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Abstract

In the spirit of arithmetic topology, we study a topological analogue of Iwa-
sawa theory for representations of Galois groups. First, we present a general-
ization of the Fox formula for twisted Alexander invariants associated to repre-
sentations of knot groups over rings of S-integers of F , where S is a finite set
of finite primes of a number field F . Second, we study the twisted knot mod-
ule for the universal deformation of an SL2-representation of a knot group, and
introduce an associated L-function, which may be seen as an analogue of the
algebraic p-adic L-function associated to the Selmer module for the universal
deformation of a Galois representation.

This thesis is based on [Tan18] and [KMTT18].
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Notation

For an integral domain A, we denote by char(A) the characteristic of A and
we denote by Q(A) the field of fractions of A.

For a, b in a commutative ring A, a
.
= b means a = bu for some unit u ∈ A×.

For a field F , we denote by F a fixed algebraic closure of F .
For positive integersm, n, and for a finite set of finite primes S = {p1, . . . , pr}

of a number field F , m =S nmeansm = npe11 · · · perr for some integers e1, . . . , er ∈
Z, where (pi) = pi ∩ Z. Note that m =S n if and only if |m|p = |n|p for all
(p) /∈ {(p1), . . . , (pr)}, where | · |p is the p-adic absolute value normalized by
|p|p = p−1.

For a local ring R, we denote by mR the maximal ideal of R.
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0 Introduction

0.1 Historical background

In the late of 1950’s, Iwasawa introduced the theory of Zp-extensions, p being
a prime number, and studied the asymptotic formula for p-ideal class groups in
a Zp-extension. Starting from 1980’s, several generalizations of Iwasawa theory
has been considered and has been recently intensively developed in number the-
ory. One of the main generalization of Iwasawa theory was initiated by Mazur,
Kato, Greenberg, Coates, etc., which considers the p-adic Galois representa-
tions. Meanwhile, motivated by the study of Hida on p-adic Hecke algebras,
Mazur introduced the deformation of p-adic Galois representations. As an ap-
plication, Kato and Ochiai showed that the dual Selmer module of the universal
ordinary modular GL2-deformation is finitely generated and torsion over the
p-adic Hecke algebra.

On the other hand in knot theory, in the early 1950’s, Fox proved that
the order of the first homology group of coverings branched along the knot
complement may be computed by using the Alexander polynomial of a knot.
In the middle of 1990’s, using representations of knot groups, Lin and Wada
independently introduced the generalization of the Alexander polynomial, which
is called the twisted Alexander invariants. This is one of the reasons why studies
of knots from the viewpoint of representations of knot groups, such as character
varieties, are still intriguing.

Comparing these two theories, one might notice that there are some mysteri-
ous similarities. The first mathematician who had an insight into the analogies
between knots and primes was Mazur ([Maz64]). After a long silence, the dic-
tionaries between topology of 3-manifolds and arithmetic of number rings were
started to be investigated systematically by Kapranov, Reznikov, and Morishita
in the latter half of 1990s. Shortly thereafter, significant progresses have been
made and this area - now called arithmetic topology - is becoming a driving force
to obtain parallel results between 3-dimensional topology and number theory
(cf. [Kap95], [Mor10], [Mor12], [Rez97], [Rez00]). In particular, it is known
that there is an analogy between Iwasawa theory and Alexander theory, where
the 1st homology group corresponds to the ideal class group. One of the most
interesting problems in arithmetic topology is to study a topological analogue
of Iwasawa theory for Galois group representations. In this thesis, we focus on
this open problem illustrated with some concrete examples.
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0.2 Basic analogies

It has been known that there are intriguing analogies between knot theory and
number theory (cf. [Mor12]). Here is the dictionary of basic analogies.

Number theory Knot theory

prime ideal (p) knot K
Spec(Fp) ↪→ Spec(Z) ∪ {∞} S1 ↪→ S3 = R3 ∪ {∞}

p-adic integers tubular neighborhood
Spec(Zp) VK

p-adic numbers boundary torus
Spec(Qp) = Spec(Zp) \ Spec(Fp) ∂VK = VK \K

decomposition group over p peripheral group of K
Dp = πét

1 (Spec(Qp)) DK = π1(∂VK)
monodromy meridian

[γ,Qp] m
Frobenius longitude

[p,Qp] l
prime complement knot complement
Xp = Spec(Z) \ (p) EK = S3 \ int(VK)

prime group knot group
Gp = πét

1 (Xp) GK = π1(EK)

Based on the above guiding principals, there are close parallels between Alexander-
Fox theory and Iwasawa theory ([Maz64], [Mor12, Ch.9–13]). From the view-
point of deformations of group representations ([Maz89]), they are concerned
with abelian deformations of representations of knot and Galois groups and
the associated topological and arithmetic invariants such as the Alexander and
Iwasawa polynomials, respectively.

Iwasawa theory Alexander theory

Gab
p = Gal(X∞p /Xp) Gab

K = Gal(E∞K /EK)
X∞p : cyclotomic p-cover of Xp E∞K : infinite cyclic cover of EK
1-dim. universal representation 1-dim. universal representation
χp : Gp → Zp[[Gab

p ]]× ; Zp[[T ]]× χK : GK → Z[Gab
K ]× = Z[t±1]×

Iwasawa module knot module
H1(X∞p ,Zp) = H1(Xp, χp) H1(E∞K ,Z) = H1(EK , χK)

Iwasawa polynomial Alexander polynomial
(algebraic p-adic L-function)

∆0(H1(Xp, χp)) ∆0(H1(EK , χK))

Here ∆0(H1(XK , χK)) (resp. ∆0(H1(Xp, χp))) means the greatest common di-
visor of generators of the initial Fitting ideal of H1(XK , χK) (resp. H1(Xp, χp))
over the ring Z[t±1] (resp. Zp[[T ]]).
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0.3 The results of this thesis

Here are the contents of this thesis. In Chapter 1, we present a generalization
of the Fox formula for twisted Alexander invariants associated to irreducible
representations of knot groups over rings of S-integers of F , where S is a finite
set of finite primes of a number field F . The Fox formula is one of the important
results in knot theory which expresses the order of the first integral homology
group of the n-fold cyclic cover branched over a knot in terms of the Alexander
polynomial. Let K be a knot in the 3-sphere S3, Mn the n-fold cyclic cover
branched over K, and ∆K(t) ∈ Z[t±1] the Alexander polynomial of K. If ∆K(t)
and tn − 1 have no common roots in C, then the Fox formula is given by

#H1(Mn;Z) =

∣∣∣∣∣
n∏
i=1

∆K(ζin)

∣∣∣∣∣ ,
where #G denotes the order of a group G and ζn is a primitive n-th root of
unity ([Fox56]). As an application, it follows immediately from the Fox formula
that the asymptotic growth of integral homology groups holds:

lim
n→∞

1

n
log(#H1(Mn,Z)) = logM(∆K(t)),

where M(∆K(t)) is the Mahler measure of ∆K(t) ([Mah62]). We remark that
this asymptotic growth may be seen as an analogue of the Iwasawa asymptotic
formula for p-ideal class groups in a Zp-extension, p being a prime number
([Iwa59]). The analogies with number theory are the motivation of our study
([Mor12]).

Recently, a generalization of the Alexander polynomial, called a twisted
Alexander invariant, which was introduced by Lin ([Lin01]) and Wada ([Wad94]),
is playing an important role in knot theory ([FV11]). It is known ([KL99],
[SW09]) that the twisted Alexander invariant relates to the twisted homology
group of a knot complement associated to a GLm(R)-representation of a knot
group GK , where R is a Noetherian UFD.

The purpose of Chapter 1 is to consider a generalization of the Fox formula
for twisted Alexander invariants. The following Theorem is our main result (see
Notation for symbols

.
= and =S . In particular, when S is the empty set, =S

means the usual equality):

Theorem A Let F be a number field. Let S be a finite set of finite primes
of F so that the ring of S-integers OF,S is a PID. Let ρ : GK → GLm(OF,S)
be a representation. Assume that H0(X∞;Vρ) = 0, where X∞ is the infinite
cyclic cover, and Vρ is a representation space. Let ∆K,ρ(t) ∈ OF,S [t±1] be the
twisted Alexander invariant of K associated to ρ. If ∆K,ρ(t) 6= 0, and ∆K,ρ(t)
and tn − 1 have no common roots in F , then we have

#H1(Xn;Vρ) =S

∣∣∣∣∣NF/Q

(
n∏
i=1

∆K,ρ(ζ
i
n)

)∣∣∣∣∣ ,
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where Xn is the n-fold cyclic cover of the knot complement, NF/Q : F → Q is a
norm map, and ζn is a primitive n-th root of unity.

In particular, when ρ is irreducible over OF,S , namely if the composite of ρ with
the natural map GLm(OF,S) → GLm(F(p)) is irreducible over the residue field
F(p) = (OF,S)p/p(OF,S)p for any prime ideal p of OF,S , where (OF,S)p is the
localization of OF,S at p, we have H0(X∞;Vρ) = 0 and so the conditions of
Theorem hold.

The case when n = 1 for a certain integral representation of a link group
was already proved by Silver–Williams ([SW09]) using the dynamical method
([Sch95]). Our proof is elementary and uses some number theoretic arguments.
The idea of the proof is mainly generalizations of [Web79] and [Cro63]. By
the Mostow rigidity theorem, any holonomy representations attached to the
complete hyperbolic structure on the interior of the knot complement can be
lifted to a representation over S-integers. Therefore, our result is applicable to
those holonomy representations. As an application, it follows immediately from
Theorem that the asymptotic growth formulas of twisted homology groups hold:

lim
n∈N;gcd(n,p)=1

1

n
log |#H1(Xn, Vρ)|p = logMp(NF/Q(∆K,ρ(t))),

where p is a prime number which is not lying below S, | · |p is the p-adic absolute
value, and Mp is the Ueki p-adic Mahler measure of ∆K,ρ(t) ([Uek17]). In
particular, when S is the empty set, we have

lim
n→∞

1

n
log(#H1(Xn, Vρ)) = logM(NF/Q(∆K,ρ(t))).

We remark that these asymptotic growth formulas may be seen as analogues of
the asymptotic formula for the Tate–Shafarevich groups or the Selmer groups
of p-adic Galois representations in a Zp-extension, which was firstly studied by
Mazur ([Maz72]).

Number theory Knot theory

Iwasawa asymptotic formula for asymptotic formula for
the p-ideal class group the knot module
asymptotic formula for asymptotic formula for

the Tate-Shafarevich/Selmer group the twisted knot module

In Chapter 2, we study the twisted knot module for the universal defor-
mation of an SL2-representation of a knot group, and introduce an associated
L-function, which may be seen as an analogue of the algebraic p-adic L-function
associated to the Selmer module for the universal deformation of a Galois rep-
resentation. It has been known that there are intriguing analogies between knot
theory and number theory (cf. [Mor12]). In particular, it may be noteworthy
that there are close parallels between Alexander-Fox theory and Iwasawa the-
ory ([Maz64], [Mor12, Ch.9–13]). From the viewpoint of deformations of group
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representations ([Maz89]), they are concerned with abelian deformations of rep-
resentations of knot and Galois groups and the associated topological and arith-
metic invariants such as the Alexander and Iwasawa polynomials, respectively.
In [Maz00], Mazur proposed a number of problems in pursuing these analogies
for non-abelian deformations of higher dimensional representations. To carry
out Mazur’s perspective, as a first step, we developed a deformation theory for
SL2-representations of knot groups in [MTTU17]. In this paper, we continue our
study and introduce a certain L-function associated to the twisted knot mod-
ule for the universal deformation of a knot group representation, which may be
seen as an analogue of the algebraic p-adic L-function associated to the Selmer
module for the universal deformation of a Galois representation ([Gre94]).

LetK be a knot in the 3-sphere S3 andGK := π1(S3\K) the knot group. Fix
a field k whose characteristic is not 2 and a complete discrete valuation ring O
whose residue field is k. Let ρ : GK → SL2(k) be a given absolutely irreducible
representation. It was shown in [MTTU17] that there exists the universal defor-
mation ρ : GK → SL2(Rρ) of ρ, where Rρ is a complete local O-algebra whose
residue field is k. Assume that Rρ is a Noetherian factorial domain. In this
paper, we study the twisted knot module H1(ρ) := H1(S3 \K;ρ) with coeffi-
cients in the universal deformation ρ, and introduce the associated L-function
LK(ρ) defined on the universal deformation space Spec(Rρ) as ∆0(H1(ρ)), the
greatest common divisor of generators of the initial Fitting ideal of H1(ρ) over
the universal deformation ring Rρ. In terms of our H1(ρ) and LK(ρ), we then
formulate the problems proposed by Mazur (questions 1 and 2 of [Maz00, page
440]) as follows.
(1) Is H1(ρ) finitely generated and torsion as an Rρ-module ?
(2) Investigate the order of the zeroes of LK(ρ) at prime divisors of
Spec(Rρ).

The corresponding problems of (1) and (2) in the arithmetic counterpart,
say (1)arith and (2)arith respectively, are important issues in number theory (cf.
questions 1 and 2 of [Maz00, page 454]). In fact, (1)arith is a part of the so-called
main conjecture for p-adic deformations of a Galois representation. For the
cyclotomic deformation of a Dirichlet character, the affirmative answer to (1)arith

is a basic result in Iwasawa theory ([Iwa73]), which asserts that the classical
Iwasawa module is finitely generated and torsion over the Iwasawa algebra. For
the Hida deformation (universal ordinary modular GL2-deformation) ([Hid86a],
[Hid86b]), the affirmative answer to (1)arith has been shown by Kato and Ochiai
([Kat04], [Och01], [Och06]), which asserts that the dual Selmer module of the
Hida deformation is finitely generated and torsion over the universal ordinary
modular deformation ring (p-adic Hecke algebra). The problem (2)arith remains
an interesting problem to be explored and it is related to deep arithmetic issues
(cf. question 3 of [Maz00, page 454], and Ribet’s theorem on Herbrand’s theorem
for example [MW84]).

So it may be interesting to study the above problems (1) and (2) in the knot
theoretic situation. Our results concerning these are as follows. For (1), we give
a criterion for H1(ρ) to be finitely generated and torsion over Rρ under certain
conditions using a twisted Alexander invariant of K (cf. Theorem 2.3.2.2). For
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(2), we give some concrete examples for 2-bridge knots K such that LK(ρ) has
only one zero of order 0 or 2 (cf. Subsection 2.4.3).

Number theory Knot theory

Selmer module twisted knot module
L-function associated to L-function associated to

Selmer module for twisted knot module for
universal deformations of universal deformations of

representation of Galois group representation of knot group
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1 Fox formulas for twisted homology groups associated to
representations of knot groups

In this Chapter, we present a generalization of the Fox formula for twisted
Alexander invariants associated to irreducible representations of knot groups
over rings of S-integers of F , where S is a finite set of finite primes of a number
field F . As an application, we give the asymptotic growth of twisted homology
groups.

The contents of this Chapter are organized as follows. In Sections 1.1-1.3,
we review some basic materials in knot theory. In Section 1.4, we review an
algebraic tool, which is called a resultant. In Section 1.5, we prepare some num-
ber theoretic lemmas, which will be used in the sequel. In Section 1.6, we prove
the main result. In Section 1.7, we give an application which determines the
asymptotic growth of the twisted homology groups using the Mahler measure.
In the last Section, we give some concrete examples.

