.
Let m be a positive integer.

3.1. Construction of elements of order six.

We construct two elements of order six.

3.1.1. Case of g = 5m for some integer m > 2.

We construct an element f; in Mod(3, ) which has order six as follows. We
cut the surface ¥, along the curves as, ci1, c2, €1, ¢4, C5, a5i—3, C5i—3, C5i—2,
Chi—1, C5iy U541 (1 =2,3,...,m — 1) as shown in Fig. 8 and obtain m — 1 surfaces
Li1, L1, ..., L1,m-1. The surface L ; is a surface of genus 4 with 6m boundary
components, L ; is a sphere with 6 boundary components bounded by as;—3, ¢5;—3,
C5i-2, C5i—1, Cs5i and asiy1 (i = 2,3,...,m —1). Let L} ; be a subsurface of genus
4in Ly bounded by d,_1. Let fi1, fi,2, ..., fi,m—1 be the m/3 rotation as shown
in Fig. 9. Note that in this picture 6,4 is on the back side and the map f; ; keeps
the subsurface L} ; fixed. We found that (f1,1)°® produces a twsit £5,_,. In order
to cancel the twist ts5,_,, we define f{’l as a composition of f;; and f;,, which
defined as follow.

from = (ta,_sto, ste, sto, otar )" (ta, ilo, le, 1tb,ta,)-
Since the diffeomorphisms f{yl, fi,2, - -+ f1,m—1 coincide on the boundaries, they
define a diffeomorphism f; : ¥4 0 — 24,0 of order six.

We construct an element hq in Mod(X,,) of order six. We cut the surface ¥,
along the curves ai, az, Co, C3, €2, €3, A5;—5, C5;—5, C5;—4, C5;—3, C5;—2, A5;—1 (Z ==
2,3,...,m) as shown in Fig. 10 and obtain m + 1 surfaces My 1, M1 2, ..., M1 m+1-
The surface M, is a surface with 6m boundary components, M, ; is a sphere with
6 boundary components bounded by as;—5, ¢s5i—5, Csi—4, C5i—3, C5i—2, A5i—1 (I =
2,3,...,m) and M 41 is a sphere with 6 boundary components bounded by aq,
ag, C2, 3, €2, €3. Let hy 1, hia, ..., h1my1 be m/3 rotation as shown in Fig. 11.

Since the diffeomorphisms i1 1, k12, ..., h1,m+1 coincide on the boundaries, they
define a diffeomorphism hy : ¥, 0 — X4 0 of order six.

The diffeomorphism f; acts on the curves on X, ¢ as follows:
(f1)°(az) = (f1)*(es) = (f1)*(c1) = (f1)*(ea) = (f1)(e2) = €1,
(f1)*(asi-3) = (f1)*(esi-3) = (f1)*(csi2) = (f1)*(csi-1) = (f1)(c5i) = @5it1,
(F1)*(bsi=3) = (f1)*(bsi—2) = (f1)*(bsi—1) = (f1)(bsi) = bsit1 (i =2,3,. -1),
(f1) (ag-1) = (f1)*(bg-1) = (1)*(cg-1) = (f1)(by) = ay.

The diffeomorphism h; acts on the curves on 3, o as follows:
(h1)*(a1) = (h1)*(c3) = (h)(e2) = az,
(h1)*(b1) = (h1)*(bg) = (h1)?(ba) = (h1)(b3) = b,
(h1)5(a51 5) = (h1)*(csi—s) = (h1)®(csima) = (h1)?(c5i—3) = (h1)(csi—2) = asi—1,
(h1)™( = (h1)*(bsi—a) = (h1)*(bsi—3) = (h1)(bsi—2) = bsi—1 (i = 2,3,...,m).
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F1cURE 8. Cutting the surface I
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FIGURE 11. Zg-symmetry of 3, o II



GENERATING MAPPING CLASS GROUPS OF SURFACES 13

3.1.2. Case of g =5m + 1 for some integer m > 2.

We construct an element f? in Mod(X,,) which has order six as follows. We
cut the surface ¥, o along the curves as, c1, c2, €1, €4, C5, U5;—3, C5i—3, C5i—2, C5i—1,
Csiy G541 (¢ = 2,3,...,m) as shown in Fig. 12 and obtain m surfaces Ly 1, Lo,
...y La m. The surface Ly ; is a surface with 6m 46 boundary components, Lj ; is a
sphere with 6 boundary components bounded by as;_3, ¢5,—3, ¢5i—2, C5i—1, ¢5; and
asi+1 (1 =2,3,...,m). Let fo1, foo, ..., fo.m be /3 rotation as shown in Fig. 13.

Since the diffeomorphisms f21, f2,2, ..., f2,m coincide on the boundaries, they
define a diffeomorphism f5 : ¥4 — 4,0 of order six.

We construct an element hy in Mod(X, ) of order six. We cut the surface X, o
along the curves a1, az, ca, c3, €4, €5, G5i—5, C5i—5, C5i—4, C5i—3, C5i—2, U5i—1 (I =
2,3,...,m) as shown in Fig. 14 and obtain m + 1 surfaces Ma 1, M2, ..., M2 mt1.
The surface My ; is a torus with 6m boundary components, Ms ; is a sphere with
6 boundary components bounded by as;—5, ¢5i—5, Cs5i—4, C5i—3, C5i—2, Asi—1 (i =
2,3,...,m), My i1 is a sphere with 6 boundary components bounded by a1, as,
Ca, C3, €4, €5. Let Mé,l be a subsurface of genus 1 in the surface Ms; bounded by
0g—1. Let ho 1, hayg, ..., ho m be m/3 rotation as shown in Fig. 15. Note that in this
picture d,_1 is on the back side and the map ho 1 keeps Mé,l fixed. We found that
(h2,1)% produces a twist ts,_,- In order to cancel the twist ¢5,_,, we define hj ; as
a composition of hy 1 and hg 42 which defined as follow.

h2,m+2 = (tagtbg)71 .

Since the diffeomorphisms hlz,p h22, ..., ha ., coincide on the boundaries, they
define a diffeomorphism hy : X4 9 — X4 0 of order six.

