
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Equilibrium and Non-Equilibrium Steady States
on Boson Systems with BEC

神田, 智弘

https://hdl.handle.net/2324/2236040

出版情報：Kyushu University, 2018, 博士（数理学）, 課程博士
バージョン：
権利関係：



Equilibrium and Non-Equilibrium Steady States on
Boson Systems with BEC

Tomohiro Kanda
Graduate School of Mathematics, Kyushu University,
744 Motoka, Nishi-ku, Fukuoka 819-0395, JAPAN

t-kanda@math.kyushu-u.ac.jp

Abstract

In the present paper, we consider Bose–Einstein condensation (BEC) of free bosons on graphs and non-
equilibrium steady states (NESS), in the sense of D. Ruelle [Commun. Math. Phys. 224, 3–16 (2001)],
of boson system with BEC. The Hamiltonian is the second quantization of transient adjacency operators.

In the first part of the paper, we prove equivalence of BEC and non-factoriality of the quasi-free
state. Moreover, quasi-free states with BEC are decomposed into generalized coherent states. For
completeness, we include results of quasi-free states (M. Shiraishi and H. Araki [Publ. Res. Inst. Math.
Sci. 7, 105–120 (1971/72)], H. Araki [Publ. Res. Inst. Math. Sci. 7, 121–152 (1971/72)], and H.
Araki and S. Yamagami [Publ. Res. Inst. Math. Sci. 18(2), 703–758 (1982)]). We obtain necessary
and sufficient conditions for faithfulness, factoriality, and purity of a generalized coherent state and
quasi-equivalence of generalized coherent states.

In the second part of the paper, we consider NESS of boson systems with BEC. The model consists
of a quantum particle and several bosonic reservoirs. We show that the mean entropy production rate is
strictly positive, independent of phase differences provided that the temperatures or the chemical poten-
tials of reservoirs are different. Moreover, Josephson currents occur without entropy production, even if
the temperatures and the chemical potentials of reservoirs are identical.

Keywords: CCR algebra, generalized coherent states, quasi-equivalence, BEC, NESS, Mourre esti-
mate, Spectrum of the adjacency operator of graphs.
AMS subject classification: 82B10
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1 Introduction
The mathematical studies of Bose–Einstein condensation (BEC for short.) have a long history. (cf.
[37].) In the case of Rd, J. T. Lewis and J. V. Pulè suggested that equilibrium states with BEC are non-
factor in [22]. In [26], T. Matsui studied BEC in terms of the random walk on graphs. In [11, 12, 13],
F. Fidaleo and their coworkers studied hidden spectrum of the adjacency operator on graphs and BEC.
They obtained a criterion for BEC on graphs. Factoriality of equilibrium states of the system is not
studied completely. Thus, in the first part of this paper, we study equilibrium states with BEC and
prove equivalence of BEC and non-factoriality of the quasi-free state. Moreover, we give a concrete
factor decomposition of equilibrium states with BEC into generalized coherent states (Theorem 5.9).
Generalized coherent states are generalization of coherent states in the following sense. Let h be a
subspace of a Hilbert space. A coherent state ω on the Weyl CCR algebraW(h), specified in Section
2.1, is given by

ω(W( f )) = exp
(
−∥ f ∥2 + iReq( f )

)
(1.1)

for each f ∈ h, where W( f ), f ∈ h, are the Weyl operators which generateW(h), ∥·∥ is the norm induced
by the inner product on h, and q is a C-linear functional on h. (See [15, Theorem 3.1].) A state is said to
be generalized coherent, if there exist a sesquilinear form S on h and an R-linear functional q : h → R
such that

ω(W( f )) = exp (−S ( f , f )/4 + iq( f )), f ∈ h. (1.2)

Faithfulness, factoriality, and purity of a quasi-free state and quasi-equivalence of quasi-free states
are studied in [1, 2, 3, 23, 24, 36]. By using the results in [1, 2, 3], we obtain necessary and sufficient
conditions of faithfulness, factoriality, and purity of a generalized coherent state and conditions of quasi-
equivalence of generalized coherent states (Theorems 4.2, 4.3, 4.4, and 4.7).

In the second part of this paper, we study non-equilibrium steady states (NESS for short.) of a
model, which consists of a quantum particle and several Bosonic reservoirs with BEC. The reservoirs
consist of free Bose particles on Rd or on graphs. We denote the annihilation and the creation operators
by a and a† (resp. ax,k and a†x,k). These operators satisfy canonical commutation relations (CCR)[

a, a†
]
= 1,

[
ax,k, ay,l

]
= δk,lδ(x − y), k, l = 1, . . . ,N, (1.3)

where N is the number of reservoirs. In the case of Rd, the Hamiltonian H of our coupled model is
formally given by

H = H0 + λ

N∑
k=1

Wk, (1.4)

where λ > 0 and

H0 = Ωa†a +
N∑

k=1

∫
Rd

dp
|p|2
2

a†p,kap,k, Wk =

∫
Rd

dp
{
gk(p)a†ap,k + gk(p)aa†p,k

}
. (1.5)

When we consider the case of graphs, we replace the integral part of (1.5) by the sum over the set of
vertices of graphs and |p|2/2 by the adjacency operator of graphs. Following D. Ruelle [31], we say that
a state is a NESS, if it is a weak ∗-limit point of the net{

1
T

∫ T

0
ω0 ◦ αtdt

∣∣∣∣∣∣ T > 0
}
, (1.6)
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Figure 1: An example of coupled model

where ω0 is the initial state and αt is the Heisenberg time evolution of our coupled model defined
by αt(Q) = eitH Qe−itH for a quantum observable Q. The initial state is given by a product state of a
state of a finite system and condensed states with different temperatures. We obtain explicit formulas
of NESS, currents, and the mean entropy production rate. We prove that the mean entropy production
rate is strictly positive, if the temperatures or the chemical potentials of reservoirs are different and if
there exists an open channel, specified in Section 8. Moreover, we show that Josephson currents occur
without entropy production, if the temperatures and the chemical potentials of reservoirs are identical. V.
Jakšić, C.-A. Pillet, and their co-workers investigated various aspects of NESS (to take a few example,
[4, 5, 8, 9, 16, 17, 19]). The case of bosonic reservoir without BEC was studied in [27] and [33].
However, the case of bosonic reservoirs with BEC was hardly studied before except for the study of S.
Tasaki and T. Matsui [34].

This paper is organized as follows. In Section 2, we recall the definition of the Weyl CCR algebras
and the notations of infinite graphs. Part I consists of Sections 2, 3, and 4 and the results in this part
have been already published [20]. In Section 3, we review works of M. Shiraishi and H. Araki [1], H.
Araki [2], and H. Araki and S. Yamagami [3]. In Section 4, we consider generalized coherent states on
the Weyl CCR algebras. We prove necessary and sufficient conditions for faithfulness, factoriality, and
purity of a generalized coherent state and quasi-equivalences of generalized coherent states. Moreover,
we give an explicit factor decomposition of a non-factor generalized coherent state. In [14], R. Honegger
obtained a decomposition of gauge-invariant quasi-free states. In the present paper, we only assume that
a state on the Weyl CCR algebras is quasi-free or generalized coherent. In Section 5, we review works of
F. Fidaleo [13] and consider the non-factoriality of quasi-free states with BEC. We show that quasi-free
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states with BEC are non-factor and such state is decomposed into generalized coherent states.
Part II consists of Sections 6, 7, 8, and 9, and the results in this part have been already published

[21]. In Section 6, we have an explicit formula of our coupled time evolution (Theorem 6.3). In Section
7, we give the initial state on the Weyl CCR algebra and obtain an explicit formula of NESS (Theorem
7.3). Section 8 contains the main results in part II: explicit formulas of currents and the (strict) positivity
of the mean entropy production rate (Corollary 8.2, Proposition 8.3, and Theorem 8.4). In Section 9, we
verify the assumptions of Theorem 7.3 in the case of Rd, d ≥ 3, and of graphs. For our purpose, we used
Mourre estimate techniques due to [25]. After introduction of notations, we consider typical examples
of graphs: periodic graphs and comb graphs.

2 Preliminaries
In this section, we recall the definition of the Weyl CCR algebras and organize the notation of graphs.

2.1 Weyl Operators and Weyl CCR Algebra
Let h be a subspace of a Hilbert space H. Then, on the Boson–Fock space F+(h), we can define the
annihilation operators a( f ), f ∈ h, and the creation operators a†( f ), f ∈ h. (See e.g. [7].) The operators
a( f ) and a†( f ), f ∈ h, are closed and satisfy CCRs:[

a( f ), a(g)
]
= 0 =

[
a†( f ), a†(g)

]
,

[
a( f ), a†(g)

]
= ⟨ f , g⟩1, f , g ∈ h, (2.1)

where [A, B] = AB − BA, is the commutator. The field operators Ψ( f ), f ∈ h, are defined by

Ψ( f ) =
1
√

2

{
a( f ) + a†( f )

}op.cl.
, (2.2)

where A
op.cl.

means the closure of operator A. Then Ψ( f ), f ∈ h, are (unbounded) self-adjoint operators
and satisfy [

Ψ( f ),Ψ(g)
]
= Im⟨ f , g⟩1, f , g ∈ h. (2.3)

The equation (2.3) is called CCR. The Weyl operator W( f ) is defined by

W( f ) = exp(iΨ( f )), f ∈ h, (2.4)

and satisfy the following equations:

W(0) = 1, W( f )∗ = W(− f ), W( f )W(g) = e−i σ( f ,g)
2 W( f + g), f , g ∈ h, (2.5)

where σ( f , g) = Im⟨ f , g⟩, f , g ∈ h. The Weyl CCR algebra W(h) is the unital C∗-algebra generated
by unitaries W( f ), f ∈ h. Generally, the Weyl CCR algebra W(h) is the unital universal C∗-algebra
generated by unitaries W( f ), f ∈ h, which satisfy (2.5). (See e.g. [7, Theorem 5.2.8.].)

Next, we consider the Weyl CCR algebra over a symplectic space (V, σ). Let V be an R-linear space
with a symplectic form σ : V × V → R, i.e., σ is a bilinear form on V and satisfies the following
relations:

σ( f , g) = −σ(g, f ), f , g ∈ V. (2.6)

We assume that there exists an operator J on V with the properties

σ(J f , g) = −σ( f , Jg), J2 = −1. (2.7)
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Then V is a C-linear space with scalar multiplication defined by

(c1 + ic2) f = c1 f + c2J f , c1, c2 ∈ R, f ∈ V. (2.8)

Then we define the complexification VC of V by (2.8) and an inner product ⟨·, ·⟩ on V by

⟨ f , g⟩ = σ( f , Jg) + iσ( f , g). (2.9)

Then (VC, ⟨·, ·⟩) becomes an inner product space. By the same discussion in the case of a subspace of a
Hilbert space, we can define the Weyl CCR algebra over (VC, ⟨·, ·⟩) and denote the Weyl CCR algebra
over (VC, ⟨·, ·⟩) byW(V, σ). See [7, Theorem 5.2.8.] for details.

For a C∗-algebra A and a state ω on A, there exists the GNS-representation space (Hω, πω,Ωω),
where Hω is a Hilbert space, πω is a representation ofA, andΩω is a cyclic vector for πω(A). We denote
the commutant of πω(A) by πω(A)′, i.e.,

πω(A)′ = { A ∈ B(Hω) | AB = BA,∀B ∈ π(A) } . (2.10)

A state ω on a C∗-algebra A is said to be factor, if on the GNS representation space (Hω, πω,Ωω), the
center of πω(A)′′ is equal to C1, i.e., πω(A)′′ ∩ πω(A)′ = C1.

2.2 Graphs
Let G = (VG, EG) be an undirected graph, where VG is the set of all vertices in G and EG is the set of
all edges in G. Two vertices x, y ∈ VG are said to be adjacent if there exists an edge (x, y) ∈ EG joining
x and y, and we write x ∼ y. In the present paper, we assume that VX is countable. Let ℓ2(VG) be the
set of all square summable sequence labeled by the vertices in VG. Let AG be the adjacency operator of
G defined by ⟨

δx, AGδy

⟩
=

{
1 (x ∼ y),
0 (x / y), x, y ∈ VG, (2.11)

where δx is the delta function such that δx(y) = 0 for any y , x and δx(x) = 1. In addition, for any
x ∈ VG, we set the degree of x by degG(x) and

degG := sup
x∈VG

degG(x). (2.12)

In this paper, we only consider graphs which are connected with degG < ∞, with no loop, and with
no multiple edges and has countable vertices. Then, the adjacency operator AG acting on ℓ2(VG) is
bounded. If for any δx, x ∈ VG, AG satisfies the condition

lim
λ↘∥AG∥

⟨
δx, (λ1 − AG)−1δx

⟩
< ∞, (2.13)

then AG is said to be transient.
A bounded operator B acting on ℓ2(VG) is called a positivity preserving operator, if Bx,y :=

⟨
δx, Bδy

⟩
≥

0 for any x, y ∈ VG. Fix a positivity preserving operator B. The sequence v := {v(x)}x∈VG is called a
Perron-Frobenius weight (PF weight for short) if it has positive entries and∑

y∈VG

Bxyv(y) = spr(B)v(x), x ∈ VG, (2.14)

where “spr” stands for spectral radius. If such a vector v belongs to ℓ2(VG) it is a standard eigenvector
for B. For the adjacency operator AG of G, the existence of v is proved in [11, Proposition 4.1]. We
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regard a PF weight v as a densely defined linear functional on ℓ2(VG). We define the domain D(v) of v
by

D(v) =

 ψ ∈ ℓ2(VG)

∣∣∣∣∣∣∣ ∑
x∈VG

v(x)|ψ(x)| < ∞
 , (2.15)

where ψ(x) = ⟨δx, ψ⟩. If ψ ∈ D(v), we denote
∑

x∈VG v(x)ψ(x) by ⟨v, ψ⟩. If the adjacency operator AG

of a graph G has an eigenvalue ∥AG∥, then an eigenvalue ∥AG∥ is simple and a PF weight (vector) exists
uniquely. However, if G is a comb graph Zd ⊣ Z, specified in Section 9, then AG does not have an
eigenvalue ∥AG∥ and there exist two PF weights. (See e.g. [11], [13], and [28].) When v is a PF weight
for AG, we say that v is a PF weight for ∥AG∥1 − AG.
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Part I

Non-factoriality of Quasi-free States with BEC
In this part, we show the non-factoriality of quasi-free states with BEC and give an explicit factor
decomposition of quasi-free states with BEC. We review works of H. Araki and their co-workers [1, 2,
3]. By using their results, we give necessary and sufficient conditions of faithfulness, factoriality, and
purity of a generalized coherent state and conditions of quasi-equivalence of generalized coherent states.
By using these result, we show that quasi-free states with BEC are non-factor and give an explicit factor
decomposition of quasi-free states with BEC.

3 Some Properties of Quasi-free States
In this section, we review works of H. Araki and M. Shiraishi [1], H. Araki [2], and H. Araki and S.
Yamagami [3]. In [1], H. Araki and M. Shiraishi and in [2], H. Araki considered quasi-free states on the
CCR algebras and obtained necessary and sufficient conditions of factoriality, purity, and faithfulness
of a quasi-free state. In [3], H. Araki and S. Yamagami obtained necessary and sufficient conditions of
quasi-equivalence of quasi-free states. We use facts presented in the this section to consider necessary
and sufficient conditions of factoriality, purity, and faithfulness of a generalized coherent state and con-
ditions of quasi-equivalence of generalized coherent states and to prove non-factoriality of quasi-free
states exhibiting BEC.