1.1 Twisted chain complexes

In this Section, we define twisted chain complexes, which are based on [KL99]
and [SW09].

Let K be a knot in the 3-sphere S3 and let X := S3 \ K denote the knot
complement of K. Let GK := π1(X) denote the knot group of K.

Let X̃ → X be the universal cover of X. Let R be a Noetherian UFD. Fix
a cellular chain complex C∗(X) = C∗(X;R) of X with coefficients in R and let

C∗(X̃) = C∗(X̃;R) be the cellular chain complex of X̃ induced from C∗(X).

Since GK acts on X̃ → X as the covering transformation group, C∗(X̃) is a free
left R[GK ]-module.

Let ρ : GK → GLm(R) be a representation and Vρ = Rm the representation
space of ρ. Note that GK acts naturally from right on Vρ. We define the
ρ-twisted chain complex C∗(X;Vρ) of X by

C∗(X;Vρ) := Vρ ⊗R[GK ] C∗(X̃).

We define the i-th ρ-twisted knot module Hi(X;Vρ) by

Hi(X;Vρ) := Hi(C∗(X;Vρ)).

Next, we define the chain complex associated to ρ for the cyclic cover of X.
Let Y → X be the infinite cyclic cover (resp. the n-fold cyclic cover) of X. Let
α : GK → Gab

K ' Z = 〈t〉 (resp. αn : GK → Z/nZ = 〈tn〉 ) be the abelianization
homomorphism. Then Vρ[t

±1] = R[t±1]⊗R Vρ (resp. Vρ[〈tn〉] = R[〈tn〉]⊗R Vρ )
is a right R[GK ]-module via
(1.1.1)
(r(t)⊗ v).g := r(t) ·α(g)⊗ vρ(g), (resp. (r(tn)⊗ v).g := r(tn) ·αn(g)⊗ vρ(g), )

where r(t) ∈ R[t±1], r(tn) ∈ R[〈tn〉], v ∈ Vρ and g ∈ GK .
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We define the ρ-twisted chain complex C∗(Y ;Vρ) of Y by

C∗(Y ;Vρ) := Vρ[t
±1]⊗R[GK ]C∗(X̃), (resp. C∗(Y ;Vρ) := Vρ[〈tn〉]⊗R[GK ]C∗(X̃), )

and the ρ-twisted homology Hi(Y ;Vρ) by

Hi(Y ;Vρ) := Hi(C∗(Y ;Vρ)).

When Y is the infinite cyclic cover X∞ → X, we call Hi(X∞;Vρ) the i-th ρ-
twisted Alexander module. Note that the covering transformation t : X∞ → X∞
induces the action of 〈t〉 ' Z on C∗(X∞;Vρ) defined by the following:

t# : C∗(X∞;Vρ) → C∗(X∞;Vρ);

(r(t)⊗ v)⊗ z 7→ (r(t) · t⊗ v)⊗ z.

Since GK is a finitely presented group and Vρ is a free R-module of finite rank,
C∗(X∞;Vρ) is a finitely generated R[t±1]-module, and since R[t±1] is a Noethe-
rian ring, H1(X∞;Vρ) is a finitely generated R[t±1]-module.

1.2 Twisted Alexander invariants

The twisted Alexander invariant ∆K,ρ(t) is defined as follows ([GKM06], [Wad94]).
We keep the same notations as before. Recall that R is a Noetherian UFD. Note
that the knot group GK has a Wirtinger presentation

(1.2.1) 〈g1, . . . , gq | r1 = · · · = rq−1 = 1〉.

Let F0 be the free group on the words g1, . . . , gq and π : R[F0] → R[GK ]
denote the natural surjective homomorphism of group rings. We write the same
gi for the image of gi in GK . We denote by the same α for the R-algebra
homomorphism R[GK ]→ R[t±1], which is induced by α. Let us denote by the
same ρ for the R-algebra homomorphism R[GK ] → Mm(R), which is induced
by ρ. Then we have the tensor product representation

ρ⊗ α : R[GK ] −→ Mm(R[t±1]),

and the R-algebra homomorphism

Φ := (ρ⊗ α) ◦ π : R[F0] −→ Mm(R[t±1]).

Let us consider the (big) (q−1)× q matrix P , whose (i, j) component is defined
by the m×m matrix

Φ

(
∂ri
∂gj

)
,

where ∂
∂gj

: R[F0]→ R[F0] denotes the Fox derivative ([Fox53]) over R extended

from Z. For 1 ≤ j ≤ q, let Pj denote the matrix obtained by deleting the j-th
column from P and we regard Pj as an (q− 1)m× (q− 1)m matrix over R[t±1].

12



It is known ([Wad94]) that there is k (1 ≤ k ≤ q) such that det(Φ(gk − 1)) 6= 0
and that the ratio

∆K,ρ(t) :=
det(Pk)

det Φ(gk − 1)
∈ Q(R)(t)

is independent of such k’s. We call ∆K,ρ(t) the twisted Alexander invariant of
K associated to ρ.

Similarly to the classical case, there is a relation between the twisted Alexan-
der invariant and the order ideals of ρ-twisted Alexander module. Let us recall
the definition of the order ideal. Let M be a finitely generated R-module. Let
us take a finite presentation of M over R:

Rm
∂−→ Rn −→M −→ 0,

where ∂ is an m×n matrix over R. We define the order ideal E0(M) of M to be
the ideal generated by n-minors of ∂. The order ideal depends only on M and
independent of the choice of a presentation. Let ∆0(M) be the greatest common
divisor of generators of E0(M), which is well-defined up to multiplication by a
unit of R.

Proposition 1.2.0.1 ([KL99], [SW09]) Let X∞ → X be the infinite cyclic
cover of X. For any representation ρ : GK → GLm(R), we have

∆K,ρ(t) =
∆0(H1(X∞;Vρ))

∆0(H0(X∞;Vρ))
.

In particular, when ρ : GK → GLm(R) is irreducible over a commutative
UFD R, we have the following Corollary. We say that ρ : GK → GLm(R) is
irreducible over a commutative UFD R if the composite of ρ with the natural
map GLm(R)→ GLm(F(p)) is irreducible over the residue field F(p) = Rp/pRp

for any prime ideal p of R, where Rp is the localization of R at p.

Corollary 1.2.0.2 Let ρ : GK → GLm(A) be an irreducible representation over
a PID A. Then we have

∆0(H0(X∞;Vρ))
.
= 1 ∈ A[t±1],

and hence
∆K,ρ(t)

.
= ∆0(H1(X∞;Vρ)).

In particular, ∆K,ρ(t) is a Laurent polynomial over A.

In order to prove Corollary 1.2.0.2, we use the following Lemma.

Lemma 1.2.0.3 ([DFJ12, Lemma 2.5]) Let ρF : GK → GLm(F) be an irre-
ducible representation over a field F. Then we have

∆0(H0(X∞;VρF))
.
= 1 ∈ F[t±1].

13



First, it is easy to see that ∆0(H0(X∞;Vρ)) mod (p) = ∆0(H0(X∞;VρF(p)
))

for any prime ideal p of A, where (p) denotes the ideal of A[t±1] generated by p.
Suppose ∆0(H0(X∞;Vρ)) is not a unit in A[t±1]. Then there exists a maximal
ideal m of A[t±1] containing ∆0(H0(X∞;Vρ)). Since A is a PID, m is generated
by a prime element q of A and f(t) ∈ A[t±1] such that f(t) mod (q) is irreducible
over F(q), where q is a prime ideal of A generated by q. Hence, there exist g(t),
h(t) ∈ A[t±1] such that ∆0(H0(X∞;Vρ)) = qg(t) + f(t)h(t). Therefore, we have

∆0(H0(X∞;VρF(q)
)) = ∆0(H0(X∞;Vρ)) mod (q) = f(t)h(t) mod (q).

On the other hand, by Lemma 1.2.0.3, we have ∆0(H0(X∞;VρF(q)
))

.
= 1 ∈

F(q)[t±1]. This contradicts that f(t) mod (q) is irreducible over F(q). �

1.3 Twisted Wang sequences

In this Section, we formulate an analogue of Wang sequence for twisted ho-
mology groups. We keep the same notations as before. Recall that R is a
Noetherian UFD. Note that for the n-fold cyclic cover Xn → X, the covering
pn : X∞ → Xn induces the following map:

pn# : C∗(X∞;Vρ) → C∗(Xn;Vρ);

(r(t)⊗ v)⊗ z 7→ (r(tn)⊗ v)⊗ z.

Lemma 1.3.0.1 Let ρ : GK → GLm(R) be a representation. Then we have an
exact sequence

0→ C∗(X∞;Vρ)
tn#−1
→ C∗(X∞;Vρ)

pn#→ C∗(Xn;Vρ)→ 0.

proof By tensoring Vρ over R with the exact sequence

0→ R[t±1]
tn−1→ R[t±1]→ R[〈tn〉]→ 0,

we have the exact sequence

(1.3.1) 0→ Vρ[t
±1]

tn−1→ Vρ[t
±1]→ Vρ[〈tn〉]→ 0.

By the right R[GK ]-module structures of Vρ[t
±1] and Vρ[〈tn〉] defined in (1.1.1),

we can see (1.3.1) is an exact sequence of the right R[GK ]-modules. Since C∗(X̃)

is a free left R[GK ]-module of finite rank, by tensoring C∗(X̃) from the right
over R[GK ] with (1.3.1), we obtain the assertion. �

Note that Lemma 1.3.0.1 induces the following long exact sequence, which
is called the twisted Wang sequence:

· · · → H1(X∞;Vρ)
tn∗−1→ H1(X∞;Vρ)

pn∗→ H1(Xn;Vρ)
∂1,∗→ H0(X∞;Vρ)→ · · · .

Hence, whenH0(X∞;Vρ) = 0, we have the following relation betweenH1(Xn;Vρ)
and H1(X∞;Vρ):
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Proposition 1.3.0.2 Let ρ : GK → GLm(R) be a representation. Assume that
H0(X∞;Vρ) = 0. Then we have

H1(Xn;Vρ) ' H1(X∞;Vρ)/(t
n − 1)H1(X∞;Vρ).

As we discussed in Section 1.2, when ρ : GK → GLm(A) is an irreducible
representation over a PID A, we have ∆0(H0(X∞;Vρ))

.
= 1, and so by [Hil12,

Theorem 3.1], we have H0(X∞;Vρ) = 0. Therefore, we have the following
Corollary.

Corollary 1.3.0.3 Let ρ : GK → GLm(A) be an irreducible representation over
a PID A. Then we have

H1(Xn;Vρ) ' H1(X∞;Vρ)/(t
n − 1)H1(X∞;Vρ).

1.4 Resultants

In this Section, we recall the definition of the resultant and state the relation
between the resultant and the order ideal.

Let A be an integral domain. Consider the following two non-zero polyno-
mials in A[t] factor in Q(A):

f = f(t) = a

m∏
i=1

(t− ξi), g = g(t) = b

n∏
j=1

(t− ζj).

Then we define the resultant Res(f, g) for polynomials f and g by

Res(f, g) := ambn
∏
i,j

(ξi − ζj) = am
∏
i

g(ξi).

For polynomials f , g ∈ A[t], it is easy to see that Res(f, g) = 0 if and only if f
and g have a common root in Q(A). In addition, the resultant is symmetric up
to the sign and is multiplicative ([Lan02, IV.8, IX.3]):

Res(f, g) = (−1)deg(f ·g)Res(g, f),

Res(f, g · h) = Res(f, g) · Res(f, h),

where f , g, h ∈ A[t±1]. The resultant can be generalized for Laurent polynomi-
als since it is insensitive to units uti with u ∈ A× and i ∈ Z.

The following Lemmas claim that when R is a Noetherian UFD, the great-
est common divisor of generators of the order ideal of finitely generated torsion
R[t±1]-module is computable by using the resultant. Note that we say the Lau-
rent polynomial in R[t±1] is doubly monic if the highest and lowest coefficients
are units in R.

Lemma 1.4.0.1 ([Hil12, Theorem 3.13]) Let R be a Noetherian UFD and N a
finitely generated torsion R[t±1]-module. Let f(t) ∈ R[t±1] be a doubly monic
polynomial. Then N/f(t)N is a torsion R-module if and only if ∆0(N)|t=ζ 6= 0

for all non-zero roots ζ of f(t) in Q(R).
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Lemma 1.4.0.2 ([Hil12, Corollary 3.13.1]) Let R be a Noetherian UFD and let
f(t), g(t) ∈ R[t±1] having no common roots in Q(R). If f(t) or g(t) is doubly
monic, then

∆0(R[t±1]/(f(t), g(t)))
.
= Res(f(t), g(t)).

1.5 Number theoretic lemmas

Let us recall some facts and notions in number theory, which we shall use in
the following. We refer to [MR03, 6.1] and [Ono90, 2.8-2.10] for these materials.
Let F be a number field. Let S = {p1, . . . , pr} be a finite set of finite primes of
F and OF,S the ring of S-integers, namely

OF,S := {a ∈ F | vp(a) ≥ 0 for all p ∈ SF \ S},

where vp is an additive valuation of F at p, and SF is the set of all finite primes
of F . It is known that OF,S is always Noetherian and if we take a sufficiently
large finite set T of finite primes of F containing S, then OF,T turns out to be
a PID. Therefore, we may always take S so that OF,S is a PID. For a ∈ F , we
define the norm NF/Q : F → Q of a by

NF/Q(a) :=
∏
σ

σ(a),

where σ runs over all embeddings of F in C. For an integral ideal I of OF , we
define the norm NI by #OF /I. It is extended multiplicatively for a fractional
ideal of OF . For a ∈ F×, we have |NF/Q(a)| = N(a), where (a) = aOF is the
principal ideal generated by a. We say that a fractional ideal J of OF is prime
to S if any prime factor of J is not in S.

Lemma 1.5.0.1 For a ∈ OF,S \ {0}, we have

#OF,S/aOF,S =S |NF/Q(a)|.

proof For a ∈ OF,S \ {0}, we can write (a) = pe11 · · · perr a, where ei ∈ Z and a
is an integral ideal prime to S. Then we have

|NF/Q(a)| = N(a)

= Npe11 · · ·Nperr Na

=S Na

= #OF /a
=S #OF,S/aOF,S . �

Using these norms and Lemma 1.5.0.1, we have the following Lemmas. The
proof of Lemma 1.5.0.3 is a generalization of [Web79].

Lemma 1.5.0.2 Let F be a number field. Let S be a finite set of finite primes
of F so that the ring of S-integers OF,S is a PID. Let f(t), g(t) ∈ OF,S [t±1] and
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assume that either f(t) or g(t) is doubly monic. Then OF,S [t±1]/(f(t), g(t)) is
a torsion OF,S-module if and only if f(t) and g(t) have no common roots in F .
When f(t) and g(t) have no common roots in F , we have

#OF,S [t±1]/(f(t), g(t)) =S |NF/Q(Res(f(t), g(t)))|.

proof Suppose f(t) is doubly monic. Since ∆0(OF,S [t±1]/(g(t))) = g(t), and
g(ζ) 6= 0 for all non-zero roots ζ of f(t) in F , by Lemma 1.4.0.1, OF,S [t±1]/(f(t), g(t))
is a torsion OF,S-module. A similar argument holds when we suppose g(t) is
doubly monic.

