
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Branch-and-Bound Algorithms for Variable
Selection and Shortest Vector Problem

木村, 圭児

https://hdl.handle.net/2324/2236041

出版情報：Kyushu University, 2018, 博士（機能数理学）, 課程博士
バージョン：
権利関係：

KYUSHU UNIVERSITY

Doctoral Thesis

Branch-and-Bound Algorithms for Variable
Selection and Shortest Vector Problem

Keiji Kimura

A thesis submitted in fulfillment of the requirements
for the degree of Fuctional Mathematics

in the

Graduate School of Mathematics

February 15, 2019

Abstract

Overview: The availability and maturity of software for solving mixed integer nonlinear
(MINLP) problems have increased significantly in the past 20 years. State-of-the-art optimiza-
tion software, especially, is available for many optimization problems, and it is widely used
by researchers and practitioners. However, the computational costs of MINLP problems are
much higher than that of mixed integer linear problems even though such software is used. In
addition, it does not make use of every property of a given optimization problem because it
is regarded as general-purpose optimization software. On the other hand, an MINLP solver
purpose-build for a specific problem occasionally achieves good computational performance.
Herein, we propose effective branch-and-bound algorithms to solve two problems: variable se-
lection and shortest vector problems. A branch-and-bound algorithm is a design paradigm for
discrete and combinatorial optimization problems, and it consists of some components, such as
relaxation, branching, and heuristic methods. We take advantage of the structure and prop-
erties of the problems to improve these components in terms of computational performance.
We show numerical experiments pertaining to the proposed algorithms and examine how they
outperform state-of-the-art optimization software.
Variable selection: Finding the best statistical model for a given dataset is one of the most
important problems in statistical applications (e.g., linear and logistic regression). This prob-
lem is called variable selection, and solving it leads to various benefits. We focus on direct
objective optimization which computes the best subsets of variables in terms of a given ob-
jective function. Computation of all candidates is impractical because the number of them is
exponentially large. We formulate this optimization as an MINLP problem, which corresponds
to ℓ0-penalized variable selection. To solve it efficiently, we develop some components related
to a branch-and-bound algorithm, for example, relaxation, a heuristic method, and branching
rules. Moreover, we explain the application of the MINLP problem.
Shortest vector problem: The security of lattice-based cryptosystems is based on the hard-
ness of problems on lattices. One of the most studied problems on lattices is the shortest vector
problem (SVP), which searches for the shortest non-zero vector in a given lattice. This prob-
lem is known to be NP-hard, and it has been generally researched in the field of cryptology.
Herein, we apply mathematical optimization to SVP. From the point of view of optimization
software, SVP contains an intractable constraint, and it cannot directly be solved via optimiza-
tion software. To handle the constraint, we develop ingenious branching and relaxation. In
addition, we propose a heuristic method to find feasible solutions of subproblems. We examine
computational performance of the proposed branch-and-bound algorithm. To this end, we
propose two convex integer quadratic programming approaches using state-of-state-of-the-art
optimization software.

Keywords: Mixed integer nonlinear programming, branch-and-bound algorithm, variable se-
lection, shortest vector problem.

Contents

1 Introduction 3
1.1 Mixed integer nonlinear programming . 3
1.2 Variable selection . 4
1.3 Shortest vector problem . 5
1.4 Contribution . 6

2 Branch-and-Bound Algorithm 8
2.1 MINLP problems . 8
2.2 Algorithm design . 9
2.3 Basic components . 10

3 Direct Objective Optimization in Variable Selection 12
3.1 Overview . 12
3.2 Customized branch-and-bound algorithm . 13

3.2.1 Relaxation . 13
3.2.2 Heuristic method based on stepwise methods 15
3.2.3 Most frequent branching and strong branching 16

3.3 Applications . 18
3.3.1 Application 1: AIC minimization for linear regression 18
3.3.2 Application 2: AIC minimization for logistic regression 20
3.3.3 Effective handling of data structure . 21

3.4 Numerical experiments . 25
3.4.1 Application 1: Comparison with stepwise methods and MISOCP approach 26
3.4.2 Application 1: Comparison with MIQP approaches 27
3.4.3 Application 1: Comparison of branching rules 29
3.4.4 Application 2: Comparison with stepwise methods and piecewise linear

approximation approach . 30
3.4.5 Application 2: Computational performance of developed techniques . . 32
3.4.6 Tables and figures of numerical experiments 34

3.5 Appendix . 40

4 Shortest Vector Problem 42
4.1 Overview . 42
4.2 Customized branch-and-bound algorithm . 43

4.2.1 Computation of bounds on variables . 43
4.2.2 Branching . 44

1

CONTENTS CONTENTS

4.2.3 Relaxation . 45
4.2.4 Heuristic method . 47

4.3 IQP approaches using optimization software . 48
4.3.1 Convex 0 - 1 IQP approach . 48
4.3.2 Partitioning approach . 49

4.4 Numerical experiments . 51

5 Conclusion 54

2

Chapter 1

Introduction

1.1 Mixed integer nonlinear programming

Mixed integer nonlinear programming (MINLP) can deal with integer variables and nonlin-
ear functions and is the most flexible optimization from the viewpoint of formulation. Such
optimization problems arise in many real world applications. However, this flexibility leads
to numerical difficulties associated with the handling of nonlinear functions and challenges
pertaining to optimization in the context of integrality. Nonetheless, many researchers and
practitioners have shown interest in solving MINLP problems.

MINLP problems generally form a class of challenging optimization problems because they
combine the difficulty of optimizing over integer variables with the handling of nonlinear func-
tions. Even though an MINLP problem contains only linear functions, it becomes a mixed
integer linear programming (MILP) problem, which is NP-hard [29]. In this study, we deal
with convex MINLP problems, which contain convex functions in the objective function and
the constraints. A convex MINLP problem are still NP-hard because it contains an MILP
problem as a special case. Nevertheless, a convex MINLP problem can be solved much more
efficiently than a general MINLP problem.

Several algorithms have been proposed for solving MINLP problems, for example, branch-
and-bound algorithm, branch-and-cut algorithm, outer approximation, and Benders decom-
position. See [15, 43, 56] for details about these algorithms. In this study, we employ a
branch-and-bound algorithm. The idea of this algorithm is to successively divide a given
problem into smaller subproblems until each of the subproblems is solvable. This algorithm
is widely used to solve optimization problems, and it consists of some components, such as
relaxation, branching, heuristics, and presolve. Chapter 2 summarizes this algorithm.

The availability and maturity of software for solving MINLP problems have increased sig-
nificantly in the past 20 years. A number of open sources and commercial MINLP solvers
are listed in [24]. Notably, state-of-the-art solvers, such as CPLEX [4], Gurobi [3], and FICO
Xpress-Optimizer [1], are widely used. These are available for many optimization problems,
for example, MILP, mixed integer quadratic programming (MIQP), and mixed integer second-
order cone programming (MISOCP) problems. In other words, it is regarded as general-purpose
optimization software. In this study, to examine computational performance of our branch-
and-bound algorithms, we compare them with conventional algorithms employing CPLEX.

A customized MINLP solver for a specific application occasionally achieves good compu-
tational performance [21, 27]. In Chapter 3, we implement a few proposed techniques of a

3

1.2 Variable selection Chapter 1

branch-and-bound algorithm by customizing the SCIP Optimization Suite [5]. This software
toolbox comprises several parts, such as SCIP [9, 56] and UG [7]. SCIP is open source software,
and it provides a branch-and-bound framework for solving MILP and MINLP problems. Addi-
tional plugins, such as branching rules, relaxation handlers, and heuristic methods, allow for an
efficient solution process. UG provides a parallel extension of SCIP to employ multi-threaded
parallel computation. These software applications have been developed by the Optimization
Department at the Zuse Institute Berlin and its collaborators.

1.2 Variable selection

Finding the best statistical model for a given dataset is one of the most important problems
in statistical applications (e.g., linear and logistic regression). This problem is called variable
selection, and solving it leads to the following benefits: improvement in the prediction perfor-
mance of a statistical model, development of faster and more cost-effective models in terms of
computation, and better understanding of the essence of the statistical model behind a given
dataset.

Methods for variable selection are essentially grouped into three methods: filter, wrap-
per, and embedded methods. Filter methods select subsets of variables independently to each
other. For example, Torkkola [54] proposed a filter method using a mutual information crite-
rion. The greatest advantage of filter methods is effective in computational time. However,
filter methods tend to select redundant variables because they do not consider the relation-
ships between variables. Hence, they are mainly employed as a pre-processing step. Wrapper
methods, such as stepwise methods with forward selection and backward elimination, evaluate
subsets of variables and consider the interaction between variables. The stepwise methods are
implemented in standard statistical software (e.g., R [53]). In each step, the stepwise methods
decide whether to add one variable to a statistical model or to remove it and evaluate the
statistical model comprised of the selected variables. This process is repeated until no further
improvement is possible. Although the stepwise methods are considered greedy algorithms,
they often find good statistical models within a short time. Each embedded method performs
its particular process and provides good statistical models as a result of the process, for ex-
ample, ℓ1-penalized regularization, and decision tree learning. See [31] for more details about
variable selection.

In Chapter 3, we focus on direct objective optimization, which is a family of embedded
methods. An objective function typically consists of two competing terms: the goodness-of-fit
and the number of variables. For example, the Akaike information criterion (AIC) [12] and
Bayesian information criterion (BIC) [50] are of the form of such an objective function. Direct
objective optimization computes the best subsets of variables in terms of a given objective
function. However, computation of all candidates is impractical because the number of them
is exponentially large. Notably, most direct objective optimization under linear regression is
known to be NP-hard [33].

Showing numerical experiments pertaining to linear and logistic regression, we briefly in-
troduce work related to direct objective optimization for them as follows. ℓ1-penalized linear
and logistic regression [35, 41] is often employed because it provides sparse models and per-
forms well even on large-scale instances. However, the models provided by this approach are
not necessarily the best in terms of goodness-of-fit measures. Miyashiro and Takano proposed
an MISOCP approach for variable selection based on some information criteria in linear re-

4

1.3 Shortest vector problem Chapter 1

gression [47]. This approach formulate the variable selection as an MISOCP problem, and
standard optimization software such as CPLEX [4] and Gurobi [3], are available for the MIS-
OCP problem. Bertsimas et al. [17] presented an MILP approach for variable selection in
linear regression and developed a discrete extension of modern first order continuous optimiza-
tion methods to find high quality feasible solutions. They used the feasible solutions as warm
starts of optimization software. Sato et al. [48] formulated an MILP problem by employing
a piecewise linear approximation to minimize goodness-of-fit measures for logistic regression.
Although this approach might not arrive at the best logistic model, the results of their compu-
tational experiments indicated that this approach outperformed stepwise methods. Bertsimas
and King [16] proposed an MINLP approach to constructing logistic models with the desired
properties, for example, predictive power, interpretability, and sparsity. In addition, they pro-
posed a tailored methodology using outer approximation techniques and dynamic constraint
generation to solve the MINLP problem. The risk score problem [55] was optimized for feature
selection, integer coefficient, and operational constraints. This problem was formulated as an
MINLP problem that can be solved by using the cutting plane algorithm proposed in [55].

1.3 Shortest vector problem

An n-dimensional lattice is the set of all integral linear combinations of n linearly independent
vectors in Rn. Lattices have been known in number theory since the eighteenth century,
and they already appeared when Lagrange, Gauss, and Hermite studied quadratic forms.
Nowadays, lattices are widely used in the field of cryptology. One of the main problems
in lattices is the shortest vector problem (SVP), which is searching for the shortest non-zero
vector in a given lattice. SVP is known to be NP-hard under randomized reductions [11]. The
security of lattice-based cryptosystems is based on the hardness of SVPs.

The fastest algorithm for solving SVP is the enumeration algorithm presented by Kan-
nan [34] and by Fincke and Pohst [28]. Kannan’s algorithm solves SVP in 2O(n logn), where n
is the lattice dimension. The variant used mostly in practice was presented by Schnorr and
Euchner [49]. However, this algorithm also runs in exponential runtime. Roughly speaking,
these enumeration algorithms perform a depth first search in a search tree that contains all
vectors in a certain search space. So far, enumeration algorithms is applicable to SVPs with
low dimensional lattice (n ≲ 60). See the recent work of [25, 32] for details about limita-
tions. To gain speed-up, this enumeration algorithm was parallelized [25, 32]. These parallel
enumeration algorithms were faster than the then best public implementation.

The LLL algorithm [44] is the first algorithm with a polynomial runtime, although this
algorithm searches for shorter vectors rather than the shortest vector. The LLL algorithm can
be run in lattice dimension n up to 1000. In practice, the most promising algorithm for SVPs
with high dimensional lattice is the BKZ algorithm [49], which mainly consists of two parts:
an enumeration algorithm in low dimension and the LLL algorithm in high dimension. The
BKZ algorithm finds shorter vectors than LLL algorithm and needs higher computational time.
The LLL and BKZ algorithms transform a given lattice to a tractable lattice which consists
of shorter basis. Enumeration algorithms is always executed on lattices to which either the
LLL or BKZ algorithm is applied in a preprocessing step because these algorithms reduce the
runtime significantly compared to the original lattice. The LLL and BKZ algorithms have
been improved since these are developed (see, e.g., [46, 52]). The fplll [2] library includes
algorithms to search for the shortest or shorter vectors, for example, the LLL, BKZ, and

5

1.4 Contribution Chapter 1

Kannan’s algorithm.

1.4 Contribution

Standard optimization software is convenient because of availability for many types of opti-
mization problems (e.g., MILP and MIQP problems). In fact, state-of-the-art software, such as
CPLEX [4] and Gurobi [3], is often used by many researchers and practitioners. Formulating a
practical problem as an optimization problem which optimization software can handle, is one
of the approaches to solving practical problems. Notably, state-of-the-art software provides
good computational performance for MILP problems. However, a practical problem cannot
always be formulated as an MILP problem. Even if an MINLP problem is reformulated as
an MILP problem, the MILP problem may be poorly designed, and we may not achieve good
computational performance. Generally, the computational costs of MINLP problems are much
higher than that of MILP problems even though state-of-the-art software is employed. One of
the techniques for solving MINLP problems is taking advantage of properties unique to a given
optimization problem. Unfortunately, most optimization software does not make use of every
such property because it is for solving general optimization problems, such as MILP, MIQP,
and MISOCP problems. On the other hand, a customized MINLP solver for a specific problem
occasionally achieves good computational performance by using properties and the structure
of problems (see, e.g., [21, 27]).

Herein, we focus on two kinds of problems: variable selection and shortest vector problems.
We propose an effective branch-and-bound algorithm for each of the problems. A branch-and-
bound algorithm consists of some components, such as relaxation, branching, and heuristic
methods. We take advantage of the structure and properties of the problems to improve these
components in terms of computational performance. The results of computational experiments
show how the proposed algorithms outperform state-of-the-art optimization software.

In Chapter 3, we focus on direct objective optimization in variable selection and formulate
it as an MINLP problem. To solve the MINLP problem, we propose an effective branch-
and-bound algorithm with a few techniques, for example, cost-effective relaxation, a heuristic
method based on stepwise methods, and branching rules. These techniques are based on our
previous papers [36, 37, 38]. We show that applications of the formulated MINLP problem
include AIC-based variable selection in linear and logistic regression. Therefore, the proposed
branch-and-bound algorithm can be applied to these applications. In numerical experiments
pertaining to these applications, we show that, for small-scale and medium-scale instances, our
solver is faster than conventional approaches using state-of-the-art optimization software. Con-
versely, for large-scale instances, our solver find better solutions compared to other approaches
even if it cannot determine the optimal value within a realistic time.

In Chapter 4, we examine how large SVPs can be solved by applying integer quadratic
programming (IQP). To this end, we propose an effective branch-and-bound algorithm for
SVPs. This algorithm consists of presolve, branching, relaxation, and a heuristic method.
In [40], we proposed the presolve to compute upper and lower bounds on variables. Herein,
we propose the other components purpose-built for SVPs. In addition, we propose two convex
IQP approaches using high standard optimization software (e.g., CPLEX [4]). We compare the
proposed branch-and-bound algorithm with the two convex IQP approaches and shows that
the branch-and-bound outperforms the other in terms of computational time.

The remainder of this paper is organized as follows. Chapter 2 presents some basic knowl-

6

1.4 Contribution Chapter 1

edge about MINLP: the definition of a MINLP problem, special cases related to this study, a
branch-and-bound algorithm, and components of it. We discuss direct objective optimization
(Chapter 3) and SVP (Chapter 4), respectively, and each of the chapters gives the overview in
the first section. We summarize our conclusions in Chapter 5.

7

Chapter 2

Branch-and-Bound Algorithm

2.1 MINLP problems

This section presents the definition of an MINLP problem and special cases related to this
study. The MINLP problem is expressed in the following form:

min
x

f(x)

s.t. x = (x1, . . . , xn)
T ∈ X, xi ∈ Z (i ∈ I).

(MINLP)

The set X is a subset of Rn, for example, X = {x ∈ Rn : gj(x) ≤ 0 for all j = 1, . . . ,m}.
Then, gj(x) ≤ 0 is called a constraint. The function f : X → R is called the objective function.
The variables x1, . . . , xn contain the integer variables xi (i ∈ I) and the continuous variables
xi (i ∈ {1, . . . , n} \ I). If x satisfies x ∈ X and xi ∈ Z for all i ∈ I, x is said to be feasible
for (MINLP) or a feasible solution. Otherwise, x is said to be infeasible for it. The purpose
of (MINLP) is to find an optimal solution x∗ such that f(x∗) ≤ f(x) for any feasible solution
x and to compute the optimal value f(x∗). If no feasible solution exists, (MINLP) is said to
be infeasible. Otherwise, (MINLP) is said to be feasible. For convenience, we assume that the
objective function f : X → R is bounded below if (MINLP) is feasible. In this paper, we may
denote (MINLP) by

f(x∗) := min
x
{f(x) : x ∈ X,xi ∈ Z (i ∈ I)}.