Let K̃ be a C-linear space and γK̃ : K̃ × K̃ → C be a sesquilinear form. Let ΓK̃ be an anti-linear invo-
lution (Γ2

K̃
= 1) satisfying γK̃(ΓK̃ f ,ΓK̃g) = −γK̃(g, f ). A CCR algebra A(K̃, γK̃ ,ΓK̃) over (K̃, γK̃ ,ΓK̃) is

the quotient of the complex ∗-algebra generated by B( f ), f ∈ K̃, its adjoint B( f )∗, f ∈ K̃ and an identity
over the following relations:

1. B( f ) is complex linear in f ,

2. B( f )∗B(g) − B(g)B( f )∗ = γK̃( f , g)1,

3. B(ΓK̃ f )∗ = B( f ).

Any linear operator P on K̃ satisfying

1. P2 = P,

2. γK̃(P f , g) > 0 for any g ∈ K̃, if P f , 0,

3. γK̃(P f , g) = γK̃( f , Pg),

4. ΓK̃ PΓK̃ = 1 − P,

is called a basis projection.
Let h be a complex pre-Hilbert space. A CCR (∗-)algebra ACCR(h) over h is the quotient of the

∗-algebra generated by a†( f ) and a( f ), f ∈ h, and an identity by the following relations:

1. a†( f ) is complex linear in f ,

2. (a†( f ))∗ = a( f ),

3.
[
a( f ), a†(g)

]
= ⟨ f , g⟩h1 and

[
a†( f ), a†(g)

]
= 0 =

[
a( f ), a(g)

]
.
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Let P be a basis projection. Then the mapping α(P) fromA(K̃, γK̃ ,ΓK̃) toACCR(PK̃) defined by

α(P)(B( f1)B( f2) · · · B( fn)) = (α(P)B( f1))(α(P)B( f2)) · · · (α(P)B( fn))

α(P)B( f ) = a†(P f ) + a(PΓK̃ f ) (3.1)

is a ∗-isomorphism ofA(K̃, γK̃ ,ΓK̃) ontoACCR(PK̃).
Let A be a ∗-algebra with identity. A linear functional ω on A is said to be a state, if ω satisfies

ω(A∗A) ≥ 0, A ∈ A, and ω(1) = 1. For a state ω on A, we have the GNS-representation space
(Hω, πω, ξω) associated with ω. We set ReK̃ := { f ∈ K̃ | ΓK̃ f = f }. Then f ∈ ReK̃ if and only if
B( f )∗ = B( f ).

For f ∈ ReK̃, the operators B( f ) correspond to field operators. Moreover, a†( f ) and a( f ) correspond
to the creation operators and the annihilation operators, respectively. We give examples of K̃, γK̃ , and
ΓK̃ in Sections 4 and 5.

Let ω be a state onA(K̃, γK̃ ,ΓK̃) such that πω(B( f )) is essentially self-adjoint for all f ∈ ReK̃. Then
we put Wω( f ) = exp(iπω(B( f ))), f ∈ ReK̃. Such state ω is said to be regular if Wω( f ) satisfies the
Weyl–Segal relations:

Wω( f )Wω(g) = exp(−γK̃( f , g)/2)Wω( f + g), f , g ∈ ReK̃. (3.2)

A state ω onA(K̃, γK̃ ,ΓK̃) is said to be quasi-free, if ω satisfies the following equations:

ω(B( f1) · · · B( f2n−1)) = 0,

ω(B( f1) · · · B( f2n)) =
∑ n∏

j=1

ω(B( fs( j))B( fs( j+n))), (3.3)

where n ∈ N and the sum is over all permutations s satisfying s(1) < s(2) < · · · < s(n), s( j) < s( j + n),
j = 1, 2, · · · , n. For any quasi-free state ω over A(K̃, γK̃ ,ΓK̃), the sesquilinear form S K̃ : K̃ × K̃ → C
defined by

S K̃( f , g) = ω(B( f )∗B(g)), f , g ∈ K̃ (3.4)

is positive semi-definite and satisfies

γK̃( f , g) = S K̃( f , g) − S K̃(Γg,Γ f ), f , g ∈ K̃. (3.5)

(See [1, Lemma 3.2.].) Any quasi-free state on A(K̃, γK̃ ,ΓK̃) determines the positive semi-definite
sesquilinear form S , which satisfies the equation (3.5). Conversely, for any positive semi-definite
sesquilinear form S K̃ on K̃ × K̃ satisfying (3.5), there exists a unique quasi-free state ω satisfying
(3.4) and ω is regular. (See [1, Lemma 3.5.].) Thus, there exists a one-to-one correspondence between
a positive semi-definite sesquilinear form S K̃ on K̃ × K̃ and a quasi-free state ω on A(K̃, γK̃ ,ΓK̃). We
denote the quasi-free state onA(K̃, γK̃ ,ΓK̃) determined by a positive semi-definite sesquilinear form S K̃
by ωS . We define a positive semi-definite form ⟨·, ·⟩S on K̃ × K̃ by the following equation:

⟨ f , g⟩S := S K̃( f , g) + S K̃(ΓK̃g,ΓK̃ f ), f , g ∈ K̃. (3.6)

We set NS := { f ∈ K̃ | ∥ f ∥S = 0 }, where ∥ f ∥S = ⟨ f , f ⟩1/2S . We denote the completion of K̃/NS with
respect to the norm ∥·∥S by K. Since S K̃( f , f ) ≤ ∥ f ∥2S ,

∣∣∣γK̃( f , f )
∣∣∣ ≤ ∥ f ∥2S , and

∥∥∥ΓK̃ f
∥∥∥

S = ∥ f ∥S for any
f ∈ K̃, we can extend the sesquilinear form S K̃ and γK̃ to the sesquilinear form on K×K and the operator
ΓK̃ to the operator on K. We denote the extensions of S K̃ , γK̃ , and ΓK̃ by S K , γK , and ΓK , respectively.
We define bounded operators S K and γK on K by the following equations:

⟨ξ, S Kη⟩S = S K(ξ, η), (3.7)
⟨ξ, γKη⟩S = γK(ξ, η), ξ, η ∈ K. (3.8)
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A quasi-free state ωS is said to be Fock type if NS = {0} and the spectrum of S K is contained in
{0, 1/2, 1}. For any positive semi-definite sesquilinear form S K̃ on K̃ × K̃, we can construct a Fock type
state as follows. Let L̃ = K ⊕ K. For ξ1, ξ2, η1, η2 ∈ K, we set

γL(ξ1 ⊕ ξ2, η1 ⊕ η2) = ⟨ξ1, γKη1⟩S − ⟨ξ2, γKη2⟩S , (3.9)

Γ̃L = ΓK ⊕ ΓK , (3.10)

⟨ξ1 ⊕ ξ2, η1 ⊕ η2⟩L = ⟨ξ1, η1⟩S + ⟨ξ2, η2⟩S + 2
⟨
ξ1, S

1/2
K (1 − S K)1/2η2

⟩
S

+ 2
⟨
ξ2, S

1/2
K (1 − S K)1/2η1

⟩
S
. (3.11)

Let NL = { ξ ∈ L̃ | ⟨ξ, ξ⟩L = 0 }. Then we denote the completion of L̃/NL with respect to the norm ∥·∥L
by L. We define bounded operators γL and ΠL on L by

⟨ξ, γLη⟩L = γL(ξ, η), ξ, η ∈ L, (3.12)

ΠL =
1
2

(1 + γL). (3.13)

Then the spectrum of ΠL is contained in {0, 1/2, 1}. (See [1, Lemma 5.8.] and [1, Lemma 6.1.].)
Moreover the following three lemmas hold:

Lemma 3.1. [1, Corollary 6.2.] The map f ∈ K̃ 7→ [ f ] ∈ L, where [ f ] := ( f ⊕ 0) + NL, induces
a ∗-homomorphism τK̃ of A(K̃, γK̃ ,ΓK̃) into A(L, γL,ΓL). The restriction of a Fock type state ωΠL of
A(L, γL,ΓL) to τK̃(A(K̃, γK̃ ,ΓK̃)) gives a quasi-free state ωS of A(K̃, γK̃ ,ΓK̃) through ωΠL (τK̃(A)) =
ωS (A).

Lemma 3.2. [2, Lemma 2.3.] Let RS be the von Neumann algebra generated by spectral projections
of all πΠL (B( f )), f ∈ ReK̃, on the GNS representation space (HΠL , πΠL , ξΠL ) of A(L, γL,ΓL) associated
with ωΠL . Then the following conditions are equivalent:

1. The GNS cyclic vector ξΠL is cyclic for RS .

2. The GNS cyclic vector ξΠL is separating for RS .

3. The operator S K on K does not have an eigenvalue 0.

4. The operator S K on K does not have an eigenvalue 1.

Lemma 3.3. [2, Lemma 2.4.] Let RS be the von Neumann algebra defined in Lemma 3.2. The center
of RS is generated by exp(iπΠL (B(h))), h ∈ Re(E0K ⊕ 0)

L
, where E0 is the spectral projection of S K for

1/2 and (E0K ⊕ 0)
L

is the closure of E0K ⊕ 0 with respect to the norm ∥·∥L. In particular, RS is factor if
and only if K0 = E0K = {0}.

3.1 Quasi-equivalence of Quasi-free States
We recall the definitions of quasi-equivalence of representations and states.

Definition 3.4. [2, Definition 6.1.] Let πS 1 and πS 2 be representations associated with quasi-free states
ωS 1 and ωS 2 on A(K̃, γK̃ ,ΓK̃), respectively. The representations πS 1 and πS 2 are said to be quasi-
equivalent, if there exists an isomorphism τ from RS 1 onto RS 2 such that

τ(WS 1 ( f )) = WS 2 ( f ), f ∈ ReK̃, (3.14)

where RS j = {WS j ( f ) | f ∈ ReK̃ }′′ and WS j ( f ) = exp(iπS j (B( f ))), i = 1, 2. Let ωS 1 and ωS 2 be quasi-
free states on A(K̃, γK̃ ,ΓK̃). The states ωS 1 and ωS 2 are said to be quasi-equivalent, if for each GNS-
representations (HS i , πS i ), i = 1, 2 associated with ωS i , respectively, are quasi-equivalent.
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This definition is equivalent to the definition of quasi-equivalence of states on a C∗-algebra. (See [6,
Definition 2.4.25.] and [6, Theorem 2.4.26.].)

In [3], H. Araki and S. Yamagami showed the following theorem:

Theorem 3.5. [3, Theorem] Two quasi-free states ωS 1 and ωS 2 onA(K̃, γK̃ ,ΓK̃) are quasi-equivalent if
and only if the following conditions hold:

1. The topologies induced by ∥·∥S 1
and ∥·∥S 2

are equal.

2. Let K be the completion of K̃ with respect to the topology ∥·∥S 1
or ∥·∥S 2

. Then S 1/2
1 − S 1/2

2 is in the
Hilbert–Schmidt class on K, where S 1 and S 2 are operators on K defined in (3.7).

4 Generalized Coherent States
In this section, we consider generalized coherent states on the Weyl CCR algebras. By using facts in the
previous section, we give necessary and sufficient conditions of factoriality, purity, and faithfulness of a
generalized coherent state and conditions of quasi-equivalence of generalized coherent states.

Let (V, σ) be a symplectic space with an operator J on V satisfying (2.7). We define the operation ∗
on VC by ( f + ig)∗ = f − ig for f , g ∈ V . We put K̃ = VC,

ΓK̃ f = f ∗, f ∈ K̃,

γK̃( f , g) =
1
2
{σ( f , Jg) + iσ( f , g) − σ(g∗, J f ∗) − iσ(g∗, f ∗)}, f , g ∈ K̃. (4.1)

Then on the GNS-representation space (Hω, πω) associated with a regular state ω on A(K̃, γK̃ ,ΓK̃),
W(ReK̃, γK̃) =W(V, σ). Moreover, πω(B( f )), f ∈ ReK̃, correspond to filed operators. We define the
annihilation operators aω( f ) and the creation operators a†ω( f ) on Hω by the following equation:

aω( f ) := {πω(B( f )) + iπω(B(i f ))}/
√

2, a†ω( f ) := {πω(B( f )) − iπω(B(i f ))}/
√

2, (4.2)

for any f ∈ ReK̃.
In this section, we identify the Weyl CCR algebraW(V, σ) with a regular state ω andA(K̃, γK̃ ,ΓK̃)

with ω, where K̃, γK̃ and ΓK̃ defined in (4.1).
For an R-linear functional q : V → R, there exists a ∗-automorphism τq onW(V, σ) defined by

τq(W( f )) := eiq( f )W( f ), f ∈ V. (4.3)

Let ωS be a quasi-free state on W(V, σ). Then we define the generalized coherent state ωS ,q by the
following equation:

ωS ,q(W( f )) := ωS ◦ τq(W( f )) = eiq( f )ωS (W( f )), f ∈ V. (4.4)

We set NS = { f ∈ VC | ∥ f ∥S = 0 }, where ∥·∥S = (·, ·)1/2
S is the semi-norm defined in (3.6) and VCS is the

completion of VC/NS by the norm ∥·∥S . We denote the GNS-representation space with respect to ωS

and ωS ,q by (HS , πS , ξS ) and (HS ,q, πS ,q, ξS ,q), respectively.

Lemma 4.1. Let ωS and ωS ,q be a quasi-free state and a generalized coherent state on W(V, σ), re-
spectively. Then

RS = RS ,q, (4.5)

where RS and RS ,q is the von Neumann algebra generated by { πS (W( f )) | f ∈ V } and { πS ,q(W( f )) | f ∈ V },
respectively.
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Proof. Since ωS is regular, there exist self-adjoint operators ΨS ( f ), f ∈ V such that πS (W( f )) =
exp(iΨS ( f )). By the definition of generalized coherent states, we have πS ,q(W( f )) = eiq( f )πS (W( f )) and
(HS ,q, πS ,q, ξS ,q) = (HS , πS ,q, ξS ). On HS , we obtain

{ πS (W( f )) | f ∈ V }′′ = { eiq( f )πS (W( f )) | f ∈ V }′′ = { πS ,q(W( f )) | f ∈ V }′′ . (4.6)

Thus, RS = RS ,q by the double commutant theorem. ■

Theorem 4.2. Let ωS ,q be a generalized coherent state onW(V, σ). Then ωS ,q is faithful if and only if
S does not have an eigenvalue 0 on VCS .

Proof. Note that both ωS and ωS ,q have the same GNS cyclic vector space ξΠL . By Lemma 3.2, ωS ,q is
faithful if and only if S does not have an eigenvalue 0 on VCS . ■

Theorem 4.3. Let ωS ,q be a generalized coherent state onW(V, σ). Then ωS ,q is factor if and only if S
does not have an eigenvalue 1/2 on VCS .

Proof. By Lemma 3.3 and Lemma 4.1, we have the statement. ■

Theorem 4.4. Let (V, σ) be a non-degenerate symplectic space and ωS ,q be a generalized coherent state
onW(V, σ). Then ωS ,q is pure if and only if S is a basis projection.

Proof. If S is a basis projection, then by Lemma 4.1 and [1, Lemma 5.5.] ωS is pure.
We use the notation in Section 3. Thus, K̃ = VC, K = VCS , and L is the completion of VCS ⊕ VCS /NL

with respect to the norm ∥·∥L defined in (3.11). If ωS ,q is pure, then by Theorem 4.3, S does not have
an eigenvalue 1/2. Then ΠL defined in (3.13) does not have an eigenvalue 1/2 since the eigenspace of
ΠL associated with the eigenvalue 1/2 is the completion of the set { f ⊕ f | f ∈ E0K } with respect to the
norm ∥·∥L, where E0 is the spectral projection of S onto ker(S − 1/2). (See also the proof of (4) of [1,
Lemma 6.1.].) Thus, ΠL is a basis projection. We have RS = RΠL (H1), with H1 = [ReK̃] ⊕ 0 ⊂ L and
H1 = ReK ⊕ 0

L ⊕ 0. If ΠL , S , then K , L. Thus, we have RΠL (H1)′ = RΠL (H⊥1 ) by [1, Lemma 5.5.]
and H⊥1 , {0}, where H⊥1 is the orthogonal complement with respect to the inner product (·, ·)L defined
in (3.11). It leads R′S , C1, but it contradicts to the purity of ωS . Thus, S is a basis projection. ■

Lemma 4.5. Let ωS ,q be a generalized coherent state on W(V, σ). Then f ∈ NS if and only if
πS ,q(W( f )) = eiq( f )

1.

Proof. If f ∈ NS , then ωS (W(t f )) = 1 for any t ∈ R. Thus, by regularity of ωS , πS (W( f )) = 1. By the
definition of generalized coherent state, πS ,q(W( f )) = eiq( f )

1.
If πS ,q(W( f )) = eiq( f )

1, f ∈ V , then πS (W( f )) = 1. Since g∗ = g for any g ∈ V , we have that
( f , f )S = 0. ■

Lemma 4.6. Let ωS 1,q1 and ωS 2,q2 be generalized coherent states onW(V, σ). If ωS 1,q1 and ωS 2,q2 are
quasi-equivalent, then NS 1 = NS 2 .

