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Abstract

We construct a regularization-independent representation of the supercurrent—the Noether current
associated with supersymmetry—in the four-dimensional N = 1 and N = 2 supersymmetric Yang–
Mills theories. For this, we employ the so-called gradient flow. The gradient flow is the evolution
of quantum fields along a fictitious time according to diffusion-type equations. A salient feature of
the gradient flow is that composite operators (i.e., local products) of flowed fields automatically be-
come renormalized ultraviolet finite operators under the ordinary parameter renormalization of the
original field theory. This implies that any operator represented by flowed fields (and renormalized
parameters) is independent of the regularization. We obtain such a representation for the super-
current in the above supersymmetric gauge theories by combining a detailed one-loop level analysis
of supersymmetric Ward–Takahashi identities in the Wess–Zumino gauge and the small flow-time
expansion. We believe that our representation of the properly-normalized conserved supercurrent
will be very useful, for instance, in the parameter tuning toward the supersymmetric point in the
future lattice numerical simulations of the above mentioned supersymmetric gauge theories.
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Chapter 1

Introduction

So far, the so-called Standard Model (SM) perfectly describes the dynamics of elementary particles
to the energy scale of O(102)GeV. The SM is a renormalizable Quantum Field Theory (QFT) based
on the gauge principle and it subsumes three forces in nature; the electromagnetic interaction, the
weak interaction, and the strong interaction. It is quite conceivable, however, that the SM is not
the ultimate theory; we expect that physics Beyond the Standard Model (BSM) emerges in higher
energy scales. One of the reasons for this belief is that the gravitational interaction, which is
characterized by the Planck energy scale MP ∼ O(1018)GeV, is not contained in the above list; we
do not know a renormalizable form of the quantized gravity [1, 2]. Another reason is that, assuming
the Planck scale provides ultraviolet (UV) cutoff (this implies that the SM holds up to very high
energy scale), the mass of the Higgs scalar m ∼ 125GeV is unnaturally small [6]: Through radiative
corrections, the observed Higgs scalar’s mass m and its bare mass m0 will be related roughly as

m2 −m2
0 ∼ O(M2

P ), (1.1)

Since MP ∼ O(1018)GeV and m ∼ 125GeV, this relation requires extreme fine tuning of m2
0 in

∼ 10−30%. Another strong suggestion for the BSM physics is the existence of dark matter [3, 4, 5],
the matter which interacts with the particles in the SM very weakly.

An attractive possibility that would answer the above three questions is supersymmetry (SUSY).
First, the superstring theory, the only known consistent theory of quantized gravity, (usually) re-
quires SUSY for its self-consistency. Second, because SUSY is a symmetry between bosons and
fermions (see below), there occurs cancellation of radiative corrections between bosons and fermions.
This weakens the cutoff dependence M2

P in (1.1) roughly to ln(M2
P /µ

2) and may solve the natu-
ralness problem. Lastly, supersymmetric theories contain bosons and fermions as pairs (SUSY
partners). Some of (many) unobserved particles in those pairs are candidates of dark matter.

Let us illustrate the idea of SUSY, by taking the simplest SUSY model, a system of a free
complex scalar field ϕ(x) and a free Weyl spinor field ψα(x), α = 1, 2 in the four-dimensional
Minkowski spacetime. The Lagrangian density is given by

L = −∂µϕ†∂µϕ+ i∂µψ̄α̇σ̄
α̇α
µ ψα, (1.2)

where σα̇α
µ are the Pauli matrices (σα̇α

µ=0 = 1). This Lagrangian is invariant under the following

3
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SUSY transformation up to the total divergence:

ϕ→ ϕ+
√
2ξαψα (1.3)

ψ → ψ + i
√
2σµξ̄∂µϕ. (1.4)

(The parameter ξα of SUSY transformation is a Grassmann-odd Weyl spinor.) The above SUSY
transformation “mixes” the bosonic field ϕ(x) with the fermionic field ψα(x).

More generally, SUSY is characterized by the algebra formed by the generators of SUSY trans-
formations, QA

α , Q̄β̇B , A,B = 1, 2, . . .N (N can be 1,2,3,4 in the four-dimensional spacetime).
These form a closed super Lie algebra with the generators pµ, Mµν of the Poincaré transformations
as [24].

{QA
α , Q̄

B
β̇
} = 2δABpµσ

µ

αβ̇
, (1.5)

{QA
α , Q

B
β } = {Q̄A

α̇ , Q̄
B
β̇
} = 0, (1.6)

[pµ, Q
A
α ] = [pµ, Q̄

B
β̇
] = 0, (1.7)

[Mµν , Q
A
α ] =

1

2
[σµ, σν ]

β
αQ

A
β . (1.8)

Note that since the momentum pµ is the generator of the spacetime translation, SUSY should be
regarded as a spacetime symmetry (although it is fermionic).

Now, we are interested in non-perturbative aspects of QFT. We know there exist important
non-perturbative quantum effects in nature, such as the spontaneous chiral symmetry breaking and
the quark confinement. In the context of SUSY theories, we are interested in a non-perturbative
spontaneous SUSY breaking (SUSY must be spontaneously broken in our physical world in some
way to explain non-degeneracy of bosons and fermions), the spectrum of bound states and so
on. The Lattice field theory [7] is the most well-developed method which enables to study non-
perturbative phenomena in QFT. In this framework, the continuous spacetime is approximated by
a discrete set of points (lattice). Then the functional integral that defines QFT is carried out by
applying the Monte Carlo simulation method [7, 8, 9]. This lattice structure, however, explicitly
breaks symmetries associated with the continuous spacetime, such as translational invariance. As
we have seen in Eq. (1.5), SUSY is a spacetime symmetry related to the translation. Thus SUSY
is explicitly broken in lattice field theory. If a preferred symmetry is broken by the regularization
(in the present case, by the lattice regularization), one has to generally tune parameters in the
Lagrangian so that the symmetry is restored in the continuum limit. More definitely, one has to
tune parameters so that the Ward–Takahashi (WT) identities associated with the symmetry broken
by regularization is restored. For example, when the Wilson lattice fermion action [10] is employed
to describe the four-dimensional (4D) N = 1 super Yang–Mills theory (SYM), one has to tune the
gaugino (the SUSY partner of the gauge boson) mass parameter. However, since the WT identities
contains the Noether current associated with the symmetry broken by regularization, one has to find
a correct expression of the Noether current at the same time as the parameter tuning. Note that
since the Noether current is a composite operator whose finiteness is guaranteed by the associated
WT identities, the construction of the Noether current is quite non-trivial when the regularization
breaks the relevant symmetry.

In this paper, we construct a regularization-independent representation of the properly-normalized
conserved supercurrent—the Noether current associated with SUSY—in theN = 1 andN = 2 SYM
by employing the so-called gradient flow. Since this representation, which may be used with the
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lattice regularization, a precise form determined a priori of the supercurrent will be useful, first of
all, in the parameter tuning toward the supersymmetric continuum limit in future lattice numerical
simulations of the above mentioned supersymmetric gauge theories.

Relating to our analysis, there exists another complication in SUSY gauge theories. The full
linear SUSY multiplet of the gauge boson contains many non-dynamical auxiliary fields; the sole
role of these fields is to close the SUSY algebra without using the equations of motion. However,
some of these non-dynamical field has the mass dimension zero. If the regularization does not
preserve SUSY, we have to add counterterms to the action to restore SUSY, there exists a mass
dimension zero field, any function of this field may be a counterterm; it is not clear one can control
such a counterterm of an arbitrary functional form.

A natural way out of this complication is to take the so-called Wess–Zumino (WZ) gauge [30],
in which the SUSY multiplet contains only dynamical (ordinary) fields, the gauge field Aa

µ and the

gaugino fields λaα, λ̄
a
α̇. In our analyses in Chap. 3 and Chap. 4, we always take this WZ gauge. The

drawback of the WZ gauge is that with the WZ gauge SUSY transformations become non-linear in
fields; this non-linearity produces many composite operators in the SUSY WZ identities and makes
the renormalization of the supercurrent complicated as we will see in Chap. 3 and in Chap. 4.

Let us describe the gradient flow [11]–[15] in the pure Yang–Mills (YM) theory in the D = 4
Euclidean spacetime, whose action is given by

SYM = − 1

2g20

∫
d4x tr

[
Fµν(x)Fµν(x)

]
, (1.9)

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (1.10)

where Aµ is the YM gauge field. The gradient flow is the evolution of the gauge field along a
fictitious time t ≥ 0. The evolution along the flow time t is defined by the flow equation

∂tBµ = DνGνµ + α0Dµ∂νBν , Bµ(t = 0, x) = Aµ(x), (1.11)

where the flowed field strength Gµν and the flowed covariant derivative Dµ are defined as

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, ·]. (1.12)

Here α0 is a constant and does not affect gauge-invariant observables (see Chap. 2 for details).
When α0 = 0, the flow equation is expressed as

∂tBµ(t, x) = −g20
δSYM

δBµ(t, x)
. (1.13)

The right-hand side is the gradient of the action, so is the name of the gradient flow.
Lüscher andWeisz [14] studied the renormalization property of correlation functions of the flowed

gauge field Bµ(x). They showed in all order of perturbation theory that any correlation functions
and composite operators (i.e., local product) of the flowed gauge field are UV finite without any
multiplicative renormalization, once the parameters in the Yang–Mills theory are renormalized in
the usual way (for the proof of this renormalizability of the gradient flow, see Refs. [14, 15, 16]).1

The proof of this renormalizability in Ref. [14] is briefly sketched in Chap. 2. Since composite

1Precisely speaking, for matter fields such as the fermion field and the scalar field, even the flowed fields require
the wave function renormalization. We will encounter this situation in Chap. 3 and Chap. 4.
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operators of the flowed gauge field are UV finite, they are independent of the way of regularization;
they are thus regularization-independent.

One can further expand a composite operator of the flowed gauge field in terms of composite
operators of the un-flowed gauge field in the small flow-time limit t → 0 [14]. This is the small
flow-time expansion and its general form reads

O(t, x) = ζ1(t)O1(x) + ζ2(t)O2(x) + . . .+O(t). (1.14)

Since the flow time has the mass dimension −2, this series is an expansion in terms of local composite
operators with increasing mass dimensions. This expansion can be used, by inverting this relation,
to represent a composite operator of the un-flowed field by the composite operator of the flowed
field. Since the latter is independent of the regularization as already noted, using this expansion,
we can express any finite operator of the un-flowed field in a regularization independent way.

This sort of representation of a finite operator in terms of the gradient flow was first considered
for the energy-momentum tensor (EMT), the Noether current associated with the translational
invariance, in Ref. [18]. In the pure YM theory, the EMT is

Tµν(x) =
1

g20

[
F a
µρ(x)F

a
νρ(x)−

1

4
δµνF

a
ρσ(x)F

a
ρσ(x)

]
. (1.15)

This expression in quantum theory assumes the dimensional regularization. On the other hand, for
the following dimension 4 gauge invariant composite operators,

Uµν(t, x) ≡ Ga
µρ(t, x)G

a
νρ(t, x)−

1

4
δµνG

a
ρσ(t, x)G

a
ρσ(t, x), (1.16)

E(t, x) ≡ 1

4
Ga

µν(t, x)G
a
µν(t, x), (1.17)

the small flow-time expansion reads

Uµν(t, x) = cT (t)Tµν(x) +
1

4
cS(t)δµν{F a

ρσF
a
ρσ}R(x) +O(t), (1.18)

E(t, x) =
1

4
cE(t){F a

ρσF
a
ρσ}R(x) +O(t), (1.19)

The coefficients cT (t), cS(t), and cE(t) for t→ 0 can be determined by perturbation theory. Then
inverting these relations with respect to the EMT, we have

Tµν(x) =
1

cT (t)
Uµν(t, x)−

cS(t)

cT (t)cE(t)
δµνE(t, x) +O(t). (1.20)

Finally, we take the small flow-time limit t→ 0; this limit justifies the perturbative computation of
the expansion coefficients and also removes the last O(t) term in the representation. The resulting
representation is independent of the regularization and we can use it in lattice numerical simulations.
For example, we can use it for the computation of thermodynamic quantities of the YM theory at
finite temperature. Figure 1.1 is the result of Ref. [21] on two thermodynamic quantities, the trace
anomaly and the entropy density, in the SU(3) pure YM theory. The red symbols are obtained
by the finite temperature expectation value of the gradient representation of the EMT (1.20); it is
clear that the representation has the correct normalization.



CHAPTER 1. INTRODUCTION 7

0.5 1.0 1.5 2.0 2.5
T/Tc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
/T

4

FlowQCD
Ref.[1]
Ref.[4]

(a)

0.5 1.0 1.5 2.0 2.5
T/Tc

0

1

2

3

4

5

6

7

s/
T

3

FlowQCD
Ref.[1]
Ref.[4]

(b)

Figure 1.1: These two figures show the results of Ref. [21] on two thermodynamic quantities,
the trace anomaly (the left panel) and the entropy density (the right panel), in the SU(3) pure
YM theory. The horizontal axial is the temperature T in units of the confinement/deconfinement
critical temperature Tc. The curves are results of preceding studies, Refs. [22] and [23], which uses
completely different method to ours.

In this paper, we carry out a similar construction of the supercurrent.
This thesis is organized as follows: In Chap. 2, we briefly sketch the proof of the renormalizability

of the gradient flow in Ref. [14] in the four-dimensional (4D) pure Yang–Mills (YM) theory. The
reader who are mainly interested in the practical application of the gradient flow to the supercurrent
may skip this chapter. In Chap. 3 and in Chap. 4, we consider the 4D supersymmetric Yang–Mills
theory (SYM) with the N = 1 supersymmetry (SUSY) and the N = 2 SUSY, respectively. The
Lagrangian densities for both theories are constructed in the Wess–Zumino gauge under dimensional
regularization. As already mentioned, this setup explicitly breaks SUSY and the construction of
the Noether current associated with SUSY, the supercurrent, becomes quite non-trivial. First,
we derive Ward–Takahashi (WT) identities associated with SUSY in terms of bare quantities.
These identities contain many SUSY breaking composite operators. Next, through one-loop level
computations, we determine the renormalization of various composite operators appearing in the
SUSY WT identities. Then, after reorganizing various terms in the SUSY WT relations by using
Schwinger–Dyson equations, we find that the expression of the renormalized supercurrent in the one-
loop level whose total divergence generates correct SUSY transformations on renormalized fields.
Then, finally, by using the small flow-time expansion, we re-express the renormalized supercurrent
in terms of composite operators of flowed fields. The resulting expression of the supercurrent is
independent on the adopted regularization. In Chap. 3, the small flow-time expansion is calculated
by using the background field method [17] and, in Chap. 4, the small flow time expansion is
calculated diagrammatically (the flow Feynman rules are summarized in Appendix B). Chap. 5 is
devoted to Conclusion. There are five appendices that contain various elements needed in the main
text.