For i =2,3,...,m, f2 acts on the curves on ¥, ¢ as follows:

(f2)°(as) = (f2)*(es) = (f2)*(c1) = (f2)*(ca) = (fo)(c2) = €1,

(f2)°(asi—3) = (f2)*(csi—3) = (f2)*(csi—2) = (f2)*(csi—1) = (f2)(c5:) = asi+1,
(f2)*(bsi—3) = (f2)* (bsi—2) = (f2)*(bsi—1) = (f2)(bsi) = bsit1-

)
ha)*(b1) = (h2)®(bg—1) = (h2)?(bs) = (h2)(bs) = ba,
)°( )3 (csia) = (h2)?(csi—3) = (h2)(csi—2) = asi-1,
ha)*(bsi—s5) = (ha)?(bsi—a) = (h2)?(bsi—3) = (h2)(bsi—2) = bsi—1
)
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FIGURE 12.

Cutting the surface 111
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FIGURE 15. Zg-symmetry of 340,
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3.1.3. Case of g = 5m + 2 for some integer m > 1.

We construct an element f3 in Mod(X,,9) which has order six as follows. We
cut the surface ¥, o along the curves as, c1, c2, €1, €4, C5, A5i—3, C5i—3, C5i—2, C5i—1,
Csiy asi1 (i = 2,3,...,m) as shown in Fig. 16 and obtain m surfaces L3, L3,

., L3 . The surface L3 is a torus with 6m + 6 boundary components, Ls; is a
sphere with 6 boundary components bounded by as;_3, ¢5,—3, ¢5i—2, C5i—1, ¢5; and
asiv1 (1 = 2,3,...,m). Let L{m be a subsurface of genus 1 in L3 ; bounded by
0g—1. Let f31, f32, ..., f3.m be 7/3 rotation as shown in Fig. 17. Note that in this
picture d,_; is on the back side and the map f3; keeps L3 fixed. We found that
(f3.1)° produces a twist ts,_,- In order to cancel the twist ts,_,, we define f3, as
a composition of f3 ;1 and f3 41 which defined as follow.

f3,m+1 = (tagtbg )_1

Since the diffeomorphisms féyl, f3,2, -.+, f3,m coincide on the boundaries, they
define a diffeomorphism f3 : ¥, — 240 of order six.

We construct an element hz in Mod(X,,0) of order six as follows. We cut the
surface X, ¢ along the curves a1, az, c2, c3, €6, €7, G5i—5, C5i—5, C5i—4, C5i—3, C5i—2,
asi—1 (1 =2,3,...,m) as shown in Fig. 18 and obtain m + 1 surfaces M3 1, M3 o,

.y M3 m4+1. The surface M3, is a surface of genus 2 with 6m boundary com-
ponents, Ms; is a sphere with 6 boundary components bounded by as;_s, c5i—s,

Csi—4, C5i—3, Csi—2, Gsi—1 (1 = 2,3,...,m), M3 41 is a sphere with 6 boundary
components bounded by aq, as, co, c3, €4, €7. Let Mé’l be a subsurface of genus 2
in M3 bounded by 4—2. Let h3 1, h3o, ..., h3my1 be /3 rotation as shown in

Fig. 19. Note that in this picture d,_» is on the back side and the map hs3 1 keeps
Mg, fixed. We found that (h3,1)® produces a twist ts, ,- In order to cancel the
twist ts,_,, we define hgy1 as a composition of hz; and hg ;42 which defined as
follow.

hgmt2 = (ta,_yto, 1te, ito,ta,) "

Since the diffeomorphisms h§71, ha g, ..., hg my1 coincide on the boundaries, they
define a diffeomorphism hs3 : ¥4 0 — 240 of order six.

For ¢ =2,3,...,m, f3 acts on the curves on X, ¢ as follows:
(f3)°(az) = (f3)*(cs5) = (f3)*(c1) = (f3)*(ca) = (f3)(c2) = eu,
(f3)*(asi—3) = (f3)*(csi-3) = (f3)*(csi-2) = (f3)*(csi-1) = (f3)(c51) = asit1,
(f3)" (bsi—3) = (f3)* (bsi—2) = (f)*(bsi—1) = (f3)(bsi) = bsi1-
For i =2,3,...,m, hz acts on the curves on ¥, ¢ as follows:
(hs)*(ar) = (hs)(c3) = az,
( 2) = (h )2(b4) (hs)(b3) =
*(csi-a) = (h3) (052‘7 ) = (h3)(csi—2) = asi—1,
) (bsi— 4) (h3 2(b51 3) = (h3)(bsi—2) = bsi—1,
)

:a
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F1GURE 16. Cutting the surface V
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FIGURE 17. Zg-symmetry of 3,0,V
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4.0, VI

FIGURE 19. Zg-symmetry of ¥
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3.1.4. Case of g = 5m + 3 for some integer m > 1.

We construct an element f; in Mod(X,0) which has order six as follows. We
cut the surface ¥, o along the curves as, c1, c2, €1, €4, C5, U5;—3, C5i—3, C5i—2, C5i—1,
Csiy G541 (1 = 2,3,...,m) as shown in Fig. 20 and obtain m surfaces L4 1, L4,

.y Lam. The surface Ly ; is a surface of genus 2 with 6m+6 boundary components,
Ly, is a sphere with 6 boundary components bounded by as;—_3, ¢5i—3, Csi—2, C5i—1,
¢y and asi1 (1=2,3,...,m). Let Lﬁu be a subsurface of genus 2 in L4 ; bounded
by dg—2. Let fa1, fa2, ..., fa,m be m/3 rotation as shown in Fig. 21. Note that in
this picture d,_» is on the back side and the map fy 1 keeps L} ; fixed. We found
that (f4,1)® produces a twist t5,_,. In order to cancel the twist ¢5,_,, we define fj
as a composition of fi1 and fi ;41 which defined as follow.

famer = (ta, ito, ote, ito,ta,) "

Since the diffeomorphisms fil, fa,2, -+, fam coincide on the boundaries, they
define a diffeomorphism f4 : ¥4 0 — 24,0 of order six.