There exists several special cases of MINLP. Herein, we briefly introduce ones related to
this study as follows:

• MILP: If the objective function f is linear, and (MINLP) contains only linear constraints
(i.e., the functions gj appearing in X are linear), then it is regarded as a mixed integer
linear programming (MILP) problem.

• NLP: If all integer constraints xi ∈ Z are removed from (MINLP), it is consider as a
nonlinear programming (NLP) problem. Then, the optimal value of the problem without
the integer constraints is a lower bound of the optimal value of the original problem.

• convex MINLP: If f and all gj appearing in X are convex, which means they satisfy the
inequality

h(αx+ βy) ≤ αh(x) + βh(y),

8

2.2 Algorithm design Chapter 2

where h ∈ {f, g1, . . . , gm}, and α, β ∈ R with α + β = 1 and α, β ≥ 0, then (MINLP) is
called a convex MINLP problem. Convexity leads to many benefits to solve optimization
problems (see e.g., [18, 20]).

• MIQP and IQP: If f(x) = xTQx + pTx + r, is a (convex) quadratic function of x, and
there are only linear constraints on (MINLP), then it is known as a (convex) mixed integer
quadratic programming (MIQP) problem. In addition, if all xj are integer variables,
(MINLP) is a (convex) integer quadratic programming (IQP) problem.

• MISOCP: If the objective function is linear, and all nonlinear constraints consist of the
form ∥Ax+b∥2−cTx ≤ d, then (MINLP) is amixed integer second-order cone programming
(MISOCP) problem.

2.2 Algorithm design

A branch-and-bound algorithm [8, 9, 15, 56] is a design paradigm for discrete and combinatorial
optimization problems including (MINLP). The idea of this algorithm is to successively divide
a given problem into smaller subproblems until each of the subproblems is solvable. A branch-
and-bound algorithm for solving MILP problems was first proposed in [42]. Afterward, Dakin
extended the branch-and-bound algorithm to MINLP problems [26]. Other early work related
to branch-and-bound algorithms for solving MINLP problems include [19, 30]. All of the most
successful optimization software is based on branch-and-bound algorithms or branch-and-cut
algorithms [56] which employs cutting planes to tighten the set of feasible solutions. In this
section, we briefly introduce a branch-and-bound algorithm. Let P (X) be the problem (MINLP)
and θ(X) the optimal value of (MINLP).

Branching: The branch-and-bound algorithm splits repeatedly a set of feasible solutions
into a few sets by branching, for example, X = X1 ∪ X2 (X1 ∩ X2 = ∅), and constructs a
branch-and-bound tree of the nodes corresponding to the split sets. The problems P (Xj) for
both j = 1, 2 are called subproblems of P (X). Then, the optimal value θ(X) of P (X) is
min{θ(X1), θ(X2)}.

Relaxation: For any nonempty subset Y ⊆ X, a lower bound of the optimal value of
subproblem P (Y) is computed by relaxation. By relaxing the integrality of xi (i ∈ I), a
standard relaxation problem to obtain the lower bound ℓ(Y) is formulated as follows:

ℓ(Y) := min
x
{f(x) : x ∈ Y }. (2.2.1)

Let R(Y) be the problem (2.2.1). The optimal value ℓ(Y) of R(Y) is a lower bound of θ(Y)
because the optimal solution of P (Y) is feasible for R(Y).

Pruning: Given any feasible solution x̄ of P (X), the branch-and-bound algorithm tests
whether nodes can be pruned from the tree. For example, if ℓ(X1) ≥ f(x̄), then θ(X) =
min{f(x̄), θ(X2)} because of θ(X) = min{θ(X1), θ(X2)}. Hence, it is not necessary to solve
the subproblem P (X1), and the node corresponding X1 can be pruned from the branch-and-
bound tree. Feasible solutions are obtained by two procedure. The first one is solving the
relaxation problem R(Y). The optimal solution of R(Y) is possibly feasible for P (Y). The
second one is a heuristic method (e.g., local search).

9

2.3 Basic components Chapter 2

In this way, the branch-and-bounds algorithm repeats the branching, relaxation, and prun-
ing. We summarize this process in Algorithm 1.

Algorithm 1: Branch-and-bound algorithm

Input: An MINLP problem P (X)
Output: An optimal solution x∗ and the optimal value θ(X) of P (X)
N ← {X} and θ∗ ←∞;
while N ̸= ∅ do

Select Y ∈ N and N ← N \ {Y };
Compute a lower bound ℓ of θ(Y) by relaxation;
if ℓ ≥ θ∗ then continue;
Apply a heuristic method optionally and let x̄ be a feasible solution;
if f(x̄) ≤ θ∗ then θ∗ ← x̄ and x∗ ← x̄;
Split Y into a few subsets Y1, . . . , Yk ⊆ Y and N ← N ∪ {Y1, . . . , Yk};

end
θ(X)← θ∗;
return x∗ and θ(X);

2.3 Basic components

In this section, we describe the following basic components of the branch-and-bound algorithm:
relaxation, branching (rules), and heuristic methods. Moreover, we briefly introduce the func-
tions of them and techniques.

Relaxation: One of the keys to algorithmic speedup is pruning. To this end, it is necessary
to obtain good lower bounds of the optimal values of subproblems. Generally, the standard
relaxation problem (2.2.1) is employed to compute a lower bound. Using the structure of
a given problem, we may define another relaxation problem. If the optimal value of it is
better than that of the standard relaxation problem, it is effective in pruning. For example,
Buchheim et al. proposed effective relaxation, which provides better lower bounds for convex
IQP problems [23]. There exist other procedures using cutting planes which reduce the sets of
feasible solutions of subproblems (see, e.g., [8, Chapter 8]).

We need to consider computational costs of solving relaxation problem because most
branch-and-bound algorithms spend much computational time on solving them. For exam-
ple, we transformed a standard relaxation problem from a nonconvex NLP problem into a
convex quadratic programming problem [38]. Though the nonconvex NLP problem was im-
practical, the transformed relaxation problem can be solved with a linear system.

Branching (rules): Most branch-and-bound algorithms employ the branching that uses
an optimal solution x̃ of a standard relaxation problemR(Y) and splits a set of feasible solutions
into two sets. For any subproblem P (Y), this standard branching selects an index j ∈ I with
a fractional value x̃j and splits Y into Y1 = {x ∈ Y : xj ≤ ⌊x̃j⌋} and Y2 = {x ∈ Y : xj ≥ ⌈x̃j⌉}.
A branching rule is the function for selection of index. Because branching is one of the cores
of a branch-and-bound algorithm, it is important for solving MINLP problems to employ good
branch rules. In [8, Chapter 5], many branching rules are listed and compared.

10

2.3 Basic components Chapter 2

Heuristic methods: To prune branch-and-bound nodes from the tree, it is necessary to
find good feasible solutions early. Most optimization software contain many heuristic methods
for general optimization problems, such as MILP and MIQP problems. However, these methods
do not always find feasible solutions. In that case, we should build heuristic methods using
the structure of the problem.

11

Chapter 3

Direct Objective Optimization in
Variable Selection

3.1 Overview

An objective function of variable selection typically consists of two competing terms (see,
e.g., [31]): the goodness-of-fit and the number of explanatory variables. Given a dataset and
a statistical model with p parameters, variable selection with this objective function can be
formulated as the following MINLP problem:

min
β,z

f(β) + λ

p∑
j=1

zj (3.1.1)

s.t. zj = 0⇒ βj = 0 (j = 1, . . . , p), (3.1.2)

βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p), (3.1.3)

where β = (β1, . . . , βp)
T represents the parameters in the given statistical model, and λ is

a positive constant. The first term f(β) of the objective function (3.1.1) corresponds to a
goodness-of-fit, for example, a discrepancy between the given dataset and the statistical model.
The second term λ

∑p
j=1 zj operates as a penalty for the number of variables. The constraints

(3.1.2) represent indicator constraints, that is, βj has to be zero if zj is zero. This problem
(3.1.1)–(3.1.3) is considered as ℓ0-penalized variable selection.

We assume the following for f(β) in the objective function (3.1.1):

Assumption 1. For any nonempty subset S ⊆ {1, . . . , p}, we can compute the optimal value
and an optimal solution of the following optimization problem:

min
β∈Rp

f(β) s.t. βj = 0 (j ∈ {1, . . . , p}\S). (3.1.4)

If f is a strongly convex function, the problem (3.1.4) becomes an unconstrained convex prob-
lem that can be solved by applying a gradient algorithm, for instance, the steepest descent
method and Newton’s method.

In this chapter, we focus on the MINLP problem (3.1.1)–(3.1.3) for variable selection. In
Section 3.2, we develop an effective branch-and-bound algorithm to solve (3.1.1)–(3.1.3). This
algorithm consists of the following techniques:

12

3.2 Customized branch-and-bound algorithm Chapter 3

(Section 3.2.1) effective relaxation to compute lower bounds,

(Section 3.2.2) a heuristic method to find good feasible solutions,

(Section 3.2.3) most frequent branching and strong branching.

In Section 3.3, we explain the following applications of the MINLP problem (3.1.1)–(3.1.3):

(Section 3.3.1) AIC minimization for linear regression,

(Section 3.3.2) AIC minimization for logistic regression.

In other words, these minimization can be formulated as the form of (3.1.1)–(3.1.3). In Sec-
tion 3.4, we show numerical experiments pertaining to AIC minimization for linear and logistic
regression and compare the branch-and-bound algorithm developed in Section 3.2 with other
approaches. Moreover, we compare the computational performance of the branching rules and
examine which of the proposed techniques is effective.

3.2 Customized branch-and-bound algorithm

In [38, 36], we formulated AIC minimization for linear and logistic regression as MINLP prob-
lems and proposed branch-and-bound algorithms purpose-built for these problem. These algo-
rithms consist of components related to effective relaxation, a heuristic method, and branching
rules. In this subsection, we explain how these components are applicable to the MINLP
problem (3.1.1)–(3.1.3). In Section 3.2.1, we explain the relaxation to compute lower bounds
efficiently. Moreover, we show that a feasible solution of the subproblem can be obtained easily
from an optimal solution of the proposed relaxation problem. In Sections 3.2.2, we describe
the heuristic method based on stepwise method to find feasible solutions. In Sections 3.2.3, we
explain most frequent branching proposed previously [38] and describe strong branching.

3.2.1 Relaxation

Branching fixes a binary variable zj of the problem (3.1.1)–(3.1.3) to zero or one and generates
two nodes repeatedly. For any node, we define the sets Z0, Z1, and Z as follows:

Z1 = {j ∈ {1, . . . , p} : zj is already fixed to 1},
Z0 = {j ∈ {1, . . . , p} : zj is already fixed to 0},
Z = {j ∈ {1, . . . , p} : zj is not fixed}.

Then, the subproblem of the problem (3.1.1)–(3.1.3) can be expressed as follows:

min
β,z

f(β) + λ

p∑
j=1

zj (3.2.1)

s.t. βj ∈ R, zj = 1 (j ∈ Z1), βj = zj = 0 (j ∈ Z0), (3.2.2)

zj = 0⇒ βj = 0, βj ∈ R, zj ∈ {0, 1} (j ∈ Z). (3.2.3)

We denote the subproblem (3.2.1)–(3.2.3) by Q(Z1, Z0, Z) because the subproblem can be
specified uniquely by using Z1, Z0, and Z. By relaxing the integrality of the variables zj , we

13

3.2 Customized branch-and-bound algorithm Chapter 3

obtain the following standard relaxation problem of Q(Z1, Z0, Z):

min
β,z

f(β) + λ

p∑
j=1

zj (3.2.4)

s.t. βj ∈ R, zj = 1 (j ∈ Z1), βj = zj = 0 (j ∈ Z0), (3.2.5)

zj = 0⇒ βj = 0, βj ∈ R, 0 ≤ zj ≤ 1 (j ∈ Z). (3.2.6)

The optimal value of the problem (3.2.4)–(3.2.6) is the lower bound of the optimal value of
Q(Z1, Z0, Z). Instead of solving (3.2.4)–(3.2.6), we consider the following problem:

min
β

f(β) + λ#(Z1) s.t. βj = 0 (j ∈ Z0), βj ∈ R (j ∈ Z1 ∪ Z), (3.2.7)

where #(Z1) stands for the number of elements in the set Z1. This problem is arrived at
by eliminating the indicator constraints and the variables zj from the problem (3.2.4)–(3.2.6).
Notably, the optimal value of the problem (3.2.7) is the lower bound of the optimal value of
Q(Z1, Z0, Z). In fact, the optimal value of (3.2.7) is smaller than or equal to the optimal value
of (3.2.4)–(3.2.6) because any feasible solution (β, z) of (3.2.4)–(3.2.6) is also feasible for (3.2.7)
and satisfies the following inequality:

f(β) + λ

p∑
j=1

zj = f(β) + λ

∑
j∈Z

zj +#(Z1)

 ≥ f(β) + λ#(Z1).

Hence, we employ (3.2.7) as a relaxation problem of the subproblem Q(Z1, Z0, Z) to compute
a lower bound of the optimal value of Q(Z1, Z0, Z). We denote the relaxation problem (3.2.7)
by R(Z1, Z0, Z), which is an unconstrained convex problem. We can solve R(Z1, Z0, Z) under
Assumption 1.

The following lemma implies that the optimal value of R(Z1, Z0, Z) is identical to the
optimal value of the standard relaxation problem (3.2.4)–(3.2.6).

Lemma 3.2.1. Let θ∗ be the optimal value of R(Z1, Z0, Z). Then, the optimal value of (3.2.4)–
(3.2.6) is θ∗.

Proof. Let β∗ be an optimal solution of R(Z1, Z0, Z). We construct a sequence {(βN , zN)}∞N
as follows:

βN = β∗ and zNj =


1 if j ∈ Z1,

1/N if j ∈ Z,

0 otherwise,

(j = 1, . . . , p)

for all N ≥ 1. (βN , zN) is feasible for (3.2.4)–(3.2.6) for all N ≥ 1. It is sufficient to prove
that the objective value θN of (3.2.4)–(3.2.6) at (βN , zN) converges to the optimal value θ∗ of
R(Z1, Z0, Z) as N approaches infinity. Because we have θ∗ = f(β∗) + λ#(Z1) and

θ∗ ≤ θN = f(β∗) + λ#(Z1) +
λ

N
#(Z) = θ∗ +

λ

N
#(Z),

θN converges to θ∗ as N approaches to infinity. This implies that the optimal value of
R(Z1, Z0, Z) is identical to the optimal value of (3.2.4)–(3.2.6).

14

3.2 Customized branch-and-bound algorithm Chapter 3

We can easily solve the relaxation problem of the subproblem obtained by fixing zj to 1.
By fixing the variable zk, two subproblems Q(Z1∪{k}, Z0, Z\{k}) and Q(Z1, Z0∪{k}, Z\{k})
are generated from Q(Z1, Z0, Z). The relaxation problem R(Z1 ∪ {k}, Z0, Z\{k}) can then be
formulated as follows:

min
β

f(β) + λ#(Z1 ∪ {k}) s.t. βj = 0 (j ∈ Z0), βj ∈ R (Z1 ∪ Z).

Therefore, the optimal value of the relaxation problem R(Z1 ∪ {k}, Z0, Z\{k}) for any k ∈ Z
is θ∗ + λ, where θ∗ is the optimal value of the relaxation problem R(Z1, Z0, Z).

We explain a procedure to generate a feasible solution of the subproblem Q(Z1, Z0, Z)

from an optimal solution of R(Z1, Z0, Z). Let β̂ = (β̂1, . . . , β̂p)
T

be the optimal solution of

R(Z1, Z0, Z). We define ẑ = (ẑ1, . . . , ẑp) by ẑj = 1 if β̂j ̸= 0, otherwise ẑj = 0. Clearly, (β̂, ẑ)
is feasible for Q(Z1, Z0, Z).

3.2.2 Heuristic method based on stepwise methods

To prune shallow nodes from a branch-and-bound tree, it is necessary to find a good feasible
solution early. To this end, we develop an effective heuristic method, which is based on stepwise
methods with forward selection and backward elimination. The stepwise methods often find
good statistical models via goodness-of-fit measures, such as AIC [12] and BIC [50], and these
are implemented in statistical software (e.g., R [53]).

First, we briefly explain the stepwise methods. Generally, the stepwise method with forward
selection starts with no explanatory variables in a given model and repeats the following steps
until no further improvement is possible.

Step 1. Test the addition of each explanatory variable using a chosen goodness-of-fit measure.

Step 2. Add the variable whose inclusion gives the most significant improvement.

The stepwise method with backward elimination starts with all explanatory variables. Instead
of adding the variable, it deletes the variable from the model. Although these methods are
considered as local search algorithms, they often find good statistical models within a short
time.

Next, we extend the capability of the stepwise methods to find feasible solutions of any
subproblem Q(Z1, Z0, Z). As a results, we expect that our heuristic methods will find good
feasible solutions early. Given any subset S ⊆ {1, . . . , p} with Z1 ⊆ S ⊆ Z1 ∪ Z, we define the

vector z̄S = (z̄S1 , . . . , z̄
S
p)

T ∈ {0, 1}p as follows:

z̄Sj :=

{
1 if j ∈ S

0 if j ∈ {1, . . . , p} \ S
for all j = 1, . . . , p.