Our expressions for the correctly-normalized supercurrents in terms of the gradient flow will
be useful in lattice simulations of those supersymmetric gauge theories. For example, the result
in Chap. 3 should be useful for the parameter tuning in lattice simulations of the 4D N = 1 SYM
(see Refs. [31]-[53] ) toward the SUSY point. The result in Chap. 4 should also be useful for the
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parameter tuning toward the SUSY point in lattice simulations of the 4D N = 2 SYM [28, 54, 55].
It will be interesting to further generalize our results to more realistic supersymmetric systems that
contain matter fields—our study here may be regarded as the first step toward such an enterprise.



Chapter 2

Proof of the renormalizability of
the gradient flow

As already noted in Introduction, our construction relies on a renormalization property of the
gradient flow; local products of flowed fields become UV finite once bare parameters in the original
action are renormalized. For matter fields such as fermion, wave function renormalization of flowed
elementary fields is also necessary. Such UV finite composite operators are independent of the way
of regularization (when the cutoff is sent to infinity). In this section, we briefly sketch the proof of
this renormalizability of the gradient flow in the case of the 4D pure Yang–Mills (YM) theory [14].

2.1 Action of the YM theory and the flow equation

We consider the pure Yang–Mills theory in the D-dimensional euclidean spacetime. The action is

SYM = − 1

2g20

∫
dDx tr [Fµν(x)Fµν(x)] , (2.1)

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + [Aµ(x), Aν(x)]. (2.2)

For this system, the flow of the gauge field Aµ(x) is defined by

Aµ(x)→ Bµ(t, x), where Bµ(t = 0, x) = Aµ(x), (2.3)

∂tBµ = DνGνµ + α0Dµ∂νBν , (2.4)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, ·], (2.5)

where α0 is a constant.
First, we show that the value of α0 does not affect any gauge-invariant observables. Consider

the following (D + 1)-dimensional gauge transformation in the flow equation (2.4),

δBµ(t, x) = Dµω(t, x). (2.6)

If we assume that ω(t, x) obeys

∂tω − α0Dµ∂µω = −δα0∂νBν , (2.7)

9
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then the flow equation (2.4) is modified so that

α0 → α0 + δα0. (2.8)

This means that a shift of α0 can be induced by the (D+1)-dimensional gauge transformation that
leaves any gauge invariant quantities intact. Thus, any gauge invariant quantities are independent
of the parameter α0. In Chap. 3 and in Chap. 4, we choose α0 = 1.

Now, we can decompose the flow equation (2.4) into the linear part and the non-linear part:

∂tB
a
µ = ∂ν∂νB

a
µ + (α0 − 1)∂µ∂νB

a
ν +Ra

µ, (2.9)

Ra
µ = 2fabcBb

ν∂νB
c
µ − fabcBb

ν∂µB
c
ν + (α0 − 1)fabcBb

µ∂νB
c
ν + fabcf cdeBνB

d
νB

e
µ. (2.10)

The solution for the linear part (obtained by setting Ra
µ = 0) is given by

B0a
µ (t, x) =

∫
dDy Kt(x− y)µνAa

ν(y), (2.11)

Kt(x)µν =

∫
p

eipx

p2

{
(δµνp

2 − pµpν)e−tp2

+ pµpνe
−α0tp

2
}
, (2.12)

where we used the abbreviation
∫
p
≡
∫

dDp
(2π)D

; we use this notation throughout this paper.

The solution to the full flow equation can be formally written down as

Ba
µ(t, x) =

∫
dDy

[
Kt(x− y)µνAa

ν(y) +

∫ t

0

dsKt−s(x− y)µνRa
ν(s, y)

]
. (2.13)

One can easily see that this is actually the solution of the flow equation (2.4). In this formal solution,
the non-linear term Rµ contains Bµ itself. Thus, by substituting the zeroth order solution B0a

µ =∫
dDy Kt(x− y)µνAa

ν(y) back into Ra
µ, as the solution in the first order of Ra

µ, we have

B1a
µ (t, x) =

∫
dDy Kt(x− y)µνAa

ν(y)

+

∫
dDy

∫ t

0

dsKt−s(x− y)µν
[
2fabcB0b

ν (s, y)∂νB
0c
µ (s, y)− fabcB0b

ν (s, y)∂µB
0c
ν (s, y)

+ (α0 − 1)fabcB0b
µ (s, y)∂νB

0c
ν (s, y)

+ fabcf cdeB0b
ν (s, y)B0d

ν (s, y)B0e
µ (s, y)

]
.

Repeating this kind of iteration, we can obtain the perturbative solution to any order.
The quantum correlation functions of the flowed gauge field Ba

µ(t, x) are defined by the functional
integral over the original gauge field (the non-flow field) Aa

µ(x). For example, perturbatively, the
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two-point function (the propagator) ⟨Ba
µ(t, x)B

b
ρ(u, z)⟩ is computed as

⟨Ba
µ(t, x)B

b
ρ(u, z)⟩ =⟨B0a

µ (t, x)B0b
ρ (u, z)⟩

+

∫
dDy

∫ t

0

dsKt−s(x− y)µν
[

× ⟨2facdBc
ν(s, y)∂νB

d
µ(s, y)B

0b
ρ (u, z)⟩ − ⟨facdBc

ν(s, y)∂µB
d
ν(s, y)B

0b
ρ (u, z)⟩

+ (α0 − 1)⟨facdBc
µ(s, y)∂νB

d
ν(s, y)B

0b
ρ (u, z)⟩

+ ⟨facdfdefBc
ν(s, y)B

e
ν(s, y)B

f
µ(s, y)B

0b
ρ (u, z)⟩

]
+

[
(a, µ, t, x)↔ (b, ρ, u, z)

]
= ⟨B0a

µ (t, x)B0b
ρ (u, z)⟩

+

∫
dDy

∫ t

0

dsKt−s(x− y)µν
[

× ⟨2facdB0c
ν (s, y)∂νB

0d
µ (s, y)B0b

ρ (u, z)⟩ − ⟨facdB0c
ν (s, y)∂µB

0d
ν (s, y)B0b

ρ (u, z)⟩
+ (α0 − 1)⟨facdB0c

µ (s, y)∂νB
0d
ν (s, y)B0b

ρ (u, z)⟩, (2.14)

where we have noted that the quadratic and the cubic terms in Ra
µ (2.10) are respectively given by

X(2)a
µ ≡ 2fabcBb

ν∂νB
c
µ − fabcBb

ν∂µB
c
ν + (α0 − 1)fabcBb

µ∂νB
c
ν , (2.15)

X(3)a
µ ≡ fabcf cdeBb

νB
d
νB

e
µ. (2.16)

For the first term in the above expression, for example, we have

⟨B0a
µ (t, x)B0b

ν (s, y)⟩tree =
∫ t

0

dt1

∫ s

0

ds1

∫
dDx1

∫
dDy1

×Kt−t1(x− x1)µρKs−s1(y − y1)ρ⟨Aa
ρ(x1)A

b
σ(y1)⟩tree

= g20δ
ab

∫
p

eip(x−y) 1

(p2)2

{
(δµνp

2 − pµpν)e−(t+s)p2

+
1

λ0
pµpνe

−α0(t+s)p2

}
, (2.17)

where we have used the tree-level propagator of the original gauge field.

⟨Aa
µ(x)A

b
ν(y)⟩tree = g20δ

ab

∫
p

eip(x−y) 1

(p2)2

[
(δµνp

2 − pµpν) +
1

λ0
pµpν

]
. (2.18)

For this, we have assumed the following gauge-fixing term and the Faddeev–Popov ghost term:

Sgf = −
λ0
g20

∫
dDx tr

[
∂µAµ(x)∂νAν(x)

]
, (2.19)

Scc̄ = −
2

g20

∫
dDx tr

[
∂µc̄(x)Dµc(x)

]
. (2.20)

The perturbative expansion such as the one in Eq. (2.14) can be represented diagrammatically.
First, we represent the function Kt−s(x − y)µν (called the heat kernel) as an arrowed line (called
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the flow line) in Fig. 2.1. This appears only in the combination such as
∫
dDy

∫ t

0
dsKt−s(x− y)µν

and so the flow time t is always greater than the flow time s; the arrow in the flow line indicates this
direction in the flow time. Another line is the flow propagator in Fig. 2.2. This simply represents

Figure 2.1: The flow line with arrow represents the heat kernel. The arrow from s to t shows
that t > s.

the Wick contraction of B-fields in Eq. (2.17).

Figure 2.2: The wavy line (flow propagator) represents ⟨B0a
µ (t, x)B0b

ν (s, y)⟩tree in Eq. (2.17).

Beside these two types of lines, there are two types of “flow vertices” in Fig. 2.3 and Fig. 2.4

indicated by white blobs. These flow vertices arise from X
(2)a
µ and X

(3)a
µ in Eqs. (2.15) and (2.16),

respectively. There also exist “ordinary” vertices that arise from the action of the original gauge
theory S = SYM + Sgf + Scc̄. In the next section, we construct the action of gauge theory in the
(D + 1)-dimensional spacetime, introducing a new field Lµ(t, x), that reproduces the flow line, the
flow propagator, the flow vertices, and the ordinary Yang–Mills vertices.

2.2 (D + 1)-dimensional gauge theory that reproduces the
flow Feynman rules

For later discussion, we construct the (D+1)-dimensional action that reproduces the above Feynman
rules for the flow Feynman diagrams. We then argue the property of needed counterterms for this
(D + 1)-dimensional theory that removes UV divergences.

First, we consider the flowed gauge field Bµ(t, x) as if it is an independent degrees of freedom
in a (D + 1) dimensional gauge theory. The action consists of two parts, SD and SD+1:

S = SYM + Sgf + Scc̄︸ ︷︷ ︸
SD

+Sfl + Sdd̄︸ ︷︷ ︸
SD+1

, (2.21)

SYM = − 1

2g20

∫
dDx tr [Fµν(x)Fµν(x)] , (2.22)

Sgf = −
λ0
g20

∫
dDx tr

[
∂µAµ(x)∂νAν(x)

]
, (2.23)
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Figure 2.3: One of flow vertices arises from X
(2)a
µ in Eq. (2.15).

Figure 2.4: One of flow vertices arises from X
(3)a
µ in Eq. (2.16).

Scc̄ = −
2

g20

∫
dDx tr

[
∂µc̄(x)Dµc(x)

]
, (2.24)

Sfl = −2
∫ ∞

0

dt

∫
dDx tr

[
Lµ(t, x)(∂tBµ −DνGνµ − α0Dµ∂νBν)(t, x)

]
, (2.25)

Sdd̄ = −2
∫ ∞

0

dt

∫
dDx tr

[
d̄(t, x)(∂td− α0Dµ∂µd)(t, x)

]
. (2.26)

The first part SD is just the D dimensional Yang–Mills theory with the gauge fixing term in
Eqs. (2.19) and (2.20). Sfl contains the (D + 1)-dimensional freedom Lµ(t, x) and Bµ(t, x), where
Lµ(t, x) is a Lagrange multiplier. After integrating over Lµ(t, x), the functional integral overBµ(t, x)
is restricted to the solution of the flow equation 2.4; the boundary condition Bµ(t = 0, x) = Aµ(x)
has to be assumed later. Sdd̄ is on the other hand composed from d̄(t, x) and d(t, x), where d(t, x)
is a (D+ 1)-dimensional ghost and d̄(t, x) is a Lagrange multiplier that imposes the flow equation,

∂td = α0Dµ∂µd(t, x), d(t = 0, x) = c(x). (2.27)

We can easily show that this (D + 1)-dimensional action S reproduces the Feynman rules for
flow Feynman diagrams in the previous section. The rules of ordinary vertices (denoted by black
blobs) are read off from SD. The flow vertices come from Sfl, especially from LB2, LB3 terms:

• LBB vertex∫∞
0
dt
∫
dDxLa

µX
(2)a
µ

• LBBB vertex∫∞
0
dt
∫
dDxLa

µX
(3)a
µ

These flow vertices are denoted by white blobs as noted already. The flow line (the heat kernel)
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now corresponds to the LB propagator, the inverse of the coefficient of LB term in Sfl.

(δµρ∂t − δµρ∂xσ∂xσ − (α0 − 1)∂xµ∂
x
ρ )⟨Ba

ρ (t, x)L
b
ν(s, y)⟩tree = δabδµνδ(t− s)δ(x− y)

⟨Ba
µ(t, x)L

b
ν(s, y)⟩tree = δabθ(t− s)Kt−s(x− y)µν (2.28)

The LB propagator is denoted by an arrow that goes from L to B. One can see that any flow
Feynman diagram drawn with these vertices and lines has a same value as the flow Feynman diagram
drawn with the rules in the previous section. From Sdd̄, we also have the following additional vertex
and propagators for the flowed ghost fields,

• the flow line for the ghost field= d̄d propagator
⟨d̄a(t, x)db(s, y)⟩tree = δabδ(t− s)

∫
p
e−α0(t−s)p2

• the flow propagator for the ghost field
⟨d̄a(t, x)db(s, y)⟩tree = δab

∫
p
e−α0(t+s)p2

eip(x−y) 1
p2

• d̄dB flow-vertex∫∞
0
dt
∫
dDxα0f

abcd̄aBb
µ∂µd

c

These are necessary only to keep the BRS symmetry in the (D + 1)-dimensional theory.
It is possible to show that counterterms that are needed for the cancellation of UV divergences

arise in SD only and SD+1 does not need any renormalization. As the example, let us consider
the two-point function of Ba

µ in the one-loop level. The flow Feynman diagrams that are rele-

vant for ⟨Ba
µ(t, x)B

b
ν(s, y)⟩ are depicted in Fig. 2.5. After calculating these diagrams according

(a) (b) (c)

(d) (e) (f) (g)

Figure 2.5

to the Feynman rules, ⟨Ba
µ(t, x)B

b
ν(s, y)⟩ to the one-loop level turns out to be in the dimensional
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regularization D = 4− 2ϵ (this is the expression for the gauge group G = SU(N)),

⟨Ba
µ(t, x)B

b
ν(s, y)⟩1 loop = g2δab

∫
p

eip(x−y) 1

(p2)2

×
{
(δµνp

2 − pµpν)(1 +
b0
ϵ
g2)e−(t+s)p2

+λ−1(1− c0 − b0
ϵ

g2)pµpνe
−α0(t+s)p2

}
, (2.29)

b0 =
N

16π2

11

3
, (2.30)

c0 =
N

16π2

(
13

6
− 1

2λ

)
. (2.31)

In addition to this, we also have the counterterm that arises from the substitutions (the one-loop
level renormalization),

g20 = µ2ϵg2
(
1− b0

ϵ
g2
)
, (2.32)

λ0 =
(
1− c0

ϵ
g2
)
λ, (2.33)

in the tree-level propagator,

⟨Ba
µ(t, x)B

b
ν(s, y)⟩tree = g20δ

ab

∫
p

eip(x−y) 1

(p2)2

{
(δµνp

2 − pµpν)e−(t+s)p2

+ λ−1
0 pµpνe

−α0(t+s)p2
}
.