Next, let us investigate the order of OF,S [t±1]/(f(t), g(t)). Since we suppose
that OF,S is a PID, by regarding OF,S [t±1]/(f(t), g(t)) as an OF,S-module, using
the structure theorem for modules over PIDs, we have

(1.5.1) OF,S [t±1]/(f(t), g(t)) ' OF,S/a1OF,S ⊕ · · · ⊕ OF,S/asOF,S ,

where a1, . . . , as ∈ OF,S . So we have

∆0(OF,S [t±1]/(f(t), g(t))) = u · a1 · · · · · as,

where u ∈ O×F,S , and hence we have

(1.5.2)

∣∣∣∣∣NF/Q

(
s∏
i=1

ai

)∣∣∣∣∣ =S

∣∣NF/Q
(
∆0(OF,S [t±1]/(f(t), g(t)))

)∣∣ .
Therefore, we have

#OF,S [t±1]/(f(t), g(t)) =

s∏
i=1

#OF,S/aiOF,S (by (1.5.1))

=S

s∏
i=1

|NF/Q(ai)| (by Lemma 1.5.0.1)

=S

∣∣NF/Q
(
∆0(OF,S [t±1]/(f(t), g(t)))

)∣∣ (by (1.5.2))

and hence by Lemma 1.4.0.2, we have

#OF,S [t±1]/(f(t), g(t)) =S |NF/Q(Res(f(t), g(t)))|. �

Lemma 1.5.0.3 Let F be a number field. Let S be a finite set of finite primes
of F so that the ring of S-integers OF,S is a PID. Let N be a finitely generated
OF,S [t±1]-module with rankF (N ⊗OF,S F ) < ∞ and having no submodule of
finite length. Then N/(tn− 1)N is a torsion OF,S-module if and only if ∆0(N)
and tn − 1 have no common roots in F . When ∆0(N) and tn − 1 have no
common roots in F , we have

#N/(tn − 1)N =S |NF/Q(Res(tn − 1, ∆0(N)))|.
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proof By the right exactness of the tensor product, we have

(N/(tn − 1)N)⊗OF,S F ' (N ⊗OF,S F )/(tn − 1)(N ⊗OF,S F ),

and hence N/(tn − 1)N is a torsion OF,S-module if and only if

(N ⊗OF,S F )/(tn − 1)(N ⊗OF,S F ) = 0,

which is the same as the multiplication map tn − 1 : N ⊗OF,S F → N ⊗OF,S F
is surjective. Since rankF (N ⊗OF,S F ) is finite, the surjectivity of the map
tn − 1 : N ⊗OF,S F → N ⊗OF,S F is equivalent to its injectivity. Suppose
N ⊗OF,S F ' ⊕si=1F [t±1]/(hi(t)), where hi(t) ∈ OF,S [t±1]. Since N has no
non-zero OF,S-torsion, the map tn − 1 : N ⊗OF,S F → N ⊗OF,S F is injective if

and only if
∏s
i=1 hi(t) = ∆0(N) and tn − 1 have no common roots in F .

Next, let us investigate the order of N/(tn − 1)N when ∆0(N) and tn − 1
have no common roots in F . Let M be an OF,S [t±1]-submodule of N such
that M ' ⊕si=1OF,S [t±1]/(hi(t)). Then we have M ⊗OF,S F = N ⊗OF,S F '
⊕si=1F [t±1]/(hi(t)). Consider the following commutative diagram:

Ker(Φ2) //

��

Ker(Φ3)

//

��
M //

Φ1

��

N //

Φ2

��

N/M //

Φ3

��

0

M //

��

N //

��

N/M //

��

0

Coker(Φ1) // Coker(Φ2) // Coker(Φ3) // 0,

where the homomorphisms Φ1, Φ2 and Φ3 are the multiplication maps tn − 1.
Since the map tn − 1 : N ⊗OF,S F → N ⊗OF,S F is injective and N has no
submodule of finite length, we have Ker(Φ2) = 0. Hence, we have

(1.5.3) 0→ Ker(Φ3)→ Coker(Φ1)→ Coker(Φ2)→ Coker(Φ3)→ 0.

Since N ⊗OF,S F = M ⊗OF,S F , by the right exactness of the tensor product,
we have

(N/M)⊗OF,S F ' (N ⊗OF,S F )/(M ⊗OF,S F ) = 0,

and hence N/M is torsion OF,S-module. Therefore, we have

(1.5.4) #Ker(Φ3) = #Coker(Φ3).

On the other hand, since M ' ⊕si=1OF,S [t±1]/(hi(t)), by Lemma 1.5.0.2, we
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have

#Coker(Φ1) = #M/(tn − 1)M

=S

∣∣∣∣∣NF/Q

(
Res

(
tn − 1,

s∏
i=1

hi(t)

))∣∣∣∣∣
=S

∣∣NF/Q(Res(tn − 1, ∆0(N)))
∣∣ .

Therefore by (1.5.3) and (1.5.4), we have

#N/(tn−1)N = #Coker(Φ2) = #Coker(Φ1) =S

∣∣NF/Q(Res(tn − 1, ∆0(N)))
∣∣ .
�

1.6 Fox formulas for twisted Alexander invariants

In this Section, we formulate an analogue of the Fox formula for twisted Alexan-
der invariants associated to GLm(OF,S)-representations of knot groups under
the assumption H0(X∞;Vρ) = 0. The proof is a generalization of [Cro63].

Theorem 1.6.0.1 Let F be a number field. Let S be a finite set of finite primes
of F so that the ring of S-integers OF,S is a PID. Let ρ : GK → GLm(OF,S)
be a representation. Assume that H0(X∞;Vρ) = 0 and let ∆K,ρ(t) ∈ OF,S [t±1]
be the twisted Alexander invariant of K associated to ρ. If ∆K,ρ(t) 6= 0, and
∆K,ρ(t) and tn − 1 have no common roots in F , then we have

#H1(Xn;Vρ) =S

∣∣∣∣∣NF/Q

(
n∏
i=1

∆K,ρ(ζ
i
n)

)∣∣∣∣∣ ,
where ζn is a primitive n-th root of unity.

proof We will verify that all conditions of Lemma 1.5.0.3 hold for N :=
H1(X∞;Vρ).

(N has no submodule of finite length) The knot complement X is homotopy
equivalent to a finite 2-complex W with one 0-cell, q 1-cells, and q − 1 2-cells
[Lic97, Chapter 11]. Since H0(X∞;Vρ) = 0, the cellular chain complex gives a
resolution

C2(W∞;Vρ)→ C1(W∞;Vρ)
′ → N = H1(X∞;Vρ)→ 0,

where C2(W∞;Vρ) and C1(W∞;Vρ)
′ are free OF,S [t±1]-modules of rank q − 1.

Since N is a torsion R-module, this is a short free resolution, so we may apply
[Hil12, Theorem 3.8]. Hence, N has no submodule of finite length.

(rankF (N ⊗OF,S F ) <∞) Since N is a finitely generated R-torsion module,
N ⊗R F [t±1] is a finitely generated F [t±1]-torsion module. Hence, it has finite
rank as an F -vector space, by the structure theorem for modules over PIDs.
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Hence, by applying Corollary 1.2.0.2, Proposition 1.3.0.2 and Lemma 1.5.0.3,
we have

#H1(Xn;Vρ) = #H1(X∞;Vρ)/(t
n − 1)H1(X∞;Vρ)

=S

∣∣NF/Q(Res(tn − 1, ∆K,ρ(t)))
∣∣

=S

∣∣∣∣∣NF/Q

(
n∏
i=1

∆K,ρ(ζ
i
n)

)∣∣∣∣∣ . �

In particular, when ρ : GK → GLm(OF,S) is irreducible, we have the follow-
ing Corollary.

Corollary 1.6.0.2 Let F be a number field. Let S be a finite set of finite primes
of F so that the ring of S-integers OF,S is a PID. Let ρ : GK → GLm(OF,S)
be an irreducible representation, and let ∆K,ρ(t) ∈ OF,S [t±1] be the twisted
Alexander invariant of K associated to ρ. If ∆K,ρ(t) and tn−1 have no common
roots in F , then we have

#H1(Xn;Vρ) =S

∣∣∣∣∣NF/Q

(
n∏
i=1

∆K,ρ(ζ
i
n)

)∣∣∣∣∣ ,
where ζn is a primitive n-th root of unity.

1.7 Asymptotic growth of twisted homology groups

We keep the notation as in Section 1.6. Let S = {p1, . . . , pr}. Assume that
H0(X∞;Vρ) = 0, and ∆K,ρ(t) and tn − 1 have no common roots in F for all
positive integers n. Set ∆K,ρ(t) := NF/Q(∆K,ρ(t)) ∈ ZS0 [t±1], where S0 =
{p1 ∩ Z, . . . , pr ∩ Z}, and ZS0

is the ring of S0-integers of Q. Then by Theorem
1.6.0.1, we have

(1.7.1) #H1(Xn, Vρ) =S

n∏
i=1

∣∣∆K,ρ(ζ
i
n)
∣∣ .

As we remarked in Notation, when (p) /∈ S0, (1.7.1) is equivalent to

(1.7.2) |#H1(Xn, Vρ)|p =

n∏
i=1

∣∣∆K,ρ(ζ
i
n)
∣∣
p
.

Here, | · |p is the p-adic absolute value on Cp normalized by |p|p = p−1, where
Cp is the p-adic completion of an algebraic closure of the p-adic number field.

For f(t) ∈ ZS0 [t±1], we define the Mahler measure M(f(t)) of f(t) ([Mah62])
by

M(f(t)) := exp

(∫ 1

0

log |f(e2π
√
−1x)|dx

)
.
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If f(t) factors as f(t) = ate
∏d
j=1(t − ξj) in C, then by Jensen’s formula, we

have M(f(t)) = a
∏d
j=1 max(|ξj |, 1). For f(t) ∈ Cp[t±1] \ {0} with no root on

|z|p = 1, we define the Ueki p-adic Mahler measure Mp(f(t)) of f(t) ([Uek17])
by

Mp(f(t)) := exp

(
lim

n∈N;gcd(n,p)=1

1

n

n∑
i=1

log |f(e
2π
√
−1
n i)|p

)
.

Now we are ready to state our Theorem.

Theorem 1.7.0.1 When (p) /∈ S0, we have

lim
n∈N;gcd(n,p)=1

1

n
log |#H1(Xn, Vρ)|p = logMp(∆K,ρ(t)).

In particular, when S is the empty set, we have

lim
n→∞

1

n
log(#H1(Xn, Vρ)) = logM(∆K,ρ(t)).

proof By (1.7.2), we have

lim
n∈N;gcd(n,p)=1

1

n
log |#H1(Xn, Vρ)|p = lim

n∈N;gcd(n,p)=1

1

n

n∑
i=1

log |∆K,ρ(e
2π
√
−1
n i)|p

= logMp(∆K,ρ(t)).

In particular, when S is the empty set, by (1.7.1), we have

lim
n→∞

1

n
log(#H1(Xn, Vρ)) = lim

n→∞

1

n

n∑
i=1

log |∆K,ρ(e
2π
√
−1
n i)|

=

∫ 1

0

log |(∆K,ρ(e
2π
√
−1x)|dx

= logM(∆K,ρ(t)).

�

Remark 1.7.0.2 Theorem 1.7.0.1 is a generalization of the result by González-
Acuña and Short ([GAnS91]), and by Noguchi ([Nog07]), where the case ρ is a
trivial representation over Z was studied.

1.8 Examples

In this Section, we discuss some concrete examples, where K will be a 2-bridge
knot and ρ will be an irreducible SL2(OF )-representation of a knot group GK
with OF a PID. The computation is based on Mathematica.
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Example 1.8.0.1 Let K be the trefoil knot, whose knot group is given by

GK = 〈g1, g2 | g1g2g1 = g2g1g2〉.

Consider the following representation:

ρ : GK → SL2 (Z) ; ρ(g1) =

(
1 1
0 1

)
, ρ(g2) =

(
1 0
−1 1

)
.

Then we have ∆K,ρ(t) = t2 + 1 and hence by applying Corollary 1.6.0.2, we
have the following:

#H1(Xn;Vρ) =

{
2 (when n ≡ 1, 3 mod 4),
4 (when n ≡ 2 mod 4).

Example 1.8.0.2 Let K be the knot 51, whose knot group is given by

GK = 〈g1, g2 | g1g2g1g2g1 = g2g1g2g1g2〉.

Consider the following representation:

ρ : GK → SL2

(
Z

[
1 +
√

5

2

])
; ρ(g1) =

(
1 1
0 1

)
, ρ(g2) =

(
1 0

− 3+
√

5
2 1

)
,

where Z
[

1+
√

5
2

]
is the ring of integers of Q(

√
5). Then we have ∆K,ρ(t) =

(t2 + 1)(t4 − 1+
√

5
2 t2 + 1) and hence by applying Corollary 1.6.0.2, we have the

following:

#H1(X;Vρ) = NQ(
√

5)/Q(3−
√

5) = 4,

#H1(X2;Vρ) = NQ(
√

5)/Q(2(7− 3
√

5)) = 16,

#H1(X3;Vρ) = NQ(
√

5)/Q(−2) = 4,

#H1(X5;Vρ) = NQ(
√

5)/Q(8) = 64.

Example 1.8.0.3 Let K be the figure-eight knot, whose knot group is given
by

GK = 〈g1, g2 | g1g
−1
2 g−1

1 g2g1 = g2g1g
−1
2 g−1

1 g2〉.
Consider the following representation:

ρ : GK → SL2

(
Z
[

1 +
√
−3

2

])
; ρ(g1) =

(
1 1
0 1

)
, ρ(g2) =

(
1 0

1+
√
−3

2 1

)
,

where Z
[

1+
√
−3

2

]
is the ring of integers of Q(

√
−3). Then we have ∆K,ρ(t) =

1
t2 (t2 − 4t + 1)

.
= t2 − 4t + 1 and hence by applying Corollary 1.6.0.2, we have

the following:

#H1(X;Vρ) = NQ(
√
−3)/Q(−2) = 4,

#H1(X2;Vρ) = NQ(
√
−3)/Q(−12) = 144,

#H1(X3;Vρ) = NQ(
√
−3)/Q(−50) = 2500,

#H1(X4;Vρ) = NQ(
√
−3)/Q(−192) = 36864.
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Since ∆K,ρ(t) = (t2 − 4t+ 1)2, by Theorem 1.7.0.1, we have

lim
n→∞

1

n
log(#H1(Xn, Vρ)) = 2 log(2 +

√
3).
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2 L-functions for twisted homology groups associated to
deformations of representations of knot groups

In this Chapter, we study the twisted knot module for the universal defor-
mation of an SL2-representation of a knot group, and introduce an associated
L-function, which may be seen as an analogue of the algebraic p-adic L-function
associated to the Selmer module for the universal deformation of a Galois rep-
resentation. We then investigate two problems proposed by Mazur: Firstly we
show the torsion property of the twisted knot module over the universal defor-
mation ring under certain conditions. Secondly we compute the L-function by
some concrete examples for 2-bridge knots.