By substituting z̄S for z in Q(Z1, Z0, Z), it can be rewritten as

min
β∈Rp

f(β) + λ#(S) s.t. βj = 0 (j ∈ {1, . . . , p} \ S), (3.2.8)

where #(S) denotes the number of elements in S. An optimal solution of this problem (3.2.8)
can be computed under Assumption 1. Let θ̄S and β̄S be the optimal value and an optimal
solution of (3.2.8), respectively. Then, (β̄S , z̄S) is a feasible solution of Q(Z1, Z0, Z). In fact,

15

3.2 Customized branch-and-bound algorithm Chapter 3

all the constraints of Q(Z1, Z0, Z) is satisfied because of Z1 ⊆ S ⊆ Z1 ∪ Z and Z0 ∩ S = ∅.
Our heuristic method improves repeatedly given feasible solutions by solving problems (3.2.8).
We describe the heuristic method for Q(Z1, Z0, Z) in Algorithm 2. We use (β̄Z1 , z̄Z1) and
(β̄Z1∪Z , z̄Z1∪Z) as the initial solutions (β1, z1) and (β2, z2), respectively, in our implementation.

Algorithm 2: Heuristic method based on the stepwise methods

Input: A subproblem Q(Z1, Z0, Z) and two initial feasible solutions (β1, z1) and
(β2, z2) of Q(Z1, Z0, Z)

Output: A feasible solution (β, z) of Q(Z1, Z0, Z)
S ←− {j ∈ {1, . . . , p} : z1j = 1}, vf ←−∞;

/* the stepwise method with forward selection */

while θ̄S < vf do
vf ←− θ̄S , (βf , zf)←− (β̄S , z̄S);

Find J = argmin
j∈Z\S

{θ̄S∪{j} : z̄S∪{j} is feasible for Q(Z1, Z0, Z)};

if J = ∅ then break;
Select j ∈ J and S ←− S ∪ {j};

end

S ←− {j ∈ {1, . . . , p} : z2j = 1}, vb ←−∞;

/* the stepwise method with backward elimination */

while θ̄S < vb do
vb ←− θ̄S , (βb, zb)←− (β̄S , z̄S);

Find J = argmin
j∈Z∩S

{θ̄S\{j} : z̄S\{j} is feasible for Q(Z1, Z0, Z)};

if J = ∅ then break;
Select j ∈ J and S ←− S \ {j};

end

if vf < vb then return (βf , zf);

else return (βb, zb);

3.2.3 Most frequent branching and strong branching

In this section, we customize branching rules to early prune nodes of a branch-and-bound
tree. We employ two branching rule: most frequent branching and strong branching, which are
proposed previously [38]. The most frequent branching is based on two tendencies of (3.1.1)–
(3.1.3): a few binary variables zj (j ∈ {1, . . . , p}) of good feasible solutions are often 1, and
such variables zj of an optimal solution are 1. The strong branching is based on a branching
rule in [8, Section 5.4]. We define this branching suitable for (3.1.1)–(3.1.3).

First, we describe proposed relaxation problems of subproblems generated by branching
variable zk. For any subproblem Q(Z1, Z0, Z), if zk (k ∈ Z) is chosen as a branching vari-
able, two subproblems Q(Z1 ∪{k}, Z0, Z\{k}) and Q(Z1, Z0 ∪{k}, Z\{k}) are generated. The
relaxation problems of these subproblems are R(Z1 ∪ {k}, Z0, Z\{k}), that is,

min
β
{f(β) + λ#(Z1 ∪ {k}) : βj = 0 (j ∈ Z0), βj ∈ R (j = 1, . . . , p)} , (3.2.9)

16

3.2 Customized branch-and-bound algorithm Chapter 3

and R(Z1, Z0 ∪ {k}, Z\{k}), that is,

min
β
{f(β) + λ#(Z1) : βj = 0 (j ∈ Z0 ∪ {k}), βj ∈ R (j = 1, . . . , p)} . (3.2.10)

The optimal value of (3.2.9) is θ∗ + λ for any k ∈ Z as described in Section 3.2.1, where θ∗ is
the optimal value of R(Z1, Z0, Z). In other words, it does not depends on branching variable
whether the corresponding node is pruned from a branch-and-bound tree. Hence, we focus on
only the optimal value θ∗k of (3.2.10) for all k ∈ Z. To prune the corresponding nodes early,
we need to select a branching variable zk (k ∈ Z) with as large value θ∗k as possible.

Strong branching [8, Section 5.4] tests which of the candidates of branching variable give the
best progress in the lower bounds before actually branching on any of them. This test is done
by temporarily branching and solving relaxation problems. Applying this strong branching
to (3.1.1)–(3.1.3), we execute Algorithm 3. Because this rule means selecting the locally best
branching variable, it is generally very effective in terms of the number of subproblems needed
to solve the original problem. Unfortunately, the computation time per subproblem of the
strong branching are expensive since it is necessary to solve a number of relaxation problems.

Algorithm 3: Strong branching

Input: A set Z of indices of unfixed variables
Output: A branching variable zk (k ∈ Z)
for j ∈ Z do

Solve R(Z1, Z0 ∪ {j}, Z\{j}) and obtain the optimal value θ∗j ;

end
return zk with θ∗k = max

j∈Z
{θ∗j}

Next, we explain the most frequent branching [38]. When the feasible solution set of a
subproblem does not include an optimal solution and good feasible solutions of the original
problem, the optimal value of the proposed relaxation problem of the subproblem might be
large. As described in the beginning of this subsection, a few binary variables zj of an optimal
and good feasible solutions are often 1. Hence, selecting such a variable zk as branching
variable, we expect that the optimal value θ∗k of (3.2.10) will be large. We describe this
branching rule in Algorithm 4.

Algorithm 4: Most frequent branching

Input: A positive integer N , a set Z of indices of unfixed variables, and the current
pool of feasible solutions of (3.1.1)–(3.1.3)

Output: A branching variable zk (k ∈ Z)
Choose the top N feasible solutions (β1, z1), . . . , (βN , zN) from the pool;
/* Here (βi, zi) is a feasible solution with the ith lowest objective value

in the pool. */

for j ∈ Z do

Compute score value sj :=
N∑
i=1

zij ;

end
return zk with sk = max

j∈Z
{sj}

17

3.3 Applications Chapter 3

3.3 Applications

In variable selection, goodness-of-fit measures, for example, AIC [12] and BIC [50], are often
employed for evaluation of statistical models. In variable selection based on AIC, the AIC
value is computed for each model, and the model with the lowest AIC value is selected as the
best statistical model. However, the computation of all candidates is not practical because
the number of candidates of possible statistical models is exponentially large. We explain that
AIC minimization for linear regression (Section 3.3.1) and logistic regression (Section 3.3.2)
can be formulated as the form of the MINLP problem (3.1.1)–(3.1.3). Therefore, applying
purpose-built branch-and-bound algorithm described in Section 3.2, we compute efficiently
the statistical model with the lowest AIC value. Moreover, we explain techniques for fast
implementation in each subsection and Section 3.3.3.

3.3.1 Application 1: AIC minimization for linear regression

We explain that AIC minimization for linear regression can be formulated as the form of the
MINLP problem (3.1.1)–(3.1.3) in this subsection. To this end, we define firstly AIC and AIC
minimization. Given a dataset with p explanatory variables and a statistical model with p+ k
parameters, the parameter corresponding to the jth explanatory variable is denoted by βj ∈ R
for all j = 1, . . . , p, and is called a coefficient parameter. If a coefficient parameter βj is nonzero,
the statistical model becomes involved with the jth explanatory variable. A statistical model
may have parameters except for the coefficient parameters. For instance, a linear regression
model has the parameter such as the variance σ2. Let {1, . . . , p} be the set of indices of the
given explanatory variables and S a subset of {1, . . . , p}. For any subset S ⊆ {1, . . . , p}, the
AIC value of the statistical model with the jth explanatory variables (j ∈ S) is defined as
follows:

AIC(S) = −2max
β
{ℓ(β) : βj = 0 (j ∈ {1, . . . , p}\S), β ∈ Rp+k}+ 2(#(S) + k), (3.3.1)

where ℓ(β) is the log-likelihood function, and #(S) stands for the number of elements in S. In
variable selection based on AIC, the model with the lowest AIC value is selected as the best
statistical model. Therefore, this variable selection can be formulated as follows:

min
S
{AIC(S) : S ⊆ {1, . . . , p}} . (3.3.2)

This problem (3.3.2) is called AIC minimization. Unfortunately, it is practically difficult
to solve (3.3.2) by computing the AIC values of all models because the number of model
candidates is 2p.

Secondly, we briefly introduce linear regression. Linear regression is the fundamental sta-
tistical tool, and it determines coefficient parameters β1, . . . , βp ∈ R of the following equation
from a given dataset:

y = β1 +

p∑
j=2

βjxj .

Here x2, . . . , xp and y are called explanatory variables and a response variable, respectively. A
given dataset is denoted by (xi1, . . . , xip, yi) ∈ Rp × R (i = 1, . . . , n) with xi1 = 1. Under the

18

3.3 Applications Chapter 3

assumption that all the residual ϵi = yi−
∑p

j=1 βjxij are independent and normally distributed

with the zero mean and variance σ2, the log-likelihood function can be formulated as follows:

ℓ(β, σ2) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

yi −
p∑

j=1

βjxij

2

.

From (3.3.1), the AIC value is computed for any S ⊆ {1, . . . , p} as follows:

AIC(S) = −2 max
β∈Rp,σ2∈R

{
ℓ(β, σ2) : βj = 0 (j ∈ {1, . . . , p} \ S)

}
+ 2(#(S) + 1). (3.3.3)

We focus on the first term to simplify (3.3.3). By substituting βj = 0 (j ∈ {1, . . . , p} \ S) to
the objective function, the first term can be regarded as an unconstrained minimization. Thus
minimum solutions satisfy the following equation:

dℓ

d(σ2)
= − n

2σ2
+

1

2(σ2)2

n∑
i=1

yi −
p∑

j=1

βjxij

2

= 0.

From this equation, we obtain σ2 = 1
n

∑n
i=1 (yi −

∑p
j=1 βjxij)

2
. Substituting the variance σ2

to (3.3.3), we simplify (3.3.3) as follows:

AIC(S) = min
β∈Rp

n log
n∑

i=1

yi −
p∑

j=1

βjxij

2

: βj = 0 (j ∈ {1, . . . , p} \ S)

 (3.3.4)

+ 2(#(S) + 1) + n (log(2π/n) + 1) .

Finally, we formulate the minimization of AIC(S) over S ⊆ {1, . . . , p} as the form of the
MINLP problem (3.1.1)–(3.1.3). By eliminating the constant terms of (3.3.4) and introducing
auxiliary binary variables z1, . . . , zp ∈ {0, 1}, AIC minimization for linear regression can be
formulated as follows:

min
β,z

n log

n∑
i=1

yi −
p∑

j=1

βjxij

2

+ 2

p∑
j=1

zj (3.3.5)

s.t. zj = 0⇒ βj = 0 (j = 1, . . . , p), (3.3.6)

βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p), (3.3.7)

From (3.2.7), the proposed relaxation problem R(Z1, Z0, Z) of any subproblem Q(Z1, Z0, Z) of
(3.3.5)–(3.3.7) can be formulated as follows:

min
β

n log
n∑

i=1

yi −
p∑

j=1

βjxij

2

+2#(Z1) s.t. βj = 0 (j ∈ Z0), βj ∈ R (j = 1, . . . , p). (3.3.8)

Although the objective function of (3.3.8) contains the logarithm function, we can freely remove
the constant 2#(Z1) and the logarithm by the monotonicity of the logarithm function in (3.3.8),
and thus obtain the following problem from (3.3.8):

min
β

n∑
i=1

yi −
p∑

j=1

βjxij

2

s.t. βj = 0 (j ∈ Z0), βj ∈ R (j = 1, . . . , p). (3.3.9)

19

3.3 Applications Chapter 3

Because the problem (3.3.9) is regarded as the unconstrained minimization of a convex quadratic
function, we can compute an optimal solution of (3.3.9) by solving a linear system. Thus
Assumption 1 holds for variable selection based on AIC in linear regression. In our imple-
mentation, we call dposv function, which is a built-in function of LAPACK [13] for solving
the linear system. We denote the optimal value of (3.3.9) by ξ∗. The optimal value of (3.3.8)
is n log(ξ∗) + 2#(Z1), and this value is used as a lower bound of the optimal value of the
subproblem.

3.3.2 Application 2: AIC minimization for logistic regression

In this section, we formulate AIC minimization for logistic regression as the form of the MINLP
problem (3.1.1)–(3.1.3). First, we introduce a logistic regression model. Logistic regression is
a fundamental statistical tool, and it estimates the probability of a binary response from a
given dataset (xi1, . . . , xip, yi) ∈ Rp×{0, 1} with xi1 = 1 (i = 1, . . . , n). We regard yi as a class
label of the ith data for all i = 1, . . . , n. Logistic regression determines coefficient parameters
β1, . . . , βp of the following logistic regression model which determines the probability of y = 1

for an input x = (x1, . . . , xp)
T ∈ Rp,

P (y = 1 | x) =
exp

(∑p
j=1 βjxj

)
1 + exp

(∑p
j=1 βjxj

) .
Here x1, . . . , xp and y are explanatory variables and a response variable, respectively. The
probability of y = 0 is obtained by simple calculation,

P (y = 0 | x) = 1− P (y = 1 | x) = 1

1 + exp
(∑p

j=1 βjxj

) .
Therefore, the probability of y ∈ {0, 1} can be written as

P (y | x) =
exp

(
y
∑p

j=1 βjxj

)
1 + exp

(∑p
j=1 βjxj

) .
In logistic regression, the coefficient parameters β1, . . . , βp can be determined by maximum
likelihood estimation. In fact, the log-likelihood function ℓ is defined as

ℓ(β) =
n∑

i=1

logP (yi | xi) = −
n∑

i=1

(
log

(
1 + exp

(
βTxi

))
− yiβ

Txi
)
,

where β = (β1, . . . , βp)
T and xi = (xi1, . . . , xip)

T for i = 1, . . . , n. From (3.3.1), for any subset
S ⊆ {1, . . . , p}, the AIC value can be computed as follows:

AIC(S) = 2min
βj

{
n∑

i=1

(
log

(
1 + exp

(
βTxi

))
− yiβ

Txi
)
:

βj = 0 (j ∈ {1, . . . , p} \ S)
β ∈ Rp

}
(3.3.10)

+ 2#(S).

20

3.3 Applications Chapter 3

The objective function of the minimization in (3.3.10) is convex because its Hessian matrix
is positive semidefinite. The minimization in (3.3.10) is solved for any subset S ⊆ {1, . . . , p}
by applying a gradient algorithm, for instance, the steepest descent method and Newton’s
method. In the same way as linear regression, the minimization of AIC(S) over S ⊆ {1, . . . , p}
can be formulated as the following MINLP problem:

min
β,z

2
n∑

i=1

(
log

(
1 + exp

(
βTxi

))
− yiβ

Txi
)
+ 2

p∑
j=1

zj (3.3.11)

s.t. zj = 0⇒ βj = 0 (j = 1, . . . , p), (3.3.12)

βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p). (3.3.13)

From (3.2.7), the proposed relaxation problem R(Z1, Z0, Z) can be written as

min
β

2
n∑

i=1

(
log

(
1 + exp

(
βTxi

))
− yiβ

Txi
)
+ 2#(Z1) s.t. βj = 0 (j ∈ Z0), βj ∈ R (Z1 ∪ Z).

Assumption 1 holds for logistic regression analysis under the practical assumption. Therefore,
the optimal value of this relaxation problem can be computed. However, Assumption 1 fails
in a certain dataset. See Section 3.5 for more details.

Next, we explain an initial guess developed in [36] to solve the proposed relaxation prob-
lem (3.2.7) efficiently. We employ Newton’s method for (3.2.7). This method is iterative,
and it requires an initial feasible solution of the relaxation problem. We construct the ini-
tial feasible solution from an optimal solution of the relaxation problem of the parent node.
To explain this procedure, we focus on two relaxation problems R(Z1 ∪ {k}, Z0, Z\{k}) and
R(Z1, Z0 ∪ {k}, Z\{k}), which are obtained by fixing the variable zk. Then, the relaxation
problem of the parent node is R(Z1, Z0, Z). Let θ∗ be the optimal value of R(Z1, Z0, Z)
and β∗ = (β∗

1 , . . . , β
∗
p)

T ∈ Rp the optimal solution of R(Z1, Z0, Z). In Section 3.2.1, we
showed that the optimal value of R(Z1 ∪ {k}, Z0, Z\{k}) is θ∗ + 2. Hence, we construct
only an initial feasible solution of the other relaxation problem R(Z1, Z0 ∪ {k}, Z\{k}). Be-
cause R(Z1, Z0 ∪ {k}, Z\{k}) is similar to R(Z1, Z0, Z), we expect that the optimal solution
of R(Z1, Z0 ∪ {k}, Z\{k}) will be near β∗. Therefore, we construct the initial feasible solution

β0 = (β0
1 , . . . , β

0
p)

T ∈ Rp of R(Z1, Z0 ∪ {k}, Z\{k}) as follows:

β0
j =

{
0 if j = k,

β∗
j otherwise,

for all j = 1, . . . , p. Because β∗ is feasible for R(Z1, Z0, Z), β0 is feasible for R(Z1, Z0 ∪
{k}, Z\{k}).