We construct an element hy in Mod(X,,0) of order six as follows. We cut the
surface Zg,o along the curves ay, az, c2, c3, €8, €9, A5i—5, C5i—5, C5i—4, C5i—3, C5i—2;
asi—1 (1 =2,3,...,m) as shown in Fig. 22 and obtain m + 1 surfaces My 1, My,

.My m41. The surface My is a surface of genus 3 with 6m boundary com-
ponents, My ; is a sphere with 6 boundary components bounded by as;—5, csi—s,

Coi—ds C5i—3, Coi—2, G5i—1 (1 = 2,3,...,m), My 41 is a sphere with 6 boundary
components bounded by ai, as, ca2, c3, €, €9. Let Mi,1 be a subsurface of genus
3 in My, bounded by d,_3. Let ha, hag, ..., hams1 be m/3 rotation as shown

in Fig. 23. Note that in this picture d,_3 is on the back side and the map h4;
keeps M} ; fixed. We found that (h4,1)® produces a twist ¢5, ,. In order to cancel
the twist t5,_,, we define hﬁl’l as a compostion of hy 1 and hy 42 which defined as
follow.

ham2 = (ta972tb972tcg72tbg—lta;71 )_1 (tag to, )-

Since the diffeomorphisms hﬁm, ha2, ..., ham41 coincide on the boundaries, they
define a diffeomorphism h4 : ¥4 0 — 340 of order six.

For ¢ =2,3,...,m, f1 acts on the curves on ¥, ¢ as follows:

*(az) = (f0)(es) = (fa)*(e1) = (fa)*(ca) = (fa)(c2) = en,

P(asi—3) = (f1)*(csi=s) = (fa)*(csi—2) = (f1)*(csi—1) = (f4)(c5:) = asit1,
)
)

(f
Ybsi—3) = (f1)*(bsi—2) = (f2)*(bsi—1) = (f1)(bs:;) = i1,
(f) 72 (bg—1) = (f4) "*(cg—1) = (f2) "' (bg) = a4

For i =2,3,...,m, hy acts on the curves on X, ¢ as follows:

ha)t(b1) = (ha)®(bg—3) = (ha)?(bs) = (ha)(b3) = bo,

®(asi—s) = (ha)*(csi—s) = (ha)*(csi—a) = (h4)2(05z 3) = (ha)(csi—2) = asi—1,
= (ha)®(bsi—a) = (ha)*(bsi—3) = (ha)(bsi—2) = bsi1,

hy4 72(bg—2) = (ha)” 1(09—2) =bg1,(ha)” (bg) = Qg-.
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FiGURE 20. Cutting the surface VII
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FIGURE 21. Zg-symmetry of ¥4 o,VII
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FiGUurg 22. Cutting the surface VIII
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FIGURE 23. Zg-symmetry of 3, o, VIII
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3.1.5. Case of g = 5m + 4 for some integer m > 1.

We construct an element f5 in Mod(X, ) which has order six as follows. For
i=2,3,...,m, we cut the surface ¥, o along the curves as, c1, ¢, €1, c4, 5, a5;—3,
C5i—3, C5i—2, C5i—1, Cs4, G5i+1 as shown in Fig. 24 and obtain m surfaces Ls 1, Ls 2,

., Ls.m. The surface L5 ; is a surface of genus 3 with 6m+6 boundary components,
L5 ; is a sphere with 6 boundary components bounded by as;—3, ¢5i—3, Csi—2, C5i—1,
Csi, O5i41. Let Lg’l be a subsurface of genus 3 in Ls; bounded by d4_3. Let f5 1,
f5.2, -+ f5.m be m/3 rotation as shown in Fig. 25. Note that in this picture d,_3 is
on the back side and the map f5 1 keeps Lf ; fixed. We found that ( f5.1)% produces
a twist ¢s5, 5. In order to cancel the twist ¢; we define f;; as a composition of
fs51 and f5 41 which defined as follow.

fomt1 = (tay aty, ote, ato, itar )7 (ta,ty,)-

g—37

Since the diffeomorphisms f3 ;, f52, ..., f5,m coincide on the boundaries, they
define a diffeomorphism f5 : X ¢ — 24,0 of order six.

We construct an element hs in Mod(X,) of order six as follows. For i =

2,3,...,m, we cut the surface X, along the curves a1, as, c2, c3, €10, €11, a5i—s,
C5i—5, Csi—4, C5i—3, C5i—2, A5,—1 as shown in Fig. 26 and obtain m + 1 surfaces Ms 1,
Mso, ..., M5 mi1. The surface My ; is a surface of genus 4 with 6m boundary

components, Ms; is a sphere with 6 boundary components bounded by as;_s,
C5i—5, C5i—4, C5i—3, C5i—2, @5i—1, M5 m+1 is a sphere with 6 boundary components
bounded by a1, as, c2, c3, €10, €11. Let ng1 be a subsurface of genus 4 in Ms ;
bounded by d4—4. Let hs 1, hs2, ..., hsm+1 be m/3 rotation as shown in Fig. 27.
Note that in this picture d,4 is on the back side and the map hs 1 keeps Mg ; fixed.
We found that (hs1)® produces a twist t5,_,- In order to cancel the twist s
define th as a composition of hs; and hs 42 which defined as follow.

hsm+2 = (ta,_sth, ste, sto, star )" (ta, it ite, ilv,la,)-

yas WE

Since the diffeomorphisms h’571, hs.2, ..., hs.m+1 coincide on the boundaries, they
define a diffeomorphism hs : ¥4 9 — 240 of order six.

For ¢ =2,3,...,m, f5 acts on the curves on ¥, ¢ as follows:

(f5)°(az) = (f5)*(cs5) = (fs)*(c1) = (f5)*(ca) = (f5)(c2) = ex,

(f5)°(asi—3) = (f5)*(csi-3) = (fs)*(csi-2) = (f5)*(cs5i-1) = (fs)(c5i) = asit1,

(f5)*(bsi—3) = (f5)* (bsi—2) = (f5)*(bsi—1) = (f5)(bsi) = bsit1,

(f5) "2 (bg—2) = (f5) " (cg—2) = bg—1, (f5) ' (by) = ag.