Proof. SinceωS 1,q1 andωS 2,q2 are quasi-equivalent, then there exists τ : πS 1,q1 (W(V, σ))′′ → πS 2,q2 (W(V, σ))′′

such that

τ(πS 1,q1 (A)) = πS 2,q2 (A), A ∈ W(V, σ). (4.7)

If NS 1 , NS 2 , then there exists f ∈ VC such that f ∈ NS 1 and f < NS 2 . Put h = f + f ∗. Then
h ∈ V = ReVC and h ∈ NS 1 and h < NS 2 . We have

πS 1,q1 (W(h)) = eiq1(h)
1 (4.8)

by Lemma 4.5. However, the following equation holds:

πS 2,q2 (W(h)) = eiq2(h)π2(W(h)) = τ(πS 1,q1 (W(h))) = eiq1(h)
1, (4.9)

but it contradicts to Lemma 4.5. ■
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Theorem 4.7. Let ωS 1,q1 and ωS 2,q2 be generalized coherent states onW(V, σ). Then ωS 1,q1 and ωS 2,q2

are quasi-equivalent if and only if the following conditions hold:

1. ∥·∥S 1
and ∥·∥S 2

induce the same topology,

2. S 1/2
1 − S 1/2

2 is a Hilbert–Schmidt class operator,

3. q1 = q2 on NS 1 = NS 2 ,

4. q1 − q2 is continuous with respect to the norm ∥·∥S 1
and ∥·∥S 2

.

Proof. Assume that the topologies induced by ∥·∥S 1
and ∥·∥S 2

are equivalent, S 1/2
1 − S 1/2

2 is Hilbert-
Schmidt class, q1 − q2 is continuous with respect to ∥·∥S 1

, and q1 = q2 on NS 1 = NS 2 . Then ωS 1 and ωS 2

are quasi-equivalent by [3, Theorem] and ωS 1,q1 and ωS 2,q2 are quasi-equivalent by continuity of q1 − q2
and q1 = q2 on NS 1 = NS 2 .

Next, we assume that ωS 1,q1 and ωS 2,q2 are quasi-equivalent. The quasi-equivalence of ωS 1,q1 and
ωS 2,q2 induces the quasi-equivalence of ωS 1,q1−q2 and ωS 2 . Put q := q1 − q2. Then there exists a ∗-
isomorphism τ from πS 1,q(W(V, σ))′′ onto πS 2 (W(V, σ))′′ such that

τ(πS 1,q(A)) = πS 2 (A), A ∈ W(V, σ). (4.10)

For any f ∈ V ,

exp(iq( f ) − S 1( f , f )/2) =
⟨
ξS 1 , τ

−1(πS 2 (W( f )))ξS 1

⟩
=

⟨
ξS 1 , τ

−1(πS 2 (W( f )))ξS 1

⟩
(4.11)

is ∥·∥S 2
-continuous in f ∈ V . Thus, q and S 1 are ∥·∥S 2

-continuous. By symmetry, q and S 2 are ∥·∥S 1
-

continuous as well. By Lemma 4.5, NS := NS 1 = NS 2 . If q , 0 on NS , then there exists f ∈ NS \{0} such
that q( f ) , 0. If q( f ) = 2nπ for some n ∈ Z, then we replace f by f /π. For such f , we have

eiq( f )
1 = τ(πS 1,q(W( f ))) = πS 2 (W( f )) = 1 (4.12)

by Lemma 4.5. It contradicts to the quasi-equivalence of ωS 1,q and ωS 2 . Thus, q = 0 on NS . Let τ′ be
the map from πS 1,q(W(V, σ)) to πS 1 (W(V, σ)) defined by

τ′(πS 1,q(A)) = πS 1 (A), A ∈ W(V, σ). (4.13)

Since q is continuous with respect to the norm ∥·∥S 1
and q = 0 on NS , then we can extend τ′ to a map

from πS 1,q(W(V, σ))′′ onto πS 1 (W(V, σ))′′. Then τ′ induces the quasi-equivalence of ωS 1,q and ωS 1 .
Thus, ωS 1 and ωS 2 are quasi-equivalent and by Theorem 3.5, we have the statement. ■

Remark 4.8. In [41], S. Yamagami obtained quasi-equivalence conditions of (generalized) coherent
states in terms of the transition amplitude. For applications to concrete models Hilbert-Schmidt condi-
tions in Theorem 4.7 are easier to handle. Let ωS 1,q1 and ωS 2,q2 be generalized coherent states on the
Weyl CCR algebraW(V, σ). Assume that ωS 1 and ωS 2 are quasi-equivalent. If q1 −q2 is not continuous
in ∥·∥S 1

or ∥·∥S 2
or q1 , q2, then the transition amplitude (ω1/2

S 1,q1
, ω1/2

S 2,q2
) = 0, where ω1/2

S 1
and ω1/2

S 2,q2
are

GNS-vectors in the universal representation space L2(W(V, σ)∗∗). (See [41, Theorem 5.3.].)

Factor decompositions of quasi-free states are given in [14, 29, 40], e.t.c. For the convenience of
readers, we give an explicit form of a factor decomposition of a non-factor generalized coherent state.
We recall the definition of the disjointness of states. (See also [6, Definition 4.1.20.] and [6, Lemma
4.2.8.].)
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Definition 4.9. Let ω1 and ω2 be positive linear functionals on a C∗-algebra A. The positive linear
functionals ω1 and ω2 are said to be disjoint, if for ω = ω1 + ω2, there is a projection P ∈ πω(A)′′ ∩
πω(A)′ such that

ω1(A) = (ξω, Pπω(A)ξω), ω2(A) = (ξω, (1 − P)πω(A)ξω), A ∈ A, (4.14)

where πω is the GNS-representation and ξω is the GNS-cyclic vector associated with ω.

Note that factor states are either quasi-equivalent or disjoint. (See e.g. [6, Proposition 2.4.22.], [6,
Theorem 2.4.26. (1)], and [6, Proposition 2.4.27.].) We denote the spectral projection of S associated
with an eigenvalue 1/2 by E1/2.

Theorem 4.10. Let ωS ,q be a generalized coherent state onW(V, σ). If ωS ,q is non-factor, then there
exists a probability measure µ on R2I and ωS ,q has a factor decomposition of the form

ωS ,q =

∫
R2I
ωS E⊥1/2,x·ρ+qdµ(x), (4.15)

whereωS E⊥1/2,x·ρ+q(W( f )) = exp(−S (E⊥1/2 f , E⊥1/2 f )/4+ix·ρ( f )+iq( f )) and ρ( f ) = (Re(ek, f )S , Im(ek, f )S )k∈I ∈
R2I . Moreover, ωS E⊥1/2,x·ρ+q and ωS E⊥1/2,y·ρ+q are disjoint unless x = y, x, y ∈ R2I .

Proof. If a generalized coherent state ωS ,q on W(V, σ) is non-factor, then on VCS , S has the spectral
decomposition

S f = S E⊥1/2 f +
1
2

∑
k∈I

(ek, f )S ek, f ∈ VCS , (4.16)

where I is an index set such that |I| = dim ker(S−1/2) and {ek}k∈I is an orthonormal basis for ker(S−1/2).
Thus, for any W( f ), f ∈ V , we have

ωS ,q(W( f )) = exp
−S (E⊥1/2 f , E⊥1/2 f )

4
+ iq( f )

 exp
(
−
∑

k∈I |(ek, f )S |2
8

)
=ωS E⊥1/2

(W( f )) exp
(
−
∑

k∈I |(ek, f )S |2
8

)
(4.17)

By a theorem of Bochner–Minlos (See e.g. [32, Theorem 2.2.]), there exists a probability measure µ on
R2I such that

exp
(
−
∑

k |(ek, f )S |2
8

)
=

∫
R2I

exp(ix · ρ( f ))dµ(x), (4.18)

where ρ( f ) = (Re(ek, f )S , Im(ek, f )S )k∈I ∈ R2I . For ωS E⊥1/2,x·ρ+q, we have NS E⊥1/2
= E1/2VC , {0}.

Since E1/2VC , {0}, there exists f ∈ V such that Re(ek, f )S , 0 or Im(ek, f )S , 0. We put fn :=
E1/2 f + 1/nE⊥1/2 f . Then ∥ fn∥S E⊥1/2

→ 0 and Re(ek, fn)S ̸→ 0 or Im(ek, fn)S ̸→ 0 as n → ∞. Thus,
generalized coherent states ωS E⊥1/2,x·ρ+q and ωS E⊥1/2,y·ρ+q, x, y ∈ R2I are not quasi-equivalent unless x = y
by Theorem 4.7. Since ∥·∥S and ∥·∥S E⊥1/2

induce the same topology on VC and S E⊥1/2 on VCS E⊥1/2
does not

have an eigenvalue 1/2, ωS E⊥1/2,x·ρ+q is factor and ωS E⊥1/2,x·ρ+q and ωS E⊥1/2,y·ρ+q are disjoint unless x = y,
x, y ∈ R2I . ■
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5 BEC and Non-factor States
In this section, we consider quasi-free states on W(h, σ), where h is a pre-Hilbert space over C with
an inner product ⟨·, ·⟩h and σ( f , g) = Im⟨ f , g⟩h, f , g ∈ h. We give an explicit decomposition of quasi-
free states on W(h, σ) into generalized coherent states which are mutually disjoint. In the case of 2-
dimensional Ferromagnetic Ising models at low temperatures, Gibbs measures with free boundary con-
ditions (mixed phase) are decomposed into states with ± boundary conditions (pure phase). We consider
similar decompositions for generalized coherent states and factoriality of states is a non-commutative
analogue of decomposition to pure phase [6].

5.1 General Properties
In this subsection, we use the following notations. Let h be a subspace of a Hilbert space over C.
We assume that h is equipped with positive definite inner products ⟨·, ·⟩h and ⟨·, ·⟩0. Let q be a linear
functional on h. We consider the quasi-free state ωq,D, D ≥ 0, onW(h, σ) defined by

ωq,D(a†( f )a(g)) = ⟨g, f ⟩0 + Dq(g)q( f ), (5.1)

where a( f ) and a†( f ), f ∈ h, are the annihilation operators and the creation operators on the GNS repre-
sentation space Hωq,D , respectively. Note that the annihilation operators a( f ) and the creation operators
a†( f ) satisfy the following equation:[

a( f ), a†(g)
]
= ⟨ f , g⟩h,

[
a( f ), a(g)

]
= 0 =

[
a†( f ), a†(g)

]
, f , g ∈ h. (5.2)

Our aim is to show that if q is not continuous with respect to the norm ∥·∥K defined in (5.9) and
D > 0, then ωq,D is non-factor and to get a factor decomposition of ωq,D. Let {en}n∈N be an orthonormal
basis on a Hilbert space which is contained in h. Fix {en}n∈N. We set

f =
∑
n∈N

fnen (5.3)

for f =
∑

n∈N fnen ∈ h, where fn ∈ C, n ∈ N and fn is the complex conjugate of fn. For a linear functional
q and D ≥ 0, we put K̃q,D = h ⊕ h. For f1, f2, g1, g2 ∈ h, we sets

γD( f1 ⊕ f2, g1 ⊕ g2) =
1
2

(
⟨ f1, g1⟩h − ⟨ f2, g2⟩h

)
, (5.4)

Γ( f1 ⊕ f2) = f2 ⊕ f1, (5.5)

B( f1 ⊕ f2) =
1
√

2

(
a†( f1) + a( f2)

)
, (5.6)

S q,D( f1 ⊕ f2, g1 ⊕ g2) = ωq,D(B( f1 ⊕ f2)∗B(g1 ⊕ g2))

=
1
2
⟨ f1, g1⟩h +

1
2
⟨ f1, g1⟩0 +

1
2
⟨ f2, g2⟩0 +

D
2

q( f1)q(g1) +
D
2

q( f2)q(g2). (5.7)

We define an inner product on K̃q,D by

⟨ f1 ⊕ f2, g1 ⊕ g2⟩q,D =
1
2
⟨ f1, g1⟩h +

1
2
⟨ f2, g2⟩h + ⟨ f1, g1⟩0 + ⟨ f2, g2⟩0 + Dq( f1)q(g1) + Dq( f2)q(g2).

(5.8)

Let NKq,D = { f ∈ K̃q,D | ∥ f ∥q,D = 0 }. Then we denote the completion of K̃q,D/NKq,D with respect to the
norm ∥·∥q,D by Kq,D. In this case, ∥ f1 ⊕ f2∥q,D = 0 leads f1 = 0 and f2 = 0. Thus, NKq,D = {0}.
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We put

⟨ f , g⟩K =
1
2
⟨ f , g⟩h + ⟨ f , g⟩0, f , g ∈ h, (5.9)

and ∥·∥K = ⟨·, ·⟩1/2K . We define the Hilbert space K by the completion of h with respect to the norm ∥·∥K.

Lemma 5.1. The space Kq,D has the following form:

1. If D > 0 and q is not continuous with respect to the norm ∥·∥K, then we have

Kq,D = C ⊕ K ⊕ C ⊕ K. (5.10)

2. If D = 0 or q is continuous with respect to the norm ∥·∥K, then we have

Kq,D = K ⊕ K. (5.11)

Proof. We consider the case of D > 0 and q is not continuous with respect to the norm ∥·∥K. It suffices
to show that C ⊕ K = h, where h is the completion of h with respect to the norm ∥·∥′ defined by

(∥ f ∥′)2 = ∥ f ∥2
K
+ D|q( f )|2, f ∈ h. (5.12)

We define π : h→ C ⊕ K by

π( f ) = q( f ) ⊕ f . (5.13)

Since q is not continuous, for any f ∈ h, there exists a sequence fn in h such that limn→∞ ∥ fn − f ∥K = 0
and limn→∞ q( fn) = 0. For such fn and f , we have

π( fn − f )→ q( f ) ⊕ 0, π( fn)→ 0 ⊕ f . (5.14)

If D = 0, then ∥ f ∥′ = ∥ f ∥K for any f ∈ h. We assume that D > 0 and q is continuous with respect to
the norm ∥·∥K. By continuity of q, the norms ∥·∥′ and ∥·∥K induce the same topology. ■

When a quasi-free state is non-factor, the spontaneous U(1) symmetry breaking occurs. The next
theorem corresponds to non-factoriality of quasi-free states with BEC.

Theorem 5.2. Assume that a linear space h has positive definite inner products ⟨·, ·⟩h and ⟨·, ·⟩0. If
D > 0 and q is not continuous with respect to the norm ∥·∥K, then the two-point function ωq,D defined in
(5.1) is a non-factor state onW(h, σ).

Proof. By Lemmas 3.1 and 3.2, it suffices to show that 1/2 ∈ σP(S q,D). By Lemma 5.1, an element of
Kq,D has the form (a1, f1, a2, f2), a1, a2 ∈ C, f1, f2 ∈ K. For any (a1 ⊕ f1 ⊕ a2 ⊕ f2), (b ⊕ 0 ⊕ 0 ⊕ 0) ∈
Kq,D, b ∈ C, the operator S q,D satisfies⟨

(a1 ⊕ f1 ⊕ a2 ⊕ f2), S q,D(b1 ⊕ 0 ⊕ 0 ⊕ 0)
⟩

q,D
=

D
2

a1b =
1
2
⟨(a1 ⊕ f1 ⊕ a2 ⊕ f2), (b ⊕ 0 ⊕ 0 ⊕ 0)⟩q,D.

(5.15)

Thus, we have S q,D(b ⊕ 0 ⊕ 0 ⊕ 0) = 1/2(b ⊕ 0 ⊕ 0 ⊕ 0) for any b ∈ C and 1/2 ∈ σP(S q,D). ■

Proposition 5.3. For a linear space h with positive definite inner products ⟨·, ·⟩h and ⟨·, ·⟩0, if D = 0 or q
is continuous with respect to the norm ∥·∥K, the two-point function ωq,D defined in (5.1) is a factor state
onW(h, σ).
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Proof. If q is continuous with respect to the norm ∥·∥K, then ωq,D is quasi-equivalent to ω0,0 by Theorem
4.7. Thus, it suffice to show the case of D = 0. There exists the positive contraction operator A on K
such that ⟨ξ, Aη⟩K = ⟨ξ, η⟩h/2 and ⟨ξ, (1 − A)η⟩K = ⟨ξ, η⟩0, ξ, η ∈ K. Then S 0,0 has the following form:

S 0,0(η1 ⊕ η2) = (A + (1 − A)/2)η1 ⊕
1 − A

2
η2 =

1 + A
2

η1 ⊕
1 − A

2
η2, (5.16)

for η1, η2 ∈ K. If 1/2 ∈ σP(S 0,0), then (1 + A)η1 = η1 and (1 − A)η2 = η2. Thus, η1, η2 ∈ ker A. Since
the positive definiteness of ⟨·, ·⟩h and ⟨·, ·⟩0 on h, h ∩ ker A = {0}. Thus, ker A = {0} and ω0,0 is factor. ■

Next, we consider a factor decomposition of ωq,D, if q is not continuous in ∥·∥K. Let (H0, π0, ξ0) be
the GNS-representation space with respect to ω0 := ωq,0 = ω0,D. Since ω0 is regular state onW(h, σ),
there exist self-adjoint operators Ψ0( f ), f ∈ h, such that

π0(W( f )) = exp(iΨ0( f )). (5.17)

Now we define the field operators Ψs1,s2 ( f ), s1, s2 ∈ R, f ∈ h, on H0 by

Ψs1,s2 ( f ) = Ψ0( f ) + s1D1/2Req( f )1 + s2D1/2Imq( f )1, f ∈ h. (5.18)

Let πs1,s2 be the representation ofW(h, σ) on H0 defined by

πs1,s2 (W( f )) = exp(iΨs1,s2 ( f )), f ∈ h. (5.19)

Using πs1,s2 , we define the state ϕs1,s2 onW(h, σ) by

ϕs1,s2 (A) =
⟨
ξ0, πs1,s2 (A)ξ0

⟩
, A ∈ W(h, σ). (5.20)

Then we have the following theorem.