3.3.3 Effective handling of data structure

In this section, we explain effective handling of data structure in AIC minimization for linear
and logistic regression. This handling is developed previously [36]. Standard statistical text-
books often assume that datasets have linear independence; however, as it is some datasets in
the UCI Machine Learning Repository [14]. As described in Section 3.3.1, we require solving
linear systems for relaxation problems in AIC minimization for linear regression. Given that
we apply Newton’s method to relaxation problems in AIC minimization for logistic regression,

21

3.3 Applications Chapter 3

it is necessary to solve linear systems as well. If a given dataset has linear dependence, the
linear systems may have infinitely many solutions. Hence, we implement the processing of
linear dependence in linear and logistic regression.

First, we explain the following proposition, which involves techniques for solving (3.1.1)–
(3.1.3).

Proposition 3.3.1. Let S be a nonempty subset of {1, . . . , p}. We assume that for any s ∈ S

and β̃ = (β̃1, . . . , β̃p)
T ∈ Rp, there exists β̂ ∈ Rp such that

β̂j = β̃j (j ∈ {1, . . . , p}\S), β̂s = 0 and f(β̃) = f(β̂),

where the function f is the first term of the objective function in (3.1.1). Then, the following
properties are satisfied:

1. If S ⊆ Z1, the subproblem Q(Z1, Z0, Z) is pruned in the branch-and-bound tree, that is,
the optimal value of Q(Z1, Z0, Z) is larger than the optimal value of (3.1.1)–(3.1.3).

2. If Z ∩ S ̸= ∅ and S ⊆ Z1 ∪ Z, the optimal value of the relaxation problem R(Z1, Z0, Z)
is equal to the optimal value of the relaxation problem R(Z1, Z0 ∪ {k}, Z\{k}) for any
k ∈ Z ∩ S.

We prove Proposition 3.3.1 at the end of this subsection.

Remark. The first property of Proposition 3.3.1 implies that we can reduce the number of
generated branch-and-bound nodes. The second property of Proposition 3.3.1 implies that we
can reduce the computational cost of solving the relaxation problem. In fact, we can remove
a continuous variable βk (k ∈ Z ∪ S) from the relaxation problem, where the set S satisfies
the assumption in Proposition 3.3.1. We apply this removal repeatedly. Therefore, we can
efficiently solve (3.1.1)–(3.1.3) by using the properties of Proposition 3.3.1.

Next, we show that the assumption in Proposition 3.3.1 is satisfied if a given dataset has
linear dependence in linear and logistic regression. To explain this, we define linear dependence
in datasets and the function f(β). For a given dataset (xi1, . . . , xip, yi) ∈ Rp × R with xi1 = 1
(i = 1, . . . , n), we define the following vectors:

xj =

 x1j
...

xnj

 ∈ Rn for j = 1, . . . , p.

If these vectors x1, . . . , xp ∈ Rn are linearly dependent, we say that the dataset has linearly
dependent variables. The function f(β), that is, the first term of the objective function in
(3.1.1), is defined as

f(β) =


n log

n∑
i=1

yi −
p∑

j=1

βjxij

2

(if linear regression)

2

n∑
i=1

(
log

(
1 + exp

(
βTxi

))
− yiβ

Txi
)

(if logistic regression)

. (3.3.14)

Lemmas 3.3.2 and 3.3.3 show that linear dependence in a given dataset corresponds to the
assumption in Proposition 3.3.1. Hence, we can reduce the computational cost by applying
Proposition 3.3.1.

22

3.3 Applications Chapter 3

Lemma 3.3.2. If a given dataset has linearly dependent variables, there exists a nonempty set
S ⊆ {1, . . . , p} such that ∑

j∈S
αjxj = 0 and αj ̸= 0 for all j ∈ S. (3.3.15)

Proof. If a given dataset has linearly dependent variables, there exists α (̸= 0) ∈ Rp such that∑p
j=1 αjxj = 0. Then, the subset S is defined by {j ∈ {1, . . . , p} : αj ̸= 0}. It is readily

apparent that S is nonempty.

Lemma 3.3.3. If a given dataset has linearly dependent variables, there exists a nonempty
set S ⊆ {1, . . . , p} such that the S and f defined in (3.3.14) satisfy the assumption in Propo-
sition 3.3.1.

Proof. Let β̃ be (β̃1, . . . , β̃p)
T ∈ Rp and Ip a set {1, . . . , p}. From Lemma 3.3.2, there exists a

nonempty set S ⊆ {1, . . . , p} such that (3.3.15). We consider the two cases: (i) #(S) = 1 and
(ii) #(S) > 1.

(i). If S contains a single element (i.e., S = {s}), xs = 0. We define β̂ = (β̂1, . . . , β̂p)
T ∈ Rp as

follows:

β̂j =

{
β̃j , (j ∈ Ip\{s})
0, (j = s)

for all j = 1, . . . , p. Because β̃Txi = β̂Txi, f(β̃) = f(β̂) is satisfied.
(ii). For any s ∈ S, there exist α′

j ̸= 0 (j ∈ S\{s}) such that

xis =
∑

j∈S\{s}

α′
jxij

for all i = 1, . . . , n. β̃Txi (i = 1, 2, . . . , n) can be written as follows:

β̃Txi =
∑

j∈Ip\{s}

β̃jxij + β̃sxis

=
∑

j∈Ip\{s}

β̃jxij + β̃s
∑

j∈S\{s}

α′
jxij

=
∑

j∈Ip\S

β̃jxij +
∑

j∈S\{s}

(β̃j + β̃sα
′
j)xij .

Here, we define β̂ = (β̂1, . . . , β̂p)
T ∈ Rp as follows:

β̂j =


β̃j , (j ∈ Ip\S)
β̃j + β̃sα

′
j , (j ∈ S\{s})

0, (j = s)

for all j = 1, . . . , p. Because β̃Txi = β̂Txi, f(β̃) = f(β̂) is satisfied.

As described at the start of this subsection, the linear systems for solving the relaxation
problems R(Z1, Z0, Z) have infinitely many solutions if the vectors xj(j ∈ Z ∪Z1) are linearly
dependent. Therefore, we transform R(Z1, Z0, Z) to eliminate such linear dependence. To

23

3.3 Applications Chapter 3

this end, we use the second property of Proposition 3.3.1. We describe the nonempty set
S ⊆ {1, . . . , p} of Lemma 3.3.2 as a linearly dependent set. Given any relaxation problem
R(Z1, Z0, Z) and a linearly dependent set S ⊆ Z1 ∪ Z with Z ∩ S ̸= ∅, we select an index k ∈
Z∩S and solve R(Z1, Z0∪{k}, Z \{k}) instead of R(Z1, Z0, Z). Because the objective function
of R(Z1, Z0 ∪{k}, Z \ {k}) does not contain the vector xk, it is regarded as a problem without
the linearly dependent set S. Hence, application of the second property of Proposition 3.3.1
corresponds to removal of the linearly dependent set from R(Z1, Z0, Z).

To apply Proposition 3.3.1 at each branch-and-bound node, we must find linearly depen-
dent sets. In Algorithm 5, we describe a process proposed in [38] to find a collection C(Z,Z1)
of the linearly dependent sets. This process ensures that Proposition 3.3.1 is available for
any nonempty set S ∈ C(Z,Z1). We state that the linear system (3.3.16) has a unique solu-
tion because the matrix (xk)k∈S has full column rank. To save computational costs, we find
C({1, . . . , p}, ∅) in advance and reuse it. If the intersection of all linearly dependent sets of a
given dataset is ∅, then it is sufficient to find C({1, . . . , p}, ∅). In fact, it contains all linearly
dependent sets in the given dataset. Otherwise, the linear system may yield infinitely many
solutions even after application of the second property of Proposition 3.3.1 with C({1, . . . , p}, ∅)
to R(Z1, Z0, Z). In this case, we alternate between executing Algorithm 5 and applying the
second property.

Algorithm 5: An algorithm to find a collection of linearly dependent sets

Input: vectors xj (j ∈ Z ∪ Z1)
Output: A collection C(Z,Z1) of linearly dependent sets
C(Z,Z1)←− ∅, S ←− ∅;
for j ∈ Z ∪ Z1 do

if the vectors {xk : k ∈ S ∪ {j}} are linearly independent then
S ←− S ∪ {j};

else
Solve the following linear system:∑

k∈S
αkxk = xj (3.3.16)

S′ ←− {k ∈ S : αk ̸= 0} ∪ {j}, C(Z,Z1)←− C(Z,Z1) ∪ {S′};
end

end
return C(Z,Z1)

Finally, we prove Proposition 3.3.1 as follows:

Proof. (First property of Proposition 3.3.1). Let mQ be the optimal value of Q(Z1, Z0, Z) and
mP the optimal value of the problem (3.1.1)–(3.1.3). It is sufficient to prove that mQ > mP .
An optimal solution of Q(Z1, Z0, Z) is denoted by (β̃, z̃) ∈ Rp×Rp. Considering the assumption
of this proposition, for s ∈ S, there exists β̂ ∈ Rp such that

β̂j = β̃j (j ∈ {1, . . . , p}\S), β̂s = 0 and f(β̃) = f(β̂).

24

3.4 Numerical experiments Chapter 3

We define ẑ = (ẑ1, . . . , ẑp)
T ∈ {0, 1}p as follows:

ẑj =

{
z̃j , (if j ̸= s)

0, (if j = s)

for all j = 1, . . . , p. Because z̃s is one and (β̂, ẑ) is feasible for (3.1.1)–(3.1.3),

mQ = f(β̃) + λ

p∑
j=1

z̃j > f(β̂) + λ

p∑
j=1

ẑj ≥ mP .

(Second property of Proposition 3.3.1). Let mR be the optimal value of the relaxation problem
R(Z1, Z0, Z) and mRk

the optimal value of the relaxation problem R(Z1, Z0 ∪ {k}, Z\{k}) for
k ∈ Z ∩ S. mR and mRk

are computed as follows:

mR = min
β
{f(β) + λ#(Z1) : β ∈ Rp, βj = 0 (j ∈ Z0)},

mRk
= min

β
{f(β) + λ#(Z1) : β ∈ Rp, βj = 0 (j ∈ Z0 ∪ {k})}.

Because an optimal solution of the relaxation problem R(Z1, Z0 ∪ {k}, Z\{k}) is feasible for
the relaxation problem R(Z1, Z0, Z), mRk

≥ mR is satisfied. Let β̃ be an optimal solution of
the relaxation problem R(Z1, Z0, Z). Considering the assumption of this proposition, there
exists β̂ ∈ Rp such that

β̂j = β̃j (j ∈ {1, . . . , p}\S), β̂k = 0 and f(β̃) = f(β̂).

Because β̂ is feasible for the relaxation problem R(Z1, Z0,∪{k}, Z\{k}), mR ≥ mRk
is satisfied.

Hence mR = mRk
.

3.4 Numerical experiments

In this section, we show numerical experiments pertaining to AIC minimization for linear
regression (Application 1 described in Section 3.3.1) and logistic regression (Application 2 de-
scribed in Section 3.3.2) and compare the branch-and-bound algorithm described in Section 3.2
with other approaches. We use benchmark datasets from the UCI Machine Learning Reposi-
tory [14] and standardize the datasets to have zero mean and unit variance. The branch-and-
bound algorithm for Application 1 compares with stepwise methods, an MISOCP approach
(Section 3.4.1) and an MIQP approaches (Section 3.4.2). In Section 3.4.3, we compare the
branching rules described in Section 3.2.3 with the inference branching [8, Section 5.8]. In Sec-
tion 3.4.4, the branch-and-bound algorithm for Application 2 compares with stepwise methods,
a piecewise linear approximation approach. In Section 3.4.5, we examine which of the proposed
techniques is effective and how our heuristic method and branching rule influence changes in
upper and lower bounds of the optimal value.

We describe tables and figures, which are numerical results of each numerical experiment,
in Section 3.4.6. The columns labeled “n,” “p,” and “k” indicate the number of data points,
candidates for explanatory variables, and selected explanatory variables, respectively. The
column labeled “AIC” indicates the computed AIC value. The AIC values in bold font are the
lowest among applied approaches. The column labeled “Time (sec)” indicates CPU time in

25

3.4 Numerical experiments Chapter 3

seconds to compute the optimal value. “>5000” implies that the corresponding approach could
not determine the optimal value within 5000 seconds. The column labeled “Nodes” indicates
the number of generated branch-and-bound nodes. The column labeled “Gap (%)” indicates
the optimality gap used in SCIP, and it is defined as

Gap =
|upper bound− lower bound|

min{|upper bound|, |lower bound|}
× 100.

The benchmark datasets with the mark “•” in Tables 3.1, 3.2 and 3.3, indicate that these
datasets have linearly dependent variables.

The specifications of the computers used in each numerical experiment are as follows:

(Sections 3.4.1, 3.4.2 and 3.4.2) CPU: 3.5 GHz Intel Core i7; Memory: 16GB; and OS: OS
X 10.9.5.

(Sections 3.4.4 and 3.4.5) CPU: IntelR⃝ Xeon R⃝ CPU E5–2687 @ 3.1GHz; Memory: 128GB;
and OS: Ubuntu 16.04.3 LTS.

3.4.1 Application 1: Comparison with stepwise methods and MISOCP ap-
proach

In this subsection, we compare the branch-and-bound algorithm developed in Section 3.2 with
stepwise method and an MISOCP approach proposed in [47]. The stepwise methods often find
good statistical models via goodness-of-fit measures such as AIC, and these are implemented
in statistical software (e.g., R [53]). In each step, the stepwise methods decide whether to add
an explanatory variable to the statistical model or to remove it. Although these methods are
considered as local search algorithms, they often find good statistical models within a short
time. The MISOCP approach [47] transforms the problem (3.3.5)–(3.3.7) into a MISOCP
problem, which is tractable by high standard optimization software (e.g., CPLEX [4]). See [47]
for the details.

Table 3.1 in Section 3.4.6 shows a comparison of the performance of the following ap-
proaches:

• MINLP:

– refers to the developed branch-and-bound algorithm for solving the MINLP problem
(3.3.5)–(3.3.7),

– employs SCIP [5, 8, 56] for the implementation,

– adopts the most frequent branching for datasets with linearly dependent variables
and the strong branching for datasets with no such variables,

– uses a single thread.

• MISOCP:

– refers to the MISOCP approach [47] with CPLEX [4],

– employs 8 threads for parallel computation.

• SW+:

– refers to the stepwise method with forward selection,

26

3.4 Numerical experiments Chapter 3

– starts with no explanatory variables,

– is implemented in R [53].

• SW−:

– refers to the stepwise method with backward elimination,

– starts with all explanatory variables,

– is implemented in R [53].

We observe the following from Table 3.1.

• MINLP computed the optimal values much faster than MISOCP. MINLP found lower
AIC values than MISOCP even when MINLP could not find the optimal values within
5000 seconds.

• MINLP outperformed the other approaches in terms of solution quality. In fact, each
AIC value obtained by MINLP were lowest among the four values.

• Either SW+ or SW− found low AIC values expect for automobile.

3.4.2 Application 1: Comparison with MIQP approaches

In this subsection, we compare the branch-and-bound algorithm developed in Section 3.2 with
MIQP approaches. AIC minimization for linear regression can be divided into (p + 1) MIQP
problems by fixing the number of selected explanatory variables from 0 to p. In fact, the
minimization can be equivalently reformulated as follows:

min
k=0,...,p

min
S⊆{1,...,p}

{AIC(S) : #(S) = k} . (3.4.1)

Each inner problem in (3.4.1) is defined by fixing
∑p

j=1 zj = k in (3.3.5)–(3.3.7). Because the
logarithm function in the inner problem has the monotonicity, we can obtain the optimal value
and an optimal solution of the inner problem by solving the following MIQP problem:

min
β,z

n∑
i=1

yi −
p∑

j=1

βjxij

2

(3.4.2)

s.t.

p∑
j=1

zj = k (3.4.3)

zj = 0⇒ βj = 0 (j = 1, . . . , p), (3.4.4)

βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p), (3.4.5)

for all k = 0, . . . , p. We denote the optimal value of (3.4.2)–(3.4.5) by η∗k. Then, the optimal
value of the inner problem in (3.4.1) with k is n log(η∗k)+2k. Therefore, we obtain the optimal
value and an optimal solution of (3.4.1) by computing all optimal values of (3.4.2)–(3.4.5) for
k = 0, . . . , p. We describe this naive procedure in Algorithm 6.

27

3.4 Numerical experiments Chapter 3

Algorithm 6: Naive algorithm for (3.3.5)–(3.3.7) via MIQP

Input: AIC minimization for linear regression (3.3.5)–(3.3.7)
Output: The optimal value and an optimal solution of (3.3.5)–(3.3.7)
for k → 0 to p do

Compute the optimal value η∗k and an optimal solution (β∗
k, z

∗
k) of (3.4.2)–(3.4.5)

with k;

end
Find an index K with θ∗K = min

k=0,...,p
{n log(η∗k) + 2k};

return θ∗K and (β∗
K , z∗K);

Next, we explain a faster algorithm than Algorithm 6. This algorithm was proposed previ-
ously [38], and it finds an upper bound of k. Hence, it is not necessary to solve all p+1 MIQP
problems. The following lemma ensures that we can find an upper bound of k if we have a
feasible solution of (3.3.5)–(3.3.7).

Lemma 3.4.1. Let θ̂ ∈ Rp+1 be the optimal value of the following optimization problem:

min
β∈Rp

n log

 n∑
i=1

yi −
p∑

j=1

βjxij

2 . (3.4.6)

Given an upper bound θ̄ of an optimal solution of (3.3.5)–(3.3.7), any optimal solution (β∗, z∗)
of (3.3.5)–(3.3.7) satisfies

p∑
j=1

z∗j ≤

⌊
θ̄ − θ̂

2

⌋
.