Here are contents of this Chapter. In Section 2.1, we recall the deformation
theory for SL2-representations of a group, which was developed in [MTTU17].
In Section 2.2, we show the relation between the universal deformation ring and
the character scheme over Z of SL2-representations. In Section 2.3, we study
the twisted knot module with coefficients in the universal deformation of an
SL2-representation of a knot group, and introduce an associated L-function. In
Section 2.4, we discuss some examples for some 2-bridge knots, for which we
study Mazur’s problems.

2.1 The universal deformation

In this section, we present a summary of the deformation theory for SL2-
representations of a group, which was developed in [MTTU17]. We also dis-
cuss the obstruction to the deformation problem for a group representation.
Throughout this section, let G denote a group.

2.1.1 Pseudo-representations and their deformations

Let A be a commutative ring with identity. A map T : G → A is called a
pseudo-SL2-representation over A if the following four conditions are satisfied:

(P1) T (e) = 2 (e := the identity element of G),
(P2) T (g1g2) = T (g2g1) for any g1, g2 ∈ G,
(P3) T (g1)T (g2)T (g3)+T (g1g2g3)+T (g1g3g2)−T (g1g2)T (g3)−T (g2g3)T (g1)−
T (g1g3)T (g2) = 0 for any g1, g2, g3 ∈ G,
(P4) T (g)2 − T (g2) = 2 for any g ∈ G.

Note that the conditions (P1) ∼ (P3) are nothing but Taylor’s conditions for a
pseudo-representation of degree 2 ([Tay91]) and that (P4) is the condition for
determinant 1. In the following, we say simply a pseudo-representation for a
pseudo-SL2-representation. The trace tr(ρ) of a representation ρ : G→ SL2(A)
satisfies the conditions (P1) ∼ (P4) ([Pro76, Theorem 4.3]), and, conversely, a
pseudo-SL2-representation is shown to be obtained as the trace of a representa-
tion under certain conditions (See Theorem 2.1.2.1 below).

Let k be a perfect field and let O be a complete discrete valuation ring with
the residue field O/mO = k. There is a unique subgroup V of O× such that
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k× ' V and O× = V × (1 + mO). The composition map λ : k× ' V ↪→ O×
is called the Teichmüller lift which satisfies λ(α) modmO = α for α ∈ k. It is
extended to λ : k ↪→ O by λ(0) := 0. Let CLO be the category of complete
local O-algebras with residue field k. A morphism in CLO is an O-algebra
homomorphism inducing the identity on residue fields.

Let T : G → k be a pseudo-representation over k. A couple (R, T ) is
called an SL2-deformation of T if R ∈ CLO and T : G → R is a pseudo-SL2-
representation over R such that T mod mR = T . In the following, we say
simply a deformation of T for an SL2-deformation. A deformation (RT ,T ) of T
is called a universal deformation if the following universal property is satisfied:
“For any deformation (R, T ) of T there exists a unique morphism ψ : RT → R
in CLO such that ψ ◦ T = T .” Namely the correspondence ψ 7→ ψ ◦ T gives the
bijection

HomCLO (RT , R) ' {(R, T ) |deformation of T}.

By the universal property, a universal deformation (RT ,T ) of T is unique (if it
exists) up to isomorphism. The O-algebra RT is called the universal deforma-
tion ring of T .

Theorem 2.1.1.1 [MTTU17, Theorem 1.2.1]. For a pseudo-representation
T : G→ k, there exists a universal deformation (RT ,T ) of T .

We recall the construction of (RT ,T ). Let Xg denote a variable indexed by
g ∈ G. Then the universal deformation ring RT is given by

RT = O[[Xg (g ∈ G)]]/I,

where I is the ideal of the formal power series ring O[[Xg (g ∈ G)]] generated
by the elements of following type: Setting Tg := Xg + λ(T (g)),

(1) Te − 2 = Xe + λ(T (e))− 2,
(2) Tg1g2

− Tg2g1
= Xg1g2

−Xg2g1
,

(3) Tg1
Tg2

Tg3
+ Tg1g2g3

+ Tg1g3g2
− Tg1g2

Tg3
− Tg2g3

Tg1
− Tg1g3

Tg2
,

(4) T 2
g − Tg2 − 2,

for g, g1, g2, g3 ∈ G. The universal deformation T : G→ RT is given by

T (g) := Tg mod I.

Then, for any deformation (R, T ) of T , the morphism ψ : RT → R in CLO
defined by ψ(Xg) := T (g)− λ(T (g)) satisfies ψ ◦ T = T .

We note thatRT constructed above is a complete Noetherian localO-algebra
if G is a finitely generated group.

2.1.2 Deformations of an SL2-representation

We keep the same notations as in 1.1. In this subsection we assume that
char(k) 6= 2, so that 2 is invertible in O and hence in any R ∈ CLO. Let
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ρ : G → SL2(k) be a given representation. We call a couple (R, ρ) an SL2-
deformation of ρ if R ∈ CLO and ρ : G → SL2(R) is a representation such
that ρ mod mR = ρ. In the following, we say simply a deformation of ρ for an
SL2-deformation. A deformation (Rρ,ρ) of ρ is called a universal deformation
of ρ if the following universal property is satisfied: “For any deformation (R, ρ)
of ρ there exists a unique morphism ψ : Rρ → R in CLO such that ψ ◦ ρ ≈ ρ”.
Here two representations ρ1, ρ2 of degree 2 over a local ring A are said to be
strictly equivalent, denoted by ρ1 ≈ ρ2, if there is γ ∈ I2 + M2(mA) such that
ρ2(g) = γ−1ρ1(g)γ for all g ∈ G. Namely the correspondence ψ 7→ ψ ◦ ρ gives
the bijection

HomCLO (Rρ, R) ' {(R, ρ) |deformation of ρ}/ ≈ .

By the universal property, a universal deformation (Rρ,ρ) of ρ is unique (if
it exists) up to strict equivalence. The O-algebra Rρ is called the universal
deformation ring of ρ.

A deformation (R, ρ) of ρ gives rise to a deformation (R, tr(ρ)) of the pseudo-
representation tr(ρ) : G → k. Assume that ρ is absolutely irreducible, namely,
the composite of ρ with an inclusion SL2(k) ↪→ SL2(k) is irreducible for an
algebraic closure k of k. Then, by using theorems of Caryaol [Car94, Theorem
1] and Nyssen [Nys96, Theorem 1], it can be shown that this correspondence by
the trace is indeed bijective. It is here that the condition char(k) 6= 2 is used.

Theorem 2.1.2.1 [MTTU17, Theorem 2.1.2]. Let ρ : G → SL2(k) be an ab-
solutely irreducible representation and let R ∈ CLO. Then the correspondence
ρ 7→ tr(ρ) gives the following bijection:

{ρ : G→ SL2(R) | deformation of ρ over R}/ ≈
−→ {T : G→ R | deformation of tr(ρ) over R}.

Now, by Theorem 2.1.1.1, there exists the universal deformation (RT ,T ) of
a pseudo-representation T = tr(ρ). By Theorem 2.1.2.1, we have a deformation
ρ : G → SL2(RT ) of ρ such that tr(ρ) = T . Then we can verify that (RT ,ρ)
satisfies the desired property of the universal deformation of ρ.

Theorem 2.1.2.2 [MTTU17, Theorem 2.2.2]. Let ρ : G → SL2(k) be an ab-
solutely irreducible representation. Then there exists the universal deformation
(Rρ,ρ) of ρ, where Rρ is given as RT for T := tr(ρ) in Theorem 2.2.1.1.

2.1.3 Obstructions

We recall basic facts on a presentation of a complete local O-algebra and the
obstruction for the deformation problem. For R ∈ CLO, we define the relative
cotangent space t∗R/O of R by the k-vector space mR/(m

2
R + mOR) and the

relative tangent space tR/O of R by the dual k-vector space of t∗R/O. We note

that they are same as the cotangent and tangent spaces of R/mOR = R ⊗O k,
respectively. The following lemma is a well-known fact which can be proved
using Nakayama’s lemma (cf. [Til96, Lemma 5.1]).
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Lemma 2.1.3.1 Let d := dimk tR/O and assume d < ∞. Let x1, . . . , xd be
elements of R whose images in R⊗O k form a system of parameters of the local
k-algebra R⊗O k. Then there is a surjective O-algebra homomorphism

η : O[[X1, . . . , Xd]] −→ R

in CLO such that η(Xi) = xi for 1 ≤ i ≤ d.

Let Ad(ρ) be the k-vector space sl2(k) := {X ∈ M2(k) | tr(X) = 0} on which G
acts by g.X := ρ(g)Xρ(g)−1 for g ∈ G and X ∈ sl2(k). It is well-known ([Maz89,
1.6]) that there is a canonical isomorphism between the relative cotangent space
t∗Rρ/O and the 1st group cohomologyH1(G,Ad(ρ)).We say that the deformation

problem for ρ is unobstructed if the 2nd cohomology H2(G,Ad(ρ)) vanishes. The
following proposition is also well-known.

Proposition 2.1.3.2 [Maz89, 1.6, Proposition 2]). Suppose that the deforma-
tion problem for ρ is unobstructed and dimkH

1(G,Ad(ρ)) <∞. Then the map
η in Lemma 2.1.3.1 with R = Rρ is isomorphic

η : O[[X1, . . . , Xd]]
∼−→ Rρ.

In this paper, we are interested in the case that G is a knot group, namely, the
fundamental group of the complement of a knot in the 3-sphere S3. We note
that the deformation problem is not unobstructed in general for a knot group
representation ρ, as shown in Subsection 2.2.3.

2.2 Character schemes

In this section, we show the relation between the universal deformation ring in
Section 1 and the character scheme of SL2-representations.

In Subsection 2.2.1, we recall the constructions and some facts concerning
the character scheme and the skein algebra over Z, and then describe their
relation. For the details on the materials, we consult [CS83], [LM85, Chapter
1], [Nak00] and [Sai96]. In Subsection 2.2.2, via the skein algebra, we show that
the universal deformation ring may be seen as an infinitesimal deformation of the
character algebra. In Subsection 2.2.3, we show that the deformation problem
is not unobstructed for a knot group in general, using Thurston’s result on the
character variety.

2.2.1 Character schemes and skein algebras over Z

Let G be a group. Let F be the functor from the category Com.Ring of com-
mutative rings with identity to the category of sets defined by

F(A) := {G→ SL2(A) | representation}

for A ∈ Com.Ring. The functor F is represented by a pair (A(G), σG), where
A(G) ∈ Com.Ring and σG : G→ SL2(A(G)) is a representation, which satisfies
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the following universal property: “For any A ∈ Com.Ring and a representation
ρ : G → SL2(A), there is a unique morphism ψ : A(G) → A in Com.Ring such
that ψ ◦ σG = ρ.” Thus the correspondence ψ 7→ ψ ◦ σG gives the bijection

HomCom.Ring(A(G), A) ' {G→ SL2(A) | representation}.

By the universal property, the pair (A(G), σG) is unique (if exists) up to isomor-
phism. We call A(G) the universal representation algebra over Z and σG : G→
SL2(A(G)) the universal representation. The pair (A(G), σG) is constructed as
follows. Let X(g) = (Xij(g))1≤i,j≤2 be 2× 2 matrix whose entries Xij(g)’s are
variables indexed by 1 ≤ i, j ≤ 2 and g ∈ G. Then A(G) is given as

A(G) = Z[Xij(g) (1 ≤ i, j ≤ 2; g ∈ G)]/J,

where J is the ideal of the polynomial ring Z[Xij(g) (1 ≤ i, j ≤ 2; g ∈ G)]
generated by

Xij(e)− δij , Xij(g1g2)−
2∑
k=1

Xik(g1)Xkj(g2), det(X(g))− 1

for 1 ≤ i, j ≤ 2 and g ∈ G, and the representation σG : G→ SL2(A(G)) is given
by

σG(g) := X(g) mod J (g ∈ G).

We note that when G is presented by finitely many generators g1, . . . , gn subject
to the relations rl = 1 (l ∈ L), A(G) is given by

A(G) = Z[Xij(gh) (1 ≤ h ≤ n, 1 ≤ i, j ≤ 2)]/J ′

for the ideal J ′ generated by

rl(X(g1), . . . , X(gn))ij − δij , det(X(gh))− 1,

where 1 ≤ i, j ≤ 2, l ∈ L, 1 ≤ h ≤ n and rl(X(g1), . . . , X(gn))ij denotes the
(i, j)-entry of rl(X(g1), . . . , X(gn)). The universal representation σG is given
by

σG(gh) = X(gh) mod J ′ (1 ≤ h ≤ n).

So A(G) is a finitely generated algebra over Z if G is a finitely generated group.
We denote by R(G) the affine scheme Spec(A(G)) and call it the representation
scheme of G over Z. So A-rational points of R(G) corresponds bijectively to
representations G → SL2(A) for any A ∈ Com.Ring. For p ∈ R(G), we let
ρp := ψp ◦ σG : G → SL2(A(G)/p) be the corresponding representation, where
ψp : A(G)→ A(G)/p is the natural homomorphism.

We say that a representation ρ : G → SL2(A) with A ∈ Com.Ring is
absolutely irreducible if the composite of ρ with the natural map SL2(A) →
SL2(k(p)) is absolutely irreducible over the residue field k(p) = Ap/pAp for any
p ∈ Spec(A).
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Let PGL2 be the group scheme over Z whose coordinate ring A(PGL2) is the
subring of the graded ring Z[Yij (1 ≤ i, j ≤ 2)]det(Y ) consisting of homogeneous
elements of degree 0, where the degree of Yij is 1. The adjoint action Ad :
R(G)× PGL2 → R(G) is given by the dual action

Ad∗ : A(G) −→ A(G)⊗Z A(PGL2); Xij(g) 7→ (Y X(g)Y −1)ij ⊗ Ykl,

where Y = (Yij)1≤i,j≤2 and (Y X(g)Y −1)ij denotes the (i, j)-entry of Y X(g)Y −1.
Let B(G) be the invariant subalgebra of A(G) under this action of PGL2

B(G) := A(G)PGL2

:= {x ∈ A(G) |Ad∗(x) = x⊗ 1}.

We call B(G) the character algebra of G over Z. We denote by X (G) the affine
scheme Spec(B(G)) and call it the character scheme of G over Z. The natural
inclusion

ι : B(G) ↪→ A(G)

induces a morphism of schemes

ι# : R(G) −→ X (G).

We denote the image of p(= ρp) ∈ R(G) in X (G) under ι# by [p](= [ρp]).
According to [PS00, Definition 2.5] and [Sai96, 3.1], we define the skein

algebra C(G) over Z by

C(G) := Z[tg (g ∈ G)]/I,

where I is the ideal of the polynomial ring Z[tg (g ∈ Π)] generated by the
polynomials of the form

te − 2, tg1
tg2
− tg1g2

− tg−1
1 g2

(g1, g2 ∈ G).

We note that C(G) is a finitely generated algebra over Z if G is a finitely gen-
erated group ([Sai96, 3.2]). We denote by S(G) the affine scheme Spec(C(G))
and call it the skein scheme of G over Z.