Theorem 5.4. If q is not continuous in ∥·∥K, then for each s1, s2, t1, t2 ∈ R, ϕs1,s2 and ϕt1,t2 are factor and
disjoint unless t1 = s1 and t2 = s2.

Proof. By Lemma 4.1 and Proposition 5.3, ϕs1,s2 and ϕt1,t2 are factor. Since q is not continuous with
respect to the norm, ϕs1,s2 and ϕt1,t2 are disjoint unless t1 = s1 and t2 = s2 by Theorem 4.7. ■

Finally, we obtain a factor decomposition of ωq,D.

Theorem 5.5. If q is not continuous in ∥·∥K, then for any D > 0, a factor decomposition of ωq,D defined
in (5.1) is given by

ωq,D =
1

2π

∫
R2
ϕs1,s2 e−

s2
1+s2

2
2 ds1ds2. (5.21)

Proof. By Theorem 4.10, we are done. ■

5.2 On Graphs
In [13], F. Fidaleo considered BEC on graphs and showed the following two results.

Proposition 5.6. [13, Proposition 4.1.] Let G be an undirected graph. Let AG be the adjacency operator
of G on ℓ2(VG) and h be the Hamiltonian defined by h = ∥AG∥1 − AG. Let h be a subspace of ℓ2(VG)
satisfying the following three conditions: For each β > 0,

1. eithh = h, t ∈ R;

2. For each entire function f , f (h)h ⊂ D((eβh − 1)−1/2);
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3.
∑

x∈VG |( f (h)u)(x)|v(x) < ∞, and ⟨ f (h)u, v⟩ = f (0)⟨u, v⟩, where v is a PF weight for AG.

Then for D ≥ 0, the two–point function

ωD(a∗( f1)a( f2)) =
⟨
(eβh − 1)−1 f2, f1

⟩
ℓ2
+ D⟨ f2, v⟩⟨v, f1⟩ (5.22)

satisfies the KMS condition at inverse temperature β > 0 on the Weyl CCR algebraW(h, σ) with respect
to the dynamics generated by the Bogoliubov transformations

h ∋ f 7→ eith f , t ∈ R. (5.23)

By the above proposition and [26, Proposition 1.1.], we say BEC occur in the case D > 0 and BEC
does not occur in the case D = 0.

Theorem 5.7. [13, Theorem 4.5.] Suppose that AG is transient. Let h1 be the subspace of ℓ2(VG)
defined by

h1 = { eithδx | t ∈ R, x ∈ VG } . (5.24)

Then h1 satisfies the conditions 1, 2, and 3 in Proposition 5.6. Thus, for h1 and any D ≥ 0, the two-point
function given in (5.22) defines KMS state on the Weyl CCR algebraW(h1, σ).

Let P(R) be the set of all C-coefficient polynomials on R. Let h2 be the subspace defined by

h2 =

{ ∫
R

p(t)e−(t−a)2/beithδxdt
∣∣∣∣∣ p ∈ P(R), a ∈ R, b > 0, x ∈ VG

}
. (5.25)

Lemma 5.8. The space h2 satisfies the following conditions;

1′. eithh2 = h2, t ∈ R;

2′. eβhh2 ⊂ D((eβh − 1)−1/2);

3′.
∑

x∈VG

∣∣∣(eβhu)(x)
∣∣∣ < ∞, and

⟨
eβhu, v

⟩
= ⟨u, v⟩, u ∈ h2.

Proof. First, we consider the condition 1′. For a generator of h2, we see that

eish
∫
R

p(t)e−(t−a)2/beithδxdt =
∫
R

p(t − s)e−(t−s−a)2/beithδxdt. (5.26)

Thus, we have eishh2 ⊂ h2. Moreover, for any p ∈ P(C) and a, s ∈ R, we put p′(t) = p(t − s) and
a′ = a + s. Then we obtain

h2 ∋
∫
R

p′(t)e−(t−a′)/beithδxdt = eish
∫
R

p(t)e−(t−a)2/beithδxdt (5.27)

and h2 ⊂ eishh2.
Now we prove the condition 2′, eβhh2 ⊂ D((eβh−1)−1/2). Note that (eβx−1)−1− (βx)−1 is continuous

on [0,∞). Thus, it is enough to show that eβhh2 ⊂ D(h−1/2). Since AG is transient and p(t)e−(t−a)2/b is a

rapidly decreasing function on R, for a generator of h2,
∫
R

p(t)e−
(t−a)2

b eithδxdt, we have⟨
(λ1 − AG)−1eβh

∫
R

p(t)e−
(t−a)2

b eithδxdt, eβh
∫
R

p(t)e−
(t−a)2

b eithδxdt
⟩

=

∣∣∣∣∣∫
R

∫
R

p(t)p(s)e−
(t−a)2

b e−
(s−a)2

b

⟨
(λ1 − AG)−1eβheithδx, eβheishδx

⟩
dtds

∣∣∣∣∣
=

∣∣∣∣∣∣
∫
R

∫
R

p(t)p(s)e−
(t−a)2

b e−
(s−a)2

b

∫
σ(AG)

ei(s−t)ae2β(∥AG∥1−a)

λ − a
d⟨δx, E(a)δx⟩dtds

∣∣∣∣∣∣
≤C1e4β∥AG∥

⟨
(λ1 − AG)−1δx, δx

⟩
↗ C1e4β∥AG∥

⟨
(∥AG∥1 − AG)−1δx, δx

⟩
< ∞,

(5.28)
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where C1 is a positive constant satisfying∫
R

∫
R

∣∣∣∣∣p(t)p(s)e−
(t−a)2

b e−
(s−a)2

b

∣∣∣∣∣dtds < C1. (5.29)

Next, we show that supn∈N
∑

x∈VGn

∣∣∣(eβhu)(x)
∣∣∣v(x) < ∞, u ∈ h2, where Gn is a subsequence of a finite

subgraphs of G such that Gn ↗ G. Let CR be a circle centered at the origin with radius R > ∥AG∥. We
have ∣∣∣∣∣∣

⟨
eβh

∫
R

p(t)e−
(t−a)2

b eithδxdt, δy

⟩∣∣∣∣∣∣ ≤
∫
R

|p(t)|e−
(t−a)2

b

∣∣∣∣⟨eβheithδx, δy

⟩∣∣∣∣dt

=

∫
R

|p(t)|e−
(t−a)2

b

∣∣∣∣∣∣ 1
2πi

∮
CR

eβzeitz
⟨
(z1 − AG)−1δx, δy

⟩
dz

∣∣∣∣∣∣dt

≤ReβR
∫
R

|p(t)|e−
(t−a)2

b etRdt
⟨
(R1 − AG)−1δx, δy

⟩
≤ C2

⟨
(R1 − AG)−1δx, δy

⟩
, (5.30)

for any x, y ∈ VG, where C2 is a positive constant satisfying

ReβR
∫
R

|p(t)|e−
(t−a)2

b etRdt < C2. (5.31)

By (5.30), we get∑
y∈VGn

∣∣∣∣∣∣
⟨
eβh

∫
R

p(t)e−
(t−a)2

b eithδxdt, δy

⟩∣∣∣∣∣∣v(y) ≤ C2

∑
y∈VGn

⟨
(R1 − AG)−1δx, δy

⟩
v(y)

=C2

⟨
(R1 − AG)−1δx, v ↾VGn

⟩
= C2

∞∑
k=0

⟨
Ak

Gδx, v ↾VΛn

⟩
Rk+1 ≤ C2(R − ∥AG∥)−1v(x). (5.32)

Finally, we show the second part of the condition 3′. For any f ∈ h2, by definition of v,⟨
eβh f , v

⟩
= ⟨ f , v⟩. (5.33)

Thus, the proof is complete. ■
At the end of this part, we have that a quasi-free state with BEC is non-factor and an explicit decom-

position of quasi-free states with BEC. An explicit decomposition of mixed states with BEC into factor
states (pure phases) is described as follows.

Theorem 5.9. Suppose that the adjacency operator AG of a graph G is transient. For D > 0, the two-
point function ωD defined in (5.22) is a non-factor KMS state onW(h1, σ) andW(h2, σ). Moreover, we
have a factor decomposition of ωD into extremal KMS states

ωD =
1

2π

∫
R2
ϕs1,s2 e−

s2
1+s2

2
2 ds1ds2. (5.34)

Proof. Since
⟨
·, (eβh + 1)(eβh − 1)−1·

⟩
is a positive definite inner product on h1 and h2, it suffice to show

that ⟨v, f ⟩, f ∈ h1 or f ∈ h2 is not continuous with respect to the norm
⟨
·, (eβh + 1)(eβh − 1)−1·

⟩
by

Theorems 5.4 and 5.5. Let pn be the polynomial defined by

pn(x) =
n∑

k=0

(−nx)k

k!
. (5.35)
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For any f ∈ h1, (1 − pn(h)) f ∈ h1. Put fn = (1 − pn(h)) f . Then⟨
fn − f , (eβh + 1)(eβh − 1)−1( fn − f )

⟩
→ 0, (n→ ∞) (5.36)

and

⟨v, fn⟩ = 0 (5.37)

for any n ∈ N. Thus, we see that ⟨v, ·⟩ is not continuous.
For any f ∈ h2, we put fn = (1 − pn(h)) f . Then for any f ∈ h2, we have fn ∈ h2, (5.36), and (5.37)

as well. ■
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Part II

A Model of Josephson Junctions on Boson
Systems
In this part, we consider a model of Josephson junctions on Boson systems. We give an explicit formula
of the coupled time evolutions and NESS in the sense of D. Ruelle [31]. By using these formula, we
obtain explicit formulas of currents and entropy production rates. We introduce typical examples of a
model: Rd, Zd, and Comb graphs.

6 Time Evolutions
In this section, we give an explicit formula of the coupled time evolution. The model is defined on the
Boson–Fock space F+(K) over the Hilbert space K := C ⊕ (

⊕N
k=1 Kk) equipped with the inner product

⟨
c(1)

ψ(1)
1
...

ψ(1)
N

,


c(2)

ψ(2)
1
...

ψ(2)
N


⟩
= c(1)c(2) +

N∑
k=1

⟨
ψ(1)

k , ψ(2)
k

⟩
k
, (6.1)

where c(1), c(2) ∈ C, for each k = 1, . . . ,N, Kk is a Hilbert space with the inner product ⟨·, ·⟩k, and
ψ(1)

k , ψ(2)
k ∈ Kk. The free Hamiltonian H0 on F+(K) is given by H0 = dΓ(h0), where dΓ is the second

quantization (see e.g. [7, Section 5.2]), h0 is the positive self-adjoint operator on K defined by

h0


c
ψ1
...
ψN

 =

Ωc

h0,1ψ1
...

h0,NψN

, (6.2)

Ω > 0, c ∈ C, h0,k is the positive one-particle Hamiltonian on each reservoirs, k = 1, . . . ,N, and ψk is a
vector in the domain of h0,k. The Hamiltonian H of our coupled model is given by H = dΓ(h), where h
is the self-adjoint operator on K defined by

h


c
ψ1
...
ψN

 =

Ωc + λ

∑N
k=1 ⟨gk, ψk⟩

h0,1ψ1 + λcg1
...

h0,NψN + λcgN

 =: (h0 + λV)


c
ψ1
...
ψN

, (6.3)

λ > 0, and gk ∈ Kk, k = 1, . . . ,N. On the Weyl CCR algebraW(K), the map αt, t ∈ R, defined by

αt(W( f )) = eitdΓ(h)W( f )e−itdΓ(h) = W(eith f ), f ∈ K , (6.4)

is a one-parameter group of automorphisms onW(K).
For simplicity, we denote vectors t(ψ1, . . . , ψN), t(g1, . . . , gN), and the self-adjoint operator

⊕N
k=1 h0,k

by ψ, g, and h0,0, respectively.
To obtain an explicit formula of the coupled time evolution, we need some conditions.
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(Abs) For k = 1, . . . ,N, a pair (ψ, ξ) of vectors ψ, ξ ∈ Kk satisfies

sup
ν∈R,ε>0

∣∣∣∣⟨ψ, (ν − h0,k ± iε)−1ξ
⟩∣∣∣∣ < ∞. (6.5)

For simplicity, if vectors ψk, ξk ∈ Kk, k = 1, . . . ,N, satisfy condition (Abs), then we say that (ψ, ξ)
has condition (Abs).

(A) The form factor g defined in (6.3) satisfies condition (Abs), i.e., (g, g) has condition (Abs).

(B) We define the function η(z) by

η(z) := z −Ω − λ2
∫
σ0

1
z − νd⟨g, E0(ν)g⟩, (6.6)

where E0 is the spectral measure of h0,0 and σ0 is the spectrum of h0,0. Then 1/η+ ∈ L∞(R), where
η+(x) = limε↘0 η(x + iε).

Remark 6.1. By condition (A), there exists a constant Cg > 0 such that

sup
ν∈R,ε>0

∣∣∣∣⟨g, (ν − h0,0 ± iε)−1g
⟩∣∣∣∣ < Cg. (6.7)

If Ω ∈ σ0, λ is sufficiently small, and there exists a constant C > 0 such that

d⟨g, E0(ν)g⟩
dν

> C (6.8)

for a.e. ν ∈ [Ω − 2λ2Cg,Ω + 2λ2Cg], then the function η satisfies condition (B).

We define the sets hk(gk) and h(g) by

hk(gk) = { ψ ∈ Kk | (ψ, gk) has condition (Abs) } , h(g) =
{

t(ψ1, . . . , ψN)
∣∣∣ ψk ∈ hk(gk)

}
. (6.9)

For any c ∈ C and any ψ ∈ h(g), we put f = t(c, ψ),

F(ν; f ) := c + λ
⟨
g, (ν − h0,0 − i0)−1ψ

⟩ (
= c + λ lim

ε↘0

⟨
g, (ν − h0,0 − iε)−1ψ

⟩)
, a.e. ν ∈ R,

φl( f ) := ψl + λ
F(h0,0; f )
η−(h0,0)

gl, φ( f ) := ψ + λ
F(h0,0; f )
η−(h0,0)

g.

Let H be a Hilbert space. For any ξ, ζ, ψ ∈ H, we set

(ξ ⊗ ζ)ψ = ⟨ζ, ψ⟩ξ, (6.10)

where ⟨·, ·⟩ is the inner product of H.