For ¢ =2,3,...,m, hs acts on the curves on ¥, o as follows:

hs)®(a1) = (hs)?(c3) = hs(ca) = as,

) = (h5)*(ba) = (hs)(b3) = ba,

hs)°(asi—s) = (h5)4(Csz 5) = (h5)*(csi—a) = (hs)*(csi—3) = (hs)(csi—2) = asi—1,
( —4) = (h5)*(bsi—3) = (hs)(bsi—2) = bsi—1,

5)
)
)
5)"
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F1GURE 24. Cutting the surface IX
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FIGURE 25. Zg-symmetry of 3, o,IX
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F1GURE 26. Cutting the surface X
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FIGURE 27. Zg-symmetry of ¥, ,X
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3.1.6. Case of g =5.

We construct an element fs in Mod(Xs5,0) which has order six as follows. We cut
the surface X5 ¢ along the curves as, as, c1, c2, ca, €1 as shown in Fig. 28 and obtain
2 six holed spheres Lg; and L ».

F1GURE 28. Simple Closed Curves on s g

Let fs1 and fs2 be /3 rotation as shown in Fig. 29. Since the diffeomorphisms
fe,1 and fs 2 coincide on the boundaries, they define a diffeomorphism fg : X509 —

® ® \
® © ®
® ® © ®

©

FIGURE 29. Zg-symmetry of X5 o,XI

We construct an element hg in Mod(2s5 o) which has order six. We cut the surface
Y50 along the curves ay, as, ¢z, 3, €4, €12 as shown in Fig. 28 and obtain two spheres
with 6 boundary components Mg 1 and Mg 2. Let hg 1 and hg 2 be 7/3 rotation as
shown in Fig. 30.

Since the diffeomorphisms hg 1 and hg o coincide on the boundaries, they define
a diffeomorphism hg : 350 — X5 of order six. In this case, for i =1,2,...,4 and
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FIGURE 30. Zg-symmetry of s o,XII

j=1,2,...,5, since there is no element which maps from a; and ¢; to b;, we need
such element. we define rg as follow:

Te = (albl)(agbgczbgaé)_l(a4b404b5a5).
By chain relation, the element rg has order six.

f6 acts on the curves on X5 ¢ as follows:

(f6)°(az) = (f6)*(cs5) = (fo)*(c1) = (f6)*(ca) = (fo)(c2) = €1,
(f6)*(bs) = ba.
he acts on the curves on s, as follows:
(h)®(a1) = (he)*(e12) = (h6)*(ca) = (h)*(c3) = (he)(c2) = as,
(he)*(b1) = (he)*(bs) = (h6)*(ba) = (he)(bs) = ba.
re acts on the curves on Y5 o as follows:
(r6)(a1) = b1,
(r6)*(a2) = (r6)*(b2) = (r6)(c2) = b,
(7"6)4(@4) = (T6)3(b4) = (7’6)2(04) = (r6)(b5) = as.

3.1.7. Case of g =6.

We construct an element f7 in Mod(X¢ o) which has order six. We cut the surface
Y6,0 along the curves as,cy,ca, ¢4, C5, €1 as shown in Fig. 31 and obtain a sphere
with 12 boundary components.

Let f71 be w/3 rotation as shown in Fig. 32 and let f; be a diffeomorphism
which is obtained from f7; by bluing each boundary.

We construct an element k7 in Mod(Xg o) which has order six. We cut the surface
Y6,0 along the curves aq, az, c2,c3, ¢4, €12 as shown in Fig. 31 and obtain a sphere
with 6 boundary components Mv 1, a torus with 6 boundary components M7 5. Let
Mé’g be a subsurface of genus 1 in M7 > bounded by Js.

Let h7 1 and h7 2 be w/3 rotation as shown in Fig. 33 . Note that in this picture d5
is on the back side and the map hr » keeps M7 , fixed. We found that (hz2)® = t5,.
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FIGURE 32. Zg-symmetry of g o,XIII

In order to cancel the twist t5,, we define h7 , as a composition of hrz and hr 3
which defined as follow.

hrs = (tagts,) "
Since the diffeomorphisms h7; and h’772 coincide on the boundaries, they define
a diffeomorphism h7 : 3¢9 — X of order six. In this case, for i =1,2,...,5 and

j=1,2,...,6, since there is no element which maps from a; and ¢; to b;, we need
such element. we define 77 as follow:

T = (alblclbga’g)(a3b303b4aﬁ1)71(a5b565b6a6).
By chain relation, the element r7 has order six.

The diffeomorphism f7 acts on the curves on 3¢ as follows:

(f7)%(as) = (f2)*(cs) = (f7)*(c1) = (f7)*(ca) = (f7)(c2) = e,
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FIGURE 33. Zg-symmetry of X o,XIV

The diffeomorphism h7 acts on the curves on Xg o as follows:
(h7)*(a1) = (hr)*(e12) = (h7)*(ea) = (h7)?(c3) = (h7)(c2) = as,
(h7)*(b1) = (h)?(bs) = (h7)?(ba) = (h7)(bs) = bo.

The diffeomorphism 77 acts on the curves on g o as follows:

(r7)*(a1) = (r7)?(b1) = (r7)(c1) = b,
(r7)*(as) = (r7)*(b3) = (r7)*(cs) = (r7)(ba) = cu,
(r7)*(as) = (r7)*(bs) = (r7)*(c5) = (r7)(bs) = as.

3.2. Generating a Dehn twist by elements of order six.

In this subsection, we use the lantern relation in order to generate the Dehn
twist by 3 elements of order 6. We embed the four-holed sphere S in ¥, ¢ as shown

in Fig. 34.
O O < Omo ........ Cg O O

FI1GURE 34. Curves x7 and xs.