(2.34)
We see that UV divergences in ⟨Ba

µ(t, x)B
b
ν(s, y)⟩1 loop are precisely cancelled by the counterterm.

This shows that in the one-loop level the parameter renormalization make ⟨Ba
µ(t, x)B

b
ν(s, y)⟩1 loop

finite without any wave function renormalization.
We want to show that the above UV finiteness of the correlation functions of the flowed gauge

field without the wave function renormalization persists, not only in the one-loop level, in all orders
of perturbation theory.

First, we note that possible UV divergences occur only at the “boundary” of the (D + 1)-
dimensional spacetime, i.e., at the zero flow time t = 0. This follows from the observation that in
any loop in a flow Feynman diagram, if at least one of the flow times of flow vertices is non-zero, then
the loop integral absolutely convergent, because of the Gaussian damping factor in the heat kernel
or the flow propagator. For this, an important fact is that there is no loop consisting only of the
heat kernel, ⟨Ba

µ(t, x)L
b
ν(s, y)⟩tree = δabθ(t− s)Kt−s(x− y)µν ; because of the step function θ(t− s),

such a loop is measured-zero and can be neglected. All UV divergences in the (D+1)-dimensional
field theory occurs at the boundary at t = 0.

Another crucial observation is that the 1PI diagram that contains the flowed gauge field B should
always accompany L at least at one of external vertices. This follows from the above Feynman rule
(the vertices containing B always accompany one L) and again from the fact that there is no loop
consisting only of the heat kernel ⟨BL⟩. The only way to make a loop without any external L
vertex is a loop consisting only of ⟨BL⟩ lines, but this is impossible.

A similar statement holds for the (D+1)-dimensional ghost d; possible UV diverging 1PI vertices
are at the zero flow time and it must accompany at least one Lagrange multiplier d̄ at least at one
of external vertices.
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From these considerations and from the fact that the divergent part must be a local polynomial
of fields of the mass dimension 4 and the ghost number 0, we see that the most general form of the
divergent part which contains (D + 1)-dimensional fields is (in the l-th loop level),

2g2l
∫
dDx tr

[
z1Lµ(0, x)AµR(x) + z2d̄(0, x)cR(x)

]
, (2.35)

where we have noted the boundary conditions, B(t = 0, x) = ARµ(x) and d(t = 0, x) = cR(x).
On the other hand, it turns out that the above (D+1)-dimensional gauge theory S = SD+SD+1

is invariant under the BRS transformations of the form,

δBRS Bµ = Dµd, (2.36)

δBRS Lµ = [Lµ, d], (2.37)

δBRS d = −dadbT aT b, (2.38)

δBRS d̄ = DµLµ − {d, d}. (2.39)

We now show that the counterterm (2.35) cannot exist by the restriction implies by the BRS
invariance. From the BRS invariance, we have following Ward–Takahashi (WT) relations:

λ0⟨Ba
µ(t, x)∂νA

b
ν(y)∂ρA

c
ρ(z)⟩ = −⟨(Dµd)

a(t, x)c̄b(y)∂ρA
c
ρ(z)⟩, (2.40)

because the action and the functional integration measure are BRS invariant. Under the standard
renormalization in the original Yang–Mills theory,

λ⟨Ba
µ(t, x)∂νA

b
νR(y)∂ρA

c
ρR(z)⟩ = −⟨(Dµd)

a(t, x)c̄bR(y)∂ρA
c
ρR(z)⟩. (2.41)

The counterterm (2.35) further contributes to both sides of the WT identity (2.40) through the
tree-level diagrams in Fig. 2.6. From Fig. 2.6, we see that the counterterm (2.35) contributes to
the left-side by 3z1g

2l while to the right-side by [(z1 + z2) + (z1 + z2) + z2]g
2l = (2z1 + 3z2)g

2l.
Thus the WT identity for the BRS symmetry in the l-loop order implies z1 = z2 = 0. There
is no need of the counterterm of the form (2.35). Only counterterms needed is the counterterms
in the original ordinary YM theory. This shows in particular that there is no need of the wave
function renormalization of the flowed gauge field. It can be seen this UV finiteness persists even
for composite operators (i.e., the local products) of the flowed gauge field. The crucial point is
again that there is no closed loop being consisting the heat kernels.

In Ref. [14], it is claimed that for t → 0, where t is the flow time, any composite operator
(i.e., the local product) of the flowed field can be expressed by an asymptotic series of composite
operators of the un-flowed field with increasing mass dimensions. This small flow-time expansion
works, for example, for the following gauge invariant dimension 4 operator,

E(t, x) =
1

4
Ga

µν(t, x)G
a
µν(t, x). (2.42)

as

E(t, x) = ⟨E(t, x)⟩+ cE(t){
1

4
F a
µνF

a
µν}R(x) +O(t). (2.43)

The first term is the unit operator and the second term is a renormalized operator of the dimension 4
at the zero flow time. The last O(t) represents the contribution of operators of the dimension 6
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(a) (b)

(c) (d)

(e)

Figure 2.6: The tree diagrams that are relevant to the contributions of the counterterm (2.35) to
the both sides of Eq. (2.40). The diagrams (a) and (b) show the contributions to the left-hand
side, while diagrams (c)–(e) show the contributions to the right-hand side. If the diagram has
a Bµ(t ̸= 0, x)Aν(y) line, it can be decomposed into Bµ(t ̸= 0, x)Lρ(0, z) line and Aρ(z)Aν(y)
line by using the two-point vertex g2lz1Lµ(t = 0, x)Aν(x) in the first term of Eq. (2.35). The
diagram with this decomposed BA line has the contribution of g2lz1 times the value of the
original diagram. For example, the diagram (a) has two BA lines and gives the contribution
2g2lz1λ0⟨Ba

µ(t, x)∂νA
b
ν(y)∂ρA

c
ρ(z)⟩tree to the left-hand side of Eq. (2.40). Similarly, if the diagram

has a d(t ̸= 0, z)c̄(y) line, it can be decomposed to d(t ̸= 0, x)d̄(0, z) and c(z)c̄(y). The diagram
with this decomposed dc̄ line has the contribution of g2lz2 times the value of the original diagram.
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or higher. This small flow-time expansion provides a possible way to represent an operator in the
original gauge theory in terms of composite operators of the flowed field that does not require the
wave function renormalization. In Chap. 3 and Chap. 4, this technique will be fully utilized to find
the expression of the supercurrent in terms of flowed fields.



Chapter 3

The 4D N = 1 super Yang–Mills
theory

In Introduction, we mentioned the application of the gradient flow to the constructing of a regularization-
independent expression for the energy–momentum tensor (EMT). In this section, we consider the
construction of a regularization-independent supercurrent in terms of flowed fields in the simplest
4D supersymmetric gauge theory, the N = 1 SYM.

3.1 Action, super transformations, and BRS-invariance

We consider the N = 1 SYM in the D dimensional Euclidean spacetime. The action is given by

S =
1

4g20

∫
dDxF a

µν(x)F
a
µν(x) +

1

2

∫
dDx ψ̄a(x) /Dab

ψb(x), (3.1)

where

Dab
µ = δab∂µ +Aab

µ (x), Aab
µ = facbAc

µ, /Dab
= Dab

µ γµ, (3.2)

F a
µν(x) = ∂µA

a
ν(x)− ∂νAa

µ(x) + fabcAb
µ(x)A

c
ν(x). (3.3)

As explained in Introduction, this is the expression in the Wess–Zumino (WZ) gauge and only the
gauge field and the gaugino field exist. The SUSY transformation in the WZ gauge is non-linear
and its explicit form is given by

δξA
a
µ(x) = g0ξ̄γµψ

a(x), (3.4)

δξψ
a(x) = − 1

2g0
σµνξF

a
µν(x), (3.5)

δξψ̄
a(x) =

1

2g0
ξ̄σµνF

a
µν(x). (3.6)

When D = 4, noting the fact that both the gaugino field and the SUSY transformation parameter ξ
are the Majorana spinor ψ̄ = ψT (−C−1), one can see that the action is invariant under the above

19
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SUSY transformation up to the surface term. Thus, if we make the transformation parameter
local ξ → ξ(x), the variation of the action takes the form of

∫
dDx ∂µξ(x)Sµ. The supercurrent in

the classical level is then given by

Sµ = − 1

2g0
σρσγµψ

a(x)F a
ρσ(x). (3.7)

For the following perturbative calculations, we need to introduce the gauge fixing term and the
Faddeev–Popov ghost term. We set

Sgf =
λ0
2g20

∫
dDx ∂µA

a
µ(x)∂νA

a
ν(x), (3.8)

Scc̄ =
1

g20

∫
dDx ∂µc̄

a(x)Dab
µ c

b(x). (3.9)

We note that S + Sgf + Scc̄ is invariant under BRS transformation

δBA
a
µ(x) = Dab

µ c
b(x), (3.10)

δBψ
a(x) = −fabccb(x)ψc(x), (3.11)

δBψ̄
a(x) = −fabccb(x)ψ̄c(x), (3.12)

δBc
a(x) = −1

2
fabccb(x)cc(x), (3.13)

δB c̄
a(x) = λ0∂µA

a
µ(x). (3.14)

This means that the expectation value of a BRS-exact operator δBO is zero since ⟨δBO⟩ = ⟨−δB(S+
Sgf + Scc̄)O⟩ = 0 under the functional integration.

The above gauge fixing and the Faddeev–Popov ghost terms are however not invariant under
SUSY:

δξSgf = −
λ0
g0

∫
dDx ∂µ∂νA

a
ν(x)ξ̄γµψ

a(x)

= −
∫
dDx ξ̄Xgf(x), (3.15)

δξScc̄ = −
1

g0

∫
dDx fabc∂µc̄

a(x)cb(x)ξ̄γµψ
c(x)

= −
∫
dDx ξ̄Xcc̄(x), (3.16)

where

Xgf(x) ≡
λ0
g0
∂µ∂νA

a
ν(x)γµψ

a(x), (3.17)

Xcc̄(x) ≡
1

g0
fabc∂µc̄

a(x)cb(x)γµψ
c(x). (3.18)

We note that the combination Xgf +Xcc̄ is BRS-exact

Xgf +Xcc̄ = δB

(
λ0
g0
∂µc̄

a(x)γµψ
a(x)

)
. (3.19)
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This combination thus gives no contribution in correlation functions of gauge-invariant operators.
WhenD ̸= 4 as assumed in dimensional regularization, also the classical action S is not invariant

under SUSY. This occurs because the Fierz identity inD = 4 does not hold forD = 4−2ϵ with ϵ ̸= 0.
The explicit SUSY breaking term is

δξS = −1

2
g0

∫
dDx fabcξ̄γµψ

a(x)ψ̄b(x)γµψ
c(x)

= −
∫
dDx ξ̄XFierz(x), (3.20)

where

XFierz(x) ≡
1

2
g0f

abcγµψ
a(x)ψ̄b(x)γµψ

c(x). (3.21)

Thus, for D ̸= 4, considering the SUSY transformation with a localized parameter ξ(x) in the
functional integration containing Ab

α(y)ψ̄
c(z), we have the following SUSY WT identity,⟨

[∂µSµ(x) +XFierz(x) +Xgf(x) +Xcc̄(x)]A
b
α(y)ψ̄

c(z)
⟩

= −δ(x− y)
⟨
g0γαψ

b(y)ψ̄c(z)
⟩
− δ(x− z)

⟨
Ab

α(y)
1

2g0
σβγF

c
βγ(z)

⟩
(3.22)

and similarly, the functional integration containing ψ̄b(y)cc(z)c̄d(w),⟨
[∂µSµ(x) +XFierz(x) +Xgf(x) +Xcc̄(x)] ψ̄

b(y)cc(z)c̄d(w)
⟩

= −δ(x− y)
⟨

1

2g0
σβγF

b
βγ(y)c

c(z)c̄d(w)

⟩
. (3.23)

These are our basic relations.
Now, we first note that the effect of XFierz(x) can be canceled by the counterterm

S′ ≡ − 1

(4π)2
C2(G)

1

6

∫
dDxF a

µν(x)F
a
µν(x). (3.24)

This can be seen by calculating the following one-loop diagram. The calculation shows that inserting

Figure 3.1: diagram X-fierz

XFierz(x) into the first WT identity amounts to inserting the following operator in the tree-level
expectation value

⟨XFierz(x)A
b
α(y)ψ̄

c(z)⟩1 loop = ⟨ g0
(4π)2

C2(G)
2

3
∂µF

a
µν(x)γνψ

a(x)Ab
α(y)ψ̄

c(z)⟩tree +O(A2
µ). (3.25)
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The same operator appears also in the second WT identity in one-loop level. The last abbreviated
term O(A2) stands for higher order terms in the gauge field that cannot be determined in the
present analysis. The variation of the above counterterm is

⟨X ′(x)Ab
α(y)ψ̄

c(z)⟩tree = −⟨XFierz(x)A
b
α(y)ψ̄

c(z)⟩1 loop +O(A2
µ), (3.26)

where

δS′ = −
∫
dDx ξ̄(x)X ′(x). (3.27)

Thus the counterterm S′ cancels the effect of XFierz(x) up to O(A2
µ). We will discuss the form

of O(A2
µ) later.

Thus, under the presence of the above counterterm, we have the following SUSY WT identities,⟨
[∂µSµ(x) +Xgf(x) +Xcc̄(x)]A

b
α(y)ψ̄

c(z)
⟩′

= −δ(x− y)
⟨
g0γαψ

b(y)ψ̄c(z)
⟩′ − δ(x− z)⟨Ab

α(y)
1

2g0
σβγF

c
βγ(z)

⟩′

, (3.28)

and ⟨
[∂µSµ(x) +Xgf(x) +Xcc̄(x)] ψ̄

b(y)cc(z)c̄d(w)
⟩′

= −δ(x− y)
⟨

1

2g0
σβγF

b
βγ(y)c

c(z)c̄d(w)

⟩′

, (3.29)

where the prime ′ indicates that we use the action with the above counterterm S + Sgf + Scc̄ + S′.