Proof. Let θ∗ be the optimal value of (3.3.5)–(3.3.7) and (β∗, z∗) an optimal solution of (3.3.5)–
(3.3.7). Then, we have

θ̄ ≥ θ∗ = n log

 n∑
i=1

yi − β∗
0 −

p∑
j=1

β∗
j xij

2+ 2

p∑
j=1

z∗j ≥ θ̂ + 2

p∑
j=1

z∗j ,

and thus we have
∑p

j=1 z
∗
j ≤ (θ̄ − θ̂)/2. Since z∗j is integer, we obtain the desired result.

We describe the faster algorithm based on Lemma 3.4.1 in Algorithm 7.

28

3.4 Numerical experiments Chapter 3

Algorithm 7: Faster algorithm for (3.3.5)–(3.3.7) via MIQP

Input: AIC minimization for linear regression (3.3.5)–(3.3.7)
Output: The optimal value and an optimal solution of (3.3.5)–(3.3.7)
Compute the optimal value θ̂ of (3.4.6);
θ̄ ←− +∞;
for k → 0 to p do

if k >
⌊
θ̄−θ̂
2

⌋
then

break;
end
Find the optimal value η∗k and an optimal solution (β∗

k, z
∗
k) of (3.4.2)–(3.4.5) with k;

if θ̄ ≥ n log(η∗k) + 2k then
θ̄ ←− n log(η∗k) + 2k, (β∗, z∗)←− (β∗

k, z
∗
k);

end

end
return θ̄ and (β∗, z∗);

We give details on our numerical experiments.

□ We solve MIQP problems (3.4.2)–(3.4.5) with CPLEX [4]. In particular, since the con-
straints (3.4.4) are the logical relation between zj and βj , we use indicator implemented
in CPLEX to represent these constraints.

□ We also solve MIQP problems obtained from replacing the constraint
∑p

j=1 zj = k of
(3.4.2)–(3.4.5) by

∑p
j=1 zj ≤ k. In Table 3.2, “Fast≤” indicates that we solve those

obtained problems in Algorithm 7, while “Fast=” indicates that we solve (3.4.2)–(3.4.5).
By this replacement, we can use an optimal solution of the MIQP problem with k as an
initial upper bound for the MIQP problem with k + 1.

□ We terminate the corresponding approaches when they cannot find the lowest AIC value
within 5000 seconds. Computational time in bold font indicates the shortest time among
four approaches.

We show numerical results on the branch-and-bound algorithm (MINLP) described in Sec-
tion 3.2, Algorithms 6 (Naive) and Algorithm 7 (Fast= and Fast≤) in Table 3.2 of Section 3.4.6.
We observe the following from Table 3.2:

• MINLP outperformed the MIQP approaches. In particular, for larger p, MINLP obtains
much better AIC values than MIQP approaches, although all the approaches cannot solve
within 5000 seconds.

• The performance of Fast≤ is similar to Fast=, though Fast≤ uses an initial upper bound.

3.4.3 Application 1: Comparison of branching rules

Table 3.3 in Section 3.4.6 shows a comparison of the performance of the following branching
rule:

• IB: the inference branching [8, Section 5.8] implemented in SCIP [5, 9, 56].

29

3.4 Numerical experiments Chapter 3

• MFB: the most frequent branching described in Section 3.2.3.

• SB: the strong branching described in Section 3.2.3.

The benchmark datasets with the mark “•” in Tables 3.3 indicate that these dataset have
linearly dependent variables. The values in bold font are the best among the three branching
rules. We observe the following from Table 3.3:

• The most frequent branching worked more effective than the others for the benchmark
datasets with linearly dependent variables. In fact, except for automobile, MFB com-
puted the optimal value the fastest of the three, and the numbers of the nodes generated
by MFB were the smallest. In contrast, the strong branching rule was more effective
than the others for the benchmark datasets with no linearly dependent variables.

This is why we adopted the most frequent branching for datasets with linearly dependent
variables and the strong branching for datasets with no such variables in Tables 3.1 and 3.2.

3.4.4 Application 2: Comparison with stepwise methods and piecewise lin-
ear approximation approach

In this subsection, we show numerical experiments pertaining to AIC minimization for lo-
gistic regression and compare the branch-and-bound algorithm described in Section 3.2 with
stepwise methods and a piecewise linear approximation approach [48]. This approach solve
a MILP problems, and the greatest advantage of it is that commercial optimization software
(e.g., CPLEX [4]) can be used to solve the MILP problem. This approach can be applied to
AIC minimization for logistic regression (i.e., the problem (3.3.11)–(3.3.13)).

We briefly explain the piecewise linear approximation approach to solving the problem
(3.3.11)–(3.3.13). For a given dataset (xi1, . . . , xip, yi) ∈ Rp×{0, 1} with xi1 = 1 (i = 1, . . . , n),
we define sets I1 and I2 as follows:

I1 = {i ∈ {1, . . . , n} : yi = 1} and I0 = {i ∈ {1, . . . , n} : yi = 0}.

The function F (β, z) denotes the objective function (3.3.11), and it can be rewritten as follows:

F (β, z) := 2

n∑
i=1

(
log

(
1 + exp

(
βTxi

))
− yiβ

Txi
)
+ 2

p∑
j=1

zj

= 2
∑
i∈I1

(
log

(
1 + exp

(
βTxi

))
− βTxi

)
+ 2

∑
i∈I0

log
(
1 + exp

(
βTxi

))
+ 2

p∑
j=1

zj

= 2
∑
i∈I1

log
(
1 + exp

(
−βTxi

))
+ 2

∑
i∈I0

log
(
1 + exp

(
βTxi

))
+ 2

p∑
j=1

zj .

We define the function g(v) as g(v) := log (1 + exp (−v)) and rewrite it as

F (β, z) = 2
∑
i∈I1

g(βTxi) + 2
∑
i∈I0

g(−βTxi) + 2

p∑
j=1

zj .

30

3.4 Numerical experiments Chapter 3

By introducing auxiliary variables ti(i = 1, . . . , n), the problem (3.3.11)–(3.3.13) can be refor-
mulated as follows:

min
β,z

2
n∑

i=1

ti + 2

p∑
j=1

zj (3.4.7)

s.t. ti ≥ g(βTxi) (i ∈ I1), ti ≥ g(−βTxi) (i ∈ I0), (3.4.8)

zj = 0⇒ βj = 0, βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p). (3.4.9)

Given any set of points V = {v1, . . . , vK}, we can construct a relaxation problem of (3.4.7)–
(3.4.9) by using the convexity of g

min
β,z

2
n∑

i=1

ti + 2

p∑
j=1

zj (3.4.10)

s.t. ti ≥ g′(vk)(β
Txi − vk) + g(vk) (i ∈ I1; vk ∈ V), (3.4.11)

ti ≥ −g′(vk)(βTxi + vk) + g(vk) (i ∈ I0; vk ∈ V), (3.4.12)

zj = 0⇒ βj = 0, βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p). (3.4.13)

The problem (3.4.10)–(3.4.13) is a mixed integer linear programming problem, and it can be
solved by using standard optimization software. The optimal value θ̄ of (3.4.10)–(3.4.13) is a
lower bound of the optimal value θ∗ of (3.3.11)–(3.3.13). Let (β̄, z̄, t̄) be an optimal solution of
(3.4.10)–(3.4.13). We can construct the logistic regression model from the set of the selected
explanatory variables S̄ = {j ∈ {1, . . . , p} : z̄j = 1}. Then, the AIC value of the constructed
model is AIC(S̄). Hence, we obtain the following inequality:

θ̄ ≤ θ∗ ≤ AIC(S̄).

If AIC(S̄)− θ̄ is small, the constructed model is guaranteed to be of good quality.
In the numerical experiments, we employ the following two sets as V ,

V1 = {0,±0.89,±1.90,±3.55,±∞},
V2 = {0,±0.44,±0.89,±1.37,±1.90,±2.63,±3.55,±5.16,±∞}.

These sets can be computed by using the greedy algorithm proposed in [48].
Table 3.4 in Section 3.4.6 shows a comparison of the performance of the following ap-

proaches:

• MINLP:

– refers to the developed branch-and-bound algorithm for solving the MINLP problem
(3.3.11)–(3.3.13),

– employs SCIP [5, 8, 56] and UG [7, 51] for the implementation,

– adopts the most frequent branching described in Section 3.2.3,

– uses 16 threads for parallel computation.

• SW+:

– refers to the stepwise method with forward selection,

31

3.4 Numerical experiments Chapter 3

– starts with no explanatory variables,

– is implemented by C++ and LAPACK [13].

• SW−:

– refers to the stepwise method with backward elimination,

– starts with all explanatory variables,

– is implemented by C++ and LAPACK [13].

• MILP(V):

– refers to the piecewise linear approximation approach [48] with the point set V ,

– solves the mixed integer linear programming problem (3.4.10)–(3.4.13) with CPLEX [4],

– employs the better of the two solutions of the stepwise methods as the initial solu-
tion,

– employs 16 threads for parallel computation.

The column labeled “objMILP” in Table 3.4 presents the objective value of the computed
solution of the mixed integer linear programming problem (3.4.10)–(3.4.13).

It can be inferred from Table 3.4 that MINLP outperforms MILP(V) in terms of compu-
tational time. In fact, for p ≤ 45, MINLP was faster than both the MILP(V). Moreover,
MINLP found the lowest AIC values of the five approaches on large-scale instances. However,
for p ≥ 62, even MINLP could not guarantee optimum within 5000 seconds.

3.4.5 Application 2: Computational performance of developed techniques

To examine which of the proposed techniques is effective, we present the computational per-
formance of the following approaches:

• MINLP:

– executes the most frequent branching described in Section 3.2.3,

– executes the heuristic method described in Section 3.2.2,

– constructs the initial feasible solution from an optimal solution of the relaxation
problem of the parent node,

– executes the procedure described in Section 3.3.2 to construct the initial guess for
Newton’s method.

• MINLPw/o-mfb:

– corresponds to MINLP without the most frequent branching,

– executes the inference branching in SCIP.

• MINLPw/o-heur: corresponds to MINLP without the heuristic method.

• MINLPw/o-guess:

– corresponds to MINLP without the initial guess,

32

3.4 Numerical experiments Chapter 3

– employs the zero vector as a initial feasible solution.

To indicate the effective techniques, we underline the highest values among all the methods in
Table 3.5 of Section 3.4.6. We observe the following from Table 3.5:

• For p ≤ 45, MINLP, that is, the developed solver incorporating all techniques, was the
fastest among the four methods. This implies that the most frequent branching, the
heuristic method based on the stepwise methods, and the initial guess are effective for
solving (3.3.11)–(3.3.13).

• MINLP and MINLPw/o-guess could solve AIC minimization for spectf within 5000 sec-
onds. However, MINLPw/o-mfb and MINLPw/o-heur could not solve the minimization
within 5000 seconds. Hence, the most frequent branching and the heuristic method
based on the stepwise methods are more effective than the initial guess in this instance.

• For p ≥ 62, MINLPw/o-heur were the worst among the four methods in terms of solution
quality. Hence, it is evident from this result that the heuristic method described in
Section 3.2.2 is an important technique for large-scale instances.

Next, we examine how the heuristic method (Section 3.2.2) and the most frequent branching
(Section 3.2.3) influence changes in the upper and lower bounds. Figure 3.1 shows the results
of the upper bounds for biodeg and spectf. The solid and the broken lines correspond to our
solver with and without the heuristic method based on the stepwise methods (i.e., MINLP and
MINLPw/o-heur), respectively. Our solver with the heuristic method immediately found good
feasible solutions compared to the solver without the heuristic method. Figure 3.2 shows the
results of the lower bounds for biodeg and spectf. The solid and the broken lines correspond
to our solver with and without the most frequent branching (i.e., MINLP and MINLPw/o-mfb),
respectively. Our solver without the most frequent branching appears to stop increases in the
lower bounds halfway. The benefit of using the most frequent branching can be confirmed from
Figure 3.2.

33

3.4 Numerical experiments Chapter 3

3.4.6 Tables and figures of numerical experiments

Table 3.1: Comparison with stepwise methods (SW+ and SW−) and MISOCP approach

Name n p Approaches AIC k Time (sec) Gap (%)

housing 506 13 MINLP 776.21 11 0.04 0.00
MISOCP 776.21 11 7.96 0.00
SW+ 776.21 11 0.35 —
SW− 776.21 11 0.10 —

•auto-mpg 392 25 MINLP 332.88 15 1.76 0.00
MISOCP 332.88 15 303.83 0.00
SW+ 334.73 16 0.49 —
SW− 337.96 18 0.32 —

•solarflareC 1066 26 MINLP 2816.29 9 10.49 0.00
MISOCP 2816.29 9 304.51 0.00
SW+ 2816.29 9 0.45 —
SW− 2821.61 12 1.08 —

•solarflareM 1066 26 MINLP 2926.90 7 3.99 0.00
MISOCP 2926.90 7 255.02 0.00
SW+ 2926.90 7 0.36 —
SW− 2930.91 9 1.16 —

•solarflareX 1066 26 MINLP 2882.80 3 0.92 0.00
MISOCP 2882.80 3 19.39 0.00
SW+ 2882.80 3 0.18 —
SW− 2891.56 9 1.20 —

breastcancer 194 32 MINLP 508.40 10 90.21 0.00
MISOCP 508.62 10 >5000 3.72
SW+ 509.50 8 0.24 —
SW− 509.96 14 0.60 —

•forestfires 517 63 MINLP 1429.64 12 >5000 0.77
MISOCP 1431.32 12 >5000 6.44
SW+ 1429.64 12 0.94 —
SW− 1447.36 21 7.43 —

•automobile 159 65 MINLP -61.28 32 >5000 13.95
MISOCP -55.83 34 >5000 27.22
SW+ -28.55 21 1.12 —
SW− -47.61 40 2.64 —

crime 1993 100 MINLP 3410.25 50 >5000 0.50
MISOCP 3469.34 74 >5000 8.51
SW+ 3430.19 37 17.03 —
SW− 3410.25 50 105.40 —

34

3.4 Numerical experiments Chapter 3

Table 3.2: Comparison with three MIQP approaches: Algorithm 6 (Naive), Algorithm 7 (Fast=
and Fast≤)

Name Approaches AIC k Time (sec)

housing MINLP 776.21 11 0.04
Naive 776.21 11 2.54
Fast= 776.21 11 2.15
Fast≤ 776.21 11 2.43

•auto-mpg MINLP 332.88 15 1.76
Naive 332.88 15 22.22
Fast= 332.88 15 19.04
Fast≤ 332.88 15 14.45

•solarflareC MINLP 2816.29 9 10.49
Naive 2816.29 9 26.49
Fast= 2816.29 9 18.17
Fast≤ 2816.29 9 15.03

•solarflareM MINLP 2926.90 7 3.99
Naive 2926.90 7 25.27
Fast= 2926.90 7 8.15
Fast≤ 2926.90 7 7.24

•solarflareX MINLP 2882.80 3 0.92
Naive 2882.80 3 10.65
Fast= 2882.80 3 2.25
Fast≤ 2882.80 3 2.40

breastcancer MINLP 508.40 10 90.21
Naive 508.40 10 420.44
Fast= 508.40 10 402.64
Fast≤ 508.40 10 421.96

•forestfires MINLP 1429.64 12 >5000
Naive 1435.07 7 >5000
Fast= 1435.07 7 >5000
Fast≤ 1435.07 7 >5000

•automobile MINLP -61.28 32 >5000
Naive 52.84 8 >5000
Fast= 52.84 8 >5000
Fast≤ 52.84 8 >5000

crime MINLP 3410.25 50 >5000
Naive 3646.35 4 >5000
Fast= 3646.35 4 >5000
Fast≤ 3646.35 4 >5000

35

3.4 Numerical experiments Chapter 3

Table 3.3: Comparison of three branching rule: inference branching (IB), most frequent branch-
ing (MFB) and strong branching (SB)

Name Branching rules AIC k Time (sec) Nodes Gap (%)

housing IB 776.21 11 0.05 55 0.00
MFB 776.21 11 0.05 49 0.00
SB 776.21 11 0.04 27 0.00

•auto-mpg IB 332.88 15 4.06 18959 0.00
MFB 332.88 15 1.76 5723 0.00
SB 332.88 15 2.68 11586 0.00

•solarflareC IB 2816.29 9 53.33 166639 0.00
MFB 2816.29 9 10.49 32261 0.00
SB 2816.29 9 23.13 79015 0.00

•solarflareM IB 2926.90 7 40.03 117889 0.00
MFB 2926.90 7 3.99 11903 0.00
SB 2926.90 7 23.72 81899 0.00

•solarflareX IB 2882.80 3 4.37 9737 0.00
MFB 2882.80 3 0.92 1519 0.00
SB 2882.80 3 3.40 7453 0.00

breastcancer IB 508.40 10 505.70 3851×103 0.00
MFB 508.40 10 478.66 3422×103 0.00
SB 508.40 10 90.21 550×103 0.00

•forestfires IB 1429.64 12 >5000 7480×103 1.11
MFB 1429.64 12 >5000 13179×103 0.77
SB 1429.64 12 >5000 9938×103 0.95

•automobile IB -60.29 32 >5000 32192×103 12.30
MFB -61.28 32 >5000 29785×103 13.95
SB -61.59 33 >5000 15300×103 16.43

crime IB 3410.25 50 >5000 10272×103 0.78
MFB 3410.25 50 >5000 9753×103 0.52
SB 3410.25 50 >5000 1904×103 0.50

36

3.4 Numerical experiments Chapter 3

Table 3.4: Comparison with stepwise methods and piecewise linear approximation approach