Since tr(σG(g)) (g ∈ G) is invariant under the adjoint action of PGL2 and
we have the formula

tr(σG(g1))tr(σG(g2))− tr(σG(g1g2))− tr(σG(g−1
1 g2)) = 0

for g1, g2 ∈ G, which is derived from the Cayley-Hamilton relation, we obtain a
Z-algebra homomorphism

τ : C(G) −→ B(G)

defined by
τ(tg) := tr(σG(g)) (g ∈ G).

It induces the morphism of schemes

τ# : X (G) −→ S(G).
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We set
ϕ := ι ◦ τ : C(G) −→ A(G)

so that we have the morphism of schemes

ϕ# = τ# ◦ ι# : R(G) −→ S(G).

Now we define the discriminant ideal ∆(G) of C(G) by the ideal generated
by the images of the elements in Z[tg (g ∈ π)] of the form

∆(g1, g2) := tg1g2g
−1
1 g−1

2
− 2 = t2g1

+ t2g2
+ t2g1g2

− tg1
tg2
tg1g2

− 4 (g1, g2 ∈ G),

and the discriminant subscheme by V (∆(G)) = Spec(C(G)/∆(G)). We define
the open subschemes S(G)a.i, X (G)a.i and R(G)a.i of S(G), X (G) and R(G),
respectively, by

S(G)a.i := S(G) \ V (∆(G)),
X (G)a.i := X (G) \ (τ#)−1(V (∆(G))),
R(G)a.i := R(G) \ (ϕ#)−1(V (∆(G))).

The following theorem, due to Kyoji Saito, is fundamental for our purpose.

Theorem 2.2.1.1 ([Sai96, 4.2, 4.3], [Nak00, Corollary 6.8]).
(1) For p ∈ R(G), ρp is absolutely irreducible if and only if p ∈ R(G)a.i.
(2) The restriction of ϕ# to R(G)a.i

ϕ#
a.i : R(G)a.i −→ S(G)a.i

is a principal PGL2-bundle.
(3) The restriction of τ# to X (G)a.i is an isomorphism

τ#
a.i : X (G)a.i

∼−→ S(G)a.i.

By virtue of Theorem 2.2.1.1 (1), we call S(G)a.i, X (G)a.i and R(G)a.i the
absolutely irreducible part of S(G), X (G) and R(G), respectively. We note that
X (G)a.i(' S(G)a.i) represents the functor F from the category Sch of schemes
to the category of sets, which associates to a scheme X the set of isomorphism
classes of absolutely irreducible representations G→ SL2(Γ(X,OX)):

F(X) := {G→ SL2(Γ(X,OX)) | absolutely irreducible representation}/ ∼ .

Since ϕ#
a.i and τ#

a.i are defined over Z, they induces maps on A-rational points
for A ∈ Com.Ring:

ϕ#
a.i(A) : R(G)a.i(A) −→ S(G)a.i(A),

τ#
a.i(A) : X (G)a.i(A)

∼−→ S(G)a.i(A).

By Theorem 2.2.1.1 (3), we have the following
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Corollary 2.2.1.2 Let ρ : G→ SL2(k) be an absolutely irreducible representa-
tion over a field k so that ρ ∈ R(G)a.i(k). Let [ρ] ∈ X (G)a.i(k) also denote the
corresponding prime ideal of B(G). Then the morphism τ induces an isomor-
phism of local rings:

C(G)τ#([ρ]) ' B(G)[ρ].

The following proposition can be proved by using the vanishing of the Galois
cohomology H1(k,PGL2(k)) = 1 for a field k whose Brauer group Br(k) = 0
([Ser73, III, 2.2]) and Skolem-Noether theorem. For example, when k is a finite
field or an algebraically closed field, Br(k) = 0.

Proposition 2.2.1.3 ([Fuk98, Lemma 3.3.1], [Har08, Proposition 2.2.27]) Let

k be a field whose Brauer group Br(k) = 0. Then ϕ#
a.i induces the following

bijection on k-rational points:

ϕ#
a.i(k) : R(G)a.i(k)/PGL2(k)

∼−→ S(G)a.i(k).

2.2.2 The relation between the universal deformation ring and the
character scheme

Let k be a perfect field with char(k) 6= 2 and let O be a discrete valuation
ring with residue field k. Let ρ : G → SL2(k) be an absolutely irreducible
representation and let T : G → k be a pseudo-SL2-representation over k given
by the character tr(ρ). Let Rρ(= RT ) be the universal deformation ring of ρ
(or T ) as in Theorem 2.1.2.2. Recall that RT is a complete local O-algebra
whose residue field is k. On the other hand, let B(G) and S(G) be the character
algebra and skein algebra of G over Z, respectively. We set

B(G)k := B(G)⊗Z k, X (G)k := Spec(B(G)k) = X (G)⊗Z k,
C(G)k := C(G)⊗Z k, S(G)k := Spec(C(G)k) = S(G)⊗Z k.

We also denote by X (G)a.i
k and S(G)a.i

k the absolutely irreducible part of X (G)k
and S(G)k, respectively. By Theorem 2.2.1.1 (3), we have X (G)a.i

k ' S(G)a.i
k .

The following theorem tells us that the universal deformation ring Rρ may be
seen as an infinitesimal deformation of the character k-algebra B(G)k at [ρ].

Theorem 2.2.2.1 Let [ρ] denote the maximal ideal of B(G)k corresponding to
the representation ρ. We then have an isomorphism of k-algebras

Rρ ⊗O k ' (B(G)k)∧[ρ],

where (B(G)k)∧[ρ] denotes the [ρ]-adic completion of B(G)k.

Proof. By the construction of RT in Theorem 2.2.1.1, we have

Rρ = O[[Xg (g ∈ G)]]/I,

where I is the ideal of the power series ring O[[Xg (g ∈ G)]] generated by
elements of the form: setting Tg := Xg + λ(T (g)) (λ : the Teichmüller lift),
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(1) Te − 2,
(2) Tg1g2 − Tg2g1 ,
(3) Tg1

Tg2
Tg3

+ Tg1g2g3
+ Tg1g3g2

− Tg1g2
Tg3
− Tg2g3

Tg1
− Tg1g3

Tg2
,

(4) T 2
g − Tg2 − 2,

where g, g1, g2, g3 ∈ G.
On the other hand, let ψ : B(G)k → k be the morphism in Com.Ring corre-

sponding to [ρ] ∈ X (G)a.i(k). Since ψ(tr(σG(g))) = tr(ρ(g)) = T (g) for g ∈ G,
the maximal ideal [ρ] = Ker(ψ) of B(G)k corresponds to the maximal ideal
(tg − T (g) (g ∈ G)) of C(G)k. Therefore Corollary 2.2.1.2 yields

(B(G)k)∧[ρ] ' k[[xg (g ∈ G)]]/I∧,

where xg := tg − T (g) (g ∈ G) and I∧ is the ideal of the power series ring
k[[xg (g ∈ G)]] generated by elements of the form

te − 2, tg1
tg2
− tg1g2

− tg−1
1 g2

(g1, g2 ∈ G).

So, in order to show that the correspondence xg 7→ Xg ⊗ 1 gives the desired
isomorphism (B(G)k)∧[ρ] ' Rρ ⊗O k, it suffices to show the following

Lemma 2.2.2.2 Let T be a function on G with values in an integral domain
whose characteristic is not 2. Let (P) be the relations given by (P1) T (1) = 2,
(P2) T (g1g2) = T (g2g1),
(P3) T (g1)T (g2)T (g3)+T (g1g2g3)+T (g1g3g2)−T (g1g2)T (g3)−T (g2g3)T (g1)−
T (g1g3)T (g2) = 0,
(P4) T (g)2 − T (g2) = 2, and let (C) be the relations given by (C1) T (1) = 2,
(C2) T (g1)T (g2) = T (g1g2) + T (g−1

1 g2),

where g, g1, g2, g3 are any elements in G.
Then (P) and (C) are equivalent.

Proof of Lemma 2.2.2.2. (P) ⇒ (C): Letting g2 = g1 in (P3), we have

T (g1)2T (g3)− T (g2
1)T (g3) + T (g2

1g3) + T (g1g3g1)− 2T (g1g3)T (g1) = 0.

Using (P2) and (P4), we have

2(T (g3) + T (g2
1g3)− T (g1g3)T (g1)) = 0.

Letting g3 be replaced by g−1
1 g2 in the above equation and noting T has the

value in an integral domain whose characteristic is not 2, we obtain (C2).
(C) ⇒ (P). Letting g2 = 1 in (C2) and using (C1), we have

T (g) = T (g−1) for any g ∈ G.

Exchanging g1 and g2 in (C2) each other and using the above relation, we have

T (g2)T (g1) = T (g2g1) + T (g−1
2 g1) = T (g2g1) + T (g−1

1 g2)
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and hence we obtain (P2). Next letting g1 be replaced by g1g3 in (C2), we have

(2.2.2.1) −T (g1g3)T (g2) + T (g1g3g2) + T (g−1
3 g−1

1 g2) = 0,

and letting g2 be replaced by g2g3 in (C2), we have

(2.2.2.2) −T (g1)T (g2g3) + T (g1g2g3) + T (g−1
1 g2g3) = 0.

By (C2), we have

T (g−1
3 g−1

1 g2) = T (g3)T (g−1
1 g2)− T (g3g

−1
1 g2)

= T (g3)T (g1)T (g2)− T (g1g2)T (g3)− T (g3g
−1
1 g2).

Hence, using (P2) proved already, we have

(2.2.2.3)
T (g−1

3 g−1
1 g2) + T (g−1

1 g2g3) = T (g1)T (g2)T (g3)− T (g1g2)T (g3)
−T (g3g

−1
1 g2) + T (g−1

1 g2g3)
= T (g1)T (g2)T (g3)− T (g1g2)T (g3).

Summing up (2.2.2.1) and (2.2.2.2) together with (2.2.2.3), we obtain (P3). Fi-
nally putting g1 = g2 in (C2) and using (C1), we obtain (P4). �

By Lemma 2.1.3.1 and Theorem 2.2.2.1, we have the following

Corollary 2.2.2.3 Let [ρ] be a regular k-rational point of X (G)a.i
k . Let d be

the dimension of the irreducible component of X (G)a.i
k containing [ρ] so that

(B(G)k)∧[ρ] is a power series ring over k on a regular system of parameters
z1, . . . , zd. Let x1, . . . , xd be elements of Rρ such that the image of xi in
Rρ ⊗O k ' (B(G)k)∧[ρ] is zi for 1 ≤ i ≤ d. Then there is a surjective O-algebra
homomorphism

η : O[[X1, . . . , Xd]] −→ RT

in CLO such that η(Xi) = xi for 1 ≤ i ≤ d.

By Corollary 2.2.2.3, we obtain the following criterion which determines the
universal deformations for many examples. See Section 4.

Theorem 2.2.2.4 Let notations and assumptions be as in Corollary 2.2.2.3.
We suppose that there are g1, . . . , gd ∈ G such that zi = ti − tr(ρ(gi)) for
1 ≤ i ≤ d, where ti denotes a variable corresponding to the regular function
tr(σG(gi)). Choose αi ∈ O such that αi mod mO = tr(ρ(gi)) for 1 ≤ i ≤ d
and suppose that ρ : G → SL2(O[[t1 − α1, . . . , td − αd]]) is a deformation of ρ
satisfying

tr(ρ(gi)) = ti (1 ≤ i ≤ d).

Then (O[[t1 − α1, . . . , td − αd]], ρ) is the universal deformation of ρ.

Proof. By the universal property of (Rρ,ρ), there is a morphism

ψ : Rρ −→ O[[t1 − α1, . . . , td − αd]]
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in CLO such that ψ ◦ ρ ≈ ρ. Hence we have

(2.2.2.4) ψ(tr(ρ(gi))) = tr(ρ(gi)) = ti, 1 ≤ i ≤ d.

By Corollary 2.2.2.3, there is a surjective morphism

η : O[[X1, . . . , Xd]] −→ Rρ

in CLO such that η(Xi) = tr(ρ(gi)) − αi for 1 ≤ i ≤ d. Since ψ ◦ η :
O[[X1, . . . , Xd]] → O[[t1 − α1, . . . , td − αd]] is a morphism in CLO and satis-
fies, by (2.2.2.4),

ψ ◦ η(Xi) = ti − αi (1 ≤ i ≤ d),

ψ ◦η is an isomorphism in CLO. Since η is surjective, η must be isomorphic and
so is ψ. �

2.2.3 The case of a knot group

Let K be a knot in the 3-sphere S3 and let EK denote the knot complement
S3 \ K. Let GK denote the knot group of K, GK := π1(EK). It is well
known that GK has the following presentation of deficiency one (for example,
the Wirtinger presentation):

(2.2.3.1) GK = 〈g1, . . . , gn | r1 = · · · = rn−1 = 1〉 .

Let k be a field with char(k) 6= 2. Let ρ : GK → SL2(k) be an absolutely
irreducible representation and let Rρ be the universal deformation ring as in
Theorem 2.1.2.2. Since the character variety X (GK)k of a knot group GK over
a field k has been extensively studied (see [CS83], [Le93], [Har08] etc), we can
determine Rρ ⊗O k by Theorem 2.2.2.1 and even Rρ by Theorem 2.2.2.4 for
some knots K. In fact, in [MTTU17], Morishita, Takakura, Terashima and Ueki
determined Rρ for a certain Riley-type representations ρ for a 2-bridge knots
K. See also Section 4 for other examples.

It is a delicate problem, however, to determine the universal deformation ring
Rρ for a knot group representation ρ in general, since the deformation problem
for ρ is not unobstructed in general for a knot group GK , as the following
theorem shows.

Theorem 2.2.3.1 We suppose that ρ : GK → SL2(C) is an irreducible repre-
sentation and that there is a subring A of a finite algebraic number field F and
a finite prime p of F such that A is p-integral and the image of ρ is contained
in SL2(A). Set k := A/p and ρ := ρ mod p : GK → SL2(k). Then we have

H2(GK ,Ad(ρ)) 6= 0.

We note that the assumption in Theorem 2.2.3.1 is satisfied, for instance, when
K is a hyperbolic knot and ρ is the holonomy representation attached to a
hyperbolic structure on EK such that the completion is a closed or a cone 3-
manifold. For the proof of Theorem 2.2.3.1, we recall the following lemma, which
is a special case of a more general result, due to Thurston, for 3-manifolds.
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Lemma 2.2.3.2 ([CS83, Proposition 3.2.1] For an irreducible representation
ρ : GK → SL2(C), the irreducible component of X (GK)C containing [ρ] has the
dimension greater than 0.

Proof of Theorem 2.2.3.1. Let W be the CW complex attached to the presen-
tation (2.2.3.1). We recall herewith the construction of W :
•We prepare 0-cell b∗, 1-cells g∗1 , . . . , g

∗
n, where each g∗i corresponds to the gen-

erator gi, 2-cells r∗1 , . . . , r
∗
n−1, where each r∗j corresponds to the relator rj .

• We attach each 1-cell g∗i to the 0-cell b∗ so that we obtain a bouquet.
• We attach the boundary of each 2-cell r∗j to 1-cells of the bouquet, according
to words in rj .
We note that the knot complement EK and the CW complex W are homotopi-
cally equivalent by Whitehead’s theorem, because they are both the Eilenberg-
MacLane space K(GK , 1).