3.2 Renormalization of the supercurrent in the one-loop level

Next, we determine the renormalization of Sµ(x) in the one-loop level. We first re-express all bare
quantities in the SUSY WT identities by renormalized ones. We define

∆ ≡ g2

(4π)2
C2(G)

1

ϵ
(3.30)

for notational convenience. In the minimal subtraction (MS) scheme, we have following relations
between the bare and the renormalized quantities:

g0 = µϵ

(
1− 3

2
∆

)
g(µ), (3.31)

λ0 = (1−∆)λ, (3.32)

Aa
µ(x) = (1−∆)Aa

µR(x), (3.33)

ψa(x) =

(
1− 1

2
∆

)
ψa
R(x), (3.34)

ca(x) =

(
1− 5

4
∆

)
caR(x), (3.35)

F a
µν(x) =

(
1− 5

2
∆

)(
∂µA

a
νR(x)− ∂νAa

µR(x)
)
+

(
1− 11

4
∆

)
fabc

{
Ab

µ(x)A
c
ν(x)

}
R
. (3.36)
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We further consider the renormalization of composite operators Xgf and Xcc̄. Re-expressing
bare quantities in Xgf and Xcc̄ by renormalized quantities, we obtain

Xgf(x) = (1−∆)
λ

g
∂µ∂νA

a
νR(x)γµψ

a
R(x), (3.37)

Xcc̄(x) =

(
1− 3

2
∆

)
1

g
fabc∂µc̄

a
R(x)c

b
R(x)γµψ

c
R(x). (3.38)

Compared to a simple product of elementary fields, the composite operator (i.e., the local product)
such as ∂µ∂νA

a
νR(x)γµψ

a
R(x) and fabc∂µc̄

a
R(x)c

b
R(x)γµψ

c
R(x) produces additional UV divergences

which require further renormalization. The UV divergences are determined by evaluating following
one-loop diagrams. The sum of these diagrams tells that

Figure 3.2: a Figure 3.3: b Figure 3.4: c

Figure 3.5: d Figure 3.6: e Figure 3.7: f

[
λ

g
∂µ∂νA

a
νR(x)γµψ

a
R(x) +

1

g
fabc∂µc̄

a
R(x)c

b
R(x)γµψ

c
R(x)

]∣∣∣∣
1PI, divergent part

= 2∆
λ

g
∂µ∂νA

a
νR(x)γµψ

a
R(x) +

1

2
∆
1

g
fabc∂µc̄

a
R(x)c

b
R(x)γµψ

c
R(x)

+ ∆∂µ

{
− 1

2g
σρσγµψ

a
R(x)[∂ρA

a
σR(x)− ∂σAa

ρR(x)]

}
+ 2∆

(
− 1

g2

)
∂µ∂µA

a
νR(x)gγνψ

a
R(x)
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+
3

2
∆

1

2g
[∂µA

a
νR(x)− ∂νAa

µR(x)]σµν/∂ψ
a
R(x)

+
1

4g
∂µ{[Aa

νR(x)γνγµ + 2Aa
µR(x)]/∂ψ

a
R(x)}+∆O(A2

µR). (3.39)

From this, we see that the completely renormalized composite operators XgfR(x) and Xcc̄R(x)
are given by

Xgf(x) +Xcc̄(x)

= (1 + ∆)XgfR(x) + (1−∆)Xcc̄R(x)

+ ∆∂µ

{
− 1

2g
σρσγµψ

a
R(x)[∂ρA

a
σR(x)− ∂σAa

ρR(x)]

}
+ 2∆

(
− 1

g2

)
∂µ∂µA

a
νR(x)gγνψ

a
R(x)

+
3

2
∆

1

2g
[∂µA

a
νR(x)− ∂νAa

µR(x)]σµν/∂ψ
a
R(x)

+
1

4g
∂µ{[Aa

νR(x)γνγµ + 2Aa
µR(x)]/∂ψ

a
R(x)}+∆O(A2

µR). (3.40)

For the later argument, it is convenient to express this in the following form using the equations of
motion

Xgf(x) +Xcc̄(x)

= (1 + ∆)(XgfR(x) +Xcc̄R(x)) + 2∆gγµψ
a
R

δScc̄

δAa
µ(x)

+ ∆∂µSµ(x)

+ 2∆gγµψ
a
R

δ(S + Sgf)

δAa
µ(x)

+
3

2
∆

1

2g
[∂µA

a
νR(x)− ∂νAa

µR(x)]σµν
δSt

δψ̄a(x)

+
1

4g
∂µ

[
(Aa

νR(x)γνγµ + 2Aa
µR(x))

δSt

δψ̄a(x)

]
+∆O(A2

µR)

= (1 + ∆)(XgfR(x) +Xcc̄R(x))

+ ∆∂µSµ(x)

+ 2∆gγµψ
a
R

δSt

δAa
µ(x)

+
3

2
∆

1

2g
[∂µA

a
νR(x)− ∂νAa

µR(x)]σµν
δSt

δψ̄a(x)

+
1

4g
∂µ

[
(Aa

νR(x)γνγµ + 2Aa
µR(x))

δSt

δψ̄a(x)

]
+∆O(A2

µR), (3.41)

where St denotes the total action, St = S + Sgf + Scc̄. To derive this, we have noted the relation
such as ∆gγµψ

a
RδScc̄/(δA

a
µ) = −∆Xcc̄R. The explicit form of the O(A2

R) term in this expression is
different from that in Eq. (3.40).
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Figure 3.8: g Figure 3.9: h

Next, we determine the renormalization of the supercurrent Sµ(x) in a similar way. First by
substituting the relations (3.31), (3.33), (3.34), (3.35), and (3.36) into Sµ(x), we have

Sµ(x) = −
1

2g
σρσγµψ

a
R(x)

[
∂ρA

a
σR(x)− ∂σAa

ρR(x) + fabc{Ab
ρ(x)A

c
σ(x)}R

]
+∆O(A2

µR). (3.42)

The composite operators in Sµ(x), such as ψa
R(x)∂ρA

a
σR(x) and ψ

a
R(x)f

abc{Ab
ρ(x)A

c
σ(x)}R produce

further UV divergences. These can be determined by the computation of the diagrams 3.2, 3.3, 3.5
and the following new diagrams. Sum of these diagrams shows that

− 1

2g
σρσγµψ

a
R(x)

[
∂ρA

a
σR(x)− ∂σAa

ρR(x) + fabc{Ab
ρ(x)A

c
σ(x)}R

]∣∣∣∣
1PI, divergent part

= −∆ 1

4g
[Aa

νR(x)γνγµ + 2Aa
µR(x)]/∂ψ

a
R(x) + ∆O(A2

µR). (3.43)

From this we see that the renormalized supercurrent SµR(x) is given from Sµ(x) as

Sµ(x) = SµR(x)−∆
1

4g
[Aa

νR(x)γνγµ + 2Aa
µR(x)]/∂ψ

a
R(x) + ∆O(A2

µR). (3.44)

This can be rewritten as

Sµ(x) = SµR(x)−∆
1

4g
[Aa

νR(x)γνγµ + 2Aa
µR(x)]

δSt

δψ̄a(x)
+ ∆O(A2

µR). (3.45)

Thus we have obtained the renormalized supercurrent SµR(x) in dimensional regularization in the
one-loop level.

Using all the above relations between the bare quantities and the renormalized ones, we obtain
the SUSY WT identities among renormalized quantities:⟨[

∂µSµR(x) +XgfR(x) +Xcc̄R(x) +O(A2
µR)
]
Ab

αR(y)ψ̄
c
R(z)

⟩′
= −δ(x− y)

⟨
gγαψ

b
R(y)ψ̄

c
R(z)

⟩′
− δ(x− z)

⟨
Ab

αR(y)
1

2g
σβγ

[
∂βA

c
γR(z)− ∂γAc

βR(z) + f cde{Ad
β(z)A

e
γ(z)}R

]⟩′

(3.46)



CHAPTER 3. THE 4D N = 1 SUPER YANG–MILLS THEORY 26

and ⟨[
∂µSµR(x) +XgfR(x) +Xcc̄R(x) + ∆O(A2

µR)
]
ψ̄b
R(y)c

c
R(z)c̄

d
R(w)

⟩′
= −δ(x− y)

⟨
1

2g
σβγ

[
∂βA

b
γR(y)− ∂γAb

βR(y) + {f befAe
βA

f
γ}R(y)

]
ccR(z)c̄

d
R(w)

⟩′

. (3.47)

In deriving these, we have used the following relations holding in the tree-level approximation,⟨
δSt

δAa
µR(x)

Ab
ρR(y)

⟩′

= δabδνρδ(x− y), (3.48)⟨
δSt

δψ̄a
R(x)

ψ̄b
R(y)

⟩′

= δabδ(x− y), (3.49)⟨
Xcc̄R(x)A

b
α(y)ψ̄

c
R(z)

⟩′
= 0, (3.50)⟨(

− 1

g2

)
∂µ∂µA

a
νR(x)gγνψ

a
R(x)ψ̄

b
R(y)c

c
R(z)c̄

d
R(w)

⟩′

=
⟨
Xcc̄(x)ψ̄

b
R(y)c

c
R(z)c̄

d
R(w)

⟩′
. (3.51)

Equations (3.46) and (3.47) show that the combinationXcurrent(x) ≡ ∂µSµR(x)+XgfR(x)+Xcc̄R(x)
generates the properly normalized SUSY transformations on renormalized elementary fields. For
renormalized composite operators, however, whether Xcurrent(x) generates the correct SUSY trans-
formation or not is not obvious. If we focus on “on mass-shell” correlation functions, where all
composite operators and Xcurrent(x) are separated to each other in position space, we can still
argue that Xcurrent(x) has the correct normalization because any new UV divergences arise from
the equal point limit between Xcurrent(x) and the composite operators.

If we consider only such on mass-shell correlation functions containing only gauge invariant
operators, we can further simplifyXcurrent as follows. We first note that in on mass-shell correlation
functions we may use the equations of motion. Thus, Eq. (3.41) yields

Xgf +Xcc̄ = XgfR +Xcc̄R +∆(∂µSµ +Xgf +Xcc̄) +O(A2
µR). (3.52)

Furthermore, since in the one-loop approximation, we can use the tree-level relation, ∂µSµ +Xgf +
Xcc̄ = 0, under ∆, we can set

Xgf +Xcc̄ = XgfR +Xcc̄R +O(A2
µR) (3.53)

within on mass-shell correlation functions. From the discussion around Eq.(3.19), however,Xgf+Xcc̄

is BRS-exact and thus can be neglected in correlation functions with gauge invariant operators.
This shows that now Xcurrent(x) is reduced to ∂µSµR(x). However, the usage of the tree level

equations of motion in Eq. (3.45) tells

SµR(x)→ Sµ(x) + ∆O(A2
µR), (3.54)

we see that Xcurrent(x) is further reduced to ∂µSµR(x) with

SµR(x)→ Sµ(x) = −
1

2g0
σρσγµψ

a(x)F a
ρσ(x), (3.55)

where we have required that the supercurrent is gauge invariant to fix the ambiguity of the ∆O(A2
µR)

term.
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The above one-loop analysis thus shows that, within on mass-shell correlation functions on gauge
invariant operators, the combination,

SµR = − 1

2g0
σρσγµψ

a(x)F a
ρσ(x) +O(g30). (3.56)

can be regarded as a properly normalized supercurrent.

3.3 Small flow-time expansion of the supercurrent

Our next (and last) task is to re-express the renormalized supercurrent (3.56) in terms of flowed
fields. To obtain the relation between composite operators of flowed fields and composite operators
of un-flowed fields, we employ the small flow-time expansion.

The flow equations for gauge and gaugino fields are

∂tB
a
µ(t, x) = Dab

ν G
b
νµ(t, x) + α0Dab

µ ∂νB
b
ν , Ba

µ(t = 0, x) = Aa
µ(x), (3.57)

∂tχ
a(t, x) = (DµDµ − α0∂µBµ)abχb(t, x), χa(t = 0, x) = ψa(x), (3.58)

∂tχ̄
a(t, x) = χ̄b(t, x)(

←−
Dµ
←−
Dµ + α0∂µBµ)ba, χ̄a(t = 0, x) = ψ̄a(x), (3.59)

where

Dab
µ = δab∂µ + Babµ , (3.60)

←−
Dµ

ab = δab
←−
∂µ − Babµ , (3.61)

Babµ = facbBc
µ. (3.62)

The value of α0 is arbitrary as long as we focus on gauge-invariant operators as explained in Chap. 2.
To obtain a small flow-time expansion for the supercurrent (3.56), we start from the small flow-

time expansion of the gauge invariant operator χa(t, x)Ga
ρσ(t, x). From the consideration of the

Lorenz covariance, the gauge invariance, and the mass dimension (recall that the flow time possess
the mass dimension −2), the most general form of the small flow-time expansion is

χa(t, x)Ga
ρσ(t, x) =ζ1(t)ψ

a(x)F a
ρσ(x)

+ ζ2(t)
[
γργαψ

a(x)F a
ασ(x)− γσγαψa(x)F a

αρ(x)
]

+ ζ3(t)σαβσρσψ
a(x)F a

αβ(x) +O(t). (3.63)

The coefficients ζi(t), i = 1, 2, 3 are expanded in the loop order,

ζ1(t) = 1 + ζ
(1)
1 (t) + . . . , ζ2(t) = ζ

(1)
2 (t) + . . . , ζ3(t) = ζ

(1)
3 (t) + . . . . (3.64)

Noting that Eq. (3.63) can be inverted as

ψa(x)F a
ρσ(x) =

[
1− ζ(1)1 (t)

]
χa(t, x)Ga

ρσ(t, x)

− ζ(1)2 (t)
[
γργαχ

a(t, x)Ga
ασ(t, x)− γσγαχa(t, x)Ga

αρ(t, x)
]

− ζ3(t)σαβσρσχa(t, x)Ga
αβ(t, x) +O(t) (3.65)
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to the one-loop order, we can obtain the expression for the renormalized supercurrent

SµR(x) =−
1

2g0

[
1− ζ(1)1 (t)− 2(D − 3)ζ

(1)
2 (t) + (D − 9)(D − 4)ζ

(1)
3 (t)

]
σρσγµχ

a(t, x)Ga
ρσ(t, x)

− 1

2g0

[
4(D − 4)ζ

(1)
2 (t)− 4(D − 5)(D − 4)ζ

(1)
3 (t)

]
γρχ

a(t, x)Ga
ρµ(t, x)

+O(t) +O(g30). (3.66)

Thus, once one-loop coefficients ζ
(1)
i , i = 1, 2, 3 are obtained we have the regularization-independent

expression of the supercurrent in terms of flowed fields (for this we should finally take t→ 0).