By Lantern relation, we have
tal tcl tcz tag = twl th tag 5

where the curves aj,as, 1, c2,as,x1 and xo are shown in Fig. 34. By contructions
fiand h; (i =1,2,...,7), we have

(fi)*(az) = z1, (fi)*(az) = w2,

(fi)*(c2) = c1, (fi)*(c2) = as,
(hl)(CQ) = as.
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Now, we put k; as a product t., (hi)*ltc’;. We remark that k; has a six order.
We see that
tasty) = thi(eatey = hitey(hi) ™'t = hiky,

az%co

toyte) = Uit (raeen) ™ = (Fi) Mant (i)™ = (fi) haka(fi) 4,
tuatay = t(502(a0) (Lr02(en) T = (Fi)*tants, (fi) 72 = (fi)*haka(fi) 72
Hence, by the lantern relation and above equations, we have

ta, = ((fi)*hiki (F:) ™) (i) haki (fi)72) (hiks).

3.3. Generating mapping class groups by elements of order six.

Now we begin the proof of the theorem 1.4. Let G; denote the subgroup of
Mod(X4,0) generated by f;,h; and k; for i = 1,2,...,5 and let G; denote the
subgroup of Mod(X, ) generated by f;,h;,k;, and r; for j = 6,7. In previous
subsection, we can find ¢,, is in G; for t =1,2,...,7. Let a and b be simple closed

curves on X, 9. For f € G, the symbol a <5 b means that f(a) =bor f~1(a) =b.

In the case of g = 5m, f; and hy can map ay to all b; and ¢; as shown in Fig.
35. Hence, we have, for all i, ¢, and t., are in Gy. Since we have (h1)®(a1) = as,
ta, 18 in G;1. Therefore, all Humphries’s generators are in G;. As is the case with

=5m, inthe case of g =5m+1,g=5m+2, g=5m+3,g=5m+4and g =5,6
for j =2,3,...,7, f; and h; can map a; to all b; and ¢; as shown in Fig. 36, 37,
38, 39, 40 and 41 respectively. Hence, we have ,for all 7, ¢, and ¢.; are in G;. Since
we have (h;)%(a1) = ag, ta, is in G;. Therefore, all Humphries’s generators are in
G;. We prove that G; is equal to Mod(X, ) for g >7and ¢ =1,2,...,7.

(h)® ha
A1 ¢ C3 <— C24—> Q2

h I fi fi hy hy f f h hy hy hy

CL4——>Cl4—C54—C4—>CT—C8 -4 Cg-5¢—>Cyg ¢ Cy3 ¢ Cg—2

f1 fi h1 h I h
bg—10 ¢ +++ > by +— bg +— b5 ag-1
f‘I B f hi h h By By h If !

bg,g — bgfg — bg,7 — bg,f; — bg_,', — b_q,4 — bg—S — bg,Q — bg,l

h hi hy fi Ifl

by ¢ by > by > by +— Cg—1

I}Ll
by

FIGURE 35
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(}Lz)g h2 hg
A1 ¢— C3 — C2 +—> A2
le fa f2 hy Dy J2 f2 Dy hsy f2 f2
Ch 4 €L 4> C5 46— C6 &> CT &3 C8 ¢ +++ &> Cgp > Cga & Cg—3 ¢ Cg—2
15
Cg—1
fo fo ha ha Ifz
bg—10 ¢ =+ > by <—> bg <— b5 by Qg
h, h h,
21 f2 fa f2 fa ha f2 fa fa 1 2 fa I 2
bg—g > bgg ¢ by 7 by <> by_5 ¢ bgg ¢ by_3—bg2—by_1 by
ho ho Ih?
by > by <— by
FIGURE 36
(hs)*  hy g
A1 ¢— €3 < C2 <— Q2
st f3 f3 f3 f3 f3 hs hs hs f3 f3
CL—ClL—C54—C—>CT 4 C8 - ¢—>Cy54—Cg—g <> Cg-3<—Cqg—2
hs I3 hs hs Ifs
bg_10 = + -+ < by < bg > b by ag-1
h h:
fSI I3 f3 f3 hs f3 f3 f3 I 5 fs I 3
bg—g —bg_g +—bg_7+— by — bg_5 — bg_g +— by_3 — bg_2 +— by_1
h3 h3 I}LS Ihg
by > by < by Cg—1
I}Lg
b.‘]
FIGURE 37
(ha)®  hy hy
a1 < €3 <— C2 <—> Q2
f& fa fa hy hy Ja fa ha fa fa fa
Ch 4 €1 4> C5 46— C6 & CT &3 C8 ¢ +++ &> Cg5 > Cga & Cg—3 < Cg—2
hy fa I hy If“
bg—10 ¢ - —> by <—> bg <— b5 by ag-1
h. h
N T T T T TR
bg—g ¢ bg_g > bg_7 by > bg_5 ¢ bg_4 > by_3 > bg_o — by_1
hy  ha I’M Im

FIGURE 38

by <> bg < by Cg—1

[
by
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(hs)®  hs hs
a] <+ C3 H Co H az

sl g b hs  f5 fs s fs fs fs

CL—Cl 04— CCT—C8 44— Cg54—>Cg—g < Cg—3 < Qg2

fs fs hs hs Ihs

by > Cg—1 ¢ by_ 1 Cg 2<—>bg 2

fs f5 hs fs fs f5 1#s hs

by—g > bygg < bg7¢—by 64— by 5¢—by4+—by3—b

I fs fs hs hs hs Ihr

bgo10 € -+ ¢ by ¢ bg > by b2<—>b3<—>b4

FIGURE 39

az

76
h
ale1<—>b5<—>b4<—)b3£bz

bn R

Ccy4 C2
1% Ire
C1 c3
FIGURE 40
Cyq
h
hy I g By

G](—)lh(—)Cl(—)bz(—)b;(—)CJ<—)b4<—>b5(—>C5<—)b6

i
i

FIGURE 41

39
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4. PROOF OF THEOREM 1.5

In this section, we proof theorem 1.5. We use the following lemma in order to
prove theorem 1.5.

Lemma 4.1. Let G and N be groups and let H and K be subgroups of G. Suppose
that the sequence
1-H5GS5 N1

is exact. If K contains i(H) and the restriction of m to K is a surjection onto N,
then we have that K = G.