Let Ad(ρ) be the A-module sl2(A) on which GK acts by g.X := ρ(g)Xρ(g)−1

for g ∈ GK and X ∈ sl2(A). We let Ad(ρ)C := Ad(ρ) ⊗A C = sl2(C) on which
GK acts as g ⊗ idC for g ∈ GK . Since the Euler characteristic of W is zero, we
have

(2.2.3.2)

2∑
i=0

(−1)i dimCH
i(GK ,Ad(ρ)C) =

2∑
i=0

(−1)i dimC C
i(W ; Ad(ρ)C)

= 3

2∑
i=0

(−1)i dimC C
i(W ;C)

= 0.

Since ρ is irreducible, we have H0(GK ,Ad(ρ)C) = 0 by Schur’s lemma. So, by
(2.2.3.2), we have

(2.2.3.3) dimCH
2(GK ,Ad(ρ)C) = dimCH

1(GK ,Ad(ρ)C).

SinceH1(GK ,Ad(ρ)C) contains the tangent space of the character variety X (GK)C
at [ρ] ([Por97, Proposition 3.5]), Lemma 2.2.3.2 implies H1(GK ,Ad(ρ))C) 6= 0.
So, by (2.2.3.3), we have H2(GK ,Ad(ρ)C) 6= 0. Since H2(GK ,Ad(ρ)C) =
H2(GK ,Ad(ρ)A)⊗A C, we have

(2.2.3.4) H2(GK ,Ad(ρ)) 6= 0.

Let Ad(ρ) := Ad(ρ)⊗A k = sl2(k) on which GK acts as g ⊗ idk for g ∈ GK .
Let us consider the differentials of cochains

d : C1(W ; Ad(ρ)) −→ C2(W ; Ad(ρ)),

d := d⊗ (mod p) : C1(W ; Ad(ρ)) −→ C2(W ; Ad(ρ)).

By (2.2.3.4), all 3n-minors of d are zero. Therefore all 3n-minors of d are zero
and hence H2(GK ,Ad(ρ)) 6= 0. �.
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2.3 L-functions associated to the universal deformations

In this section, we study the twisted knot module H1(ρ) = H1(EK ;ρ) with
coefficients in the universal deformation ρ of an SL2- representation of a knot
group GK , and introduce the associated L-function LK(ρ). We then formulate
two problems proposed by Mazur ([Maz00]): the torsion property of H1(ρ) over
the universal deformation ring Rρ (Problem 2.3.2.1) and the generic simplicity
of the zeroes of LK(ρ) (Problem 2.3.2.7). Our main theorem in this section
(Theorem 2.3.2.2) gives a criterion for H1(ρ) to be finitely generated and torsion
over Rρ using a twisted Alexander invariant of K.

2.3.1 Fitting ideals and twisted Alexander invariants

Let A be a Noetherian integrally closed domain. Let M,M ′ be finitely generated
A-modules. We say that a homomorphism ϕ : M →M ′ is a pseudo-isomorphism
if the annihilators of Ker(f) and Coker(f) are not contained in height 1 prime
ideals of A.

Lemma 2.3.1.1 (cf. [Ser95, Lemma 5]). For any finitely generated torsion A-
module M , there are positive integers e1, . . . , es, height 1 prime ideals p1, . . . , ps
of A for some s ≥ 1, and a pseudo-isomorphism

ϕ : M −→
s⊕
i=1

A/peii .

Here the set {(pi, ei)} is uniquely determined by M . If A is a Noetherian facto-
rial domain further, each prime ideal pi of height 1 is a principal ideal pi = (fi)
for a prime element fi of A.

We note that a regular local ring is a Noetherian factorial local domain (Auslander-
Buchsbaum). For example, the Iwasawa algebra O[[X]] is a 2-dimensional reg-
ular local ring, where O is a complete discrete valuation ring with char(O) = 0
and finite residue field. Then it is known in Iwasawa theory ([Iwa73]) that a
height 1 prime ideal of O[[X]] is ($) for a prime element $ of O or (f) for
an irreducible distinguished polynomial f ∈ O[X], and a pseudo-isomorphism
means a homomorphism with finite kernel and cokernel ([Was97, §13.2]).

Let A be a Noetherian factorial domain and let M be a finitely generated
A-module. Let us take a finite presentation of M over A

Am
∂−→ An −→M −→ 0,

where ∂ is an n×m matrix over A. For a non-negative integer d, we define the
d-th Fitting ideal (elementary ideal) Ed(M) of M to be the ideal generated by
(n − d) minors of ∂. If d ≥ n, we let Ed(M) := A, and if n − d > m, we let
Ed(M) := 0. These ideals depend only on M and independent of the choice of a
presentation. The initial Fitting ideal E0(M) is called the order ideal of M . Let
∆d(M) be the greatest common divisor of generators of Ed(M), which is well
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defined up to multiplication by a unit of A. The rank of M over A is defined
by the dimension of M ⊗AQ(A) over Q(A). The following facts are well known
([Hil12, Ch.3], [Kaw96, 7.2]).

Lemma 2.3.1.2 Let 0→M1 →M2 →M3 → 0 be an exact sequence of finitely
generated A-modules. Then we have the followings.
(1) ∆0(M2) =̇ ∆0(M1)∆0(M3).
(2) If the A-torsion subgroup of M3 is zero and r is the rank of M3 over A, then
∆d(M2) =̇ ∆d−r(M1).

For example, suppose A is a principal ideal domain and M is a finitely generated
torsion A-module. Then we have M '

⊕s
i=1A/(ai) with (a1) ⊃ · · · ⊃ (as), and

Ed(M) = (a1 · · · as−d), ∆d(M) =̇ a1 · · · as−d for d < s. As another example,
let A be the Iwasawa algebra O[[X]] and M a finitely generated torsion A-
module. Then there is a pseudo-isomorphism ϕ : M →

⊕s
i=1A/(f

ei
i ), where

fi is a prime element of O or an irreducible distinguished polynomial in O[X].
If ϕ is injective, in particular, if M has no non-trivial finite A-submodule, we
have E0(M) = (f), ∆0(M) =̇ f , where f is the Iwasawa polynomial

∏s
i=1 f

ei
i

([MW84, Appendix]). For higher Fitting ideals Ed(M) for d > 0 in Iwasawa
theory, we refer to [Kur03].

Next, let us define the twisted Alexander invariant for a finite connected
CW complex (see 1.2 for the case of a knot complement). Let C be a finite
connected CW complex. Let G := π1(C) be the fundamental group of C which
is supposed to have the finite presentation

G = 〈g1, . . . , gn | r1 = · · · = rm = 1〉 ,

where relators r1, . . . , rm are words of the letters g1, . . . , gn. We suppose that
there is a surjective homomorphism

α : G −→ 〈t〉 ' Z.

Let A be a Noetherian factorial domain. We denote by the same α the group
A-algebra homomorphism A[G]→ A[t±1], which is induced by α. Let

ρ : G −→ GLN (A)

be a representation of G of degree N over A and let us denote by the same ρ
the A-algebra homomorphism A[G]→ MN (A) induced by ρ. Then we have the
tensor product representation

ρ⊗ α : A[G] −→ MN (A[t±1]).

The twisted Alexander invariant ∆(C, ρ; t) ∈ A[t±1] is defined as follows. Let F
be the free group on g1, . . . , gn and let π : F → G be the natural homomorphism.
We denote by the same π the A-algebra homomorphism A[F ]→ A[G] induced
by π. Then we have the A-algebra homomorphism

Φ := (ρ⊗ α) ◦ π : A[F ] −→ MN (A[t±1]).
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Let ∂
∂gi

: A[F ]→ A[F ] be the Fox derivative over A, extended from Z ([Fox53]).

Let us consider the (big) n×m matrix P , called the twisted Alexander matrix,
whose (i, j) component is defined by the N ×N matrix

Φ

(
∂rj
∂gi

)
.

For 1 ≤ i ≤ n, let Pi denote the matrix obtained by deleting the i-th row from
P and we regard Pi as an (n − 1)N ×mN matrix over A[t±1]. We note that
A[t±1] is also a Noetherian factorial domain. Let Di be the greatest common
divisor of all (n−1)N -minors of Pi. Then it is known that there is i (1 ≤ i ≤ n)
such that det(Φ(gi − 1)) 6= 0 and that the ratio

(2.3.1.1) ∆(C, ρ; t) :=
Di

det Φ(gi − 1)
(∈ Q(A)(t))

is independent of such i’s and is called the twisted Alexander invariant of C
associated to ρ ([Wad94]).

2.3.2 L-functions associated to the universal deformations

Let K be a knot in the 3-sphere S3 and let EK denote the knot complement
S3 \K. Let GK denote the knot group π1(EK) of K, which has the following
presentation:

(2.3.2.1) GK = 〈g1, . . . , gn | r1 = · · · = rn−1 = 1〉 .

Let F be the free group on the words g1, . . . , gn and let π : Z[F ]→ Z[G] be the
natural homomorphism of group rings. We write the same gi for the image of
gi in GK .

Let ρ : GK → SL2(k) be an absolutely irreducible representation of GK over
a perfect field k with char(k) 6= 2. Let O be a complete discrete valuation ring
with residue field k and let CLO be the category of complete local O-algebras
with residue field k. Let ρ : GK → SL2(Rρ) be the universal deformation
of ρ (Theorem 2.1.2.2). We denote by the same ρ the induced algebra homo-
morphism Z[GK ] → M2(Rρ). Let Vρ be the representation space (of column
vectors) (Rρ)

⊕2 of ρ on which GK acts from the left via ρ. We will compute
the twisted knot module

H∗(ρ) := H∗(EK ;Vρ)

with coefficients in Vρ as the homology of the chain complex C∗(W ;Vρ) of the
CW complex W attached to the presentation (3.2.1). The CW complex W was
given in Subsection 2.2.3. Since H1(W ;Z) = H1(EK ;Z) = 〈t〉 ' Z, we take
α : π1(W )→ 〈t〉 to be the abelianization map.

For a representation ρ : GK → SL2(A), where A is a Noetherian factorial
domain, we define the twisted Alexander invariant ∆K(ρ; t) of K associated to
ρ by (cf. 1.2)

∆K(ρ; t) := ∆(W,ρ; t).
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We note that ∆K(ρ; t) coincides with the Reidemeister torsion of EK (or W )
associated to the representation ρ ⊗ α over Q(A)(t) [FV11, Proposition 2.2]
By Proposition 1.2.0.1, the relation between the twisted Alexander invariant
∆K(ρ; t) and the initial Fitting ideals of Hi(ρ⊗ α) := Hi(EK ; ρ⊗ α) (i = 0, 1)
is given by

(2.3.2.2) ∆K(ρ; t) =̇
∆0(H1(ρ⊗ α))

∆0(H0(ρ⊗ α))
.

Following Mazur’s question 1 of [Maz00, page 440], we may ask the following

Problem 2.3.2.1 Is H1(ρ) a finitely generated and torsion Rρ-module ?

Here is our main theorem, which gives an affirmative answer to Problem 2.3.2.1
under some conditions using a twisted Alexander invariant of K.

Theorem 2.3.2.2 Notations being as above, suppose that the following two con-
ditions are satisfied
(1) Rρ is a Noetherian integral domain.
(2) There is a deformation ρ : GK → SL2(R) of ρ, where R ∈ CLO is a Noethe-
rian factorial domain, and g ∈ GK such that
(2-1) det(ρ(g)− I) 6= 0 and
(2-2) ∆K(ρ; 1) 6= 0.
Then we have H1(ρ) = 0.

Proof. We may assume that g = gn in the presentation (2.3.2.1) of GK . We
consider the following chain complex C∗(ρ) := C∗(W ;Vρ) ([Kaw96, 7.1]):

0 −→ C2(ρ)
∂2−→ C1(ρ)

∂1−→ C0(ρ) −→ 0,

defined by
C0(ρ) := Vρ,
C1(ρ) := (Vρ)⊕n,
C2(ρ) := (Vρ)⊕(n−1),

 ∂1 := (ρ(g1)− I, . . . ,ρ(gn)− I),

∂2 :=

(
ρ ◦ π

(
∂rj
∂gi

))
,

where ∂
∂gi

: Z[F ]→ Z[F ] denotes the Fox derivative ([Fox53]), and ∂2 is regarded

as a (big) n× (n− 1) matrix whose (i, j)-entry is the 2× 2 matrix ρ ◦ π
(
∂rj
∂gi

)
.

By the condition (2), let ψ : Rρ → R be a morphism in CLO such that
ψ ◦ ρ ≈ ρ. Since ψ(det(ρ(gn) − I)) = det(ρ(gn) − I) 6= 0 by (2-1), we have
det(ρ(gn)− I) ∈ Q(Rρ)

× by the condition (1). Hence we have

(2.3.2.3) H0(ρ)⊗Rρ Q(Rρ) = 0.

Let C ′1(ρ) be the Rρ-submodule of C1(ρ) consisting of the first (n − 1)
components so that C1(ρ) = C ′1(ρ) ⊕ Vρ and let ∂′2 be the (n − 1) × (n − 1)
matrix obtained deleting the n-th row from ∂2. Consider theRρ-homomorphism

∂′2 : C2(ρ) −→ C ′1(ρ).
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Then, by the definition (2.3.1.1) of the twisted Alexander invariant, we have

(2.3.2.4) ∆K(ρ; 1) =
ψ(det(∂′2))

ψ(det(ρ(gn)− I))
.

By the conditions (2-1), (2-2) and (2.3.2.4), we have det(∂′2) ∈ Q(Rρ)
×. Hence

we have

(2.3.2.5) H2(ρ)⊗Rρ Q(Rρ) = 0.

Since the Euler characteristic of W is zero, we have
(2.3.2.6)

3∑
i=0

(−1)i dimQ(Rρ)Hi(ρ)⊗Rρ Q(Rρ) =

3∑
i=0

(−1)i dimQ(Rρ) Ci(ρ)⊗Rρ Q(Rρ)

= (rankRρ Vρ)

3∑
i=0

(−1)irankZ Ci(W )

= 0.

Therefore, by (2.3.2.3), (2.3.2.5) and (2.3.2.6), we have

rankRρ H1(ρ) = dimQ(Rρ)H1(ρ)⊗Rρ Q(Rρ) = 0

and hence H1(ρ) is torsion over Rρ. Since Rρ is Noetherian and H1(ρ) is a
quotient of a submodule of (Vρ)⊕n = (Rρ)

⊕2n, H1(ρ) is Noetherian, in partic-
ular, finitely generated over Rρ. �

It may be interesting to note that the condition (2-2) in Theorem 2.3.2.2 on
a twisted Alexander polynomial is reminiscent of Kato’s result in number theo-
retic situation ([Kat04]), which asserts that the non-vanishing of the L-function
at 1 of a modular form implies the finiteness of the Selmer module of the asso-
ciated p-adic Galois representation.
As a special case of Theorem 2.3.2.2, the above proof shows the following.

Corollary 2.3.2.3 Notations being as above, suppose that the following two
conditions are satisfied:
(1) Rρ is a Noetherian integral domain.
(2) There is g ∈ GK such that det(ρ(g)− I) 6= 0 and ∆K(ρ; 1) 6= 0.
Then we have H1(ρ) = 0.