Here we use the background field method [17] to compute ζ
(1)
i , i = 1, 2, 3. In this method, all

the fields are decomposed into the classical background fields and the quantum fields:

Aµ(x) = Âµ(x) + aµ(x), Bµ(t, x) = B̂µ(t, x) + bµ(t, x), (3.67)

ψ(x) = ψ̂(x) + p(x), χ(t, x) = χ̂(t, x) + k(t, x), (3.68)

ψ̄(x) = ˆ̄ψ(x) + p̄(x), χ̄(t, x) = ˆ̄χ(t, x) + k̄(t, x). (3.69)

Background fields are denoted with the hat .̂ In the background field method, we modify the “gauge
fixing term” in the flow-equations as

∂tB
a
µ(t, x) +Dab

ν G
b
νµ(t, x) + α0(DµD̂ν)

abbbν(t, x), Ba
µ(t = 0, x) = Aa

µ(x), (3.70)

∂tχ
a(t, x) =

{
(D2)ab − α0f

acb[D̂µbµ(t, x)]
c
}
χb(t, x), χa(t = 0, x) = ψa(x), (3.71)

∂tχ̄
a(t, x) = χ̄b(t, x)

{
(
←−
D 2)ba + α0f

bca[D̂µbµ(t, x)]
c
}
, χ̄a(t = 0, x) = ψ̄a(x). (3.72)

It can be shown that any gauge invariant quantity are not affected by the value of α0 [17].
The flow of the background fields is taken as [17]

∂tB̂
a
µ(t, x) = D̂ab

ν Ĝ
b
νµ(t, x), B̂a

µ(t = 0, x) = Âa
µ(x), (3.73)

∂tχ̂
a(t, x) = (D̂2)abχ̂b(t, x), χ̂a(t = 0, x) = ψ̂a(x), (3.74)

∂t ˆ̄χ
a(t, x) = ˆ̄χb(t, x)(

←̂−
D

2

)ba, ˆ̄χa(t = 0, x) = ˆ̄ψa(x). (3.75)

We further assume that the background fields satisfy the equations of motion

D̂ab
µ F̂

b
µν = 0, (3.76)

D̂ab
µ ψ̂

b = 0, (3.77)

ˆ̄ψb←̂−D
ba

µ = 0. (3.78)

With this assumption, the background gauge field does not flow B̂a
µ(t, x) = Âa

µ(x). Also, for the

tree-level fermion tadpoles, ⟨pa⟩(0) = ⟨p̄a⟩(0) = 0, where the superscript (0) stands for the tree-

level approximation. These assumptions also imply ⟨aa⟩(0) = O(ψ̂2) and by the flow equation for

quantum fields, we see that ⟨ba(t, x)− aa(x)⟩(0) = O(t, ψ̂2), and ⟨ka⟩(0) = ⟨k̄a⟩(0) = O(t, ψ̂3).
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In the background field method, the gauge fixing term is chosen as

Sbcgf =
λ0
2g20

∫
dDx D̂µa

a
µ(x)D̂νa

a
ν(x). (3.79)

In this background gauge, the total action is invariant under the following background gauge trans-
formation,

δÂa
µ(x) = D̂ab

µ θ
b(x). (3.80)

Substituting the decomposition (3.67)–(3.69) into Eq. (3.65), we have

[χ̂a(t, x) + ka(t, x)]
[
F̂ a
µν(x) + D̂ab

µ b
b
ν(t, x)− D̂ab

ν b
b
µ(t, x) + fabcbbµ(t, x)b

c
ν(t, x)

]
−
[
ψ̂a(x) + pa(x)

] [
F̂ a
µν(x) + D̂ab

µ a
b
ν(x)− D̂ab

ν a
b
µ(x) + fabcabµ(x)a

c
ν(x)

]
= ζ

(1)
1 (t)ψ̂a(x)F̂ a

µν(x) + ζ
(1)
2 (t)

[
γµγρψ̂

a(x)F̂ a
ρν(x)− γνγρψ̂a(x)F̂ a

ρµ(x)
]

+ ζ
(1)
3 (t)σρσσµνψ̂

a(x)F̂ a
ρσ(x) +O(t). (3.81)

Thus the coefficients ζ
(1)
i (t) in Eq. (3.81) can be determined by calculating the expectation value of

the left-hand side in the presence of the background fields and comparing it with the right-hand side.
Since the right-hand side of Eq. (3.81) does not have the terms O(ψ̂2) or O(D̂ψ̂), such contributions
in the left-hand side can be neglected. Noting that there is no one-loop diagram that contributes
to fabc⟨ka(t, x)bbµ(t, x)bcν(t, x)⟩ and fabc⟨pa(x)abµ(x)acν(x)⟩, all the expectation values are now linear
(i.e., the tadpole) or quadratic in quantum fields.

The covariance of the expectation values under the background gauge transformation tells that
the tadpole ⟨baµ(t, x)⟩ is O(t) and can be neglected; note that ⟨baµ⟩ behaves as the adjoint rep-
resentation under the background gauge transformation. Then the lowest dimensional candidate
is tD̂ab

ν F̂
b
νµ and this is already O(t) and can be neglected. These arguments considerably simplify

the calculation.
Using the results in [17] on the tree-level propagators in the background fields,

⟨baµ(t, x)bbν(s, y)⟩ = g20

∫ ∞

t+s

dξ (eξ∆̂x)abµνδ(x− y) +O(ψ̂2), (3.82)

⟨ka(t, x)bbµ(s, y)⟩ = −g20
(
et

ˆ/D
2

x
1

/̂Dx

)ac

f cdeγνψ̂
e

∫ ∞

s

du (eu∆̂x)dbνµδ(x− y) +O(D̂ψ̂, ψ̂3), (3.83)

and the formal solution to the flow equation (3.71),

ka(t, x) =(etD̂
2

)abpb(x)

+

∫ t

0

ds [e(t−s)D̂2

]ab
[
2f bcdbcµ(s, x)D̂de

µ + f bcdfdfebcµ(s, x)b
f
µ(s, x)

]
×
{
[esD̂

2

]egψ̂g(x) + ke(s, x)
}
, (3.84)

where

∆̂ab
µν = δµν(D̂2)ab + 2F̂ab

µν , (3.85)

F̂ab
µν = facbF̂ c

µν , (3.86)
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we can calculate the expectation values of flowed fields as (the superscript (1) stands for the one-loop
level calculation),

⟨k(t, x)F̂µν(x)⟩(1)1PI = ⟨k(t, x)⟩
(1)
1PIF̂µν(x) =

g20
(4π)2

C2(G)
2

D − 4
(8πt)2−D/2ψ̂(x)F̂µν(x), (3.87)

⟨ψ̂(x)[bµ(t, x), bν(t, x)]− ψ̂(x)[aµ(x), aν(x)]⟩(1)1PI =
g20

(4π)2
C2(G)

−4
D − 4

(8πt)2−D/2ψ̂(x)F̂µν(x),

(3.88)

⟨k(t, x)
(
D̂µbν(t, x)− D̂νbµ(t, x)

)
− p(x)

(
D̂µaν(x)− D̂νaµ(x)

)
⟩(1)1PI

=
g20

(4π)2
C2(G)

2

D(D − 2)(D − 4)
(8πt)2−D/2

×
{
D
(
γµγρψ̂(x)F̂ρν(x)− γνγρψ̂(x)F̂ρµ(x)

)
+ 2σρσσµνψ̂(x)F̂ρσ(x)

}
. (3.89)

Substituting these into Eq. (3.81), we obtain

ζ
(1)
1 (t) =

g20
(4π)2

C2(G)
−2
D − 4

(8πt)2−D/2, (3.90)

ζ
(1)
2 (t) =

g20
(4π)2

C2(G)
2

(D − 2)(D − 4)
(8πt)2−D/2, (3.91)

ζ
(1)
3 (t) =

g20
(4π)2

C2(G)
4

D(D − 2)(D − 4)
(8πt)2−D/2. (3.92)

Recalling Eq. (3.66), we obtain the supercurrent in terms of the flowed fields

SµR(x) =−
1

2g0

[
1 +

g20
(4π)2

C2(G)
2(D − 18)

D(D − 2)
(8πt)2−D/2

]
σρσγµχ

a(t, x)Ga
ρσ(t, x)

− 1

2g0

g20
(4π)2

C2(G)
8(D − 10)

D(D − 2)
(8πt)2−D/2γνχ

a(t, x)Ga
νµ(t, x) +O(t) +O(g30). (3.93)

Finally, since the flowed gaugino field χa(t, x) itself requires the wave functional renormalization,
we replace it by the following “ringed variable” [19] (see also Appendix C),

◦
χ(t, x) =

√√√√ −dim(G)

(4π)2t2
⟨
χ̄(t, x)

←→
/Dχ(t, x)

⟩χ(t, x)
=

1

(8πt)ϵ/2

{
1 +

g2

(4π)2
C2(G)

[
3

2

1

ϵ
+

3

2
ln(8πµ2t)− 1

2
ln(432)

]
+O(g4)

}
χ(t, x). (3.94)

This variable is convenient because it does not require the wave function renormalization. The
coupling constant g0 also requires the renormalization as Eq. (3.31),

g20 = µ2ϵg2
[
1 +

g2

(4π)2
C2(G)

1

ϵ
(−3) +O(g4)

]
. (3.95)
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We thus rewrite the supercurrent in terms of these renormalized quantities as

SµR(x) =−
1

2g

{
1 +

g2

(4π)2
C2(G)

[
−7

2
− 3

2
ln(8πµ2t) +

1

2
ln(432)

]}
σρσγµ

◦
χ
a
(t, x)Ga

ρσ(t, x)

− g2

(4π)2
C2(G)3γν

◦
χ
a
(t, x)Ga

νµ(t, x) +O(t) +O(g3). (3.96)

Since this is manifestly UV-finite, this is independent of the regularization. By the fact that the
supercurrent in Eq. (3.44) is completely written by bare quantities, we can replace the coupling
constant by the running coupling consonant with an arbitrary mass scale µ. We may take µ = 1√

8t
.

Then,

SµR(x) =−
1

2g(1/
√
8t)

{
1 +

g(1/
√
8t)2

(4π)2
C2(G)

[
−7

2
− 3

2
lnπ +

1

2
ln(432)

]}
σρσγµ

◦
χ
a
(t, x)Ga

ρσ(t, x)

− g(1/
√
8t)2

(4π)2
C2(G)3γν

◦
χ
a
(t, x)Ga

νµ(t, x) +O(t) +O(g(1/
√
8t)3). (3.97)

Since g(1/
√
8t) goes to zero in the t → 0 limit thanks to the asymptotic freedom, the t → 0 limit

can eliminate both O(t) and O(g(1/
√
8t)3) errors in the expression. In this way, we have

SµR(x) = lim
t→0

(
− 1

2g(1/
√
8t)

{
1 +

g(1/
√
8t)2

(4π)2
C2(G)

[
−7

2
− 3

2
lnπ +

1

2
ln(432)

]}
× σρσγµ

◦
χ
a
(t, x)Ga

ρσ(t, x)

−g(1/
√
8t)2

(4π)2
C2(G)3γν

◦
χ
a
(t, x)Ga

νµ(t, x)

)
. (3.98)

This is a regularization-independent expression for the supercurrent we were looking for. If one
prefers the MS scheme instead of the MS scheme, it is sufficient to make the following replacement
in Eq. (3.98)

lnπ → γ − 2 ln 2, (3.99)

where γ denotes Euler’s constant.



Chapter 4

The 4D N = 2 super Yang–Mills
theory

In this chapter, we consider the Yang–Mills theory with the extended N = 2 supersymmetry
as our second example for which a regularization-independent expression of the supercurrent is
constructed. Following almost the same line of arguments as in the previous chapter, we find the
renormalized supercurrent in dimensional regularization in the one-loop level and then express it
in terms of the flowed fields through the small flow-time expansion.

4.1 Action, transformation, and symmetry

The action of the N = 2 SYM in the Wess–Zumino gauge is

L =
1

4g20
F a
µν(x)F

a
µν(x) + ψ̄a(x) /Dab

ψb(x)

+Dµφ
†a(x)Dµφ

a(x)− 1

2
g20f

abcfadeφ†b(x)φc(x)φ†d(x)φe(x)

+
√
2g0f

abcψ̄a(x)
(
P+φ

b(x)− P−φ
†b(x)

)
ψc(x), (4.1)

where

F a
µν = ∂µA

a
ν − ∂νAa

µ + fabcAb
µA

c
µ, (4.2)

Dab
µ = δab∂µ +Aab

µ , /Dab
= γµDab

µ , (4.3)

Aab
µ = facbAc

µ. (4.4)

As the name N = 2 implies, there are two Weyl (or Majorana in four-dimensional spacetime)
supercharges in this theory and these can be combined into a single Dirac supercharge. Similarly,
the gaugino field ψ(x) is a Dirac fermion instead of Majorana. Thus the N = 2 theory requires
further boson fields to balance the degrees of freedom between bosons and fermions. The complex
scalar field φ(x) does this job.

32



CHAPTER 4. THE 4D N = 2 SUPER YANG–MILLS THEORY 33

The above action is invariant under the following N = 2 SUSY transformation:

δχA
a
µ =

1

2
g0
(
χ̄γµψ

a − ψ̄aγµχ
)
, (4.5)

δχφ
a = − 1√

2

[
χ̄P−ψ

a − ψ̄aP−χ
]
, (4.6)

δχφ
a† =

1√
2

[
χ̄P+ψ

a − ψ̄aP+χ
]
, (4.7)

δχψ
a = − 1

4g0
σµνχF

a
µν

− 1√
2

[
γµP+χDµφ

a − γµP−χDµφ
a†]

− 1

2
g0γ5χf

abcφb†φc, (4.8)

δχψ̄
a =

1

4g0
χ̄σµνF

a
µν

− 1√
2

[
χ̄γµP−Dµφ

a − χ̄γµP+Dµφ
a†]

− 1

2
g0χ̄γ5f

abcφb†φc. (4.9)

Considering the variation of the action under the localized SUSY transformation ξ → ξ(x) and ξ̄ →
ξ̄(x), we have the classical supercurrents,

Sµ = − 1

4g0
σρσγµψ

aF a
ρσ

+
1√
2
γνγµP+ψ

aDνφ
a − 1√

2
γνγµP−ψ

aDνφ
†a +

1

2
g0f

abcγ5γµψ
aφ†bφc, (4.10)

S̄µ = − 1

4g0
ψ̄aγµσρσF

a
ρσ

− 1√
2
ψ̄aγµγνP+Dνφ

a +
1√
2
ψ̄aγµγνP−Dνφ

†a − 1

2
g0f

abcψ̄aγµγ5φ
†bφc. (4.11)

These are the “canonical” supercurrents. From the perspective of the theory that has the classical
scale-invariance, it is natural to use the following “improved” supercurrents

Simp
µ ≡ Sµ +

√
2

3
σµν∂ν(P+ψ

aφa − P−ψ
aφ†a), (4.12)

S̄imp
µ ≡ S̄µ −

√
2

3
∂ν(ψ̄

aP+φ
a − ψ̄aP−φ

†a)σνµ. (4.13)

The added terms do not affect the conservation law ∂µS
imp
µ = ∂µS̄

imp
µ = 0 because ∂µ∂νσµν = 0.