Proof. Let g be any element of G. If g is in i(H), then K contains g by the
assumption i(H) C K. We suppose that g is not in ¢(H). Since the restriction 7 |x
is surjection, there exists k € K such that 7(g) = 7(k). Since 7(gk™!) = e, we see
that gk—! € Ker m = Im i. Therefore, there exists h € H such that gk=* = i(h).
Since i(h) € K, we have g =i(h)k € K. Hence, G C K. O

Since we have the following exact sequence
1 — PMod(Ny ) — Mod(N,,,) = Sym,, — 1,
we have following corollary.

Corollary 4.2. Let K denote the subgroup of Mod(Ny ). If K contains PMod(Ny )
and the restriction m to K is a surjection to Sym,,, then K is equal Mod(Ny ).

We recall the Korkmaz’s generating set for PMod(Ng,). Let A be the set of
simple closed curves indicated in Fig. 4 for ¢ = 2r + 1, and in Fig. 5 for g = 2r 4 2.
Hence

A= {a17a27"'7a’l"5b17b27"'ab’r‘7617027"'7C’I"717d15d27"'7drael7627---aenfl}
for g =2r+1, and

A= {alaa2a"'7a7‘7b17b25'"7bT+17cl7027"'7C7‘7d17d27"'7dTa617€27~-~7€n71}

fro ¢ = 2r 4+ 2. In the figures, we choose orientations of local neighbourhoods of
simple closed curves in lambda, the orientation is that the arrow points to the right
if we approach the curve. Therefore for the simple closed curve a in A, the Dehn
twist about a is determined by this particular choice of orientation.

Let a; be the one-sided simple closed curve based at x; for i = 1,2,...,n as in
Fig. 42. If g = 2r + 2, let 8; be the one-sided simple closed curve based at z; as
in Fig. 42. For i = 1,2,...,n, let v; and w; be puncture slides along «; and (;,
respectively.

Let y be a crosscap slide such that 32 is the Dehn twist along .
Theorem 4.3. For g > 3, the pure mapping class group PMod(Ny ) is generated

by
() {ti|leAU{v; |1 <i<n}U{y} if g is odd, and

(1) {t1 |l e Ay U{v,,w; | 1 <i<n}U{y} if g is even.
The following theorem can be deduced from Korkmaz’s generating set by using
the method of Humphries. Set

/
A= {aflaa'Qa cee 7a7‘7b17b23017027 .. '7CT717d17d27617627 .. '7en71}
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FIGURE 42. Simple closed curves ay,...,a, and £1,..., By.

FI1GURE 43. Simple closed curve &.

for g =2r+1, and
A/ = {al,ag,...,ar,bl,bQ,bTJrl,cl,cQ,...7cr,d1,d2,61,62,...,en,l}
fro g = 2r + 2.

Theorem 4.4. For g > 3, the pure mapping class group PMod(Ny ) is generated
by

(i) {ti,vi,y |l € N,1<i<n}ifgisodd and

(i) {ti,vi,wi,y |l € N1 <i<n}ifgis even.

4.1. In the case of odd genus. In this subsection, we suppose that g = 2r + 1
for a positive integer 7 > 6. Let us consider the two models of Ny, as shown in
Fig. 44 and 45. (In these pictures, we will suppose that » = 2k and the number of
punctures b = 2l + 1 is odd for a interger I > 0.) We deform the surface in Fig. 44
from the surface in Fig. 4 by diffeomorphism v such that the simple closed curves
and the punctures in Fig. 4 map to the curves and punctures with same label in
Fig. 44, and the deformed surface is symmetrical about a plane across the central
of this surface, which we call mirror. Let ¢’ be a reflection of this surface in the
mirror and let o be a product 1 ~'ot. Then o is involution in Mod(N, ). In the
same way, we can define a involution 7 as a reflection in a mirror in Fig. 45.

We will construct the third involution I. We cut the surface N, , along ajys U
br, U ¢k U cgy1 Uz to obtain the surfaces S; and Ss.(see Fig.46) Sy is a sphere
bounded by a3 U b U ¢ Ucgyr1 Uz and Sy is a non-orientable surface of genus
g — 8 with b punctures and 5 boundaries. Fig. 47 gives the involutions I and I on
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FIGURE 45. Involution 7 : Ny, — Ngn

S1 and Sy, respectively. Since I and I coincide on the boundaries, they natually
define a involution I : Ny, — Ny ».

FI1GURE 46. The curves ag+3, by, ci,crt1 and z

From the construction of I, we see the following:
I(ax43) = crr1, I(ck) = by,
I(by) = dy,I(be) = do.

Let p; be the product 7¢,,. Since 7 fixes a; and the restriction 7 | N,, reverses
the orientation, by Lemma 2.7, we see that

_ 41
Tta, T =1,, -
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mirror| /7
O/

) §
h h Ti+1
FIGURE 47. Involutions I and I
Hence, 7 is an involution. Then we can get following lemma.
Lemma 4.5. Dehn twists to,,tays -y ta,, thyythys Leyslegs - ste._ista, and tq, are

products of involutions o,7,p1 and I.

Proof. Let R be the product 7. We can see that R acts as following by Fig. 44

and Fig. 45.

(1)R(a1) = a2, R(a2) = as, ..., R(ag) = agt1, R(ak+1) = agt2,..., R(ar—1) = a,.
(2)R(b1) = ba, R(by) = b3, ..., R(bg) = bgy1, R(bk+1) = bgta,. .., R(br_1) = b

(3)R(c1) = c2, R(c2) = c3, ..., R(ck) = cpt1, R(ck41) = Crta, . R(er—2) = ¢r1.
Clearly, we can see that t,, is a product of 7 and p;. By (1) and Lemma 2.7,

ta, = Rta, \R7'.(i=2,3,...,7)

S0 taystay,- - -, ta, are products of o, 7, and p;.