Name n p Approaches AIC objMILP k Time (sec) Gap (%)

bumps 2584 22 MINLP 1097.11 — 9 20.08 0.00
SW+ 1097.37 — 9 0.92 —
SW− 1100.66 — 13 0.54 —
MILP(V1) 1098.12 1060.51 8 41.51 0.00
MILP(V2) 1099.98 1086.43 9 627.36 0.00

breast-P 194 34 MINLP 147.04 — 19 25.76 0.00
SW+ 162.94 — 13 0.24 —
SW− 152.13 — 25 0.25 —
MILP(V1) 147.04 144.56 19 112.40 0.00
MILP(V2) 147.04 146.40 19 279.15 0.00

biodeg 1055 42 MINLP 653.29 — 23 221.54 0.00
SW+ 654.79 — 25 2.01 —
SW− 653.29 — 23 2.25 —
MILP(V1) 653.29 640.75 23 >5000 0.93
MILP(V2) 653.29 649.62 23 >5000 2.39

spectf 267 45 MINLP 168.33 — 15 432.45 0.00
SW+ 172.34 — 10 0.36 —
SW− 169.42 — 17 0.79 —
MILP(V1) 169.34 163.54 14 515.74 0.00
MILP(V2) 169.34 165.53 14 1603.12 0.00

stat-G 1000 62 MINLP 958.15 — 24 >5000 5.54
SW+ 958.15 — 24 3.09 —
SW− 963.70 — 29 2.55 —
MILP(V1) 958.15 944.50 24 >5000 5.21
MILP(V2) 958.15 954.46 24 >5000 5.10

musk 6598 166 MINLP 1706.89 — 115 >5000 16.55
SW+ 1733.56 — 120 292.18 —
SW− 1706.89 — 115 609.44 —
MILP(V1) 1706.89 1663.02 115 >5000 16.68
MILP(V2) 1706.89 1693.28 115 >5000 16.39

madelon 2000 500 MINLP 2502.06 — 105 >5000 20.76
SW+ 2504.02 — 102 316.92 —
SW− 2905.58 — 422 >5000 —
MILP(V1) 2504.02 2471.93 102 >5000 20.20
MILP(V2) 2504.02 2493.70 102 >5000 22.85

37

3.4 Numerical experiments Chapter 3

Table 3.5: Computational performance of developed techniques

Name n p Approaches AIC k Time (sec) Nodes Gap (%)

bumps 2584 22 MINLP 1097.11 9 20.08 3.6× 103 0.00
MINLPw/o-mfb 1097.11 9 44.99 2.2× 104 0.00

MINLPw/o-heur 1097.11 9 28.68 2.3× 104 0.00

MINLPw/o-guess 1097.11 9 46.48 4.1× 103 0.00

breast-P 194 34 MINLP 147.04 19 25.76 1.5× 105 0.00
MINLPw/o-mfb 147.04 19 554.07 3.3× 106 0.00

MINLPw/o-heur 147.04 19 31.87 4.6× 105 0.00

MINLPw/o-guess 147.04 19 27.38 1.5× 105 0.00

biodeg 1055 42 MINLP 653.29 23 221.54 1.7× 105 0.00
MINLPw/o-mfb 653.29 23 >5000 8.8× 106 4.53

MINLPw/o-heur 653.29 23 1018.83 2.5× 106 0.00

MINLPw/o-guess 653.29 23 586.45 1.9× 105 0.00

spectf 267 45 MINLP 168.33 15 432.45 1.1× 106 0.00
MINLPw/o-mfb 168.33 15 >5000 1.1× 107 29.89

MINLPw/o-heur 171.80 17 >5000 1.1× 107 34.53

MINLPw/o-guess 168.33 15 574.13 1.5× 105 0.00

stat-G 1000 62 MINLP 958.15 24 >5000 7.7× 106 5.54
MINLPw/o-mfb 958.15 24 >5000 6.5× 106 6.11

MINLPw/o-heur 978.67 30 >5000 5.5× 106 7.61

MINLPw/o-guess 958.15 24 >5000 8.9× 106 4.62

musk 6598 166 MINLP 1706.89 115 >5000 3.5× 104 16.55
MINLPw/o-mfb 1705.01 111 >5000 5.7× 104 16.87

MINLPw/o-heur 1774.54 161 >5000 6.4× 105 20.18

MINLPw/o-guess 1706.89 115 >5000 2.1× 104 17.19

madelon 2000 500 MINLP 2502.06 105 >5000 1.0× 106 20.76
MINLPw/o-mfb 2503.58 105 >5000 1.1× 106 21.15

MINLPw/o-heur 3028.85 455 >5000 2.4× 106 46.70

MINLPw/o-guess 2502.06 105 >5000 8.3× 105 20.76

38

3.4 Numerical experiments Chapter 3

biodeg

 660

 670

 680

 690

 700

 710

 0 100 200 300 400 500

U
p

p
e

r
b

o
u

n
d

Time (secs)

with the heuristics
without the heuristics

spectf

 170

 175

 180

 185

 190

 195

 200

 205

 210

 0 100 200 300 400 500

U
p

p
e

r
b

o
u

n
d

Time (secs)

with the heuristics
without the heuristics

Figure 3.1: Evolution of upper bounds in the first 500 seconds, for biodeg and spectf when
using our solver with and without our heuristic method

biodeg

 600

 610

 620

 630

 640

 650

 0 100 200 300 400 500

L
o

w
e

r
b

o
u

n
d

Time (secs)

with mfb
without mfb

spectf

 125

 130

 135

 140

 145

 150

 155

 160

 165

 0 100 200 300 400 500

L
o

w
e

r
b

o
u

n
d

Time (secs)

with mfb
without mfb

Figure 3.2: Evolution of lower bounds in the first 500 seconds, for biodeg and spectf when
using our solver with and without the most frequent branching

39

3.5 Appendix Chapter 3

3.5 Appendix

As mentioned in Section 3.3.2, the MINLP formulation (3.3.11)–(3.3.13) for logistic regression
may not satisfy Assumption 1. Therefore, here, we provide a necessary and sufficient condition
to ensure that the MINLP formulation (3.3.11)–(3.3.13) for logistic regression satisfies Assump-
tion 1. First, we introduce notation and symbols. For a dataset (xi, yi) ∈ Rp × {0, 1} (i =
1, . . . , n), we define the sets I1 and I0 as

I1 = {i ∈ {1, . . . , n} : yi = 1} and I0 = {i ∈ {1, . . . , n} : yi = 0}.

We rewrite the objective function of the minimization (3.1.4) as

f(β) =
∑
i∈I0

log
(
1 + exp(βTxi)

)
+

∑
i∈I1

log
(
1 + exp(−βTxi)

)
.

For β ∈ Rp, we define the sets J+(β), J−(β), and J0(β) as

J+(β) = {i ∈ {1, . . . , n} : βTxi > 0}, J−(β) = {i ∈ {1, . . . , n} : βTxi < 0} and
J0(β) = {i ∈ {1, . . . , n} : βTxi = 0}.

Then, we have J•(γβ) = J•(β) for γ > 0 and • ∈ {+,−, 0}. For any γ > 0 and β ∈ Rp, we
have

f(γβ) =
∑
i∈I0

log
(
1 + exp(γβTxi)

)
+

∑
i∈I1

log
(
1 + exp(−γβTxi)

)
=

∑
i∈I0∩J+(β)

log
(
1 + exp(γβTxi)

)
+

∑
i∈I0∩J−(β)

log
(
1 + exp(γβTxi)

)
+

∑
i∈I1∩J+(β)

log
(
1 + exp(−γβTxi)

)
+

∑
i∈I1∩J−(β)

log
(
1 + exp(−γβTxi)

)
+#(J0(β)) log(2). (3.5.1)

It follows from the following theorem that Assumption 1 holds when the necessary and
sufficient condition in the theorem holds.

Theorem 3.5.1. The minimization (3.1.4) has an optimal solutions for any nonempty subset
S ⊆ {1, . . . , p} if and only if for any β ∈ Rp \ {0}, I0 ∩ J+(β) or I1 ∩ J−(β) is nonempty.

Proof. For simplicity, we fix S = {1, . . . , p} for (3.1.4). First, we prove the if part. We fix
β ∈ Rp so that ∥β∥ = 1. Then, by taking γ →∞, each term in (3.5.1) satisfies∑

i∈I0∩J+(β)

log
(
1 + exp(γβTxi)

)
→ +∞,

∑
i∈I0∩J−(β)

log
(
1 + exp(γβTxi)

)
→ 0,

∑
i∈I1∩J+(β)

log
(
1 + exp(−γβTxi)

)
→ 0,

∑
i∈I1∩J−(β)

log
(
1 + exp(−γβTxi)

)
→ +∞.

Because we have assumed that I0 ∩ J+(β) or I1 ∩ J−(β) is nonempty, there exists M > 0
such that the objective function f(β) takes sufficiently large values for all β so that ∥β∥ > M .
Hence, the minimum solution of (3.1.4) is in the circle ∥β∥ ≤ M . Therefore, (3.1.4) has an
optimal solution.

40

3.5 Appendix Chapter 3

Next, we prove the only-if part. We assume that there exists β ∈ Rp \ {0} such that both
I0∩J+(β) and I1∩J−(β) are empty. It is sufficient to prove that (3.1.4) has a finite optimal value
but no optimal solutions. It follows from the definition of f(β) that f(β) > #(J0(β)) log(2)
for all β ∈ Rp \ {0}. In addition, from the proof of the if-part, by taking γ → ∞, we have
g(γβ)→ #(J0(β)) log(2). This is the desired result.

41

Chapter 4

Shortest Vector Problem

4.1 Overview

Given n linearly independent integer vectors b1, . . . , bn ∈ Zn, we define the n × n matrix
B = (b1, . . . , bn) and formulate the shortest vector problem (SVP) mathematically as follows:

θ0 := min
x

{
∥Bx∥22 : x = (x1, . . . , xn)

T ∈ Zn, x ̸= 0
}
, (SVP)

where ∥ · ∥2 is the 2-norm. SVP has been generally researched in the field of cryptology. In
this chapter, we apply a branch-and-bound algorithm, which has been developed in the field
of mathematical optimization, to SVP, and propose integer quadratic programming (IQP)
approaches using high standard optimization software (e.g., CPLEX [4]) to solve SVP effi-
ciently. Moreover, we combine the branch-and-bound algorithm with techniques developed in
cryptology, for example, the BKZ algorithm [49] and a property of the Gram-Schmidt orthog-
onalization [22, Section 3.3]. We examine how large SVPs can be solved experimentally with
the proposed algorithm and approaches.

In Section 4.2, we customize a branch-and-bound algorithm to solve (SVP) efficiently. This
algorithm consists of the following techniques:

(Section 4.2.1) computation of bounds on variables in (SVP),

(Section 4.2.2) branching that splits a feasible region into three sets,

(Section 4.2.3) relaxation using the Gram-Schmidt orthogonalization,

(Section 4.2.4) heuristic method to find good feasible solutions.

We cannot directly solve (SVP) via standard optimization software (e.g., CPLEX [4]) because
it has the constraint x ̸= 0. In Section 4.3, we propose the following IQP approaches using
high standard optimization software to solve (SVP):

(Section 4.3.1) convex 0 - 1 IQP approach,

(Section 4.3.2) Partitioning approach.

In Section 4.4, we show numerical experiments of the proposed algorithm and approaches and
compare the computational performance of them.

42

4.2 Customized branch-and-bound algorithm Chapter 4

4.2 Customized branch-and-bound algorithm

In this section, we proposed a branch-and-bound algorithm purpose-built for (SVP). In Sec-
tion 4.2.1, we explain presolve to compute upper and lower bounds on variables in (SVP). In
Section 4.2.2, we describe branching for (SVP). In Section 4.2.3, we compute a lower bound
of an optimal value of a subproblem with the constraint x ̸= 0 by using the Gram-Schmidt
orthogonalization. In Section 4.2.4, we propose a heuristic method for finding better feasible
solutions of a subproblem.

4.2.1 Computation of bounds on variables

Presolve (including root and node presolve) for MILP and MINLP is one of important com-
ponents of a branch-and-bound algorithm, and it includes the following techniques: tight-
ening a given feasible region and removing redundant constraints and variables. Such vari-
ous techniques has been proposed to accelerate the speed of a branch-and-bound algorithm.
See [8, 10, 15] for more details. In [39, 40], we proposed root presolve, which computes upper
and lower bounds on variables in (SVP). In this subsection, we explain root presolve based
on [39, 40].

Given m linearly independent integer vectors b̄1, . . . , b̄m ∈ Zn (n ≥ m), we consider the
following problem:

θ̄0 := min
x

{∥∥B̄x
∥∥2
2
: x ̸= 0, x ∈ Zm

}
, (4.2.1)

where B̄ ∈ Zn×m is denoted by (b̄1, . . . , b̄m). Note that (4.2.1) is the form of (SVP) if n = m.
Let M(> 0) ∈ Z be an upper bound of the optimal value θ̄0 of (4.2.1). For instance, we can
employ min{∥b̄1∥22, . . . , ∥b̄m∥22} as M because any standard basis vector ei of Rm, which has
a single nonzero entry with the value 1, is feasible for (4.2.1). Because an optimal solution
x∗ ∈ Zm of (4.2.1) satisfies ∥B̄x∗∥22 ≤ M , upper and lower bounds on variables xi can be
computed as follows:

min
x∈Zm

{
xi :

∥∥B̄x
∥∥2
2
≤M

}
≤ xi ≤ max

x∈Zm

{
xi :

∥∥B̄x
∥∥2
2
≤M

}
, (4.2.2)

for all i = 1, . . . ,m. Because these problems contain integer variables, the computational cost
for solving them is high. Therefore, we compute the following optimization problems instead
of (4.2.2):

min
x∈Rm

{
xi :

∥∥B̄x
∥∥2
2
≤M

}
≤ xi ≤ max

x∈Rm

{
xi :

∥∥B̄x
∥∥2
2
≤M

}
, (4.2.3)

for all i = 1, . . . ,m. We can compute these problems by applying the following lemma.

Lemma 4.2.1. Given a scalar M(> 0) ∈ R, vectors t ∈ Rm, d ∈ Rn, and a full column matrix
A ∈ Rn×m(n ≥ m), the following equations hold:

min
x∈Rm

{
tTx : ∥Ax+ d∥22 ≤M

}
= −
√
M

∥∥∥ÃT t
∥∥∥
2
− tT Ãd,

max
x∈Rm

{
tTx : ∥Ax+ d∥22 ≤M

}
=
√
M

∥∥∥ÃT t
∥∥∥
2
− tT Ãd,

where Ã is defined as (ATA)
−1

AT .

43

4.2 Customized branch-and-bound algorithm Chapter 4

Proof. By defining y ∈ Rn as (1/
√
M)(Ax+ d), we can rewrite above problems as follows:

min
x∈Rm

{
tTx : ∥Ax+ d∥22 ≤M

}
= −tT Ãd+

√
M min

y∈Rn

{
tT Ãy : ∥y∥22 ≤ 1

}
,

max
x∈Rm

{
tTx : ∥Ax+ d∥22 ≤M

}
= −tT Ãd+

√
M max

y∈Rn

{
tT Ãy : ∥y∥22 ≤ 1

}
.

From the Cauchy-Schwarz inequality, we have −∥ÃT t∥2 ≤ tT Ãy ≤ ∥ÃT t∥2 for any y ∈ Rn with
∥y∥22 ≤ 1. Here, y− ∈ Rn denotes −(1/∥ÃT t∥2)ÃT t, and y+ ∈ Rn denotes (1/∥ÃT t∥2)ÃT t.
Then, y− and y+ are the unit vectors. Because tT Ãy− = −∥ÃT t∥2 and tT Ãy+ = ∥ÃT t∥2, y−
and y+ are optimal solutions of above problems, respectively.

Applying Lemma 4.2.1, we can compute (4.2.3) as follows:

−
√
M

∥∥∥B̄(
B̄T B̄

)−1
ei

∥∥∥
2
≤ xi ≤

√
M

∥∥∥B̄(
B̄T B̄

)−1
ei

∥∥∥
2
, (4.2.4)

for all i = 1, . . . ,m. In addition, by using the integrality of variables xi, we can tighten the
bounds (4.2.4) as follows:

−
⌊√

M
∥∥∥B̄(

B̄T B̄
)−1

ei

∥∥∥
2

⌋
≤ xi ≤

⌊√
M

∥∥∥B̄(
B̄T B̄

)−1
ei

∥∥∥
2

⌋
,

for all i = 1, . . . ,m.
We apply this presolve to the root node (i.e., (SVP)). An upper bound on variable xi in

(SVP) is denoted by

ci =
⌊√

M
∥∥B−T ei

∥∥
2

⌋
for any i = 1, . . . ,m. Then, (SVP) with bounds on variables is written as

θ0 := min
x

{
∥Bx∥22 : −ci ≤ xi ≤ ci (i = 1, . . . , n), x ̸= 0, x ∈ Zn

}
. (SVP′)

4.2.2 Branching

We explain branching for (SVP′) in this subsection, and it is used in our branch-and-bound
algorithm. By selecting index k from among {1, . . . , n} and adding trivial constraints to (SVP′),
we obtain the following subproblems:

θ0k := min
x

{
∥Bx∥22 : −ci ≤ xi ≤ ci (i = 1, . . . , n), xk = 0, x ̸= 0, x ∈ Zn

}
, (4.2.5)

θ+k := min
x

{
∥Bx∥22 : −ci ≤ xi ≤ ci (i = 1, . . . , n), 1 ≤ xk, x ̸= 0, x ∈ Zn

}
, (4.2.6)

θ−k := min
x

{
∥Bx∥22 : −ci ≤ xi ≤ ci (i = 1, . . . , n), xk ≤ −1, x ̸= 0, x ∈ Zn

}
. (4.2.7)

It is clear that the optimal value of θ0 is equal to min{θ0, θ+, θ−}. The following lemma implies
that we do not need to solve the problem (4.2.7). Therefore, it is enough to focus on (4.2.5)
and (4.2.6).