Proposition 6.2. Let h0 and h be the operators defined in (6.2) and (6.3). Then we have

(z − h)−1 = (z − h0)−1 + B(z)(z − h0)−1 (6.11)

for z ∈ C with Imz , 0, where

B(z) =λ2

⟨
g, (z − h0,0)−1g

⟩
η(z)

(
1
0

)
⊗

(
1
0

)
+ λ

z −Ω
η(z)

(
0

(z − h0,0)−1g

)
⊗

(
1
0

)
+

λ

η(z)

(
1
0

)
⊗

(
0
g

)
+

λ2

η(z)

(
0

(z − h0,0)−1g

)
⊗

(
0
g

)
(6.12)

and the function η(z) is defined in (6.6).
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Proof. By resolvent formula, we have

(z − h)−1 = (z − h0)−1 + B(z)(z − h0)−1. (6.13)

Since V is a finite rank operator, B(z) has the form of

B(z) = ξ1(z) ⊗
(

1
0

)
+ ξ2(z) ⊗

(
0
g

)
(6.14)

with some ξ1(z), ξ2(z) ∈ H. By multiplying the equation (6.13) by z − h from the right, we have

B(z) = λ(z − h0)−1V + λB(z)(z − h0)−1V. (6.15)

By (6.14), we obtain the equation

ξ1(z) ⊗
(

1
0

)
+ ξ2(z) ⊗

(
0
g

)
=λ

(
(z −Ω)−1

0

)
⊗

(
0
g

)
+ λ

(
0

(z − h0,0)−1g

)
⊗

(
1
0

)
+ λ

⟨
g, (z − h0,0)−1g

⟩
ξ2(z) ⊗

(
1
0

)
+

λ

z −Ωξ1(z) ⊗
(

0
g

)
(6.16)

and

ξ1(z) =λ
z −Ω
η(z)

(
0

(z − h0,0)−1g

)
+ λ2

⟨
g, (z − h0,0)−1g

⟩
η(z)

(
1
0

)
, (6.17)

ξ2(z) =
λ

η(z)

(
1
0

)
+

λ2

η(z)

(
0

(z − h0,0)−1g

)
. (6.18)

Thus, we get (6.12). ■
By using the above proposition, we give an explicit formula of eith, which we will use later. We are

not aware of any literature presenting this formula else where.

Theorem 6.3. Assume that h0,0 is bounded. Under conditions (A) and (B), for any c, d ∈ C and any
ψ, ξ ∈ h(g), which (ψ, ξ) has condition (Abs), eith has the following form:⟨(

d
ξ

)
, eith

(
c
ψ

)⟩
= dc(t) + ⟨ξ, ψ(t)⟩, (6.19)

where

c(t) =λ
⟨
g,

eith0,0

η+(h0,0)
φ( f )

⟩
, (6.20)

⟨ξ, ψ(t)⟩ =
⟨
ξ, eith0,0φ( f )

⟩
− λ2

∫
σ0

eitν

η+(ν)

⟨
ξ, (h0,0 − ν − i0)−1g

⟩
d⟨g, E0(ν)φ( f )⟩. (6.21)

To prove the above theorem, we will use the following lemma.

Lemma 6.4. Assume conditions (A) and (B). For any R >
∥∥∥h0,0

∥∥∥ and any ζ, ξ ∈ h(g), which (ζ, ξ) has
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condition (Abs), we have the following equations:

1
2πi

lim
ε↘0

∫ R

−R

{
eit(x−iε)

η(x − iε)
− eit(x+iε)

η(x + iε)

}
dx = λ2

⟨
g,

eith0,0∣∣∣η−(h0,0)
∣∣∣2 g

⟩
, (6.22)

1
2πi

lim
ε↘0

∫ R

−R

eit(x−iε)
⟨
ζ, (x − h0,0 − iε)−1ξ

⟩
η(x − iε)

−
eit(x+iε)

⟨
ζ, (x − h0,0 + iε)−1ξ

⟩
η(x + iε)

dx

=

⟨
ζ,

eith0,0

η+(h0,0)
ξ

⟩
+ λ2

∫
σ0

eitν
⟨
ζ, (ν − h0,0 − i0)−1ξ

⟩
|η−(ν)|2

d⟨g, E0(ν)g⟩ (6.23)

=

⟨
ζ,

eith0,0

η−(h0,0)
ξ

⟩
− λ2

∫
σ0

eitν
⟨
ζ, (h0,0 − ν − i0)−1ξ

⟩
|η−(ν)|2

d⟨g, E0(ν)g⟩, (6.24)

1
2πi

lim
ε↘0

∫ R

−R

{
eit(x−iε)

η(x − iε)

⟨
g, (x − h0,0 − iε)−1ζ

⟩⟨
ξ, (x − h0,0 − iε)−1g

⟩
− eit(x+iε)

η(x + iε)

⟨
g, (x − h0,0 + iε)−1ζ

⟩
d
⟨
ξ, (x − h0,0 + iε)−1g

⟩}
dx

=

∫
σ0

eitν

η−(ν)

⟨
g, (ν − h0,0 − i0)−1ζ

⟩
d⟨ξ, E0(ν)g⟩ +

∫
σ0

eitν

η+(ν)

⟨
ξ, (ν − h0,0 + i0)−1g

⟩
d⟨g, E0(ν)ζ⟩

+

∫
σ0

λ2eitν

|η−(ν)|2
⟨
g, (ν − h0,0 − i0)−1ζ

⟩⟨
ξ, (ν − h0,0 + i0)−1g

⟩
d⟨g, E0(ν)g⟩. (6.25)

Proof. Since the equations (6.22), (6.23), (6.24), and (6.25) can be shown by similar computations, we
only prove (6.25). For the left hand side of the equation (6.25), we obtain∫ R

−R

{
eit(x−iε)

η(x − iε)

⟨
g, (x − h0,0 − iε)−1ζ

⟩⟨
ξ, (x − h0,0 − iε)−1g

⟩
− eit(x+iε)

η(x + iε)

⟨
g, (x − h0,0 + iε)−1ζ

⟩⟨
ξ, (x − h0,0 + iε)−1g

⟩}
dx

=

∫ R

−R

eitx

|η(x − iε)|2
{
etεη(x + iε)

⟨
g, (x − h0,0 − iε)−1ζ

⟩⟨
ξ, (x − h0,0 − iε)−1g

⟩
−e−tεη(x − iε)

⟨
g, (x − h0,0 + iε)−1ζ

⟩⟨
ξ, (x − h0,0 + iε)−1g

⟩}
dx. (6.26)

The integrand in (6.26) has the form of

etεη(x + iε)
⟨
g, (x − h0,0 − iε)−1ζ

⟩⟨
ξ, (x − h0,0 − iε)−1g

⟩
− e−tεη(x − iε)

⟨
g, (x − h0,0 + iε)−1ζ

⟩⟨
ξ, (x − h0,0 + iε)−1g

⟩
=etεη(x + iε)

⟨
g, (x − h0,0 − iε)−1ζ

⟩(⟨
ξ, (x − h0,0 − iε)−1g

⟩
−

⟨
ξ, (x − h0,0 + iε)−1g

⟩)
+ e−tεη(x − iε)

⟨
ξ, (x − h0,0 + iε)−1g

⟩(⟨
g, (x − h0,0 − iε)−1ζ

⟩
−

⟨
g, (x − h0,0 + iε)−1ζ

⟩)
+

(
etεη(x + iε) − e−tεη(x − iε)

)⟨
g, (x − h0,0 − iε)−1ζ

⟩⟨
ξ, (x − h0,0 + iε)−1g

⟩
. (6.27)
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By conditions (Abs), (A), and (B) and the equation (6.27), we see that

1
2πi

lim
ε↘0

∫ R

−R

{
eit(x−iε)

η(x − iε)

⟨
g, (x − h0,0 − iε)−1ζ

⟩⟨
ξ, (x − h0,0 − iε)−1g

⟩
− eit(x+iε)

η(x + iε)

⟨
g, (x − h0,0 + iε)−1ζ

⟩
d
⟨
ξ, (x − h0,0 + iε)−1g

⟩}
dx

=

∫
σ0

eitν

η−(ν)

⟨
g, (ν − h0,0 − i0)−1ζ

⟩
d⟨ξ, E0(ν)g⟩ +

∫
σ0

eitν

η+(ν)

⟨
ξ, (ν − h0,0 + i0)−1g

⟩
d⟨g, E0(ν)ζ⟩

+

∫
σ0

λ2eitν

|η−(ν)|2
⟨
g, (ν − h0,0 − i0)−1ζ

⟩⟨
ξ, (ν − h0,0 + i0)−1g

⟩
d⟨g, E0(ν)g⟩.

Thus, (6.25) follows. ■
Proof of Theorem 6.3. By Cauchy’s integral formula, eith has the form of

eith =
1

2πi
st-lim

R↗∞,ε↘0

∫
Cε,R

eitz

z − h
dz, (6.28)

where st-lim is the strong limit, R >
∥∥∥h0,0

∥∥∥, ε > 0, and Cε,R is as follows:

Figure 2: The Contour Cε,R

By Proposition 6.2, we have

(z − h)−1
(

c
ψ

)
=

1
η(z)

(
c
0

)
+

λ

η(z)

⟨
g, (z − h0,0)−1ψ

⟩( 1
0

)
+

(
0

(z − h0,0)−1ψ

)

+
λc
η(z)

(
0

(z − h0,0)−1g

)
+
λ2

⟨
g, (z − h0,0)−1ψ

⟩
η(z)

(
0

(z − h0,0)−1g

)
. (6.29)
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The definition of η, Lemma 6.4, and conditions (A) and (B) imply the following equations:

1
2πi

lim
R↗∞,ε↘0

∫
Cε,R

eitz

η(z)
dz = λ2

⟨
g,

eith0,0∣∣∣η−(h0,0)
∣∣∣2 g

⟩
, (6.30)

1
2πi

lim
R↗∞,ε↘0

∫
Cε,R

λeitz

η(z)

⟨
g, (z − h0,0)−1ψ

⟩
dz = λ

⟨
g,

eith0,0

η+(h0,0)
ψ

⟩
+ λ3

∫
σ0

eitν
⟨
g, (ν − h0,0 − i0)−1ψ

⟩
|η−(ν)|2

d⟨g, E0(ν)g⟩,

(6.31)

1
2πi

lim
R↗∞,ε↘0

∫
Cε,R

λceitz

η(z)

⟨
ξ, (z − h0,0)−1g

⟩
dz

=λc
⟨
ξ,

eith0,0

η−(h0,0)
g
⟩
− λ3c

∫
σ0

eitν
⟨
ξ, (h0,0 − ν − i0)−1g

⟩
|η−(ν)|2

d⟨g, E0(ν)g⟩, (6.32)

1
2πi

lim
R↗∞,ε↘0

∫
Cε,R

λ2eitz

η(z)

⟨
g, (z − h0,0)−1ψ

⟩⟨
ξ, (z − h0,0)−1g

⟩
dz

=λ2
∫
σ0

eitν

η−(ν)

⟨
g, (ν − h0,0 − i0)−1ψ

⟩
d⟨ξ, E0(ν)g⟩ + λ2

∫
σ0

eitν

η+(ν)

⟨
ξ, (ν − h0,0 + i0)−1g

⟩
d⟨g, E0(ν)ψ⟩

+ λ4
∫
σ0

eitν

|η−(ν)|2
⟨
g, (ν − h0,0 − i0)−1ψ

⟩⟨
ξ, (ν − h0,0 + i0)−1g

⟩
d⟨g, E0(ν)g⟩. (6.33)

Hence we conclude that

c(t) =λ
⟨
g,

eith0,0

η+(h0,0)
ψ

⟩
+ λ2

∫
σ0

eitν

|η−(ν)|2
{
c + λ

⟨
g, (ν − h0,0 − i0)−1ψ

⟩}
d⟨g, E0(ν)g⟩,

⟨ξ, ψ(t)⟩ =
⟨
ξ, eith0,0ψ

⟩
+ λ

∫
σ0

eitν

η−(ν)

{
c + λ

⟨
g, (ν − h0,0 − i0)−1ψ

⟩}
d⟨ξ, E0(ν)g⟩

− λ2
∫
σ0

eitν

η+(ν)

⟨
ξ, (h0,0 − ν − i0)−1g

⟩
d⟨g, E0(ν)ψ⟩

− λ3
∫
σ0

eitν
⟨
ξ, (h0,0 − ν − i0)−1g

⟩
|η−(ν)|2

{
c + λ

⟨
g, (ν − h0,0 − i0)−1ψ

⟩}
d⟨g, E0(ν)g⟩

and the theorem is proven.■

7 NESS
In this section, we give the initial state and an explicit formula of NESS. We consider the cases that
h0,k is the multiplication operator of |p|2/2, p ∈ Rd, on L2(Rd), d ≥ 3, or h0,k =

∥∥∥AGk

∥∥∥1 − AGk , where
Gk are undirected graphs and AGk is the adjacency operator of Gk for each k = 1, . . . ,N. If h0,k is the
multiplication operator of |p|2/2, then the PF weight vk is the Dirac delta function δ.

For an operator A on a Hilbert space, we denote the domain of A byD(A). For each k = 1, . . . ,N, we
denote the inverse temperature and the chemical potential of k-th reservoir by βk > 0 and µk ≤ 0, respec-
tively. Let vk be a PF weight for h0,k. We set D(v) =

⊕N
k=1D(vk) and (ψk) = t(0, 0, . . . , 0, ψk, 0, . . . , 0)

for ψk ∈ Kk. Suppose ψk ∈ D(vk) ∩ D((eβk(h0,k−µk) − 1)−1/2). We consider the initial state ω0 of the k-th
reservoir given by

ω0(W((ψk))) = exp
(
−1

2
⟨
ψk,

(Nk(h0,k) + 1/2
)
ψk

⟩)
eiΘk(⟨vk ,ψk⟩), (7.1)
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where

Nk(x) = (eβk(x−µk) − 1)−1 (7.2)

and Θk is a real valued linear functional on C. Examples of Θk are given in Section 9. We assume that
Θk ≡ 0 whenever µk < 0. To obtain an explicit formula of NESS, we assume the following conditions
for initial states and form factors:

(C) The initial state ω0 satisfies ∣∣∣ω0(a♮1 a♮2 · · · a♮n )
∣∣∣ ≤ n!Kn, n ∈ N, (7.3)

where a♮ j = a(t(1, 0)) or a†(t(1, 0)) and Kn(> 0) satisfies limn→∞ Kn+1/Kn = 0.

(D) The form factor gk is inD(vk) ∩D((eβkh0,k − 1)−1/2) for each k = 1, . . . ,N.

Lemma 7.1. Suppose that the form factors gk and vectors ψk belong to D((eβkh0,k − 1)−1/2). Then
Pkeith t(c, ψ1, . . . , ψN) is in D((eβkh0,k − 1)−1/2) for any t ∈ R and c ∈ C, k = 1, . . . ,N, where Pk is the
projection from K onto Kk.

Proof. For simplicity, we assume that t > 0. For any c ∈ C and ψk ∈ D((eβkh0,k − 1)−1/2), k = 1, . . . ,N,
we have that

eith
(

c
ψ

)
=

∑
n≥0

λnin
∫ t

0
dtn · · ·

∫ t2

0
dt1α0

t1 (V)α0
t2 (V) · · ·α0

tn (V)eith0

(
c
ψ

)
(7.4)

by Dyson series expansion, where α0
t (V) = eith0 Ve−ith0 , V is the operator defined in (6.3), and ψ =

t(ψ1, . . . , ψN). For n ≥ 1, we obtain

α0
t1 (V)α0

t2 (V) · · ·α0
tn (V)eith0

(
c
ψ

)
=

⟨(
1
0

)
, e−it1h0α0

t2 (V) · · ·α0
tn (V)eith0

(
c
ψ

)⟩
eit1h0

(
0
g

)
+

⟨(
0
g

)
, e−it1h0α0

t2 (V) · · ·α0
tn (V)eith0

(
c
ψ

)⟩
eit1h0

(
1
0

)
(7.5)

and ∥∥∥∥∥∥(eβkh0,k − 1)−1/2Pkα
0
t1 (V)α0

t2 (V) · · ·α0
tn (V)eith0

(
c
ψ

)∥∥∥∥∥∥ ≤ ∥V∥n−1

∥∥∥∥∥∥
(

c
ψ

)∥∥∥∥∥∥∥∥∥(eβkh0,k − 1)−1/2gk

∥∥∥. (7.6)

It follows that∥∥∥∥∥∥(eβkh0,k − 1)−1/2Pkeith
(

c
ψ

)∥∥∥∥∥∥ ≤ ∥∥∥(eβkh0,k − 1)−1/2ψk

∥∥∥ + ∥∥∥(eβkh0,k − 1)−1/2gk

∥∥∥∥∥∥∥∥∥
(

c
ψ

)∥∥∥∥∥∥∑
n≥1

λn∥V∥n−1 tn

n!