[

By construction of I and Lemma 2.7, we have

tep, =Tty 1.
By (3) and Lemman 2.7, we see that
te, = Rte, \R™", (G=k+2,k+3,...,r—1)
te; = R 'te,, R (j=1,2,...,k)
Hence, tcy,tey, - -+, te,_, are products of o, 7, p1, and 1.
Also, we have
ty, = It '

Similar to the above, by (2) and Lemma 2.7, we see that
ty, = Rty, ,R™, (i=k+1,k+3,...,r)
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ty, = R 'ty R. (i=1,2,....k—1)
Hence, tp,,tb,, - - -, tp, are product of o, 7, p1, and I.

Finally, Since I(b1) = dy and I(b2) = d2, we have
a =Tt "I tg, =1t 'I.

tq, and tq4, are products of o, T, p1, and I. O

T maps « to itself but reverses the orientation of ;. By Lemma 2.9, we see
that
TUIT = Uy !

Now let py denote a product of Tv1.Then ps is a involution.

mmﬁ@ O o X
QO O%

Tn In 1 l+2

T2 T3
mirrorO O o OOM 0‘1 = A
O - O J
annl

FIGURE 48. Involutions o and 7

Lemma 4.6. Puncture slides v;(i = 1,2,...,n) is a products of involutions o, T
and pa.

Proof. vy is a product of 7 and ps. In Fig. 48, we fucus the figures which define o
and 7 on o;. R = 70 acts on «; as follow.

(4) R(a1) = ag, R(a2) = g, ..., R(y) = a1, R(ayt1) = qigay ooy R(Q—1) = Q.
By (4) and Lemma 2.9, we see that
Uj ZRUj_lRil. (j:2,3,...,n)

Hence, v; is a product of involution o, 7 and ps. ([

We consider the diffeomorphism ® on N, which satisfies Dy®~! = Y,, , and
fixes each puncuters. The right figure in Fig. 49 gives the involution w. Since w
fixes m and a but reverses the orientation of m and a, we can see that wY,, ,w =
Ym717a—1 = Yn:,%z'

Let W be a product of @ 1w® and let p3 be a product of Wy. Clearly, we can
see that W is an involution. Since we have

WyW = & lw(@yd Hwd
= & Y (wY, ,w)®
= oY=y,
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FI1GURE 49. Diffeomorphism &

ps is a involution. So we can get the following lemma.
Lemma 4.7. The Y-homeomorphism y is the product of involutions W and ps.

We need the another involution to generate t.,,te,,...,te, ,- Fig. 50 gives the
involution J which is a reflection in the mirror.

mirror L1

AN o N
Y

€l+1

Li42
. °

FIGUuRE 50. Involution J

Lemma 4.8. t.,,tc,,...,te,_, are products of involutions o, 7,1, J and p1.
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Proof. Since we have J(n1) = ey, te, = Jt;llj. te, is the product of o, 7, I, J, p1.
Let T denote the product of JI. We see that T acts as following.

(5)T(e1) = €2, T(e2) = e3,..., T(er) = er11, T(€141) = €142, .., T(en—2) = €n—_1.
Hence, for (i = 2,3,...,n—1), we can see that t., = Tt.._,T~1. So, t., is a product
of o,7,1,J and p;. O

Let the subgroup G of Mod(N, ,,) be generated by o, 7, W, I, J, p1, p2 and ps.

Proof of Theorem 1.5 for genus g = 2r + 1. We see that G contains PMod(Ny ,,)
since all Korkmaz’s generators for PMod(N, ) are in G by Lemma 4.5, 4.6, 4.7
and 4.8.

When we consider the actions of o, 7 and W on the punctures, we can see that
m(o) = (L,n)(2,n—1)... (1,1 +2)(1+ 1),

(1) =(2,n)(3,n—1)...(I+ 1,1+ 2)(1),
=(2,n—1)3,n—2)...(L,I+2)(1){I 4+ 1)(n).

By the following lemma, the restriction 7 |g: G — Sym,, is a surjection. Hence,
we can see that G = Mod(Ny,,) by Lemma 4.1. O

(W)

Lemma 4.9. The group Sym,, is generated by folllowing elements,
ri=(Lb02,n-1)...(L,I1+2)(I+1),
ro=(2,0)(3,n—1)...(I+ 1,1+ 2)(1),

r3=(2,n—1)(3,n—2)...(L,I+2)(1){ + 1)(n).

4.2. In the case of even genus. In this section, We suppose that g = 2r + 2.
Similar to odd case, let us consider the two models of N, ,, as shown in Fig. 51 and
52. (In these pictures, we will suppose that » = 2k+1 and the number of punctures
b= 2l is even.) Each pictures gives a involution of the Ny ,, which is the reflection
in the mirror.

e o - - - o
Ty T2 Zy

mirror

br+1

FIGURE 51. Involution o : Ny, — Ny,

We will construct third involution I. We cut the surface IV ,, along ax43 U by U
¢k U cky1 Uz to obtain the surfaces S and Ss.(see Fig.53) S; is a sphere bounded
by ar+3 Ubg Uck Ucpy1 Uz and Ss is a non-orientable surface of genus g — 8 with
b punctures and 5 boundaries. Fig.54 gives the involutions T and I on S; and
Sy, respectively. Since I and I coincide on the boundaries, they natually define a
involution I : Ny, — Ng .
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bry1 bryo
3 To T3 T
2 L3 T
Ti41
Ty Tp—1 Ti4-2
L] L] ° ° L]

m@ & @h

%@VO

FIGURE 54. involutions T and I

From the construction of I, we see the following:

I(ag+3) = cpr1,L(ck) = b,
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I(by) = dy,I(b2) = do.

Let p1 be the product 7¢,,. As in the odd genus case, p; is an involution. We will
prepare three involutions to prove following Lemma. Fig .55 gives the involution J
which is a reflection in the mirror. Let p4 and ps be the products Jip, ., and Jt._,
respectively. We can found that ps and ps are involutions.

€1 €2
:, > Py
) ) Ti4+1
Y
Cr ;
Tit2
FiGURrE 55. Involution J
Lemma 4.10. Dehn twists ta,, tay, -5 tans tors toos toriqs ters Legsr <o os teps tars
tdys teys tegs - - o5 te,_, are products of involutions o, T, p1, pa, ps, I, and J.