Lemma 4.2.2. θ0 = min{θ0k, θ
+
k } for any k ∈ {1, . . . , n}.

Proof. Let x+ be an optimal solution of (4.2.6) and x− an optimal solution of (4.2.7). −x+
is feasible for (4.2.7) and we obtain ∥B(−x+)∥22 = ∥Bx+∥22 = θ+k ≥ θ−k . −x

− is feasible for
(4.2.6) and we obtain ∥B(−x−)∥22 = ∥Bx−∥22 = θ−k ≥ θ+k . Hence we obtain θ+k = θ−k .

44

4.2 Customized branch-and-bound algorithm Chapter 4

First, we consider branching for (4.2.5). As in branching for (SVP′), we select index k′ from
among {1, . . . , n} \ {k} and generate two subproblems: (4.2.5) with the equality xk′ = 0 and
(4.2.5) with the inequality 1 ≤ xk′ . Next, we consider branching for (4.2.6). The constraint
x ̸= 0 in (4.2.6) is redundant. By removing x ̸= 0, we can transform (4.2.6) into the following
problem:

θ+k = min
x

{
∥Bx∥22 : −ci ≤ xi ≤ ci, 1 ≤ xk, x ∈ Zn

}
. (4.2.8)

This problem is a convex IQP problem. A relaxation problem which is obtained by relaxing
integrality of all variables xi, can be solved by applying conventional algorithms (e.g., the
interior point method and the active set method). Therefore, we execute standard branching
for (4.2.8). Let x̄ be an optimal solution of the relaxation problem of (4.2.8). If x̄ is an integer
point, x̄ is also an optimal solution of (4.2.8). Then, we do not need to branch for (4.2.8).
Otherwise, we select an index k′ with a fractional value x̄k′ , and generate two subproblems:
(4.2.8) with the inequality xk′ ≤ ⌊x̄k′⌋ and (4.2.8) with the inequality ⌈x̄k′⌉ ≤ xk′ .

We summarize branching for any subproblem in Algorithm 8. Any subproblem is written
as

min
x

{
∥Bx∥22 : ℓi ≤ xi ≤ ui (i = 1, . . . , n), x ̸= 0, x ∈ Zn

}
, (4.2.9)

where ℓi and ui for all i = 1, . . . , n are integers.

Algorithm 8: Branching

Input: A feasible subproblem (4.2.9)
Output: Two subproblems
S ← {i ∈ {1, . . . , n} : ℓi ̸= 0 or ui ̸= 0};
if ℓi < 0 and ui > 0 for all i ∈ S then

// Then, we apply branching for (4.2.5).

Select an index k ∈ S and return two subproblems:

• (4.2.9) with xk = 0

• (4.2.9) with xk ≥ 1

else
// Then, we apply branching for (4.2.6).

// Let x̄ be an optimal solution of the relaxation problem of (4.2.9)

S ← {i ∈ {1, . . . , n} : x̄i is a fractional value};
Select index k ∈ S and return two subproblems:

• (4.2.9) with xk ≤ ⌊x̄k⌋

• (4.2.9) with xk ≥ ⌈x̄k⌉

end

4.2.3 Relaxation

We explain a procedure to compute a lower bound of the optimal value of any subproblem
(4.2.9). If the constraint x ̸= 0 of a given subproblem (4.2.9) is redundant, the relaxation
problem obtained by relaxing the integrality is convex quadratic programming problem, which

45

4.2 Customized branch-and-bound algorithm Chapter 4

can be solved by applying conventional algorithms, (e.g., the interior point method and the
active set method). Our branch-and-bound algorithm applies the active set method to such a
subproblem and employs an optimal solution of the parent subproblem as an initial solution.
If the constraint x ̸= 0 of (4.2.9) is not redundant, the set of feasible solutions of the relaxation
problem is nonconvex, and it is intractable. In this case, instead of the relaxation problem, we
employ a proposition described in [22, Section 3.3] to compute a lower bound of the optimal
value of the subproblem.

We consider the following problem:

θ := min
x

{∥∥B̄x
∥∥2
2
: x ̸= 0, x ∈ Zm

}
, (4.2.10)

where B̄ ∈ Zn×m is a submatrix of B ∈ Zn×n in (SVP′). Let b̄1, . . . , b̄m be the column vectors
of B̄. The Gram-Schmidt orthogonalization b∗1, . . . , b

∗
m of b̄1, . . . , b̄m is computed as follows:

b∗1 = b̄1,

b∗i = b̄i −
i−1∑
j=1

µijb
∗
j (i = 2, . . . ,m), µij =

b̄i · b∗j
b∗j · b∗j

(1 ≤ j < i ≤ m),

where dot notation “·” denotes the dot product of vectors. We do not normalize the vectors.
By using the following proposition described in [22, Section 3.3], we can compute a lower bound
of the optimal value of (4.2.10).

Proposition 4.2.3. θ ≥ min{∥b∗j∥22 : j = 1, . . . ,m} > 0

Proof. Let x∗ be an optimal solution of (4.2.10) and k the largest index with x∗k ̸= 0. Then,
the optimal value of (4.2.10) is ∥B̄x∗∥22. First, we prove |B̄x∗ ·b∗k| ≥ ∥b∗k∥22. Using the definition
of the Gram-Schmidt orthogonalization, we obtain

B̄x∗ · b∗k =

k∑
i=1

(
b̄i · b∗k

)
x∗i =

(
b̄k · b∗k

)
x∗k =

b∗k +

k−1∑
j=1

µkjb
∗
j

 · b∗k
x∗k = x∗k∥b∗k∥22.

Since x∗k is a nonzero integer, we have |x∗k| ≥ 1, and so∣∣B̄x∗ · b∗k
∣∣ = |x∗k|∥b∗k∥22 ≥ ∥b∗k∥22.

From the Cauchy-Schwarz inequality, we obtain∥∥B̄x∗
∥∥
2
∥b∗k∥2 ≥

∣∣B̄x∗ · b∗k
∣∣ ≥ ∥b∗k∥22.

Therefore, the following equation holds:∥∥B̄x∗
∥∥
2
≥ ∥b∗k∥2 ≥ min

{
∥b∗j∥2 : j = 1, . . . ,m

}
> 0.

We can compute a lower bound of the optimal value of any subproblem by applying Proposi-
tion 4.2.3 even if one contains the constraint x ̸= 0. Any subproblem is written as

min
x

{
∥Bx∥22 : ℓi ≤ xi ≤ ui (i = 1, . . . , n), x ̸= 0, x ∈ Zn

}
,

46

4.2 Customized branch-and-bound algorithm Chapter 4

where ℓi and ui for all i = 1, . . . , n are integers. If there exist i ∈ {1, . . . , n} such that
ℓi = ui = 0, we substitute xi = 0 with all such i into the subproblem. Then, the subproblem
is rewritten as

min
x

{∥∥B̄x
∥∥2
2
: ℓi ≤ xi ≤ ui (i = 1, . . . ,m), x ̸= 0, x ∈ Zm

}
,

where B̄ ∈ Zn×m is a submatrix of B ∈ Zn×n. By relaxing the bound constraints ℓi ≤ xi ≤ ui
for all i = 1, . . . ,m, this subproblem is of the form of (4.2.10). Therefore, we can compute a
lower bound of the optimal value of the subproblem. However, since the bound constraints are
relaxed, the computed lower bounds may not be good value.

4.2.4 Heuristic method

We can find a feasible solution of a subproblem (4.2.9) by rounding an optimal solution of the
relaxation problem. However, such a solution does not always give a low objective value. In
this section, we propose a heuristic method for finding a better feasible solution of the following
subproblem:

min
x

{
∥Bx∥22 : ℓi ≤ xi ≤ ui (i = 1, . . . , n), x ∈ Zn

}
, (4.2.11)

where ℓi and ui (i = 1, . . . , n) are integers. We assume that the zero vector is infeasible for
(4.2.11). Given a feasible solution x̂ of (4.2.11), we improve repeatedly the feasible solution x̂
by solving the following problems:

min
t

{
∥B (x̂+ tei)∥22 : ℓi ≤ x̂i + t ≤ ui, t ∈ Z

}
, (4.2.12)

for all i = 1, . . . , n, where ei ∈ Rn is the n-dimensional ith standard basis vector. Let t∗i
(i = 1, . . . , n) be optimal solutions of these problems (4.2.12), respectively. This optimization
is to find the best solution x̂+ t∗i ei with respect to the ith element of the solution x̂. We solve
(4.2.12) for all i = 1, . . . , n and select an index i∗ so that the objective value is the lowest
in all the optimal values. If the value is less than ∥Bx̂∥22, then we change from x̂ to x̂ + t∗i ei
as the current solution. We repeat this procedure until the objective value is not improved.
We summarize this process in Algorithm 9. This heuristic method can be regarded as the
coordinate descent method for an IQP problem (4.2.11). See [45, Section 8.9] for the detail of
the coordinate descent method.

Algorithm 9: Heuristic method for subproblems (4.2.11)

Input: A subproblem (4.2.11) and an initial feasible solution x of (4.2.11)
Output: A feasible solution x̂ of (4.2.11)
x̂new ←− x;
do

x̂←− x̂new;
for i→ 1 to n do

Solve (4.2.12) and t∗i denotes an optimal solution of (4.2.12);
vi ←− ∥B(x̂+ t∗i ei)∥22;

end
i∗ ←− argmin{vi : i = 1, . . . , n}, x̂new ←− x̂+ t∗i∗ei∗ ;

while ∥Bx̂new∥22 < ∥Bx̂∥22;
return x̂;

47

4.3 IQP approaches using optimization software Chapter 4

We can easily solve the problems (4.2.12). To explain this, we define ℓ̂i and ûi as follows:

ℓ̂i = ℓi − x̂i and ûi = ui − x̂i.

By removing the constant term ∥Bx̂∥22 from the objective function we simplify (4.2.12) as
follows:

min
t
{t2∥Bei∥22 + 2tei

TBTBx̂ : ℓ̂i ≤ t ≤ ûi, t ∈ Z} (4.2.13)

The following lemma ensures that an optimal solution of (4.2.13) is provided with the closed-
form expression. By using this lemma, we can find t∗ in Algorithm 9 efficiently.

Lemma 4.2.4. Let t̂ be −x̂TBTBei/∥Bei∥22. An optimal solution t∗ of (4.2.13) is provided as
follows.

Case1 If ℓ̂i ≤ t̂ ≤ ûi, then t∗ is either ⌈t̂⌉ or ⌊t̂⌋.

Case2 If t̂ < ℓ̂i, then t∗ = ℓ̂i.

Case3 If t̂ > ûi, then t∗ = ûi.

Proof. The objective function of (4.2.13) is denoted by gi(t). t̂ is the optimal solution of the
minimization of gi(t) over t ∈ R. Since gi(t) is convex, we have the following monotonicity:

gi(t) ≥ gi(⌊t̂⌋) ≥ gi(t̂) (t ≤ ⌊t̂⌋ ≤ t̂) and gi(t̂) ≤ gi(⌈t̂⌉) ≤ gi(t) (t ≥ ⌈t̂⌉ ≥ t̂).

In Case1, since ℓ̂i and ûi are both integer, ℓ̂i ≤ ⌊t̂⌋ ≤ ⌈t̂⌉ ≤ ûi. In addition, there is no integer
between ⌊t̂⌋ and ⌈t̂⌉. Thus either ⌊t̂⌋ or ⌈t̂⌉ is optimal for (4.2.13) in Case1. We can prove
Case2 and Case3 by using this monotonicity on gi(t).

4.3 IQP approaches using optimization software

In Section 4.2, we proposed the branch-and-bound algorithm purpose-built for (SVP). To exam-
ine the computational performance of this algorithm, we propose two convex IQP approaches
using high standard optimization software (e.g., CPLEX [4]) in this section. The optimiza-
tion software cannot directly be applied to (SVP) because it contains the constraint x ̸= 0.
Hence, we need to cope with x ̸= 0. The first approach reformulates (SVP) as a convex 0 - 1
IQP problem. The constraint x ̸= 0 is transformed into equality and inequality constraints in
Section 4.3.1. The second approach is a combination of Proposition 4.2.3 and high standard
optimization software. We explain the process in Section 4.3.2. In Section 4.4, we compare
these approaches with the branch-and-bound algorithm proposed in Section 4.2.

4.3.1 Convex 0 - 1 IQP approach

We proposed a convex 0 - 1 IQP formulation for SVP in [40]. In this subsection, we introduce
firstly this formulation. Next, we propose another formulation that contains less auxiliary
variables. In both of the formulations, we apply the techniques proposed in Section 4.2.1 to
compute upper and lower bounds on variables xi in (SVP). Hence, we focus on (SVP) with the
bounds, that is,

θ0 := min
x

{
∥Bx∥22 : −ci ≤ xi ≤ ci (i = 1, . . . , n), x ̸= 0, x ∈ Zm

}
, (SVP′)

48

4.3 IQP approaches using optimization software Chapter 4

in this subsection.
By adding binary variables yij and constraints to (SVP), we transform x ̸= 0 into equality

and inequality constraints as follows:

θ0 = min
x,y


∥Bx∥22 :

xi =

ci∑
j=−ci

jyij ,

ci∑
j=−ci

yij = 1 (i = 1, . . . , n),

n∑
i=1

yi0 ≤ n− 1,

x ∈ Zn, yij ∈ {0, 1} (i = 1, . . . , n; j = −ci,−ci + 1 . . . , ci)


. (4.3.1)

The constraint
∑ci

j=−ci
yij = 1 means that the only one variable yij is 1 and that the others

are 0. Thus, xi = k holds if yik = 1. The constraint
∑n

i=1 yi0 ≤ n− 1 ensures that any feasible
solution x is not the zero vector.

Next, we explain another formulation for SVP. Given (SVP′), we define ki ∈ Z for all
i = 1, . . . , n as

ki = min{k ∈ Z : ci ≤ 2k, k ≥ 0},
where ci for all i = 1, . . . , n are the bounds in (SVP′) and positive integers. By introducing
integer and binary variables, (SVP′) can be reformulated as follows:

θ0 = min
x,x±,y±,z±



∥Bx∥22 :

xi = x+i − x−i (i = 1, . . . , n),

x+i =

ki∑
j=0

2jy+ij , x−i =

ki∑
j=0

2jy−ij (i = 1, . . . , n),

n∑
i=1

(x+i + x−i) ≥ 1,

z+i + z−i = 1 (i = 1, . . . , n),
−ci ≤ xi ≤ ci (i = 1, . . . , n),
0 ≤ x+i ≤ ciz

+
i , 0 ≤ x−i ≤ ciz

−
i (i = 1, . . . , n),

x, x+, x− ∈ Zn, z+, z− ∈ {0, 1}n,
y+ij , y

−
ij ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . , ki)



. (4.3.2)

The variables x+i and x−i correspond to positive and negative components of xi, respectively.
The constraints z+i +z−i = 1 ensure that either z+i or z−i is 0. If z+i = 0, then x+i = 0 because of
x+i ≤ ciz

+
i . The constraint

∑n
i=1(x

+
i + x−i) ≥ 1 corresponds to x ̸= 0. In fact, this constraints

is unsatisfied only if x = 0.
These problems (4.3.1) and (4.3.2) are convex IQP problems, and standard optimization

software (e.g., CPLEX [4]) is available for them. Here, we compare the number of auxiliary
variables in each problem. The problem (4.3.1) needs

∑n
i=1(2ci+1) auxiliary variables. On the

other hand, the number of the auxiliary variables of (4.3.2) is
∑n

i=1(2ki+4) because x+ and x−

can be eliminated from (4.3.2). For benchmark problems [6] with the lattice dimension n ≥ 40,
most of the ci are larger than 3. Hence, we expect that (4.3.2) will contain a small number
of variables compared to the other formulation (4.3.1). In Section 4.4, we show numerical
experiments pertaining to (4.3.2).

4.3.2 Partitioning approach

In this subsection, we propose an effective convex IQP approach without auxiliary variables
to solve (SVP′). This approach splits a problem into two problems. The first problem does

49

4.3 IQP approaches using optimization software Chapter 4

not contain the constraint x ̸= 0, and optimization software is available for it. On the other
hand, the second problem contains the constraint x ̸= 0, and optimization software cannot
directly be applied to it. Instead of solving the second problem, we use Proposition 4.2.3 for
computation of a lower bound of the optimal value of it. The second problem is repeatedly
split.

First, we define two problems for any subset K ⊂ {1, . . . , n} and k′ ∈ {1, . . . , n} \ K as
follows:

θ0
(
K, k′

)
:= min

x

∥Bx∥22 :
−ci ≤ xi ≤ ci (i = 1, . . . , n),
xk = 0 (k ∈ K), xk′ = 0,
x ̸= 0, x ∈ Zn

 , P(K, k′)

θ+
(
K, k′

)
:= min

x

∥Bx∥22 :
−ci ≤ xi ≤ ci (i = 1, . . . , n),
xk = 0 (k ∈ K), xk′ ≥ 1,
x ∈ Zn

 . Q(K, k′)

By applying the branching described in Section 4.2.2, we rewrite (SVP′) as

θ0 = min
x

{
∥Bx∥22 : −ci ≤ xi ≤ ci (i = 1, . . . , n), x ̸= 0, x ∈ Zn

}
= min

{
θ+

(
∅, k′1

)
, θ0

(
∅, k′1

)}
(4.3.3)

= min
{
θ+

(
∅, k′1

)
,min

{
θ+

({
k′1
}
, k′2

)
, θ0

({
k′1
}
, k′2

)}}
= min

{
θ+

(
∅, k′1

)
, θ+

({
k′1
}
, k′2

)
,min

{
θ+

({
k′1, k

′
2

}
, k′3

)
, θ0

({
k′1, k

′
2

}
, k′3

)}}
...