=
∥∥∥(eβkh0,k − 1)−1/2ψk

∥∥∥ + eλt∥V∥ − 1
∥V∥

∥∥∥(eβkh0,k − 1)−1/2gk

∥∥∥∥∥∥∥∥∥
(

c
ψ

)∥∥∥∥∥∥ < ∞.
(7.7)

This completes the proof. ■

Remark 7.2. Note thatD((eβkh0,k − 1)−1/2) = D((h0,k)−1/2). (cf. Paragraphs before [13, Theorem 4.5].)
In fact, we consider the continuous function

q(x) =
{

− 1
2 (x = 0),

(ex − 1)−1 − x−1 (x > 0). (7.8)
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The function q is bounded on [0,∞) and (ex−1)−1 = q(x)+ x−1, x ∈ (0,∞). For any ε > 0, the following
equation holds: ⟨

ψ, (eβk(h0,k+ε) − 1)−1ψ
⟩
=

⟨
ψ, q(βk(h0,k + ε))ψ

⟩
+

⟨
ψ, (βk(h0,k + ε))−1ψ

⟩
. (7.9)

If ψ ∈ D((eβkh0,k − 1)−1/2), then

lim
ε↓0

⟨
ψ, (eβk(h0,k+ε) − 1)−1ψ

⟩
< ∞. (7.10)

By the boundedness of q, limε↓0
⟨
ψ, (βk(h0,k + ε))−1ψ

⟩
< ∞. Thus, D((eβkh0,k − 1)−1/2) ⊂ D((h0,k)−1/2).

By a similar discussion, we obtain D((h0,k)−1/2) ⊂ D((eβh0,k − 1)−1/2). As a consequence, we see that
D((eβkh0,k − 1)−1/2) = D((h0,k)−1/2).

We define the upper half-plane C+ on C by C+ := { z ∈ C | Imz > 0 } and the Hardy space H∞(C+)
on C+ defined by

H∞(C+) :=
{

f : holomorphic on C+

∣∣∣∣∣∣ ∥ f ∥∞ := sup
z∈C+
| f (z)| < ∞

}
. (7.11)

We denote the Hardy space over the lower half-plane C− := { z ∈ C | Imz < 0 } by H∞(C−).
By using Theorem 6.3, we obtain an explicit formula of NESS introduced in (1.6).

Theorem 7.3. Assume that h0,0 is bounded. Under conditions (A) ∼ (D), we have that

lim
t→+∞

ω0 ◦ αt(W( f )) = exp
{
−1

2
S ( f ) + iΛ( f )

}
(7.12)

for f = t(c, ψ) with c ∈ C and ψ ∈ k := h(g) ∩D(v) ∩ (
⊕N

k=1D((eβkh0,k − 1)−1/2)), where

S ( f ) =
N∑

l=1

⟨
φl( f ), (Nl(h0,l) + 1/2)φl( f )

⟩
, Λ( f ) =

N∑
l=1

Θl(⟨vl, φl( f )⟩), (7.13)

and ⟨vl, φl( f )⟩ is defined by

⟨vl, φl( f )⟩ := ⟨vl, ψl⟩ +
λc⟨vl, gl⟩
η(0)

+
λ2

η(0)
⟨vl, gl⟩

⟨
g, (h0,0)−1ψ

⟩
. (7.14)

Remark 7.4. Theorem 7.3 and the definition of NESS (1.6) imply that NESS exists uniquely. We denote
the NESS by ω+. NESS ω+ has the form of

ω+(Ψ( f )) =π3/2
N∑

l=1

Θl(⟨vl, φl( f )⟩), (7.15)

ω+(Ψ( f )2) − ω+(Ψ( f ))2 =

N∑
l=1

⟨
φl( f ), (Nl(h0,l) + 1/2)φl( f )

⟩
. (7.16)

Proof of Theorem 7.3. For a vector f ∈ K , we denote the scalar part and Kk-part of f by f0 and fk,
k = 1, . . . ,N, respectively. By (7.1), for f = t(c, ψ) with c ∈ C and ψ ∈ k, we have that

ω0 ◦ αt(W( f )) = ω0(W((eith f )0))
N∏

k=1

ω0(W((eith f )k)). (7.17)
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First, we consider the limit of ω0(W((eith f )0)). Condition (C) and Theorem 6.3 imply∣∣∣∣ω0(
{
Φ((eith f )0)

}m
)
∣∣∣∣ ≤ m!(2|c(t)|)mKm. (7.18)

Since 1/η− ∈ L∞(R),

1
η+(ν)

d⟨g, E0(ν)ψ⟩
dν

,
F(ν; f )
|η−(ν)|2

d⟨g, E0(ν)g⟩
dν

∈ L1(R). (7.19)

Thus, supt∈R |c(t)| < ∞. A theorem of Riemann–Lebesgue (see e.g. [35]) implies that c(t) → 0 as
t → ∞. We obtain∣∣∣ω0(exp(iΦ((eith f )0))) − 1

∣∣∣ ≤ ∞∑
m=1

1
m!

∣∣∣∣ω0(
{
Φ(eith f )0

}m
)
∣∣∣∣ ≤ ∞∑

m=1

(2|c(t)|)mKm

≤|c(t)|
C

∞∑
m=1

(2C)mKm → 0, (t → ∞), (7.20)

where C := supt∈R |c(t)|.
Next, we consider the quadratic part of logω0(W((eith f )l)). For ε ∈ (0, π/2), we put

ψε,l(t) := eith0,lφl( f ) − λ2
∫
σ0

eitν

η+(ν)
(h0,l − ν − iε)−1gld⟨g, E0(ν)φ( f )⟩, (7.21)

where the convergence of vector valued integral of (7.21) is in the strong operator topology. Note that
(h0,l − ν − iε)−1 is bounded. We have that⟨
ψε,l(t),

{Nl(h0,l) + 1/2
}
ψε,l(t)

⟩
=
⟨
φl( f ),

{Nl(h0,l) + 1/2
}
φl( f )

⟩
− λ2Re

{∫
σ0

eitν

η+(ν)

⟨
eith0,lφl( f ),

{Nl(h0,l) + 1/2
}
(h0,l − ν − iε)−1gl

⟩
d⟨g, E0(ν)φ( f )⟩

}
+ λ4

∫
σ0

∫
σ0

eit(ν−ν′)

η−(ν′)η+(ν)

⟨
(h0,l − ν′ − iε)−1gl,

{Nl(h0,l) + 1/2
}
(h0,l − ν − iε)−1gl

⟩
d⟨g, E0(ν)φ( f )⟩d⟨φ( f ), E0(ν′)g

⟩
.

(7.22)

The second term on the right side of (7.22) is∫
σ0

eitν

η+(ν)

⟨
eith0,lφl( f ),

{Nl(h0,l) + 1/2
}
(h0,l − ν − iε)−1gl

⟩
d⟨g, E0(ν)φ( f )⟩

=

∫
σ0

1
η+(ν)

∫
σl

eit(ν−ν′)

ν′ − ν − iε
{Nl(ν′) + 1/2

}
d
⟨
φl( f ), El(ν′)gl

⟩
d⟨g, E0(ν)φ( f )⟩

=ietε
∫
σ0

1
η+(ν)

∫
σl

∫ ∞

0
ei(t+s)(ν−ν′+iε)ds

{Nl(ν′) + 1/2
}
d
⟨
φl( f ), El(ν′)gl

⟩
d⟨g, E0(ν)φ( f )⟩

=ietε
∫ ∞

t
e−sε

∫
σ0

eisν

η+(ν)
d⟨g, E0(ν)φ( f )⟩

∫
σl

e−isν′ {Nl(ν′) + 1/2
}
d
⟨
φl( f ), El(ν′)gl

⟩
ds. (7.23)

Since g, ψ ∈
⊕N

k=1D((eβkh0,k − 1)−1/2), we have that g, ψ ∈
⊕N

k=1D((h0,k)−1/2) by Remark 7.2. Thus,
we obtain φl( f ) ∈ D((h0,l)−1/2) for any l = 1, . . . ,N and

Nl(ν′)
d⟨φl( f ), El(ν′)gl⟩

dν′
= ν′Nl(ν′)

d
⟨
(h0,l)−1/2φl( f ), El(ν′)(h0,l)−1/2gl

⟩
dν′

. (7.24)
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The above equation (7.24) and conditions (A), (B), and (D) imply that

1
η+(ν)

d⟨g, E0(ν)φ( f )⟩
dν

,
{Nl(ν′) + 1/2

}d⟨φl( f ), El(ν′)gl⟩
dν′

∈ L1(R) ∩ L2(R). (7.25)

Thus, there exist functions w1,w2 ∈ L2(R) such that∫ ∞

t
e−sε

∫
σ0

eisν

η+(ν)
d⟨g, E0(ν)φ( f )⟩

∫
σl

e−isν′ {Nl(ν′) + 1/2
}
d
⟨
φl( f ), El(ν′)gl

⟩
ds =

∫ ∞

t
e−sεw1(s)w2(s)ds

(7.26)

by Plancherel theorem.
We consider the third term on the right side of (7.22). Since Nl(x) + 1/2 is in L1(R, d⟨gl, El(x)gl⟩),

λ4
∫
σ0

∫
σ0

eit(ν−ν′)

η−(ν′)η+(ν)

⟨
(h0,l − ν′ − iε)−1gl,

{Nl(h0,l) + 1/2
}
(h0,l − ν − iε)−1gl

⟩
d⟨g, E0(ν)φ( f )⟩d⟨φ( f ), E0(ν′)g

⟩
=λ4 lim

δ↘0

∫
σ0

∫
σ0

eit(ν−ν′)

η−(ν′)η+(ν)

∫
σl

Nl(x + δ) + 1/2
(x − ν′ + iε)(x − ν − iε)

d⟨gl, El(x)gl⟩d⟨g, E0(ν)φ( f )⟩d⟨φ( f ), E0(ν′)g
⟩
.

(7.27)

We define a holomorphic function uδ on C+ by

uδ(z)(= uδ(x + iy)) :=
1
π
{Nl(z + δ) + 1/2}

∫
R

y
(x − w)2 + y2

d⟨gl, El(w)gl⟩
dw

dw. (7.28)

Note that the support of d⟨gl, El(w)gl⟩/dw is contained in [0,∞), d⟨gl, E0(w)gl⟩/dw is in L∞(R) by
condition (A), and Nl(z + δ) is analytic and bounded in D := { z ∈ C | Imz > 0,−δ′ < Rez < ∞}, where
0 < δ′ < δ. Thus, uδ ∈ H∞(C+) and uδ(x + iy) converges to {Nl(x + δ) + 1/2}d⟨gl, E0(x)gl⟩/dx as y↘ 0
in L∞(R) by [18, Theorem 3.13.]. For any R >

∥∥∥h0,0
∥∥∥, we obtain the following equation:∫

σl

Nl(x + δ) + 1/2
(x − ν′ + iε)(x − ν − iε)

d⟨gl, El(x)gl⟩ = lim
R→∞,δ′↘0

∫ R

−R

uδ(x + δ′)
(x − ν′ + iε)(x − ν − iε)

dx

= lim
R→∞,δ′↘0

∫
γR,δ′

uδ(z + δ′)
(z − ν′ + iε)(z − ν − iε)

dz = 2πi
uδ(ν + iε)
ν − ν′ + 2iε

, (7.29)

where γR,δ′ is the contour from [−δ′,R] through [R,R + iR] and [R + iR,−δ′ + iR] to [−δ + iR,−δ′]. By
(7.25), (7.27), and ε ∈ (0, π/2), the last term on the right side of (7.22) has the form of

λ4
∫
σ0

∫
σ0

eit(ν−ν′)

η−(ν′)η+(ν)

⟨
(h0,l − ν′ − iε)−1gl,

(Nl(h0,l) + 1/2
)
(h0,l − ν − iε)−1gl

⟩
d⟨g, E0(ν)φ( f )⟩d⟨φ( f ), E0(ν′)g

⟩
=2πiλ4 lim

δ↘0

∫
σ0

∫
σ0

eit(ν−ν′)

η−(ν′)η+(ν)
uδ(ν + iε)
ν − ν′ + 2iε

d⟨g, E0(ν)φ( f )⟩d⟨φ( f ), E0(ν′)g
⟩

=2πλ4e2tε
∫
σ0

∫
σ0

u(ν + iε)
η−(ν′)η+(ν)

∫ ∞

t
eis(ν−ν′+2iε)dsd⟨g, E0(ν)φ( f )⟩d⟨φ( f ), E0(ν′)g

⟩
=2πλ4e2tε

∫ ∞

t
e−2sε

∫
σ0

eisνu(ν + iε)
η+(ν)

d⟨g, E0(ν)φ( f )⟩
∫
σ0

e−isν′

η−(ν′)
d
⟨
φ( f ), E0(ν′)g

⟩
ds, (7.30)

where u(ν + iε) = limδ↘0 uδ(ν + iε). By (7.25), there exist functions w3,w4 ∈ L2(R) such that∫ ∞

t
e−2sε

∫
σ0

eisνu(ν + iε)
η+(ν)

d⟨g, E0(ν)φ( f )⟩
∫
σ0

e−isν′

η−(ν′)
d
⟨
φ( f ), E0(ν′)g

⟩
ds =

∫ ∞

t
e−2sεw3(s)w4(s)ds

(7.31)
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by Plancherel theorem. The integral (7.31) is absolutely convergent independent of ε and t. Therefore,
we have that⟨

ψl(t),
{Nl(h0,l) + 1/2

}
ψl(t)

⟩
= lim

ε↘0

⟨
ψε,l(t),

{Nl(h0,l) + 1/2
}
ψε,l(t)

⟩
=
⟨
φl( f ),

{Nl(h0,l) + 1/2
}
φl( f )

⟩ − λ2Re
{

i
∫ ∞

t
w1(s)w2(s)ds

}
+ 2πλ4

∫ ∞

t
w3(s)w4(s)ds. (7.32)

Thus, we obtain

lim
t→∞

⟨
ψl(t),

{Nl(h0,l) + 1/2
}
ψl(t)

⟩
=

⟨
φl( f ),

{Nl(h0,l) + 1/2
}
φl( f )

⟩
. (7.33)

Finally, we discuss the term Θl

(⟨
vl, (eith f )l

⟩)
in (7.1). If h0,k is the multiplication operator of |p|2/2,

then we obtain the statement by [34, Theorem 3.1]. Thus, we consider the case where h0,k is the adja-
cency operator of graphs. For z ∈ C\σk and ξ ∈ kk := Pkk, we obtain∣∣∣∣⟨δx, (z − h0,k)−1ξ

⟩∣∣∣∣ = ∣∣∣∣∣∣
∫
σk

(z − ν)−1d⟨δx, Ek(ν)ξ⟩
∣∣∣∣∣∣ ≤ sup

ν∈σk

|z − ν|−1
∫
σk

d|⟨δx, E0(ν)ξ⟩| = sup
ν∈σk

|z − ν|−1|⟨δx, ξ⟩|.

(7.34)

Since ξ ∈ kk ⊂ D(vk), (z − h0,k)−1ξ ∈ D(vk) for any z ∈ C\σk. It follows that⟨
vk, (z − h0,k)−1ξ

⟩
= z−1

⟨
vk, (z − h0,k)(z − h0,k)−1ξ

⟩
= z−1⟨vk, ξ⟩. (7.35)

By condition (D) and a theorem of Riemann–Lebesgue, we obtain

lim
t→∞
Λl(eith f ) = lim

t→∞

[
Θl

(
⟨v, ψl⟩

2πi
lim

R↗0,ε↘0

∫
CR,ε

eitz

z
dz

)
+ Θl

(
λc⟨vl, gl⟩

2πi
lim

R↗0,ε↘0

∫
CR,ε

eitz

η(z)z
dz

)

+Θl

λ2⟨vl, gl⟩
2πi

lim
R↗0,ε↘0

∫
CR,ε

eitz
⟨
g, (z − h0,0)−1ψ

⟩
η(z)z

dz


 = Θl(⟨vl, φl( f )⟩). (7.36)

We have completed the proof.■

8 Currents and Entropy Production Rate
We set (c) = t(c, 0, . . . , 0), c ∈ C. Following W. Aschbacher, V. Jakšić, Y. Pautrat, and C.-A. Pillet ([4]
and [5]), V. Jakšić and C.-A. Pillet [16], for any l = 1, . . . ,N, currents Jl and El from l-th reservoir to
the system is formally defined by

Jl = iλa((1))a†((gl)) − iλa((gl))a†((1)), (8.1)

El = iλa((1))a†((h0,lgl)) − iλa((h0,lgl))a†((1)), (8.2)

which are given by the following formal equations:

− d
dt
τt(dΓ(P0))

∣∣∣∣∣
t=0
=

N∑
l=1

Jl, − d
dt
τt(dΓ(P0h0))

∣∣∣∣∣
t=0
=

N∑
l=1

El, (8.3)

where P0 is the projection from K onto 0 ⊕ (
⊕n

l=1 Kl). Assuming classical thermodynamics, D. Ruelle
introduced the entropy production Ep(ω+) in a NESS ω+ via the following equation:

Ep(ω+) = ω+(σ), (8.4)
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where

σ = −
N∑

l=1

βl(El − µlJl). (8.5)

Remark 8.1. In classical thermodynamics, entropy production rate dS has the form of

dS =
N∑

j=1

β j(dU j − µ jdN j), (8.6)

where β j is the inverse temperature, dU j is the rate of internal energy, µ j is the chemical potential,
and dN j is the rate of number of particles for each j ∈ {1, . . . ,N}. V. Yakšić and C.-A. Pilllet proved
non-negativity of entropy production rate using the relative modular operators [16, Theorem 1.2]. Let
(O, α) be a C∗-dynamical system and ω0 be an α-invariant state. We fix a self-adjoint element V ∈ O.
We denote the perturbed time evolution of αt by αV

t . We define the relative entropy Ent(ω0 ◦ αV
t |ω0) of

ω0 and ω0 ◦ αV
t by

Ent(ω0 ◦ αV
t |ω0) =

∫ ∞

0
log λd

⟨
ΩV

t , E(λ)ΩV
t

⟩
, (8.7)

where Ω0 and ΩV
t are the GNS-cyclic vectors with respect to ω0 and ω0 ◦ αV

t , respectively, E is the
spectral family of the relative modular operator ∆ΩV

t ,Ω0
,

∆ΩV
t ,Ω0
= S ∗

ΩV
t ,Ω0

SΩV
t ,Ω0

, (8.8)

and SΩV
t ,Ω0

AΩ0 = A∗ΩV
t for any A ∈ π0(O)′′. Then the entropy production rate is as follows [16,

Theorem 1.1]:

Ep(ω+) = − lim
n

1
Tn

Ent(ω0 ◦ αV
Tn
|ω0) ≥ 0. (8.9)

Proof of strict positivity is non-trivial.