Proof. Let R be the product 7. We can see that R acts as following by Fig. 51
and Fig. 52.

(1)R(a1) = a2, R(a2) = as, ..., R(ag) = agt1, R(ak+1) = agqa,..., R(ar—1) = a,.
(2)R(b1) = ba, R(ba) = b3, ..., R(bg) = brt1, R(bk+1) = brt2,..., R(b.—1) = b,.
(3)R(c1) = c2, R(co) = c3,..., R(ck) = cry1, R(Ckt1) = Chta,- -y R(cr_2) = ¢p1.
Clearly, we can see that t,, is a product of 7 and p;. By (1) and Lemma 2.7,

ta, = Rta, \R7'.(1=2,3,...,7)

S0 taystay, - - -, ta, are products of o, 7, and p;.

T

By construction of I and Lemma 2.7, we have

tepr = T30 .
By (3) and Lemman 2.7, we see that
te, = Rte, R, (G=k+2,k+3,....,r—1)
te; = R 'te,, R (j=1,2,...,k)
Hence, tcy,tey, - -, te,_, are products of o, 7, p1, and I.
Also, we have
ty, = It 11
. Similar to the above, by (2) and Lemma 2.7, we see that
ty, = Rty, , R, (i=k+1,k+3,...,7)
ty, = R 't,,, R. (i=1,2,....k—1)

Hence, tp,, tb,, - - -, tp, are product of o, 7, p1, and I.
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By the constructions about ps4 and ps,we have ¢, , = Jp4 and t.. = Jps.
Since I(b1) = dy and I(b2) = da, we have

ta, = Ity "1 tg, = It '1.

r1

tq, and tq4, are products of o, 7, p1, and I. ([

We want to generate puncture slides vy, vo, ..., v, and wy, ws, ..., w, by involu-
tions. we will construct an involution K which fixes «;; and reverses the orientation
of a;. The involution K is a reflection in the mirror in Fig. 56. Let ps be the
product Kwvy.

aq
mirror| N S o Tit1
U\ ‘%/
[En o o .xl+2
FIGURE 56. Involution K
Lemma 4.11. Puncture slides v; and w;(i = 1,2, ...,n) are products of involutions

o, 7,K and po.

Proof. Since vy is equal to Kpy, we can write v1 as a product of two involutions.
Let S and R be products 7o and o7, respectively. By the constructions of o and
T, we have

S(al) = QQ,S(OQ) = Q3,.. '7S(an71) = Qp,
R(ﬂn) = Bn-1, R(ﬂn—l) = Bn—2,..., R(ﬂQ) = f,
o(on) = fn.

By lemma 2.9, we can prove this lemma. (]

We will write y as a product of involutions. We consider the diffeomorphism
®: Ny, — Ny, which satisfies Oyd! = Yin,o and fixes each punctures as shown
Fig. 57.

Let w be reflection in the mirror as shown bottom figure in Fig. 57. Since w fixes
m and a but reverses the orientation of m and a, we can see that wYy, qw = Y;;}L.
Let W be the product ®~!'w® and let p3 be the product Wy. We can see that W
and ps are involutions. We can see the following lemma.

Lemma 4.12. The Y-homeomorphism y is the product of involutions W and ps.

Let G be the subgroup of Mod(N, ,) generated by o,7,W, I, J, K, p1, p2, p3, pa
and ps.
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FiGURE 57. Diffeomorphism &

Proof of Theorem 1.5 for genus g = 2r + 2. We see that G contains PMod(Ny.,,)
since all Korkmaz’s generators for PMod(Ny ) are in G by Lemma 4.10, 4.11
and 4.12.

When we consider the actions of o, 7 and W on the punctures, we can see that
(o) =(1,n)(2,n—1)... (1,1 + 1),
m(r)=(2,n)3,n—1)...(,LI+2)(1)(I + 1),
TW)=2,n-1)3,n—-2)...(L,1 +1)(1)(n).

By the following lemma, the restriction « |¢: G — Sym,, is a surjection. Hence,
we can see that G = Mod(Ny,,) by Lemma 4.1. O

Lemma 4.13. The group Sym,, is generated by folllowing elements,
r1=(Ln)2,n—-1)...(,l+1),
ro=(2,n)3,n—1)...(L,I+2)(1)(I + 1),
rs=(2,n—1)3,n—2)...(I,1 + 1)(1)(n).

5. CONCLUDING REMARKS

Sezpietowski showed that Mod(Ny ) is generated by four involutions, but the
number of involution generators in Theorem 1.5 is more than Sezpietowski’s one.
Then we can consider following problem:



GENERATING MAPPING CLASS GROUPS OF SURFACES 51

Problem 5.1. For g > 4 and n > 1, can the mapping class group Mod(N, ,,) be
generated by 4 involutions?

The Coxter group C' is defined as a group with the presentation

<I1,SC2, cees T | (x7‘rj)m”:1>

where m;; = 1, m;; > 2 for ¢ # j and m;; means no relation between x; and x;.
Let C),, be the coxter group with following presentation

(1,29, xn | ()2 =10 =1,2,...,n)).

By theorem 1.1, we have the following epimorphisms:
IT: Cg — Mod(Ny,,) if g > 13 and g is odd, and
IT: Ci1 = Mod(Ny,n) if g > 14 and g is even.

Corollary 5.2. For an odd g > 13, Mod(Ng.,) can be realized as a quotient of a
Cozxter group on 8 generators.

For an even g > 14, Mod(Ny ) can be realized as a quotient of a Cozter group on
11 generators.

A presentation of Mod(N ,,) which consists of involutions as generators are isn’t
known. If kerIl is finite (normally) generated, we have such a presentation.

Problem 5.3. For g > 13 and n > 1, can the kernel kerll be finite generated?

We have the following corollary by construction of involutions in theorem 1.5:

Corollary 5.4. Let ¢ be a two-sided simple closed curve. The Dehn twist t., a
Y-homeomorphism, and a puncture slide are products of two involutions.

We have the following question.

Problem 5.5. Whether there is a number C such that f can be written as a product
of at most C involutions for any f in Mod(Nyy)?
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