Proof. By the assumptions, we have det(ρ(gn) − I),det(∂′2) ∈ (Rρ)
×, from

which we easily see that Ker(∂1) = Im(∂2) and hence H1(ρ) = 0. �

Assume that Rρ is a Noetherian factorial domain and the condition (2) of
Theorem 2.3.2.2. When H1(ρ) is a torsion Rρ-module, we are interested in the
invariant

(2.3.2.7) LK(ρ) := ∆0(H1(ρ)),
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which we call the L-function of the knot K associated to ρ (cf. Remark 2.3.2.5
(3) below). We note that it is a computable invariant by the following

Proposition 2.3.2.4 Notations being as above, we have

LK(ρ) =̇ ∆2(Coker(∂2))

Proof. This follows from the exact sequence of Rρ-modules

0 −→ H1(ρ) −→ Coker(∂2) −→ Vρ = (Rρ)
⊕2 −→ 0

and Lemma 2.3.1.2 (2). �

Remark 2.3.2.5 (1) The L-function LK(ρ) is determined up to multiplication
by a unit of Rρ.
(2) When H∗(ρ)⊗Rρ Q(Rρ) = 0, we have the Reidemeister torsion ∆K(ρ; 1) ∈
Q(Rρ) of EK associated to ρ, which is an invariant defined without indetermi-
nacy. It may be non-trivial, even when H∗(ρ) = 0.
(3) Our L-function LK(ρ) may be seen as an analogue in knot theory of the al-
gebraic p-adic L-function for the universal Galois deformation in number theory
([Gre94]). In terms of [Maz00], the Rρ-module H1(ρ) gives a coherent torsion
sheaf H1(ρ) on the universal deformation space Spec(Rρ) and LK(ρ) gives a
non-zero section of H1(ρ).

We find the following necessary condition for the L-function LK(ρ) to be
non-trivial under a mild condition.

Proposition 2.3.2.6 Assume that ∆0(H0(ρ)) =̇ 1. If LK(ρ) ˙6= 1, we have
∆K(ρ; 1) = 0.

Proof. By (2.3.2.2), (2.3.2.7) and our assumption, we have

(2.3.2.8) ∆K(ρ; 1) =̇ LK(ρ).

Suppose LK(ρ) ˙6= 1, which means LK(ρ) ∈ mRρ . Let ϕ : Rρ → k be the ho-
momorphism taking mod mRρ . Then, by the functorial property of the twisted
Alexander invariant and (2.3.2.9) , we have

∆K(ρ; 1) = ϕ(∆K(ρ; 1)) = ϕ(LK(ρ)) = 0. �

Following Mazur’s question 2 of [Maz00, page 440], we may ask the following

Problem 2.3.2.7 Investigate the order of the zeroes of LK(ρ) on Spec(Rρ) at
prime divisors.

In the next section, we verify Problem 2.3.2.7 affirmatively by some examples.
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Remark 2.3.2.8 In [Maz00], Mazur works over a field k (in fact, the field of
complex numbers) and so the L-function discussed there is, in our terms, given
by

LK(ρk) := ∆0(H1(ρk)),

where ρk : GK → SL2(Rρ ⊗O k) is the representation obtained by taking mod
mO of ρ. Therefore our L-function LK(ρ) in (3.2.6) is a finer object than
LK(ρk).

2.4 Examples

In this section, we discuss concrete examples of the universal deformations of
some representations of 2-bridge knot groups over finite fields and the associated
L-functions.

Let K be a 2-bridge knot in the 3-sphere S3, given as the Schubert form
B(m,n) where m and n are odd integers with m > 0,−m < n < m and
g.c.d(m,n) = 1. The knot group GK is known to have a presentation of the
form

GK = 〈g1, g2 | wg1 = g2w〉,

where w is a word w(g1, g2) of g1 and g2 which has the following symmetric
form

w = w(g1, g2) = gε11 g
ε2
2 · · · g

εm−2

1 g
εm−1

2 ,
εi = (−1)[in/m] = εm−i ([ · ] = Gauss symbol).

We write the same gi for the image of the word gi in GK .
Let A be a commutative ring with identity. For a ∈ A× and b ∈ A, we

consider two matrices C(a) and D(a, b) in SL2(A) defined by

C(a) :=

(
a 1
0 a−1

)
, D(a, b) :=

(
a 0
b a−1

)
and we set

W (a, b) := C(a)ε1D(a, b)ε2 · · ·C(a)εm−2D(a, b)εm−1 .

It is easy to see that there are (Laurent) polynomials wij(t, u) ∈ Z[t±, u]
(1 ≤ i, j ≤ 2) such that W (a, b) = (wij(a, b)). Let ϕ(t, u) := w11(t, u) +
(t−1 − t)w12(t, u) ∈ Z[t±, u]. Then it is shown ([Ril84]) that there is a unique
polynomial Φ(x, u) ∈ Z[x, u] such that

Φ(t+ t−1, u) = tlϕ(t, u)

for an integer l.
Let k be a field with char(k) 6= 2 and let O be a complete discrete val-

uation ring with residue field k. Let X (GK)k denote the character variety
of GK over k. The proof of Proposition 1.4.1 of [CS83] tells us that any
tr(σGK (g)) (g ∈ GK) is given as a polynomial of tr(σGK (g1))(= tr(σGK (g2)))
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and tr(σGK (g1g2)) with coefficients in Z. In particular, the character algebra
B(GK)k is generated by tr(σGK (g1)) and tr(σGK (g1g2)) over k. Let x and y
denote the variables corresponding, respectively, to the coordinate functions
tr(σGK (g1)) and tr(σGK (g1g2)) on X (GK). This variable x is consistent with
the variable x of Φ(x, u) (and so causes no confusion). Since tr(C(a)) = a+a−1

and tr(C(a)D(a, b)) = a2 +a−2 + b, the coordinate variables x and y are related
with t and u by

x = t+ t−1, y = t2 + t−2 + u = x2 + u− 2.

The following theorem is due to Le.

Theorem 2.4.0.1 ([Le93, Theorem 3.3.1]) We have

X (GK)k = Spec(k[x, y]/((y − x2 + 2)Φ(x, y − x2 + 2))).

Here, for a k-algebra A, the A-rational points on Φ(x, y−x2 +2) = 0 correspond
bijectively to isomorphism classes of absolutely irreducible representation GK →
SL2(A) except the finitely many intersection points with y − x2 + 2 = 0.

Example 2.4.0.2 (1) When K is the trefoil knot B(3, 1), we see Φ(x, y− x2 +
2) = y − 1.
(2) When K is the figure eight knot B(5, 3), we have Φ(x, y − x2 + 2) = y2 −
(1 + x2)y + 2x2 − 1.
(3) When K := B(7, 3), the knot 52, we have Φ(x, y − x2 + 2) = y3 − (x2 +
1)y2 + (3x2 − 2)y − 2x2 + 1.

By Theorem 2.4.0.1, we have the following

Corollary 2.4.0.3 Let ρ : GK → SL2(k) be an absolutely irreducible represen-
tation so that [ρ] is a regular k-rational point of X (GK)a.i

k . Then we have

(B(GK)k)∧[ρ] ' k[[x− tr(ρ(g1))]].

So, by Theorem 2.2.2.4, we have

Corollary 2.4.0.4 Let ρ be as in Corollary 2.4.0.3. Suppose that ρ : GK →
SL2(O[[x − α]]), where α is an element of O such that α mod mO = tr(ρ(g1)),
is a deformation of ρ satisfying

(2.4.1) tr(ρ(g1)) = x.

Then the pair (O[[x− α]], ρ) is the universal deformation of ρ.

In the following, we discuss some concrete examples, where k will be a finite
field Fp for some odd prime number p.

Convention. Let R be a complete local ring with residue field R/mR = Fp.
When the equation X2 = a for a ∈ R has two simple roots in R, we denote by

√
a

for the ”positive” solution, namely, (
√
a)2 = a and

√
a mod mR ∈ {1, . . . , p−1

2 }.
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2.4.1 Riley representations

For each 2-bridge knot K, there is a representation ρRiley,ω : GK → SL2(C)
called Riley representation which is defined by the following:

g1 7→
(

1 1
0 1

)
, g2 7→

(
1 0
ω 1

)
,

where ω is a non-zero root of Φ(2, ω) = 0, and Φ(2, u) ∈ Z[u] is a monic
polynomial defined before. By taking an odd prime p satisfying ω mod p ∈ Fp,
we can consider the mod p representation ρRiley,ω : GK → SL2(Fp). It is known,
due to J. Ueki, that the universal deformation ρRiley,ω : GK → SL2(Zp[[x− 2]])
of ρRiley,ω is given by the following [MTTU17, Theorem 4.3.3]:

ρRiley,ω(g1) :=

( x
2 1

x2−4
4

x
2

)
, ρRiley,ω(g2) :=

(
x
2

(1−v(x))2s(x)
x2−4

(1+v(x))2s(x)
4

x
2

)
,

where s(x) ∈ Zp[[x−2]]× depends on K, and v(x) :=
√

1 + x2−4
s(x) ∈ Zp[[x−2]]×.

Let us consider the L-function associated to ρRiley,ω. Having Corollary
2.3.2.3 in our mind, since we have det(ρRiley,ω(g1g2) − I2) = −ω mod p 6=
0 ∈ Fp, we check the value of ∆K(ρRiley,ω; 1). In order to do this, we con-
sider the total representation ρΦ : GK → SL2N (Z) associated to ρRiley,ω, where
N := deg(Φ(2, u)).

Recall that the total representation ρΦ : GK → SL2N (Z) is a representation
induced by ρRiley,ω, which is given by the following:

g1 7→
(
IN IN
0 IN

)
, g2 7→

(
IN 0
C IN

)
,

where C is the companion matrix of Φ(2, u), namely when Φ(2, u) is given by
uN + cN−1u

N−1 + · · ·+ c0, then

C =



0 0 · · · 0 −c0
1 0 · · · 0 −c1

0 1
. . . 0 −c2

...
. . .

. . .
...

...
0 0 · · · 1 −cN−1

 .

It is known, due to Silver and Williams, that the absolute value of ∆K,ρΦ(1) is
given by the following.

Theorem 2.4.1.1 ([SW09, Theorem 5.1]) Let K be a 2-bridge knot and ρΦ :
GK → SL2N (Z) be a total representation associated to ρRiley,ω. Then we have
|∆K,ρΦ

(1)| = 2N .
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Also, note that the relation between ∆K,ρΦ(t) and ∆K,ρRiley,ω
(t) is given by the

following:

Lemma 2.4.1.2 (cf. [KSW99]) We have

∆K,ρΦ
(t) =

∏
ω

∆K,ρRiley,ω
(t),

where ω range over the roots of Φ(2, u) = 0.

Now, let us consider the value of ∆K(ρRiley,ω; 1). Since p is odd, by taking
mod p in the equality of Theorem 2.4.1.1, we have ∆K,ρΦ(1) mod p 6= 0 ∈ Fp.
Then by using Lemma 2.4.1.2, we have

∏
ω ∆K,ρRiley,ω

(1) mod p 6= 0 ∈ Fp, and
so ∆K,ρRiley,ω

(1) mod p 6= 0 ∈ Fp, namely ∆K,ρRiley,ω
(1) 6= 0.

Therefore, by Corollary 2.3.2.3, we have

H1(ρRiley,ω) = 0, LK(ρRiley,ω)
.
= 1.

2.4.2 Holonomy representations

For each hyperbolic knot K, there is a representation ρhol : GK → PSL2(C)
called holonomy representation, which is determined by the complete hyper-
bolic structure of the complement of K. It is known that we can lift ρhol to
SL2(C)-representation, which we also denote by ρhol : GK → SL2(C). When K
is a 2-bridge knot, we have the following expression for ρhol:

Lemma 2.4.2.1 ([DHY09]) Let K be a 2-bridge hyperbolic knot and ρhol :
GK → SL2(C) a lift of the holonomy representation. Then ρhol is given, up
to conjugation, by

g1 7→ ±
(

1 1
0 1

)
, g2 7→ ±

(
1 0
ω 1

)
,

where ω is a root of Φ(2, ω) = 0.

Corresponding to the sign, denote the above representations by ρhol,± : GK →
SL2(C) respectively. As before, by taking odd prime p satisfying ω ∈ Fp, we can
consider the mod p representations ρhol,± : GK → SL2(Fp) and those universal
deformations ρhol,± : GK → SL2(Zp[[x± 2]]) respectively.

Now, let us consider the L-function associated to ρhol,±. For the case of
ρhol,+, we have the same discussion as 2.4.1, so we have

H1(ρhol,+) = 0, LK(ρhol,+)
.
= 1.

For the case of ρhol,−, namely when the trace of ρhol,−(g1) is p− 2 ∈ Fp, we will
see in 2.4.3 (3) that it depends on primes whether H1(ρhol,−) and LK(ρhol,−)
are trivial or not.
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2.4.3 Other examples

(1) Let K := B(3, 1), the trefoil knot, whose group is given by

GK = 〈g1, g2 | g1g2g1 = g2g1g2〉.

We have X (GK)a.i(k) = {(x, y) ∈ k2 | y = 1}.

Let k = F3 and O = Z3, and consider the following absolutely irreducible
representation whose PGL2(F3)-conjugacy class corresponds to the regular F3-
rational point (x, y) = (2, 1) of X (GK)a.i (Proposition 2.2.1.3):

ρ1 : GK → SL2(F3); ρ1(g1) =

(
0 2
1 2

)
, ρ1(g2) =

(
2 2
1 0

)
.

Let ρ1 : GK → SL2(Z3[[x− 2]]) be the representation defined by

ρ1(g1) =

(
x+
√
x2−3
2 −1
1
4

x−
√
x2−3
2

)
,

ρ1(g2) =

(
x−
√
x2−3
2 −1
1
4

x+
√
x2−3
2

)
.

We see by the straightforward computation that ρ1 is indeed a representa-
tion of GK and a deformation of ρ1 (see our convention). Moreover, we have
tr(ρ1(g1)) = x, hence ρ1 satisfies the condition (2.4.1). Therefore (Rρ1

=
Z3[[x− 2]],ρ1) is the universal deformation of ρ1.

We easily see that ∆0(H0(ρ1)) =̇ 1 and ∆K(ρ1; t) = 1+t2, hence, ∆K(ρ1; 1) =
2 6= 0. Therefore, by Proposition 2.3.2.6, we have

H1(ρ1) = 0, LK(ρ1) =̇ 1.

(2) Let K := B(5, 3), the figure eight knot, whose group is given by

GK = 〈g1, g2 | g1g
−1
2 g−1

1 g2g1 = g2g1g
−1
2 g−1

1 g2〉.

We have X (GK)a.i(k) = {(x, y) ∈ k2 | y2−(1+x2)y+2x2−1 = 0}\{(±
√

5, 3)}.

Let k = F7 and O = Z7, and consider the following absolutely irreducible
representation whose PGL2(F7)-conjugacy class corresponds to the regular F7-
rational points (x, y) = (5, 5) of X (GK)a.i:

ρ2 : GK → SL2(F7); ρ2(g1) =

(
0 6
1 5

)
, ρ2(g2) =

(
5 6
1 0

)
.