Using the identity γµσρσγµ = 0 in D = 4, we see these currents are γ-traceless:

γµS
imp
µ = S̄imp

µ γµ = 0, (4.14)

under the equations of motion. In the following oe-loop calculation, however, we will find that
these currents are not finite and require the renormalization, unlike the canonical supercurrent in
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the N = 1 SYM. These can be made UV finite by further adding terms being proportional to the
equations of motion:

S̃imp
µ ≡ Simp

µ − 1

2
√
2
γµ(P− /Dψaφa − P+ /Dψaφ†a −

√
2g0f

abcγ5ψ
aφ†bφc), (4.15)

˜̄Simp
µ ≡ S̄imp

µ +
1

2
√
2
(ψ̄a←−/DP−φ

a − ψ̄a←−/DP+φ
†a −

√
2g0f

abcψ̄aγ5φ
†bφc)γµ. (4.16)

Some calculation shows that these can be expressed in simpler forms,

S̃imp
µ = − 1

4g0
σρσγµψ

aF a
ρσ

+
1

2
√
2

(
1

3
σµν − δµν

)
(P+Dνψ

aφa − P−Dνψ
aφ†a)

− 1√
2

(
1

3
σµν − δµν

)
(P+ψ

aDνφ
a − P−ψ

aDνφ
†a), (4.17)

˜̄Simp
µ = − 1

4g0
ψ̄aγµσρσF

a
ρσ

− 1

2
√
2
(Dνψ̄

aP+φ
a −Dνψ̄

aP−φ
†a)

(
1

3
σνµ − δνµ

)
+

1√
2
(ψ̄aP+Dνφ

a − ψ̄aP−Dνφ
†a)

(
1

3
σνµ − δνµ

)
. (4.18)

In these forms, it is clear that these are γ-traceless for D = 4 even without using the equations
of motion, because γµσρσγµ = 0 and γµ[(1/3)σµν − δµν ] = 0 for D = 4. We take these classical
supercurrents as our starting point for our argument in the one-loop level.

For perturbative calculations, we introduce the gauge fixing and the Faddeev–Popov ghost terms
as before,

Sgf =
λ0
2g20

∫
dDx ∂µA

a
µ(x)∂νA

a
ν(x), (4.19)

Scc̄ = −
1

g20

∫
dDx c̄a(x)∂µDµc

a(x), (4.20)

These terms breaks SUSY and give rise to the following SUSY breaking terms:

δξSgf = −
∫
dDx (ξ̄Xgf + X̄gfξ), (4.21)

δξScc̄ = −
∫
dDx (ξ̄Xcc̄ + X̄cc̄ξ), (4.22)

where

Xgf =
λ0
2g0

γµψ
a∂µ∂νA

a
ν , (4.23)

X̄gf = −
λ0
2g0

ψ̄aγµ∂µ∂νA
a
ν , (4.24)
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and

Xcc̄ =
1

2g0
fabc∂µc̄

acbγµψ
c, (4.25)

X̄cc̄ = −
1

2g0
fabc∂µc̄

acbψ̄cγµ. (4.26)

We now derive SUSY WT identities starting from⟨
δξ

A
b
ν(y)

φb(y)
φ†b(y)

 ψ̄c(z)

⟩ = 0, (4.27)

and ⟨
δξ
[
ψ̄b(y)cc(z)c̄d(w)

]⟩
= 0. (4.28)

Under the dimensional regularization D = 4 − 2ϵ, there is an additional explicit SUSY break-
ings XFierz(x) and X̄Fierz(x) arise from δξS = −

∫
dDx [ξ̄(∂µSµ+XFierz)+ (∂µS̄µ+ X̄Fierz)ξ] for the

same reason as in the N = 1 SYM. The SUSY WT identities thus become⟨[
∂µS̃

imp
µ (x) +XFierz(x) +Xgf(x) +Xcc̄(x)

]
Ab

ν(y)ψ̄
c(z)

⟩
= −δ(x− y)1

2
g0
⟨
γνψ

b(y)ψ̄c(z)
⟩

− δ(x− z) 1

4g0

⟨
Ab

ν(y)σρσF
c
ρσ(z)

⟩
+ δ(x− z)1

2
g0
⟨
Ab

ν(y)γ5f
cdeφ†d(z)φe(z)

⟩
+ δ(x− z) 1√

2

⟨
Ab

ν(y)γρ
[
P−Dρφ

c(z)− P+Dρφ
†c(z)

]⟩
− ∂xµδ(x− z)

1

2
√
2

⟨
Ab

ν(y)γµ
[
P−φ

c(z)− P+φ
†c(z)

]⟩
, (4.29)

⟨[
∂µS̃

imp
µ (x) +XFierz(x) +Xgf(x) +Xcc̄(x)

]
φb(y)ψ̄c(z)

⟩
= δ(x− y) 1√

2

⟨
P−ψ

b(y)ψ̄c(z)
⟩

− δ(x− z) 1

4g0

⟨
φb(y)σρσF

c
ρσ(z)

⟩
+ δ(x− z)1

2
g0
⟨
φb(y)γ5f

cdeφ†d(z)φe(z)
⟩

+ δ(x− z) 1√
2

⟨
φb(y)γρ

[
P−Dρφ

c(z)− P+Dρφ
†c(z)

]⟩
− ∂xµδ(x− z)

1

2
√
2

⟨
φb(y)γµ

[
P−φ

c(z)− P+φ
†c(z)

]⟩
, (4.30)
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∂µS̃

imp
µ (x) +XFierz(x) +Xgf(x) +Xcc̄(x)

]
φ†b(y)ψ̄c(z)

⟩
= −δ(x− y) 1√

2

⟨
P+ψ

b(y)ψ̄c(z)
⟩

− δ(x− z) 1

4g0

⟨
φ†b(y)σρσF

c
ρσ(z)

⟩
+ δ(x− z)1

2
g0
⟨
φ†b(y)γ5f

cdeφ†d(z)φe(z)
⟩

+ δ(x− z) 1√
2

⟨
φ†b(y)γρ

[
P−Dρφ

c(z)− P+Dρφ
†c(z)

]⟩
− ∂xµδ(x− z)

1

2
√
2

⟨
φ†b(y)γµ

[
P−φ

c(z)− P+φ
†c(z)

]⟩
, (4.31)

and ⟨[
∂µS̃

imp
µ (x) +XFierz(x) +Xgf(x) +Xcc̄(x)

]
ψ̄b(y)cc(z)c̄d(w)

⟩
= −δ(x− y) 1

4g0

⟨
σρσF

b
ρσ(y)c

c(z)c̄d(w)
⟩
+ δ(x− y)1

2
g0
⟨
γ5f

befφ†e(y)φf (y)cc(z)c̄d(w)
⟩

+ δ(x− y) 1√
2

⟨
γρ
[
P−Dρφ

c(z)− P+Dρφ
†c(z)

]
cc(z)c̄d(w)

⟩
− ∂xµδ(x− y)

1

2
√
2

⟨
γµ
[
P−φ

b(y)− P+φ
†b(y)

]
cc(z)c̄d(w)

⟩
. (4.32)

We will rewrite these identities in terms of renormalized quantities at the one-loop level. Before
going to this, let us study the effect of XFierz and X̄Fierz.

4.2 Effect of XFierz(x)

As for the N = 1 case, the effect of XFierz can be absorbed into an appropriate counterterm. The
one-loop level contribution to ⟨XFierz(x)A

b
α(y)ψ̄

c(z)⟩, ⟨XFierz(x)φ
b(y)ψ̄c(z)⟩, ⟨XFierz(x)φ

†b(y)ψ̄c(z)⟩
arises from the diagrams in Fig. 4.1. These yield

Figure 4.1

⟨
XFierz(x)

A
b
α(y)
φb(y)
φ†b(y)

 ψ̄c(z)

⟩

=
g20

(4π)2
C2(G)δ

bcΓ(D/2)
2

Γ(D)
Γ(2−D/2)(−1)(D − 4)

∫
p

eip(x−y)

∫
q

eiq(x−z)
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×
(
p2

4π

)D/2−2


g0(−p2γα + /ppα)
1√
2

1
D−2 [(D − 1) + 3γ5]p

2

− 1√
2

1
D−2 [(D − 1)− 3γ5]p

2

 1

p2
1

i/q
. (4.33)

This shows that the one-loop effect of XFierz can be represented as

XFierz
D→4→ g20

(4π)2
C2(G)

(
1

3g0
γνψ

a∂µF
a
µν −

1√
2
P+ψ

a∂µ∂µφ
†a +

1√
2
P−ψ

a∂µ∂µφ
a

)
. (4.34)

This effect thus can be removed by adding the following counterterm to the action,

L′ ≡ g20
(4π)2

C2(G)

(
− 1

6g20
F a
µνF

a
µν +

1

2
∂µφ

a∂µφ
a + ∂µφ

†a∂µφ
†a
)
. (4.35)

In what follows, the symbol ⟨ ⟩ stands for the expectation value with respect to the action with the
above counterterm, L+ L′.

4.3 Renormalized supercurrent in the N = 2 SYM

In this section, we will write Eqs. (4.29), (4.30), (4.31), and (4.29) in terms of renormalized quan-
tities.

First, we summarize the renormalization of parameters and basic fields:

g0 = µϵ(1−∆)g, (4.36)

λ0 = λ, (4.37)

Aa
µ = (1−∆)Aa

µR, (4.38){
ψa

ψ̄a

}
= (1−∆)

{
ψa
R

ψ̄a
R

}
, (4.39){

φa

φa†

}
=

{
φa
R

φa†
R

}
, (4.40)

ca =

(
1− 1

2
∆

)
caR, (4.41)

c̄a = (1−∆)c̄aR (4.42)

F a
µν =

(
1− 5

2
∆

)
(∂µA

a
νR − ∂νAa

µR) +

(
1− 11

4
∆

)
{fabcAb

µA
c
ν}R. (4.43)

These renormalization factors can be determined from the renormalization in the N = 1 SYM by
doubling the contribution of the fermion field and further computing the contribution of the scalar
field; the Feynman diagrams required in the latter computation are summarized in Appendix D.

We also need the renormalization factors for the following gauge covariant composite operators
appearing the SUSY WT identities:

fabcφ†bφc = (1−∆){fabcφ†bφc}R, (4.44)

Dµφ
a =

(
1− 3

2
∆

)
∂µφ

a
R +

(
1− 15

8
∆

)
{fabcAb

µφ
c}R, (4.45)

Dµφ
†a =

(
1− 3

2
∆

)
∂µφ

†a
R +

(
1− 15

8
∆

)
{fabcAb

µφ
†c}R. (4.46)
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Next, we consider the renormalization the composite operators Xgf and Xcc̄. Substituting the
above renormalizations and computing the UV divergences arise from the 1PI diagrams A01–A06
in Appendix D, we find

Xgf +Xcc̄ = (1 +∆)XgfR + (1−∆)Xcc̄R

+∆∂µ

[
− 1

4g
σρσγµψ

a
R(∂ρA

a
σR − ∂σAa

ρR)

]
+∆

(
−1

g

)
γνψ

a
R∂µ∂µA

a
νR

+∆
3

8g
σµν/∂ψ

a
R(∂µA

a
νR − ∂νAa

µR)

+ ∆
1

8g
∂µ
[
(Aa

νRγνγµ + 2Aa
µR)/∂ψ

a
R

]
+∆

(
− 1√

2

)
∂µ

[
(P+∂νφ

a
R − P−∂νφ

†a
R )γνγµψ

a
R

]
+∆

(
− 1

2
√
2

)
(P+φ

a
R − P−φ

†a
R )∂µ∂µψ

a
R

+∆
1

4
gfabcγµψ

a
R(φ

†b
R

←→
∂ µφ

c
R)

+ ∆

(
−3

4

)
gfabcγ5γµψ

a
R∂µ(φ

†b
Rφ

c
R)

+ ∆(−1)gfabcγ5/∂ψa
Rφ

†b
Rφ

c
R

+H1, (4.47)

where H1 denotes the possible “higher order terms” of the form,

∆
[
O(ψRA

2
R) +O(ψRARφR) +O(ψRφ

3
R) +O(ψ3

R)
]
, (4.48)

which cannot be determined from the analysis of the present WT identities; later we will fix these
ambiguities.

For later convenience, we re-express the above relation by using the equations of motion:

Xgf +Xcc̄

= (1 +∆) (XgfR +Xcc̄R)

+ ∆∂µS̃
imp
µ +∆

1

8g
∂µ

[
(Aa

νRγνγµ + 2Aa
µR)

δSt

δψ̄a

]
+∆gγµψ

a
R

δSt

δAa
µ

+∆

[
3

8g
σµν(∂µA

a
νR − ∂νAa

µR)− gγ5{fabcφ†bφc}R

− 3

2
√
2
γµ(∂µφ

a
RP− − ∂µφ†a

R P+)

]
δSt

δψ̄a

+∆(−
√
2)P−ψ

a
R

δSt

δφa
+∆
√
2P+ψ

a
R

δSt

δφ†a
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+H2, (4.49)

where
St ≡ S + Sgf + Scc̄ (4.50)

is the total action.1 Here, H2 denotes the possible higher order terms again. In deriving the above
expression, we have noted the relation ∆gγµψ

a
R

δScc̄

δAa
µ
= −2∆Xcc̄R.