Corollary 8.2. Currents Jl and El at a NESS ω+ are given by the following form:

ω+(Jl) =2πλ4
N∑

k=1

∫
σl

1
|η−(ν)|2

(Nl(ν) − Nk(ν))
d⟨gk, Ek(ν)gk⟩

dν
d⟨gl, El(ν)gl⟩

+
π3λ2

η(0)

N∑
k=1

{Θk(⟨vk, gk⟩)Θl(i⟨vl, gl⟩) − Θk(i⟨vk, gk⟩)Θl(⟨vl, gl⟩)}, (8.10)

ω+(El) =2πλ4
N∑

k=1

∫
σl

ν

|η−(ν)|2
(Nl(ν) − Nk(ν))

d⟨gk, Ek(ν)gk⟩
dν

d⟨gl, El(ν)gl⟩. (8.11)

Proof. For any l = 1, . . . ,N, c ∈ C, and ξl ∈ kl, we have

a((c))a†((ξl)) − a†((c))a((ξl)) = iΨ((ic))Ψ((ξl)) − iΨ((c))Ψ((iξl)). (8.12)

Since
[
Ψ((c)),Ψ((ξl))

]
= 0, we obtain

4ω+(Ψ((c))Ψ((ξl))) = ω+({Ψ((c) + (ξl))}2) − ω+({Ψ((c) − (ξl))}2)

=ω+({Ψ((c) + (ξl))}2) − ω+(Ψ((c) + (ξl)))2 − ω+({Ψ((c) − (ξl))}2) + ω+(Ψ((c) − (ξl)))2

+ 4ω+(Ψ((c)))ω+(Ψ((ξl))). (8.13)
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From Theorem 7.3 and (8.13), it follows that

ω+(Ψ((1))Ψ((iξl))) − ω+(Ψ((i))Ψ((ξl)))

=2λIm
⟨
ξl,

{
(Nl(h0,l) + 1/2)/η−(h0,l)

}
gl
⟩
+ 2λ2

N∑
k=1

Im
⟨
F(h0,k, (ξl))gk,

{
(Nk(h0,k) + 1/2)/

∣∣∣η−(h0,k
∣∣∣2)

}
gk

⟩
+ π3


 N∑

k=1

Θk(⟨vk, φk((1))⟩)
 N∑

k=1

Θk(⟨vk, φk((iξl))⟩)
 −  N∑

k=1

Θk(⟨vk, φk((i))⟩)
 N∑

k=1

Θk(⟨vk, φk((ξl))⟩)



(8.14)

by linearity of φk( f ) in f . Note that the element ξl is equal to gl or h0,lgl. Thus the first term of right
hand side of (8.14) has the form of

Im
⟨
ξl,

{
(Nl(h0,l) + 1/2)/η−(h0,l)

}
gl
⟩
= λ2π

N∑
k=1

∫
σl

1
|η−(ν)|2

(
Nl(ν) +

1
2

)
d⟨gk, Ek(ν)gk⟩

dν
d⟨ξl, El(ν)gl⟩.

(8.15)

If ξl = gl or h0,lgl, then

Im(F(ν, (ξl))) = λπ
d⟨gl, El(ν)ξl⟩

dν
= λπ

d⟨ξl, El(ν)gl⟩
dν

, a.e. ν ∈ R, (8.16)

with respect to the Lebesgue measure. The second term of the right hand side of (8.14) has the following
form:

Im
⟨
F(h0,k, (ξl))gk,

{
(Nk(h0,k) + 1/2)/

∣∣∣η−(h0,k)
∣∣∣2}gk

⟩
= − λπ

∫
σk

1
|η−(ν)|2

d⟨gl, El(ν)ξl⟩
dν

(
Nk(ν) +

1
2

)
d⟨gk, Ek(ν)gk⟩ (8.17)

By the definition of ⟨vk, φk⟩, we see that

⟨vk, φ((1))⟩ = λ⟨vk, gk⟩
η(0)

, ⟨vk, φk((ξl))⟩ = δk,l⟨vl, ξl⟩ +
λ2⟨vk, gk⟩

⟨
gl, (h0,l)−1ξl

⟩
η(0)

. (8.18)

Since gk ∈ D((h0,k)−1/2) for any k = 1, . . . ,N, η(0) is finite and real. By (8.15), (8.16), (8.17), and (8.18),
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we obtain

ω+(Ψ((1))Ψ((iξl))) − ω+(Ψ((i))Ψ((ξl)))

=2πλ3
N∑

k=1

∫
σl

1
|η−(ν)|2

(Nl(ν) − Nk(ν))
d⟨gk, Ek(ν)gk⟩

dν
d⟨ξl, El(ν)gl⟩

+ π3


 N∑

k=1

Θk

(
λ⟨vk, gk⟩
η(0)

)


N∑
k=1

Θk

δk,li⟨vl, ξl⟩ +
λ2i⟨vk, gk⟩

⟨
gl, (h0,l)−1ξl

⟩
η(0)




−
 N∑

k=1

Θk

(
λi⟨vk, gk⟩
η(0)

)


N∑
k=1

Θk

δk,l⟨vl, ξl⟩ +
λ2⟨vk, gk⟩

⟨
gl, (h0,l)−1ξl

⟩
η(0)





=2πλ3
N∑

k=1

∫
σl

1
|η−(ν)|2

(Nl(ν) − Nk(ν))
d⟨gk, Ek(ν)gk⟩

dν
d⟨ξl, El(ν)gl⟩

+
π3λ

η(0)

N∑
k=1

{Θk(⟨vk, gk⟩)Θl(i⟨vl, ξl⟩) − Θk(i⟨vk, gk⟩)Θl(⟨vl, ξl⟩)}

+
π3λ3

η(0)2

N∑
j,k=1

{
Θ j

(⟨
v j, g j

⟩)
Θk(i⟨vk, gk⟩) − Θ j

(
i
⟨
v j, g j

⟩)
Θk(⟨vk, gk⟩)

}⟨
gl, (h0,l)−1ξl

⟩
, (8.19)

since ξl = gl or h0,lgl and
⟨
gl, (h0,l)−1ξl

⟩
is real. If ξl = gl (resp. ξl = h0,lgl), then we have (8.10) (resp.

(8.11)).■
For each l = 1, . . . ,N, we define Josephson currents at NESS by

Josl(ω+) =
π3λ2

η(0)

N∑
k=1

{Θk(⟨vk, gk⟩)Θl(i⟨vl, gl⟩) − Θk(i⟨vk, gk⟩)Θl(⟨vl, gl⟩)}. (8.20)

By Corollary 8.2, we get an explicit form of the mean entropy production rate.

Proposition 8.3. The entropy production Ep(ω+) is given by

Ep(ω+) =
N∑

k,l=1

∫
σl

λ4π

|η−(ν)|2
{βl(ν − µl) − βk(ν − µk)}(Nk(ν) − Nl(ν))

d⟨gk, Ek(ν)gk⟩
dν

d⟨gl, El(ν)gl⟩. (8.21)

Proof. By Corollary 8.2, we have that

−
N∑

l=1

βl(ω+(El) − µlω+(Jl))

=2λ4π

N∑
l=1

N∑
k=1

∫
σl

1
|η−(ν)|2

(βlν − βlµl)(Nk(ν) − Nl(ν)))
d⟨gk, Ek(ν)gk⟩

dν
d⟨gl, El(ν)ξl⟩

+
π3λ2

η(0)

N∑
l=1

βlµl

N∑
k=1

{Θk(⟨vk, gk⟩)Θl(i⟨vl, gl⟩) − Θk(i⟨vk, gk⟩)Θl(⟨vl, gl⟩)}. (8.22)

If µl , 0, then Θl ≡ 0, and if Θl . 0, then µl = 0. Thus, the last term of (8.22) is equal to zero. It follows
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that

−
N∑

l=1

(βlω+(El) − βlµlω+(Jl))

=

N∑
l=1

N∑
k=1

∫
σl

λ4π

|η−(ν)|2
(βlν − βlµl − βkν + βkµk)(Nk(ν) − Nl(ν)))

d⟨gk, Ek(ν)gk⟩
dν

d⟨gl, El(ν)ξl⟩. (8.23)

Thus, the proposition follows.■
By Proposition 8.3, the mean entropy production rate is independent of phase terms. Thus, Joseph-

son currents Josl(ω+) may occur without entropy production, if the temperatures and the chemical po-
tentials of reservoirs are identical.

For any k, l ∈ {1, . . . ,N}, the function

λ4π

|η−(ν)|2
d⟨gk, Ek(ν)gk⟩

dν
d⟨gl, El(ν)gl⟩

dν
(8.24)

corresponds to the “total transmission probability” ([5], [38], and [39]). As in [5], we say that the
channel k → l is open if the set{

ν ∈ σk ∩ σl

∣∣∣∣∣∣ 1
|η−(ν)|2

d⟨gk, Ek(ν)gk⟩
dν

d⟨gl, El(ν)gl⟩
dν

> 0
}

(8.25)

has a positive Lebesgue measure. If βk , βl or µk , µl, then the function

{βl(ν − µl) − βk(ν − µk)}(Nk(ν) − Nl(ν)) (8.26)

is strictly positive for any finite interval. By the above discussions, we obtain strictly positivity of the
entropy production rate.

Theorem 8.4. If there exists an open channel k → l such that either βk , βl or µk , µl for some
k, l ∈ {1, . . . ,N}, then Ep(ω+) > 0.

9 Examples
In this section, we give examples of currents on Rd and graphs.

9.1 Case of L2(Rd), d ≥ 3

In this subsection, we put Kk = L2(Rd), d ≥ 3, for any k = 1, . . . ,N. A model consists of a quantum
particle and two reservoirs is considered in [33] and [34]. Thus we consider a model consisting grater
than two reservoirs and that of phase terms different from [34]. The Hamiltonians h0,k are Fourier
transform of positive Laplacian on L2(Rd), i.e. the multiplication operator of |p|2/2, p ∈ Rd. If gk ∈
C∞0 (Rd) and gk are continuous with respect to |x| for any k = 1, . . . ,N. Then gk satisfies condition (A)
and we have that

lim
ε↘0

Im
⟨
gk, (ν − h0,k − iε)−1gk

⟩
=

 C(d)ν
d−1

2

∣∣∣gk(
√

2ν)
∣∣∣2 (ν ≥ 0),

0 (ν < 0),
(9.1)

where C(d) is a constant depending on the dimension d. Thus, we can find λ > 0 and Ω > 0 such that
the function η(z), defined in (6.6), satisfies condition (B). The PF weight for |x|2/2 is the delta function
δ(x). Since d ≥ 3 and gk ∈ C∞0 (Rd), the form factor gk satisfies condition (D). We fix such g, λ, and Ω.
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For any ψ ∈
⊕N

k=1 C∞0 (Rd), we can see that (ψ, g) satisfies condition (Abs) by using Mourre estimate
techniques. (See e.g. [38] and [39].) Since d ≥ 3, C∞0 (Rd) ⊂ D((h0,k)−1/2). We put h =

⊕N
k=1 C∞0 (Rd).

Since the form factor gk is in C∞0 (Rd), there is a compact set Kk ⊂ Rd such that suppgk ⊂ Kk for each
k = 1, . . . ,N. Let K1 and K2 be the Hilbert spaces defined by

K1 = C ⊕
 N⊕

k=1

L2(Kk)

, K2 = 0 ⊕
 N⊕

k=1

L2(Rd\Kk)

. (9.2)

Note that K = K1 ⊕ K2, h ↾K2= h0 ↾K2 , hK1 ⊂ K1, and hK2 ⊂ K2. As a consequence, we have that

eith = eith ↾K1 ⊕eith0 ↾K2 (9.3)

on K1 ⊕ K2. Since h ↾K1 and h0 ↾K1 are bounded, we can use Theorems 6.3 and 7.3 and obtain an
explicit formula for eith ↾K1 .

For k = 1, . . . ,N, we set µk = 0 and

Θ
(1)
k (α) =eiτk D1/2

k α + e−iτk D1/2
k α, (9.4)

Θ
(2)
k (α) =s1,kD1/2

k Reα + s2,kD1/2
k Imα, (9.5)

where α ∈ C, τk ∈ [0, 2π), Dk > 0, s1, s2 ∈ R and α is the complex conjugate for α. The terms Θ(1)
k and

Θ
(2)
k appear in a factor decomposition of quasi-free states with BEC. See [7, Section 5.2.5], [26, (1.18)],

and [20, Theorem 4.5]. For ψk ∈ C∞0 (Rd), we define the initial states ω(1)
0 and ω(2)

0 by

ω(1)
0 (W((ψk))) = exp

{
−1

2
⟨
ψk, (Nk(h0,k) + 1/2)ψk

⟩
+ iΘ(1)

k (⟨vk, ψk⟩)
}
, (9.6)

ω(2)
0 (W((ψk))) = exp

{
−1

2
⟨
ψk, (Nk(h0,k) + 1/2)ψk

⟩
+ iΘ(2)

k (⟨vk, ψk⟩)
}
, (9.7)

where

Nk(x) = (eβk x − 1)−1. (9.8)

We assume that ω(1)
0 and ω(2)

0 satisfy condition (C). Since the vectors g, ψ ∈ h satisfy conditions (Abs),
(A), (B), and (D), there exist ω(1)

+ and ω(2)
+ and we have that

ω(1)
+ (Jl) =2πλ4

N∑
k=1

∫
σl

1
|η−(ν)|2

(Nl(ν) − Nk(ν))
d⟨gk, Ek(ν)gk⟩

dν
d⟨gl, El(ν)gl⟩

+
4π3λ2

η(0)
D1/2

l

N∑
k=1

D1/2
k Im

(
ei(τk−τl)gk(0)gl(0)

)
, (9.9)

ω(2)
+ (Jl) =2πλ4

N∑
k=1

∫
σl

1
|η−(ν)|2

(Nl(ν) − Nk(ν))
d⟨gk, Ek(ν)gk⟩

dν
d⟨gl, El(ν)gl⟩

+
π3λ2

η(0)
D1/2

l

N∑
k=1

D1/2
k

{(
s1,k s1,l + s2,k s2,l

)
Im

(
gk(0)gl(0)

)
+

(
s1,k s2,l − s1,ls2,k

)
Re

(
gk(0)gl(0)

)}
.

(9.10)

9.2 Graphs
In this subsection, we give examples of currents on both periodic graphs and comb graphs. To verify
our conditions for the adjacency operators of undirected graphs, we apply results of M. Măntoiu et al.
[25].
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9.2.1 Adapted Graphs

We recall the definition of adapted graphs introduced in [25]. Let G = (VG, EG) be an undirected graph.
For any x ∈ VG, we denote the set of neighbors of x by NG(x), i.e. NG(x) := { y ∈ VG | (x, y) ∈ EG }.