= min
{
θ+

(
∅, k′1

)
, θ+

({
k′1
}
, k′2

)
, θ+

({
k′1, k

′
2

}
, k′3

)
, . . . , θ+ ({ k′1, k′2, . . . , k′n−1

}
, k′n

)}
,

(4.3.4)

where k′i ∈ {1, . . . , n} \ {k′j : 0 < j < i} for all i = 1, . . . , n. Because all problems Q(K, k′) do
not contain x ̸= 0, they can be solved via optimization software. Hence, we can compute the
optimal value θ0 and an optimal solution of (SVP′).

The equation (4.3.4) contains n convex IQP problems. We make good use of Proposi-
tion 4.2.3 and show that it is not necessary to solve all the problems. Let x∗ be an interim
solution. Applying Proposition 4.2.3 to P(K, k′), we can obtain a lower bound of θ0 (K, k′). For
example, if a lower bound ℓ of θ0 (∅, k′1) is higher than ∥Bx∗∥22 (i.e., θ0 (∅, k′1) ≥ ℓ > ∥Bx∗∥22),
then θ0 = min{θ+ (∅, k′1) , ∥Bx∗∥22} because of (4.3.3). In this way, the proposed approach splits
repeatedly a problem into P(K, k′) and Q(K, k′) and computes the optimal value θ+ (K, k′)
of Q(K, k′) and a lower bound of the optimal value θ0 (K, k′) of P(K, k′). Finally, we summa-
rize the proposed approach in Algorithm 10.

50

4.4 Numerical experiments Chapter 4

Algorithm 10: Convex IQP approach for (SVP′)

Input: (SVP′), i.e. B := (b1, . . . , bn) ∈ Zn×n and ci(≥ 0) ∈ Z (i = 1, . . . , n)
Output: The optimal value and an optimal solution of (SVP′)
K ← ∅;
θ∗ ← min{∥bi∥22 : i = 1, . . . , n} and x∗ ← ej where j ∈ argmin{∥bi∥22 : i = 1, . . . , n};
for i→ 1 to n− 1 do

Select an index k ∈ {1, . . . , n} \K;
Compute the optimal value θ+(K, k) of Q(K, k) via optimization software;
Let x̃ be an optimal solution of Q(K, k);
if θ∗ ≥ θ+(K, k) then θ∗ ← θ+(K, k) and x∗ ← x̃;
if i < n− 1 then

Compute lower bound ℓ of θ0(K, k) by applying Proposition 4.2.3;
if ℓ > θ∗ then break;

end
K ← K ∪ {k};

end
return θ∗ and x∗;

4.4 Numerical experiments

In this section, we show numerical experiments of the proposed approaches, which are the
branch-and-bound algorithm described in Section 4.2 and the IQP approaches proposed in
Section 4.3. We use benchmark problems obtained from generator in [6] and apply the BKZ
algorithm [49] with blocksize 20 to these problems. We employed this BKZ algorithm from the
library of fplll [2]. The specifications of the computer used in the numerical experiments were
as follows: CPU: Intel R⃝ Xeon R⃝ CPU E5–2687 @ 3.1GHz; Memory: 128GB; and OS: Ubuntu
16.04.3 LTS.

We solve SVPs with the dimension n = 40, 43, 46, 49, and these problems are obtained from
generator with the seed = 0, 1, . . . , 4. The time limit for solving each SVP is 86400 seconds
(= 1 day). Figure 4.1 shows computational time of the following approaches:

• BaB:

– refers to the branch-and-bound algorithm proposed in Section 4.2,

– is implemented by C++,

– employs 32 threads for parallel computation.

• BIQP:

– solves 0 - 1 convex IQP problem (4.3.2) via CPLEX [4],

– employs 32 threads for parallel computation.

• IQP:

– refers to Algorithm 10 proposed in Section 4.3.2,

– employs CPLEX [4] to solve Q(K, k′),

51

4.4 Numerical experiments Chapter 4

– employs 32 threads for parallel computation.

In Figure 4.1, the vertical line shows the computational time and horizontal one seed. If the
benchmark problem could not be solved within 86400 seconds, the computational time of the
corresponding approach is not plotted. It can be inferred from Figure 4.1 that BaB, that is,
the branch-and-bound algorithm proposed in Section 4.2, outperforms the others in terms of
computational time. In fact, for all the benchmark problem, BaB was the fastest among the
three approaches. The second fastest approach was IQP, that is, the convex IQP approach
proposed in Section 4.3.2. IQP and BIQP could not solve some of the benchmark problems
with n = 49 within 86400 seconds.

n = 40

1×10
0

1×10
1

1×10
2

1×10
3

1×10
4

seed=0 seed=1 seed=2 seed=3 seed=4

T
im

e
 (

s
e

c
)

BaB BIQP IQP

n = 43

1×10
0

1×10
1

1×10
2

1×10
3

1×10
4

seed=0 seed=1 seed=2 seed=3 seed=4

T
im

e
 (

s
e

c
)

BaB BIQP IQP

n = 46

1×10
1

1×10
2

1×10
3

1×10
4

1×10
5

seed=0 seed=1 seed=2 seed=3 seed=4

T
im

e
 (

s
e

c
)

BaB BIQP IQP

n = 49

1×10
2

1×10
3

1×10
4

1×10
5

seed=0 seed=1 seed=2 seed=3 seed=4

T
im

e
 (

s
e

c
)

BaB BIQP IQP

Figure 4.1: Comparison of computational time on benchmark problems with dimension n ∈
{40, 43, 46, 49}

Next, we show the computational performance of BaB for benchmark problems with larger
dimension in Table 4.1. The column labeled “Time” indicates CPU time in seconds to com-
pute the optimal value. “>86400 s” implies that the branch-and-bound algorithm could not
determine the optimal value within 86400 seconds. The column labeled “α” indicates the
approximation factor defined as

α :=

√
π∥Bx∗∥2

Γ(n/2 + 1)1/n|detB|1/n
,

52

4.4 Numerical experiments Chapter 4

where x∗ is the computed solution, and Γ(n/2 + 1) stands for the value of gamma function
at (n/2 + 1). Notably, the approximation factor is used as a measure of the quality of the
computed solution. In [6], it is necessary to find feasible solutions with α ≤ 1.05.

It can be inferred Table 4.1 that the proposed branch-and-bound algorithm can solve SVPs
with the dimension n ≤ 55 within 86400 seconds. In fact, each of the SVP with n = 55 is
solved within 4 hours. Although the proposed algorithm could not solve the SVPs with n = 58
and seed = 0, 1 within 86400 seconds, it could find good feasible solutions.

Table 4.1: Computational performance of our proposed branch-and-bound algorithm

n = 52 n = 55 n = 58

seed Time α Time α Time α

0 3542 s 1.02 14063 s 1.02 >86400 s 1.03
1 1966 s 0.99 10841 s 1.01 >86400 s 1.04
2 1739 s 0.99 4163 s 0.95 84087 s 1.03
3 4263 s 1.03 10806 s 1.01 59794 s 1.01
4 2828 s 1.01 11149 s 1.00 63357 s 0.99

53

Chapter 5

Conclusion

We proposed branch-and-bound algorithms to solve two problems: variable selection and
SVP. To achieve good computational performance, we applied the structure and properties
of the problems to components related to the branch-and-bound algorithms, such as relax-
ation, branching (rules), heuristic methods. We showed numerical experiments pertaining to
the proposed algorithms and examined how they outperform approaches using state-of-the-art
optimization software.

In Chapter 3, we focus on direct objective optimization and formulate it as an MINLP
problem. This problem contains a flexible objective function, and applications of it include
AIC-based variable selection in linear and logistic regression. To solve the MINLP prob-
lem efficiently, we developed several components related to the branch-and-bound algorithm,
for example, the cost-effective relaxation, the heuristic method based on stepwise methods,
and the branching rules. In the numerical experiments, we implement the branch-and-bound
with these components by using SCIP and UG, which are open source software for a flexi-
ble framework of an branch-and-bound algorithm and parallel computation. For small-scale
and medium-scale instances, our solver was faster than approaches using state-of-the-art opti-
mization software. Conversely, for large-scale instances, our solver could find better solutions
compared to the other approaches even if it could not determine the optimal value within
5000 seconds. Nonetheless, there is room for improvement in the numerical performance of our
solver. The computational cost of our heuristic method based on the stepwise methods ap-
pears to be high for large-scale instances. In fact, SW+ and SW− (i.e., the stepwise methods)
required considerably more computational time for solving musk and madelon in Table 3.4.
Hence, further study is to reduce the computational time of our heuristic method, for example,
by applying discrete first order algorithms [17].

In Chapter 4, we proposed the effective branch-and-bound algorithm purpose-built for
SVPs. This algorithm consists of the following components: presolve, branching, relaxation,
and a heuristic method. In addition, we proposed two convex IQP approaches using state-of-
the-art optimization software to solve SVPs. We compared the proposed branch-and-bounds
algorithm with the proposed convex IQP approaches in the numerical experiments. It can be
inferred from the numerical experiments that the proposed branch-and-bound algorithm out-
performs the others in terms of computational time. To examine difficulty in solving SVPs, we
need to solve SVPs with larger dimension n. To this end, we will improve parallel computation
of branch-and-bound algorithm (see, e.g., [51]) and incorporate techniques proposed in [23] for
convex IQP problems.

54

Chapter 5

Acknowledgements

First and foremost, I would like to show my greatest appreciation to Associate Professor Hayato
Waki, who gave me continuing helpful comments and words of encouragement. I would also like
to express my gratitude to Professor Katsuki Fujisawa, who lent me high-spec computers for
some preliminary computational experiments and provided helpful comments and opportunities
for a variety of researches. I would also like to thank Associate Professor Masaya Yasuda for
helpful discussions. I would like to offer my special thanks to Doctor Yuji Shinano and Doctor
Ambros Gleixner. They let me study in ZIB and supported me in Berlin life. I want to thank
past and present members of Fujisawa’s laboratory for spending fun time with me. Now lastly,
I would like to express my gratitude to my family for their support and warm encouragements.

55

Bibliography

[1] FICO Xpress-Optimizer, FICO. Home page: http://www.fico.com/xpress

[2] fplll, FPLLL development team. fplll home page: http://github.com/fplll/fplll

[3] Gurobi, Gurobi Optimization. Gurobi home page: http://www.gurobi.com

[4] IBM ILOG CPLEX Optimizer 12.8.0, IBM ILOG. CPLEX home page: https://www.

ibm.com/products/ilog-cplex-optimization-studio

[5] SCIP Optimization Suite, Zuse Institute Berlin. SCIP home page: http://scip.zib.de/

[6] SVP CHALLENGE. Home page: https://www.latticechallenge.org/svp-chall

enge/

[7] Ubiquity Generator framework, Zuse Institute Berlin. UG home page: http://ug.zib.
de/

[8] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitát
Berlin, 2007.

[9] T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[10] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve reductions
in mixed integer programming. ZIB Report, pages 16–44, 2016.

[11] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 10–19.
ACM, 1998.

[12] H. Akaike. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 19(6):716–723, 1974.

[13] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, and A. McKenney. LAPACK Users’ guide. SIAM, 1999.

[14] K. Bache and M. Lichman. UCI machine learning repository, 2013. Home page: http:

//archive.ics.uci.edu/ml

[15] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. Mixed-integer
nonlinear optimization. Acta Numerica, 22:1–131, 2013.

56

BIBLIOGRAPHY BIBLIOGRAPHY

[16] D. Bertsimas and A. King. Logistic regression: From art to science. Statistical Science,
32(3):367–384, 2017.

[17] D. Bertsimas, A. King, and R. Mazumder. Best subset selection via a modern optimization
lens. The Annals of Statistics, 44(2):813–852, 2016.

[18] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex
mixed integer nonlinear programs. Discrete Optimization, 5(2):186–204, 2008.

[19] B. Borchers and J. E. Mitchell. An improved branch and bound algorithm for mixed
integer nonlinear programs. Computers & Operations Research, 21(4):359–367, 1994.

[20] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[21] C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth. On the optimal design of
water distribution networks: a practical MINLP approach. Optimization and Engineering,
13(2):219–246, 2012.

[22] M. R. Bremner. Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its
Applications. Chapman & Hall Pure and Applied Mathematics. Taylor & Francis, 2011.

[23] C. Buchheim, A. Caprara, and A. Lodi. An effective branch-and-bound algorithm for
convex quadratic integer programming. Mathematical Programming, 135(1-2):369–395,
2012.

[24] M. R. Bussieck and S. Vigerske. MINLP solver software. In Wiley Encyclopedia of Oper-
ations Research and Management Science. Wiley, Chichester, 2010.

[25] Ö. Dagdelen and M. Schneider. Parallel enumeration of shortest lattice vectors. In Euro-
pean Conference on Parallel Processing, pages 211–222. Springer, 2010.

[26] R. J. Dakin. A tree-search algorithm for mixed integer programming problems. The
Computer Journal, 8(3):250–255, 1965.

[27] T. Farkas, B. Czuczai, and Z. Lelkes. New MINLP model and modified outer approxi-
mation algorithm for distillation column synthesis. Industrial & Engineering Chemistry
Research, 47(9):3088–3103, 2008.

[28] U. Fincke and M. Pohst. A procedure for determining algebraic integers of given norm.
In European Conference on Computer Algebra, pages 194–202. Springer, 1983.

[29] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of
npcompleteness. Computers and Intractability, 340, 1979.

[30] O. K. Gupta and A. Ravindran. Branch and bound experiments in convex nonlinear
integer programming. Management Science, 31(12):1533–1546, 1985.

[31] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3(Mar):1157–1182, 2003.

57

BIBLIOGRAPHY BIBLIOGRAPHY

[32] J. Hermans, M. Schneider, J. Buchmann, F. Vercauteren, and B. Preneel. Parallel shortest
lattice vector enumeration on graphics cards. In International Conference on Cryptology
in Africa, pages 52–68. Springer, 2010.

[33] X. Huo and X. Ni. When do stepwise algorithms meet subset selection criteria? The
Annals of Statistics, pages 870–887, 2007.

[34] R. Kannan. Improved algorithms for integer programming and related lattice problems. In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pages 193–206.
ACM, 1983.

[35] J. Kim, Seung, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method
for large-scale ℓ1-regularized least squares. IEEE Journal of Selected Topics in Signal
Processing, 1(4):606–617, 2007.

[36] K. Kimura. Application of a mixed integer nonlinear programming approach to variable
selection in logistic regression. Journal of the Operations Research Society of Japan, 62(1),
to appear.

[37] K. Kimura and H. Waki. Mixed integer nonlinear program for minimization of Akaike’s
information criterion. In G.-M. Greuel, T. Koch, P. Paule, and A. Sommese, editors,
Mathematical Software – ICMS 2016, pages 292–300, Cham, 2016. Springer International
Publishing.

[38] K. Kimura and H. Waki. Minimization of Akaike’s information criterion in linear regres-
sion analysis via mixed integer nonlinear program. Optimization Methods and Software,
33(3):633–649, 2018.

[39] K. Kimura and H. Waki. A mixed integer quadratic formulation for the shortest vector
problem. In Mathematical Modelling for Next-Generation Cryptography, pages 239–255.
Springer, 2018.

[40] K. Kimura, H. Waki, and M. Yasuda. Application of mixed integer quadratic program to
shortest vector problems. JSIAM Letters, 9:65–68, 2017.

[41] K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale ℓ1-regularized
logistic regression. Journal of Machine Learning Research, 8(Jul):1519–1555, 2007.

[42] A. H. Land and A. G. Doig. An automatic method of solving discrete programming
problems. Econometrica: Journal of the Econometric Society, pages 497–520, 1960.

[43] J. Lee and S. Leyffer, editors. Mixed Integer Nonlinear Programming, volume 154. Springer
Science & Business Media, 2011.

[44] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coeffi-
cients. Mathematische Annalen, 261(4):515–534, 1982.

[45] D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. International Series in
Operations Research & Management Science. Springer US, 2008.

[46] D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 820–849. Springer, 2016.

58

BIBLIOGRAPHY BIBLIOGRAPHY

[47] R. Miyashiro and Y. Takano. Mixed integer second-order cone programming formulations
for variable selection in linear regression. European Journal of Operational Research,
247(3):721–731, 2015.

[48] T. Sato, Y. Takano, R. Miyashiro, and A. Yoshise. Feature subset selection for logistic
regression via mixed integer optimization. Computational Optimization and Applications,
64(3):865–880, 2016.

[49] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming, 66(1-3):181–199, 1994.

[50] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

[51] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP: a parallel
extension of SCIP. In Competence in High Performance Computing 2010, pages 135–148.
Springer, 2011.

[52] D. Stehlé. Floating-point LLL: theoretical and practical aspects. In The LLL Algorithm,
pages 179–213. Springer, 2009.

[53] R Development Core Team. R: A language and environment for statistical computing.
2013. R home page: https://www.r-project.org/

[54] K. Torkkola. Feature extraction by non-parametric mutual information maximization.
Journal of Machine Learning Research, 3(Mar):1415–1438, 2003.

[55] B. Ustun and C. Rudin. Learning optimized risk scores on large-scale datasets. arXiv
preprint arXiv:1610.00168, 2016.

[56] S. Vigerske and A. Gleixner. SCIP: Global optimization of mixed-integer nonlinear pro-
grams in a branch-and-cut framework. Optimization Methods and Software, 33(3):563–593,
2018.

59