We next consider the renormalize of the supercurrent S̃imp
µ itself. Combining the results in the

N = 1 case, Eqs. (4.36)–(4.43), and calculating the UV divergences arising from the 1PI diagrams,
A01, A02, B02, B03, B04, C01, C02, and C03 in Appendix D, we have

S̃imp
µ = S̃imp

µR +∆
1

4g
σρσγµψ

a
R(∂ρA

a
σR − ∂σAa

ρR)

+ ∆
3

4g

(
1

3
σµσ − δµσ

)
γρψ

a
R(∂ρA

a
σR − ∂νAa

σR)

+ ∆

(
− 1

8g

)
(Aa

νRγνγµ + 2Aa
µR)

δSt

δψ̄a

+H3µ

= S̃imp
µR +∆

(
− 1

8g

)
(Aa

νRγνγµ + 2Aa
µR)

δSt

δψ̄a
+H3µ, (4.51)

where we have noted the identity for D = 4:(
1

3
σµσ − δµσ

)
γρAρσ = −1

3
σρσγµAρσ. (4.52)

Then, Eqs. (4.49) and (4.51) tell that

∂µS̃
imp
µ +Xgf +Xcc̄

= (1 +∆)
(
∂µS̃

imp
µR +XgfR +Xcc̄R

)
+∆gγµψ

a
R

δSt

δAa
µ

+∆

[
3

8g
σµν(∂µA

a
νR − ∂νAa

µR)− gγ5{fabcφ†bφc}R

− 3

2
√
2
γµ(∂µφ

a
RP− − ∂µφ†a

R P+)

]
δSt

δψ̄a

+∆(−
√
2)P−ψ

a
R

δSt

δφa
+∆
√
2P+ψ

a
R

δSt

δφ†a

+ ∂µH3µ +H2︸ ︷︷ ︸
H4

. (4.53)

Substituting Eq. (4.53) and Eqs. (4.36)–(4.46) into the SUSY WT identities, Eqs. (4.29)–(4.32),
we obtain the SUSY WT identities in terms of renormalized quantities.

1We should add Eq. (4.35) to St, but its effect in Eq. (4.49) is higher order and is negligible.
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For illustration, we explain the detailed calculation for Eq. (4.29). After substituting Eq. (4.53)
in Eq. (4.29), the left-hand side of Eq. (4.29) becomes

(1−∆)
⟨[
∂µS̃

imp
µR (x) +XgfR(x) +Xcc̄R(x) +H4(x)

]
Ab

νR(y)ψ̄
c
R(z)

⟩
− 2∆δ(x− y)

(
−1

2

)
g
⟨
γνψ

b
R(y)ψ̄

c
R(z)

⟩
− 3

2
∆δ(x− z)

(
− 1

4g

)⟨
Ab

νR(y)σρσ
[
∂ρA

c
σR(z)− ∂σAc

ρR(z)
]⟩

− 2∆δ(x− z)1
2
g
⟨
Ab

νR(y)γ5{f cdeφ†dφe}R(z)
⟩

− 3

2
∆δ(x− z) 1√

2

⟨
Ab

νR(y)γρ

[
P−∂ρφ

c
R(z)− P+∂ρφ

†c
R (z)

]⟩
, (4.54)

where we have noted Schwinger–Dyson equations⟨
Fa

µ(x)
δSt

δAa
µ(x)

Ab
ν(y)ψ̄

c(z)

⟩
= δ(x− y)

⟨
Fb

ν(y)ψ̄
c(z)

⟩
, (4.55)⟨

Fa(x)
δSt

δψ̄a(x)

A
b
α(y)
φb(y)
φ†b(y)

 ψ̄c(z)

⟩
= δ(x− z)

⟨A
b
α(y)
φb(y)
φ†b(y)

Fc(z)

⟩
, (4.56)

⟨
Fa(x)

δSt

δφa(x)
φb(y)ψ̄c(z)

⟩
= δ(x− y)

⟨
Fb(y)ψ̄c(z)

⟩
, (4.57)⟨

Fa(x)
δSt

δφ†a(x)
φ†b(y)ψ̄c(z)

⟩
= δ(x− y)

⟨
Fb(y)ψ̄c(z)

⟩
. (4.58)

After using (4.36)–(4.46), the right-hand side of Eq. (4.29) becomes

(1− 3∆)δ(x− y)
(
−1

2

)
g
⟨
γνψ

b
R(y)ψ̄

c
R(z)

⟩
+

(
1− 5

2
∆

)
δ(x− z)

(
− 1

4g

)⟨
Ab

νR(y)σρσ
[
∂ρA

c
σR(z)− ∂σAc

ρR(z) +H′(z)
]⟩

+ (1− 3∆)δ(x− z)1
2
g
⟨
Ab

νR(y)γ5{f cdeφ†dφe}R(z)
⟩

+

(
1− 5

2
∆

)
δ(x− z) 1√

2

⟨
Ab

νR(y)γρ

[
P−∂ρφ

c
R(z)− P+∂ρφ

†c
R (z) +H′(z)

]⟩
+ (1−∆)(−1)∂xµδ(x− z)

1

2
√
2

⟨
Ab

νR(y)γµ

[
P−φ

c
R(z)− P+φ

†c
R (z)

]⟩
. (4.59)

Then after we transfer the last four lines of the left-hand side to the right-hand side, we find that
every terms have the common factor 1−∆. In this way, we have⟨[

∂µS̃
imp
µR (x) +XgfR(x) +Xcc̄R(x) +H4(x)

]
Ab

νR(y)ψ̄
c
R(z)

⟩
= δ(x− y)

(
−1

2

)
g
⟨
γνψ

b
R(y)ψ̄

c
R(z)

⟩
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+ δ(x− z)
(
− 1

4g

)⟨
Ab

νR(y)σρσ
[
∂ρA

c
σR(z)− ∂σAc

ρR(z) +H′(z)
]⟩

+ δ(x− z)1
2
g
⟨
Ab

νR(y)γ5{f cdeφ†dφe}R(z)
⟩

+ δ(x− z) 1√
2

⟨
Ab

νR(y)γρ

[
P−∂ρφ

c
R(z)− P+∂ρφ

†c
R (z) +H′(z)

]⟩
− ∂xµδ(x− z)

1

2
√
2

⟨
Ab

νR(y)γµ

[
P−φ

c
R(z)− P+φ

†c
R (z)

]⟩
. (4.60)

In a similar way, from Eqs. (4.30)–(4.32), we have⟨[
∂µS̃

imp
µR (x) +XgfR(x) +Xcc̄R(x) +H4(x)

]
φb
R(y)ψ̄

c
R(z)

⟩
= δ(x− y) 1√

2

⟨
P−ψ

b
R(y)ψ̄

c
R(z)

⟩
− δ(x− z) 1

4g

⟨
φb
R(y)σρσ

[
∂ρA

c
σR(z)− ∂σAc

ρR(z) +H′(z)
]⟩

+ δ(x− z)1
2
g
⟨
φb
R(y)γ5{f cdeφ†dφe}R(z)

⟩
+ δ(x− z) 1√

2

⟨
φb
R(y)γρ

[
P−∂ρφ

c
R(z)− P+∂ρφ

†c
R (z) +H′(z)

]⟩
− ∂xµδ(x− z)

1

2
√
2

⟨
φb
R(y)γµ

[
P−φ

c
R(z)− P+φ

†c
R (z)

]⟩
, (4.61)

and ⟨[
∂µS̃

imp
µR (x) +XgfR(x) +Xcc̄R(x) +H4(x)

]
φ†b
R (y)ψ̄c

R(z)
⟩

= −δ(x− y) 1√
2

⟨
P+ψ

b
R(y)ψ̄

c
R(z)

⟩
− δ(x− z) 1

4g

⟨
φ†b
R (y)σρσ

[
∂ρA

c
σR(z)− ∂σAc

ρR(z) +H′(z)
]⟩

+ δ(x− z)1
2
g
⟨
φ†b
R (y)γ5{f cdeφ†dφe}R(z)

⟩
+ δ(x− z) 1√

2

⟨
φ†b
R (y)γρ

[
P−∂ρφ

c
R(z)− P+∂ρφ

†c
R (z) +H′(z)

]⟩
− ∂xµδ(x− z)

1

2
√
2

⟨
φ†b
R (y)γµ

[
P−φ

c
R(z)− P+φ

†c
R (z)

]⟩
, (4.62)

and ⟨[
∂µS̃

imp
µR (x) +XgfR(x) +Xcc̄R(x) +H4(x)

]
ψ̄b
R(y)c

c
R(z)c̄

d
R(w)

⟩
= −δ(x− y) 1

4g

⟨
σρσ

[
∂ρA

b
σR(y)− ∂σAb

ρR(y) +H′(y)
]
ccR(z)c̄

d
R(w)

⟩
+ δ(x− y)1

2
g
⟨
γ5{f befφ†eφf}R(y)ccR(z)c̄dR(w)

⟩
+ δ(x− y) 1√

2

⟨
γρ

[
P−∂ρφ

c
R(y)− P+∂ρφ

†c
R (y) +H′(y)

]
ccR(z)c̄

d
R(w)

⟩
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− ∂xµδ(x− y)
1

2
√
2

⟨
γµ

[
P−φ

b
R(y)− P+φ

†b
R (y)

]
ccR(z)c̄

d
R(w)

⟩
. (4.63)

From the above SUSY WT identities, we can infer that the combination

∂µS̃
imp
µR +XgfR +Xcc̄R +H4 (4.64)

generates the correct SUSY transformations on renormalized elementary fields. Also in the on mass-
shell correlation functions with composite operators, this combination can be regarded to have a
proper normalization because no new UV divergences associated with the equal-point limit arises
in on mass-shell correlation functions.

Now we simplify the expression (4.64) by considering its insertion into the on mass-shell corre-
lation functions with gauge-invariant operators.

First, since the equations of motion hold within the on mass-shell correlation functions, Eq. (4.49)
reduces to

Xgf +Xcc̄ = XgfR +Xcc̄R +∆
(
∂µS̃

imp
µ +Xgf +Xcc̄

)
+H2. (4.65)

We further note that ∂µS̃
imp
µ +Xgf +Xcc̄ = 0 under tree-level equations of motion. Thus, to the

one-loop level,
Xgf +Xcc̄ = XgfR +Xcc̄R +H2. (4.66)

This combination, however, vanishes inside correlation functions with gauge-invariant operators,
because Xgf +Xcc̄ is BRS-exact according to Eq. (3.19). Then Eq. (4.64) can be replaced by

∂µS̃
imp
µR +H4 −H2

= ∂µ(S̃
imp
µR +H3µ). (4.67)

Since Eq. (4.51) shows that S̃imp
µ = S̃imp

µR +H3µ, the combination (4.64), when inserted in the on

mass-shell correlation functions of gauge-invariant operators, can be replaced by ∂µS̃
imp
µ .

The bottom line of the above analyses is that as far as the insertion in the on mass-shell
correlation functions of gauge-invariant operators is concerned, the bare supercurrents

S̃imp
µ , ¯̃Simp

µ (4.68)

are properly normalized.

4.4 Small flow-time expansion of the supercurrent

In the previous section, we have found that the correctly normalized supercurrent in the N = 2
SYM theory in the WZ gauge (under the dimensional regularization) is the bare supercurrent S̃imp

µ

itself. Our next (and final) task is to express this supercurrent in terms of the flowed fields. For this,
we again calculate the small flow-time expansion of relevant flowed operators. Unlike the case of
the N = 1 SYM theory in Sec 3.3, we do this without using the background field method, because
the tree-level propagators in the presence of the background scalar field are rather cumbersome; we
do calculations using flow Feynman diagrams.
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The flow equations in the present system are defined by

∂tB
a
µ(t, x) = Dab

ν G
b
νµ(t, x) + α0Dab

µ ∂νB
b
ν(t, x), Bµ(t = 0, x) = Aµ(x), (4.69)

∂tχ
a(t, x) = (DµDµ − α0∂µBµ)abχb(t, x), χa(t = 0, x) = ψa(x), (4.70)

∂tχ̄
a(t, x) = χ̄b(t, x)(

←−
Dµ
←−
Dµ + α0∂µBµ)ba, χ̄a(t = 0, x) = ψ̄(x), (4.71)

∂tϕ
a(t, x) = (DµDµ − α0∂µBµ)abϕb(t, x), ϕa(t = 0, x) = φa(x), (4.72)

∂tϕ
a†(t, x) = ϕb†(t, x)(

←−
Dµ
←−
Dµ + α0∂µBµ)ba, ϕa†(t = 0, x) = φa†(x), (4.73)

Dab
µ = δab∂µ + Babµ , (4.74)
←−
Dab

µ = δab
←−
∂ µ − Bab

µ , (4.75)

Babµ = facbBc
µ. (4.76)

The supercurrent S̃imp
µ contains the following composite operators:

1

g0
ψaF a

µν , (4.77)

ψaDµφ
a, (4.78)

ψaφa, (4.79)

ψaφ†a, (4.80)

g0f
abcψaϕb†ϕc. (4.81)

Similar to Chap. 3, we have to calculate the small flow-time expansion of the flowed version of these
operators

O1(t, x) =
1

g0
χa(t, x)Ga

µν(t, x), (4.82)

O2(t, x) = χa(t, x)Dµϕ
a(t, x), (4.83)

O3(t, x) = χa(t, x)ϕa(t, x) (4.84)

O4(t, x) = PO3(t, x) = χa(t, x)ϕ†a(t, x), (4.85)

O5(t, x) = g0f
abcχa(t, x)ϕ†b(t, x)ϕc(t, x), (4.86)

where P is the parity transformation defined in Appendix A. For this, we compute the expectation
values,

⟨Oi(t, x)Oex1(y1)Oex2(y2) . . .⟩, (i = 1, 2, 3), (4.87)

with all the possible un-flowed external fields Oex(y) in one-loop level. We do this by diagrammat-
ically. The rules for the flow Feynman diagram are summarized in Appendix B.

Taking O1(t, x) =
1
g0
χaGa

µν as the example, we illustrate the calculation of the small flow-time

expansion. We first consider the cases of the external fields, Oex1Oex2 = O(Aψ), O(AAψ). These
correlation functions in the one-loop level are already calculated in theN = 1 case and because there
is no one-loop diagram with a scalar propagator loop, the expansion coefficients in Eqs. (3.90)-(3.92)
for the N = 1 SYM can be used without change.
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Next, we have to consider the cases of the external fields containing the scalar field. The rele-
vant diagrams in the one-loop level are A01–A06 in Appendix D. Two diagrams, A01 and A02 con-
tribute to the correlation functions of the form, ⟨O1(t, x)Oex1(y)Oex2(z)⟩, where Oex1(y)Oex2(z) =
O(ψφ). The remaining four diagrams A03–A06 give rise to ⟨O1(t, x)Oex1(y1)Oex2(y2)Oex3(y3)⟩,
where Oex1(y1)Oex2(y2)Oex3(y3) = O(Aψφ), O(ψφφ†). According to the Feynman rules in Ap-
pendix B, we can explicitly calculate the small flow-time expansion of diagrams A01–A06. Combin-
ing Eqs. (3.90)-(3.92) and somewhat lengthy calculation of A01–A06, we obtain the small flow-time
expansion of χaGa

µν ,

1

g0
χa(t, x)Ga

µν(t, x)

=

[
1 +

−2
D − 4

ξ(t)

]
1

g0
ψa(x)F a

µν(x)

+ ξ(t)

{
2

(D − 4)(D − 2)

1

g0

[
γµγρψ

a(x)F a
ρν(x)− γνγρψa(x)F a

ρµ(x)
]

+
4

(D − 4)(D − 2)D

1

g0
σρσσµνψ

a(x)F a
ρσ(x)

}
+ ξ(t)

√
2

{
4

(D − 4)(D − 2)D
γργµγν

[
P+ψ

a(x)Dρφ
a(x)− P−ψ

a(x)Dρφ
†a(x)

]
+

−2
(D − 2)D

γν
[
P+ψ

a(x)Dµφ
a(x)− P−ψ

a(x)Dµφ
†a(x)

]
+

−2
(D − 4)(D − 2)

γν
[
P+Dµψ

a(x)φa(x)− P−Dµψ
a(x)φ†a(x)

]
+

2(D + 4)

(D − 2)D(D + 2)
γνγ5Dµψ

a(x)
[
φa(x) + φ†a(x)

]
+

2

(D − 2)(D + 2)
γνγ5ψ

a(x)Dµ

[
φa(x) + φ†a(x)

]}
− (µ↔ ν)

+ ξ(t)
8

(D − 4)(D − 2)D
g0f

abcσµνγ5ψ
a(x)φ†b(x)φc(x) +O(t), (4.88)

where ξ(t) ≡ g2
0

(4π)2C2(G)(8πt)
2−D/2.