Let ρ2 : GK → SL2(Z7[[x+ 2]]) be the representation defined by

ρ2(g1) =

x+

√
x2−5+u(x)

2

2 −1

−x
2−3−u(x)

8

x−
√
x2−5+u(x)

2

2

 ,

ρ2(g2) =

x−
√
x2−5+u(x)

2

2 −1

−x
2−3−u(x)

8

x+

√
x2−5+u(x)

2

2

 ,
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where u(x) :=
√

(x2 − 1)(x2 − 5). We see by the straightforward computation
that ρ2 is indeed a representation of GK and a deformation of ρ2. Moreover,
we have tr(ρ2(g1)) = x, hence ρ2 satisfies the condition (2.4.1). Therefore
(Rρ2

= Z7[[x+ 2]],ρ2) is the universal deformation of ρ2.
We easily see that det(ρ2(g2)−I) = 4 6= 0 and that ∆K(ρ2; t) = t−2+4t−1+1,

hence, ∆K(ρ2; 1) = 6 6= 0. Therefore, by Corollary 2.3.2.3, we have

H1(ρ2) = 0, LK(ρ2) =̇ 1.

(3) Let K := B(7, 3), the knot 52, whose group is given by

GK = 〈g1, g2 | g1g2g
−1
1 g−1

2 g1g2g1 = g2g1g2g
−1
1 g−1

2 g1g2〉.

We have X (GK)a.i(k) = {(x, y) ∈ k2 | y3 − (x2 + 1)y2 + (3x2 − 2)y − 2x2 + 1 =

0} \ {(±
√

7
2 ,

3
2 )}.

Firstly, let k = F11 and O = Z11, and consider the following absolutely
irreducible representation whose PGL2(F11)-conjugacy class corresponds to the
regular F11-rational point (x, y) = (5, 5) of X (GK)a.i:

ρ3 : GK → SL2(F11); ρ3(g1) =

(
5 10
1 0

)
, ρ3(g2) =

(
5 1
10 0

)
.

Let α := 3−
√

5
2 , ξ := 4−

√
5

4 ∈ Z11 so that α mod 11 = 5, ξ mod 11 = 0 ∈ F11.
Let s = s(x) be the unique solution in Z11[[x− α]] satisfying the equation

(2.4.3.1) 64s3 − 16(2x2 + 5)s2 + 4(x4 + 9x2 + 6)s− 4x4 − 6x2 − 1 = 0

and

(2.4.3.2) s(α) = ξ.

Such an s(x) is proved, by Hensel’s lemma ([Ser68, §4, Proposition 7]) to exist
uniquely. Now, let ρ3 : GK → SL2(Z11[[x − α]]) be the representation defined
by

ρ3(g1) =

x+
√
x2−4s(x)

2 −1

−s(x) + 1
x−
√
x2−4s(x)

2

 ,

ρ3(g2) =

x+
√
x2−4s(x)

2 1

s(x)− 1
x−
√
x2−4s(x)

2

 .

We can verify by (2.4.3.1) that ρ3 is indeed a representation of GK and by
(2.4.3.2) that ρ3 is a deformation of ρ3. Moreover, we have tr(ρ3(g1)) = x,
hence ρ3 satisfies the condition (2.4.1). Therefore (Rρ3

= Z11[[x − α]],ρ3) is
the universal deformation of ρ3.

Consider the 11-adic lifting ρ3 : GK → SL2(Z11) of ρ3 defined by ρ3|x=5:

ρ3(g1) =

(
5+
√

25−4µ
2 −1

−µ+ 1 5−
√

25−4µ
2

)
,
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ρ3(g2) =

(
5+
√

25−4µ
2 1

µ− 1 5−
√

25−4µ
2

)
,

where µ is the unique solution in Z11 satisfying (4.5.1) with x = 5 and µ mod 11 =
0. Then we easily see that det(ρ3(g2) − I) = −3 6= 0, and that ∆K(ρ3; t) =
−2{−8µ2+58µ−52+5t+(−8µ2+58µ−52)t2}, hence, ∆K(ρ3; 1) = −2(−16µ2+
116µ − 99) 6= 0. Therefore, by Theorem 2.3.2.2, H1(ρ3) is a finitely generated
torsion Z11[[x− α]]-module.

We let r := g1g2g
−1
1 g−1

2 g1g2g1g
−1
2 g−1

1 g2g1g
−1
2 g−1

1 g−1
2 and set

∂2 =

(
ρ3

(
∂r

∂g1

)
,ρ3

(
∂r

∂g2

))
= (a1,a2,a3,a4).

By the computer calculation, we find that all 2-minors of ∂2 are given by

(2.4.3.3)

det(a1,a2) = 2(x− 2){4(s− 1)x2 + x− 4(2s− 1)2},
det(a1,a3) = − 1

2{4(s− 1)x4 − 2(8s2 − 2s− 5)x2 + 4(s− 1)x

+(4s− 3)(12s− 5)}(x− 2−
√
x2 − 4s),

det(a1,a4) = 4(s− 1)x4 − 8(s− 1)x3 − 4(4s2 − 5s+ 2)x2

+4(8s2 − 7s+ 2)x− (4s− 1)2,
det(a2,a3) = −{4(s− 1)x4 − 8(s− 1)x3 − 4(4s2 − 5s+ 2)x2

+4(8s2 − 7s+ 2)x− (4s− 1)2},
det(a2,a4) = 2{4(s− 1)x2 + x− 4(2s− 1)2}(x− 2 +

√
x2 − 4s),

det(a3,a4) = 2(x− 2){4(s− 1)x2 + x− 4(2s− 1)2}.

By (2.4.3.3) and the computer calculation, we find that x = α (s(α) = 4−
√

5
4 )

gives a common zero of all 2-minors of ∂2 and and their derivatives and is not a
common zero of the third order derivatives of all 2-minors. Hence the greatest
common divisor of all 2-minors is (x − α)2. Therefore, by Proposition 2.3.2.4,
we have

H1(ρ3) ' Z11 ⊕ Z11, LK(ρ3) =̇ (x− α)2.

Secondly, let k = F19 and O = Z19, and consider the following absolutely
irreducible representation whose PGL2(F19)-conjugacy class corresponds to the
regular F19-rational point (x, y) = (6, 6) of X (GK)a.i:

ρ4 : GK → SL2(F19); ρ4(g1) =

(
14 1
1 11

)
, ρ4(g2) =

(
11 1
1 14

)
.

Let β := 3+
√

5
2 , ζ := 7+

√
5

8 ∈ Z19 so that β mod 19 = 6, ζ mod 19 = 2 ∈ F19.
Let v = v(x) be the unique solution in Z19[[x− β]] satisfying the equation

(2.4.3.4) 64v3 − 16(x2 + 7)v2 + 28(x2 + 2)v − 12x2 − 7 = 0

and

(2.4.3.5) v(β) = ζ.
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Such a v(x) is proved, by Hensel’s lemma ([Ser68, §4, Proposition 7]) to exist
uniquely. Now, let ρ4 : GK → SL2(Z19[[x − β]]) be the representation defined
by

ρ4(g1) =

x+
√
x2−4v(x)

2 1

v(x)− 1
x−
√
x2−4v(x)

2

 ,

ρ4(g2) =

x−
√
x2−4v(x)

2 1

v(x)− 1
x+
√
x2−4v(x)

2

 .

We can verify by (2.4.3.4) that ρ4 is indeed a representation of GK and by
(2.4.3.5) that ρ4 is a deformation of ρ4. Moreover, we have tr(ρ4(g1)) = x,
hence ρ4 satisfies the condition (2.4.1). Therefore (Rρ4

= Z19[[x − β]],ρ4) is
the universal deformation of ρ4.

Consider the 19-adic lifting ρ4 : GK → SL2(Z19) of ρ4 defined by ρ4|x=6:

ρ4(g1) =

(
6+
√

36−4ν
2 1

ν − 1 6−
√

36−4ν
2

)
,

ρ4(g2) =

(
6−
√

36−4ν
2 1

ν − 1 6+
√

36−4ν
2

)
,

where ν is the unique solution in Z19 satisfying (4.5.4) with x = 6 and ν mod 19 =
2. Then we easily see that det(ρ4(g2) − I) = −4 6= 0, and that ∆K(ρ4; t) =
−2{−8ν2 +80ν−74+6t+(−8ν2 +80ν−74)t2}, hence, ∆K(ρ4; 1) = −2(−16ν2 +
160ν − 142) 6= 0. Therefore, by Theorem 2.3.2.2, H1(ρ4) is a finitely generated
torsion Z19[[x− β]]-module.

We set

∂2 =

(
ρ4

(
∂r

∂g1

)
,ρ4

(
∂r

∂g2

))
= (b1, b2, b3, b4).

By the computer calculation, we find that all 2-minors of ∂2 are given by

(2.4.3.6)

det(b1, b2) = 2(x− 2){4(v − 1)x2 + x− 4(2v − 1)2},
det(b1, b3) = − 1

2{4(v − 1)x2 − 4(v − 1)x− (4v − 3)2}
√
x2 − 4v

det(b1, b4) = 4(v − 1)x4 − (8v − 9)x3 − 2(8v2 − 10v + 5)x2

+4(8v2 − 9v + 3)x− (4v − 3)2

−(x− 2){4(v − 1)x2 + x− 4(2v − 1)2}
√
x2 − 4v,

det(b2, b3) = −{4(v − 1)x4 − (8v − 9)x3 − 2(8v2 − 10v + 5)x2

+4(8v2 − 9v + 3)x− (4v − 3)2}
−(x− 2){4(v − 1)x2 + x− 4(2v − 1)2}

√
x2 − 4v,

det(b2, b4) = 2{4(v − 1)x2 + x− 4(2v − 1)2}
√
x2 − 4v,

det(b3, b4) = 2(x− 2){4(v − 1)x2 + x− 4(2v − 1)2}.

By (2.4.3.6) and the computer calculation, we find that x = β (v(β) = 7+
√

5
8 ) is

a common zero of all 2-minors of ∂2 and their derivatives and is not a common
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zero of the third order derivatives of all 2-minors. Hence the greatest common
divisor of all 2-minors is (x− β)2. Therefore, by Proposition 2.3.2.4, we have

H1(ρ4) ' Z19 ⊕ Z19, LK(ρ4) =̇ (x− β)2.

We see that all examples above answer Problems 2.3.2.1 affirmatively and
answer Problem 2.3.2.7 concretely.
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1996, Translated and revised from the 1990 Japanese original by
the author.

[KL99] P. Kirk and C. Livingston, Twisted Alexander invariants, Rei-
demeister torsion, and Casson-Gordon invariants, Topology 38
(1999), no. 3, 635–661.

[KMTT18] T. Kitayama, M. Morishita, R. Tange, and Y. Terashima, On certain
L-functions for deforamations of knot group representations, Trans.
Amer. Math. Soc. 370 (2018), no. 5, 3171–3195.

[KSW99] I. Kovacs, D. Silver, and S. Williams, Determinants of commuting-
block matrices, Amer. Math. Monthly (1999), 950–952.

[Kur03] M. Kurihara, Iwasawa theory and Fitting ideals, J. Reine Angew.
Math. 561 (2003), 39–86.

[Lan02] S. Lang, Algebra, 3rd ed., Springer, New York, 2002.

[Le93] T. Le, Varieties of representations and their subvarieties of coho-
mology jumps for knot groups, Mat. Sb. 184 (1993), no. 2, 57–82.

[Lic97] W. B. R. Lickorish, An introduction to knot theory, Graduate Texts
in Mathematics, vol. 175, Springer-Verlag, New York, 1997.

[Lin01] X. S. Lin, Representations of knot groups and twisted Alexander
polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361–380.

[LM85] A. Lubotzky and A. R. Magid, Varieties of representations of finitely
generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336,
xi+117.

[Mah62] K. Mahler, On some inequalities for polynomials in several variables,
J. London Math. Soc. 37 (1962), 341–344.

[Maz64] B. Mazur, Remarks on the alexander polynomial, available at
http://www.math.harvard.edu/∼mazur/older.html (1964).

[Maz72] , Rational points of abelian varieties with values in towers of
number fields, Invent. Math. 18 (1972), 183–266.

[Maz89] , Deforming Galois representations, Galois groups over Q
(Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., vol. 16, Springer,
New York, 1989, pp. 385–437.

[Maz00] , The theme of p-adic variation, Mathematics: frontiers and
perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 433–459.

[Mor10] M. Morishita, Analogies between knots and primes, 3-manifolds and
number rings, Sugaku Expositions 23 (2010), no. 1, 1–30.

52



[Mor12] , Knots and Primes - An introduction to Arithmetic Topol-
ogy, Universitext, Springer, London, 2012.

[MR03] C. Maclachlan and A. Reid, The arithmetic of hyperbolic 3-
manifolds, vol. 219, Graduate Texts in Mathematics, Springer-
Verlag, New York, 2003.

[MTTU17] Masanori Morishita, Yu Takakura, Yuji Terashima, and Jun Ueki,
On the universal deformations for SL2-representations of knot
groups, Tohoku Math. J. (2) 69 (2017), no. 1, 67–84.

[MW84] B. Mazur and A. Wiles, Class fields of abelian extensions of Q,
Invent. Math. 76 (1984), no. 2, 179–330.

[Nak00] K. Nakamoto, Representation varieties and character varieties,
Publ. Res. Inst. Math. Sci. 36 (2000), no. 2, 159–189.

[Nog07] A. Noguchi, Zeros of the Alexander polynomial of knot, Osaka J.
Math. 44 (2007), no. 3, 567–577.

[Nys96] L. Nyssen, Pseudo-représentations, Math. Ann. 306 (1996), no. 2,
257–283.

[Och01] T. Ochiai, Control theorem for Greenberg’s Selmer groups of Galois
deformations, J. Number Theory 88 (2001), no. 1, 59–85.

[Och06] , On the two-variable Iwasawa main conjecture, Compos.
Math. 142 (2006), no. 5, 1157–1200.

[Ono90] T. Ono, An introduction to algebraic number theory, 2nd ed.,
Plenum Publishers, 1990.

[Por97] J. Porti, Torsion de reidemeister pour les variétés hyperboliques,
Mem. Amer. Math. Soc. 128, no. 612, (1997).

[Pro76] C. Procesi, The invariant theory of n × n matrices, Advances in
Math. 19 (1976), no. 3, 306–381.

[PS00] J. H. Przytycki and A. S. Sikora, On skein algebras and Sl2(C)-
character varieties, Topology 39 (2000), no. 1, 115–148.

[Rez97] A. Reznikov, Three-manifolds class field theory (homology of cover-
ings for a nonvirtually b1-positive manifold), Selecta Math. 3 (1997),
no. 3, 361–399.

[Rez00] , Embedded incompressible surfaces and homology of ramified
coverings of three-manifolds, Selecta Math. 6 (2000), no. 1, 1–39.

[Ril84] R. Riley, Nonabelian representations of 2-bridge knot groups, Quart.
J. Math. Oxford Ser. (2) 35 (1984), no. 138, 191–208.

[Sai96] K. Saito, Character variety of representations of a finitely generated
group in SL2, Topology and Teichmüller spaces (Katinkulta, 1995),
World Sci. Publ., River Edge, NJ, 1996, pp. 253–264.

[Sch95] K. Schmidt, Dynamical systems of algebraic origin, Progress in
Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995.
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