Definition 9.1. [25, Definition 3.1.] A function Φ : G → R is adapted to the graph G if the following
conditions hold:

(i) There exists c ≥ 0 such that |Φ(x) − Φ(y)| ≤ c for any x, y ∈ VG with (x, y) ∈ EG.

(ii) For any x, y ∈ VG, one has ∑
z∈N(x)∩N(y)

{2Φ(z) − Φ(x) − Φ(y)} = 0. (9.11)

(iii) For any x, y ∈ VG, one has∑
z∈N(x)∩N(y)

{Φ(z) − Φ(x)}{Φ(z) − Φ(y)}{2Φ(z) − Φ(x) − Φ(y)} = 0. (9.12)

A pair (G,Φ) is said to be an adapted graph if Φ is adapted to a graph G.

Let (G,Φ) be an adapted graph. We define an unbounded multiplication operator Φ on ℓ2(VG) by
(Φ f )(x) = Φ(x) f (x), x ∈ VG, where f ∈ ℓ2(VG) with

∑
x∈VG Φ(x)2| f (x)|2 < ∞. We define an operator

K on ℓ2(VG) by

(Kξ)(x) := i
∑

y∈N(x)

{Φ(y) − Φ(x)}ξ(y), ξ ∈ ℓ2(VG), x ∈ VG. (9.13)

The operator K is self-adjoint and bounded by condition (i) in Definition 9.1. Note that K and AG are
commutative. Since K is self-adjoint, we see the orthogonal decomposition of ℓ2(VG) as

ℓ2(VG) = ker K ⊕ ranK, (9.14)

where ranK denotes the range of K. We denote the restriction of AG onto ranK by AG,0.

Theorem 9.2. [25, Theorem 3.3] Let (G,Φ) be an adapted graph.

(i) For any ξ ∈ ranK ∩D(Φ), there exists a constant cξ > 0 such that

sup
µ∈R,ε>0

∣∣∣∣⟨ξ, (µ − AG,0 ± iε)−1ξ
⟩∣∣∣∣ ≤ cξ. (9.15)

(ii) The operator AG,0 has purely absolutely continuous spectrum.

9.2.2 Radon–Nikodym Derivative for the Spectral Measure of the Adjacency Operators

In this subsection, we review the Radon–Nikodym derivative of adjacency operators of an adapted
graphs (G,Φ). We use the same notation as used in Section 9.2.1. By Theorem 9.2, we have the
following lemmas:

Lemma 9.3. Let (G,Φ) be an adapted graph. Then for any ξ, ζ ∈ ranK ∩ D(Φ), there exists cξ,ζ > 0
such that

sup
µ∈R,ε>0

∣∣∣∣⟨ξ, (µ − AG,0 ± iε)−1ζ
⟩∣∣∣∣ < cξ,ζ . (9.16)
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Proof. By polarization identity, we have that

4
⟨
ξ, (µ − AG,0 ± iε)−1ζ

⟩
=

3∑
k=0

(−i)k
⟨
(ξ + ikζ), (µ − AG,0 ± iε)−1(ξ + ikζ)

⟩
. (9.17)

Since ξ + ikζ ∈ ranK ∩D(Φ), we obtain the statement by Theorem 9.2. ■
By the above lemma, for any ζ, ξ ∈ ranK ∩D(Φ), the function

⟨
ξ, (z − AG,0)−1ζ

⟩
is in H∞(C+).

Lemma 9.4. For any ξ, ζ ∈ ranK ∩ D(Φ), the function fξ,ζ(z) :=
⟨
ξ, (z − AG,0)−1ζ

⟩
is in H∞(C+).

Moreover, the limit

f +ξ,ζ(x) := lim
ε↘0

fξ,ζ(x + iε) (9.18)

exists for a.e. x ∈ R with respect to Lebesgue measure and f +ξ,ζ ∈ L∞(R, dx).

Proof. Since AG,0 is self-adjoint, fξ,ζ is holomorphic in C+. By [18, Theorem 3.13] and Lemma 9.3, we
have the statement. ■

For any ξ, ζ ∈ ranK ∩D(Φ), there exists the Radon–Nikodym derivative d⟨ξ, E(ν)ζ⟩/dν, where E is
the spectral measure of AG,0.

Lemma 9.5. For any ξ, ζ ∈ ranK ∩D(Φ), the Radon–Nikodym derivative d⟨ξ, E(ν)ζ⟩/dν is in Lp(R) for
any p ∈ N ∪ {∞}. Moreover, d⟨ξ, E(ν)ζ⟩/dν is given by

d⟨ξ, E(ν)ζ⟩
dν

= lim
ε↘0

1
π

{⟨
ξ, (ν − AG,0 − iε)−1ζ

⟩
−

⟨
ξ, (ν − AG,0 + iε)−1ζ

⟩}
, a.e. x ∈ R (9.19)

with respect to Lebesgue measure. The support of the function d⟨ξ, E(ν)ζ⟩/dν is contained in the spec-
trum of AG,0.

Proof. Since the measure d⟨ξ, E(λ)ζ⟩ is a complex-valued finite measure and absolutely continuous
with respect to Lebesgue measure, the Radon–Nikodym derivative d⟨ξ, E(ν)ζ⟩/dν is in L1(R). Note that

d⟨ξ, E(ν)ζ⟩
dν

=
1
π

lim
ε↘0

{⟨
ξ, (ν − AG,0 − iε)−1ζ

⟩
−

⟨
ξ, (ν − AG,0 + iε)−1ζ

⟩}
, a.e. x ∈ R (9.20)

with respect to Lebesgue measure by [18, Theorem 4.15] and polarization identity. Since
⟨
ξ, (ν − AG,0 ± i0)−1ζ

⟩
is in L∞(R) by Lemma 9.4, d⟨ξ, E(ν)ζ⟩/dν is in Lp(R) for any p ∈ N ∪ {∞}. If ν < [−∥AG∥, ∥AG∥], then
(ν − AG,0)−1 is bounded, and

lim
ε→0

(ν − AG,0 ± iε)−1 = (ν − AG,0)−1 (9.21)

in the operator norm. Thus, the lemma follows. ■

9.2.3 Case of Zd, d ≥ 3

In this subsection, we consider Zd, d ≥ 3, as graphs. We note that Zd has an adapted function Φ defined
by

Φ((x1, . . . , xd)) =
d∑

k=1

xk, xk ∈ Z. (9.22)
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Then the operator K defined in (9.13) is of the form

Kδx = i
d∑

k=1

(δx−ek − δx+ek ), (9.23)

where x, ek ∈ Zd, ek is the element of Zd, and the k-th component of ek is 1 and otherwise 0. We put
Kk = ℓ

2(Zd), h0,k = ∥AZd∥1 − AZd , and

hk := span { eith0,kδx | t ∈ R, x ∈ Zd } (9.24)

for each k = 1, . . . ,N. We set

gk = Kδxk = i
d∑

j=1

(δxk−e j − δxk+e j ) (9.25)

for some xk ∈ Zd. By Theorem 9.2, gk satisfies condition (A). Using the Fourier transformation, we see
that

lim
ε↘0

Im
⟨
gk, (ν − h0,k − iε)−1gk

⟩
= (2π)−d/2π

∫
Td
δ(ν −

d∑
j=1

sin2(θ j/2))

∣∣∣∣∣∣∣∣
d∑

j=1

sin θ j

∣∣∣∣∣∣∣∣
2

dθ. (9.26)

Suppose that λ2 > 0, λ2Cg << 1, and there exists Ω ∈ (0,
∥∥∥h0,0

∥∥∥) such that the right hand side of
(9.26) has some strictly positive lower bound for any ν ∈ [Ω − λ2Cg,Ω + λ

2Cg]. Thus, condition
(B) is satisfied. Since h0,k is transient by d ≥ 3, the form factor g satisfies condition (D). Note that⊕N

k=1(hk ∩ ranK) ⊂ h(g) by Lemma 9.3, where h(g) is the set defined in (6.9). For initial states ω(1)
0 and

ω(2)
0 defined in (9.6) and (9.7) with condition (C), there exist NESS ω(1)

+ and ω(2)
+ which are states on

W(k, σ), where k = C ⊕
(⊕N

k=1 (hk ∩ ranK)
)
. If the PF weight v is defined by v(x) = 1 for any x ∈ Zd,

then ⟨vk, gk⟩ = 0 for any k = 1, . . . ,N. Thus, Josl(ω+) = 0 for any l = 1, . . . ,N.

9.2.4 Regular Admissible Graphs

A graph G is called regular, if for any x, y ∈ VG, degG(x) = degG(y). Recall the definition of admissible
graphs (cf. [25]). In this subsection, we assume that G is deduced from a directed graph, i.e., some
relation < is given on G such that, for any x, y ∈ VG, x ∼ y is equivalent to x < y or y < x, and one can
not have both y < x and x < y. We also write y > x for x < y. Then for any x ∈ VG, the neighbor of x,
NG(x), is decomposed into a disjoint union NG(x) = N+G(x) ∪ N−G(x), where

N+G(x) := { y ∈ VG | x < y } , N−G(x) := { y ∈ VG | y < x } . (9.27)

When directions have been fixed, we use the notation (G, <) for the directed graph and say that (G, <) is
subjacent to G.

Let p = x0x1 · · · xn be a path. We define the index of path p by

ind(p) :=
∣∣∣{ j | x j−1 < x j }

∣∣∣ − ∣∣∣{ j | x j−1 > x j }
∣∣∣. (9.28)

Definition 9.6. [25, Definition 5.1] A directed graph (G, <) is called admissible if

(i) It is univoque, i.e., any closed path in G has index zero.

(ii) It is uniform, i.e., for any x, y ∈ G, ♯
(
N−G(x) ∩ N−G(y)

)
= ♯

(
N+G(x) ∩ N+G(y)

)
.
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A graph G is called admissible if there exists an admissible directed graph (G, <) subjacent to G.

Definition 9.7. [25, Definition 5.2] A position function on a directed graph (G, <) is a functionΦ : G →
Z satisfying Φ(x) + 1 = Φ(y) if x < y.

Lemma 9.8. [25, Lemma 5.3]

(i) A directed graph (G, <) is univoque if and only if it admits a position function.

(ii) Any position function on an admissible graph G is surjective.

(iii) A position function on a directed graph G is unique up to constant.

Remark 9.9. If G is an admissible graph, then there exists a position function Φ. The function Φ
satisfies Definition 9.1. Thus, an admissible graph is an adapted graph as well.

Remark 9.10. When G is an infinite regular graph, we only consider the PF weight v for the adjacency
operator AG such that v(x) = 1 for any x ∈ VG.

Proposition 9.11. Let G be an admissible regular graph. Assume that g ∈ h ∩ ranK, where h is defined
by

h := span { eit(∥AG∥1−AG)δx | x ∈ VG, t ∈ R } . (9.29)

Then ⟨v, g⟩ = 0.

Proof. Note that h ⊂ D(v) by [13, Theorem 4.5]. Since g ∈ h ∩ ranK, there exists ζ ∈ ℓ2(VG) such that
g = Kζ, where K is the operator defined in (9.13). Then the vector g is of the form

⟨δx, g⟩ = i
∑

y∈N+G(x)

ζ(y) − i
∑

y∈N−G(x)

ζ(y), (9.30)

where ζ(y) =
⟨
δy, ζ

⟩
. Then we have that

⟨v, g⟩ = i

 ∑
x∈VG

∑
y∈N+G(x)

ζ(y) −
∑
x∈VG

∑
y∈N−G(x)

ζ(y)

 = 0. (9.31)

Thus, the proposition is proven.■
By the above proposition, we have the following theorem:

Theorem 9.12. Let Gk, k = 1, . . . ,N, be admissible regular graphs. Fix g ∈
⊕N

k=1 (hk ∩ ranKk), where
hk is defined in (9.29) and Kk is the operator defined in (9.13). For any k = 1, . . . ,N, we assume that
h0,k =

∥∥∥AGk

∥∥∥1 − AGk is transient, there exist Ω, λ > 0 such that the function η(z) defined in (6.6) satisfies
condition (B), and the initial state ω0 satisfies condition (C). Then there exists NESS ω+ which is a state
onW(k, σ), where k = C ⊕

⊕N
k=1 (hk ∩ ranKk). Moreover, for any l = 1, . . . ,N, we have that

ω+(Jl) =2πλ4
N∑

k=1

∫
σl

1
|η−(ν)|2

(Nl(ν) − Nk(ν))
d⟨gk, Ek(ν)gk⟩

dν
d⟨gl, El(ν)gl⟩, (9.32)

where Jl is defined in (8.1).

Proof. By assumptions, Theorem 7.3, Corollary 8.2, and Proposition 9.11, we can prove the theorem.■
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9.3 Comb Graphs
In this subsection, we consider typical example of non-regular graphs: comb graphs. BEC on comb
graphs is studied in [10], [11], and [13]. In [10], R. Burioni, D. Cassi, M. Rasetti, P. Sodano, and A.
Vezzani calculated the spectral measure of the adjacency operators of comb graphs Zd ⊣ Z. Using their
results, we calculate currents on comb graphs. First, we recall the definition of comb graphs.

Definition 9.13. Let G1 and G2 be graphs, and let o ∈ VG2 be a given vertex. Then the comb product
X := G1 ⊣ (G2, o) is a graph with vertex VX := VG1 × VG2, and (g1, g2), (g′1, g

′
2) ∈ VX are adjacent if

and only if g1 = g′1 and g2 ∼ g′2 or g2 = g′2 = o and g1 ∼ g′1. We call G1 the base graph, and G2 the fiber
graph.

We consider the graphs Gd := Zd ⊣ (Z, 0), d ≥ 3. As the case of Zd, the function Φ defined in (9.22)
is adapted to Gd−1. Put h0,l =

∥∥∥AGd

∥∥∥1 − AGd for any l = 1, . . . ,N. For J ∈ Zd and x ∈ Z, the operators
Kl, l = 1, . . . ,N, have the form of

KδJ,x =

{
iδJ,x−1 − iδJ,x+1 (x , 0)

i
∑d

l=1
(
δJ−el,x − δJ+el,x

)
+ iδJ,−1 − iδJ,1 (x = 0)

. (9.33)

Put gl = KδJl,xl , l = 1, . . . ,N, where Jl ∈ Zd and xl ∈ Z with |xl| >> 1. Then, by Theorem 9.2 and [11,
Theorem 10.14], the form factor g satisfies conditions (A) and (D). By [11, Lemma 9.4], a PF weight v
has the following form:

v(J, x) =
e−|x|θd

2
∥∥∥∥(2
√

d2 + 1 − AZ)−1δ0

∥∥∥∥ sinh θd

, J ∈ Zd, x ∈ Z, (9.34)

with 2 cosh θd = 2
√

d2 + 1. Another example of v is given in [13]. The form of the spectral measure of
AGd is in [10]. Thus, we can find Ω, λ > 0 which satisfy condition (B).

The pairing of gl and the PF weight vl = v is given by

⟨v, gl⟩ =i
e−|xl−1|θd

2
∥∥∥∥(2
√

d2 + 1 − AZ)−1δ0

∥∥∥∥ sinh θd

− i
e−|xl+1|θd

2
∥∥∥∥(2
√

d2 + 1 − AZ)−1δ0

∥∥∥∥ sinh θd

=i
e−|xl |θd∥∥∥∥(2

√
d2 + 1 − AZ)−1δ0

∥∥∥∥ . (9.35)

Thus, we define the initial states ω(1)
0 and ω(2)

0 by equations (9.6) and (9.7). Note that k :=
⊕N

k=1(hk ∩
ranK) ⊂ h(g) by Lemma 9.3. Thus, there exist NESS ω(1)

+ and ω(2)
+ , which are states onW(k, σ). If the

temperatures are identical, then Josephson currents are given by

ω(1)
+ (Jl) =Josl(ω

(1)
+ ) =

4π3λ2

η(0)

N∑
k=1

D1/2
k D1/2

l sin(τk − τl)
e−(|xk |+|xl |)θd∥∥∥∥(2

√
d2 + 1 − AZ)−1δ0

∥∥∥∥2 , (9.36)

ω(2)
+ (Jl) =Josl(ω

(2)
+ ) =

π3λ2

η(0)

N∑
k=1

D1/2
k D1/2

l
{
s1,k s2,l − s1,ls2,k

} e−(|xk |+|xl |)θd∥∥∥∥(2
√

d2 + 1 − AZ)−1δ0

∥∥∥∥2 . (9.37)
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