A similar calculation on χaDµϕ
a yields

χa(t, x)Dµϕ
a(t, x)

=

[
1 +

2(D − 1)

(D − 4)(D − 2)
ξ(t)

]
ψa(x)Dµφ

a(x)

+ ξ(t)

{
2

(D − 4)(D − 2)
σµνψ

a(x)Dνφ
a(x)

+
2(D − 1)

(D − 4)D
Dµψ

a(x)φa(x)

+
−2

(D − 4)D
σµνDνψ

a(x)φa(x)

}
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+ ξ(t)

{
4

(D − 4)D
P−ψ

a(x)Dµφ
a(x)

+
8

(D − 4)(D − 2)D
σµνP−ψ

a(x)Dνφ
a(x)

+
4

(D − 4)(D − 2)
P−Dµψ

a(x)φa(x)

+
−4

(D − 2)(D + 2)
P−ψ

a(x)Dµ

[
φa(x) + φ†a(x)

]
+

−4(D + 4)

(D − 2)D(D + 2)
P−Dµψ

a(x)
[
φa(x) + φ†a(x)

]}
+ ξ(t)

√
2

{
−2

(D − 4)(D − 2)D

1

g0
γµσρσP−ψ

a(x)F a
ρσ(x)

+
8

(D − 4)(D − 2)D

1

g0
γνP−ψ

a(x)F a
µν(x)

+
−2(D + 4)

(D − 4)(D − 2)D
g0f

abcγµP−ψ
a(x)φ†b(x)φc(x)

+
−2

(D − 2)D
g0f

abcγµγ5ψ
a(x)φ†b(x)φc(x)

}
+O(t), (4.89)

where diagrams B01–B20 and C01–C07 in Appendix D are relevant.
The flow Feynman diagrams, B01, B04, B06, B10, and B12, give rise to

χa(t, x)ϕa(t, x) =

[
1 +

4(D − 1)

(D − 4)(D − 2)
ξ(t)

]
ψa(x)φa(x)

+ ξ(t)

{
8

(D − 4)(D − 2)
P−ψ

a(x)φa(x)

+
−8

(D − 2)D
P−ψ

a(x)
[
φa(x) + φ†a(x)

]}
+O(t). (4.90)

Applying the parity transformations in Appendix A, we have

χa(t, x)ϕ†a(t, x) =

[
1 +

4(D − 1)

(D − 4)(D − 2)
ξ(t)

]
ψa(x)φ†a(x)

+ ξ(t)

{
8

(D − 4)(D − 2)
P+ψ

a(x)φ†a(x)

+
−8

(D − 2)D
P+ψ

a(x)
[
φa(x) + φ†a(x)

]}
+O(t). (4.91)

Finally, for g0f
abcχaϕ†bϕc, from the diagrams D01–D11,

g0f
abcχa(t, x)ϕ†b(t, x)ϕc(t, x)

=

[
1 +

2(3D2 − 6D − 8)

(D − 4)(D − 2)D
ξ(t)

]
g0f

abcψa(x)φ†b(x)φc(x)

+ ξ(t)
√
2

2

(D − 4)(D − 2)
γµ
[
P+Dµψ

a(x)φa(x) + P−Dµψ
a(x)φ†a(x)

]
+O(t). (4.92)
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We now have the small flow-time expansion for all the flowed operators relevant to the representation
of the supercurrent.

By inverting the above relations on the un-flowed composite operators, we obtain the operators
in the supercurrent in terms of the flowed fields. For example, Eq. (4.90) gives

ψa(x)φa(x) =

[
1 +

−4(D − 1)

(D − 4)(D − 2)
ξ(t)

]
χa(t, x)ϕa(t, x)

+ ξ(t)

{
−8

(D − 4)(D − 2)
P−χ

a(t, x)ϕa(t, x)

+
8

(D − 2)D
P−χ

a(t, x)
[
ϕa(t, x) + ϕ†a(t, x)

]}
+O(t). (4.93)

The flowed gaugino field and the flowed scalar field in these expressions, however, require the wave
function renormalization [15]). We thus express these field by the UV-finite ringed gaugino field
and the scalar field. The relations between the original flowed fields and the ringed fields are shown
in Appendix C.

Finally, by substituting the composite operators in the supercurrent by flowed operators and
re-express it in terms of the ringed flowed fields and the renormalized gauge coupling, we have

S̃imp
µ

=

{
1 +

g2

(4π)2
C2(G)

[
− ln(8πµ2t)− 9

4
+

1

2
ln(432)

]}(
− 1

4g

)
σρσγµχ̊

aGa
ρσ

− g

(4π)2
C2(G)γν χ̊

aGa
νµ

+

{
1 +

g2

(4π)2
C2(G)

[
−19

4
+ 4 ln 2 +

1

2
ln(432)

]}
× 1

2
√
2

(
1

3
σµν − δµν

)
(P+Dν χ̊

aϕ̊a − P−Dν χ̊
aϕ̊†a)

− 3√
2

g2

(4π)2
C2(G)(P+Dµχ̊

aϕ̊a − P−Dµχ̊
aϕ̊†a)

+

{
1 +

g2

(4π)2
C2(G)

[
1

2
+ 4 ln 2 +

1

2
ln(432)

]}
×
(
− 1√

2

)(
1

3
σµν − δµν

)
(P+χ̊

aDν ϕ̊
a − P−χ̊

aDν ϕ̊
†a)

+
1√
2

g2

(4π)2
C2(G)

(
1

3
σµν − δµν

)
γ5Dν χ̊

a(ϕ̊a + ϕ̊†a)

+
1

2
√
2

g2

(4π)2
C2(G)

(
1

3
σµν − δµν

)
γ5χ̊

aDν(ϕ̊
a + ϕ̊†a)

− 1

4

g3

(4π)2
C2(G)f

abcγ5γµχ̊
aϕ̊†bϕ̊c +O(t). (4.94)

The conjugate of the supercurrent ˜̄Simp
µ can be obtained from the charge conjugation S̃imp

µ →
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C( ˜̄Simp
µ )T as

˜̄Simp
µ

=

{
1 +

g2

(4π)2
C2(G)

[
− ln(8πµ2t)− 9

4
+

1

2
ln(432)

]}(
− 1

4g

)
˚̄χaγµσρσG

a
ρσ

+
g

(4π)2
C2(G)˚̄χ

aγνG
a
νµ

+

{
1 +

g2

(4π)2
C2(G)

[
−19

4
+ 4 ln 2 +

1

2
ln(432)

]}
×
(
− 1

2
√
2

)
(Dν˚̄χ

aP+ϕ̊
a −Dν˚̄χ

aP−ϕ̊
†a)

(
1

3
σνµ − δνµ

)
+

3√
2

g2

(4π)2
C2(G)(Dµ˚̄χ

aP+ϕ̊
a −Dµ˚̄χ

aP−ϕ̊
†a)

+

{
1 +

g2

(4π)2
C2(G)

[
1

2
+ 4 ln 2 +

1

2
ln(432)

]}
× 1√

2
(P+˚̄χ

aDν ϕ̊
a − P−˚̄χ

aDν ϕ̊
†a)

(
1

3
σνµ − δνµ

)
− 1√

2

g2

(4π)2
C2(G)Dν˚̄χ

aγ5(ϕ̊
a + ϕ̊†a)

(
1

3
σνµ − δνµ

)
− 1

2
√
2

g2

(4π)2
C2(G)˚̄χ

aγ5Dν(ϕ̊
a + ϕ̊†a)

(
1

3
σνµ − δνµ

)
+

1

4

g3

(4π)2
C2(G)f

abc˚̄χaγµγ5ϕ̊
†bϕ̊c +O(t). (4.95)

These are our main results on the supercurrents in the 4D N = 2 SYM. Expressed only in
(ringed) flow fields and the renormalized coupling, these are manifestly UV finite as they should be
(as the Noether current operators). Thus these expressions are regularization independent. Since
both sides of Eqs. (4.94) and (4.95) are independent of the renormalization scale µ, we can set it
arbitrary. Taking µ = 1/

√
8t, both the higher loop corrections and the last O(t) terms can be

neglected in the limit t→ 0 since the theory is asymptotic free (the beta function in N = 2 SYM to
all orders in perturbation theory β(g) ≡ 1

µ
∂
∂µg(µ) = −2g

3C2(G)/(4π)
2 (Refs. [56, 57, 58, 59, 60])).



Chapter 5

Conclusion

In this thesis, we constructed a regularization-independent expression for the supercurrent (the
Noether current associated with supersymmetry) in the four-dimensional N = 1 and N = 2 super-
symmetric Yang–Mills theories by employing the gradient flow. Our primary motivation for this
study is possible non-perturbative analyses of supersymmetric gauge theories by lattice numerical
simulations in the future. For numerical simulations the field contents in the so-called Wess–Zumino
(WZ) gauge should be advantageous. So we adopted this WZ gauge. With this WZ gauge, however,
the SUSY transformation becomes non-linear. Elements in our (perturbative) analysis, the dimen-
sional regularization, the gauge fixing and the Faddeev–Popov ghost terms, break supersymmetry.
For this reason, first of all, we had to find a correct expression of the supercurrent (under the
dimensional regularization). Through a rather lengthy analysis at the one-loop level, we found the
expression of a properly-normalized supercurrent at the one-loop level that works within on-mass-
shell correlation functions with gauge invariant operators. We then express this in terms of field
variables obtained by flow equations by using the small flow-time expansion. The resulting expres-
sions are manifestly UV finite as should be for Noether current operators. In the small flow-time
limit, the expression is expected to be exact, providing a regularization-independent representation
of the supercurrent. Since this representation is regularization independent, this can also be used
with lattice regularization. We believe that a priori knowledge on the properly-normalized super-
current will be quite useful in future lattice numerical simulations of supersymmetric gauge theories
because the conservation of this current can be used the parameter tuning toward the supersymmet-
ric point. Also, it must be interesting to generalize our construction to more general supersymmetric
models which include matter multiplets. It must be also interesting to give a further understanding
on the mechanism behind the UV finiteness of the gradient flow. A consideration on the possible
relationship between the gradient low and the Wilsonian renormalization group [61, 62] may give a
clue on this issue.
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Appendix A

Notation

Throughout the thesis, we adopt the following notational conventions.
We always assume the natural system of units in which c = ℏ = 1.
Repeated indices are always summed over with µ = 0, 1, 2, 3. When we are considering the

Euclidean spacetime, the upper and lower Lorentz indices are not distinguished.
The generators of the algebra of the gauge group G are all anti -Hermitian:[

T a, T b
]
= fabcT c, (A.1)

and the Dynkin index T (R) and the Casimir C2(R) are defined by

tr(T aT b) = −T (R)δab, (A.2)

T aT a = −C2(R)1. (A.3)

In particular, for the adjoint representation A, the generator is (T a
A)bc = −fabc and for G = SU(N),

T (A) = C2(A) = C2(G) = N, (A.4)

i.e., fabcfdbc = C2(G)δ
ad. We note the identity,

f cXafaY bf bZc = −1

2
C2(G)f

XY Z . (A.5)

This follows from a consideration of tr(T a
AT

b
AT

c
A).

The gamma matrices obey {γµ, γν} = 2δµν , and all the gamma matrices are Hermitian. The
trace over the spinor indices is set tr(1) = 4 even under the dimensional regularization D = 4− 2ϵ.

For fields in the adjoint representation, ϕa(x), we also use the notation ϕ(x) = ϕaT a. The
covariant derivative for ϕ and for ϕa are thus defined respectively by

Dµ = ∂µ + [Aµ, ·], (A.6)

Dab
µ = δab∂µ +Ac

µf
acb

= δab∂µ +Aab
µ . (A.7)

The abbreviation Dµϕ
a = Dab

µ ϕ
b is also used.
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We define the chiral matrix and the chiral projections for any D = 4− 2ϵ by,

γ5 ≡ γ0γ1γ2γ3, P± ≡
1

2
(1± γ5). (A.8)

Then we have

tr(γ5γµγνγργσ) =

{
4ϵµνρσ, µ, ν, ρ, σ ∈ {0, 1, 2, 3},
0, otherwise,

(A.9)

where the totally anti-symmetric tensor is normalized as ϵ0123 = 1. We also use the definition

σµν ≡
1

2
[γµ, γν ]. (A.10)

The charge conjugation matrix C satisfies

C−1γµC = −γTµ , (A.11)

and thus
C−1σµνC = −σT

µν , C−1γ5C = γT5 . (A.12)

The charge conjugation transformation for fields is defined by

ψ(x)→ Cψ̄T (x), ψ̄(x)→ −ψT (x)C−1, (A.13)

Aµ(x)→ Aµ(x), (A.14)

φ(x)→ −φ(x), φ†(x)→ −φ†(x), (A.15)

c(x)→ c(x), c̄(x)→ c̄(x). (A.16)

The charge conjugation on the flowed fields is defined similarly.
The parity conjugations for the fields are, on the other hand, defined by

ψ(x)→ γ0ψ(x̃), ψ̄(x)→ ψ̄(x̃)γ0, (A.17)

A0(x)→ A0(x̃), Ai(x)→ −Ai(x̃), (A.18)

φ(x)→ −φ†(x̃), φ†(x)→ −φ(x̃), (A.19)

c(x)→ c(x̃), c̄(x)→ c̄(x̃), (A.20)

where the i denotes the spatial directions and x̃ ≡ (x0,−xi). The parity transformation on the
flowed fields is defined similarly.



Appendix B

Flow Feynman rules in the
N = 2 SYM

In Chap. 4, we consider the calculation of the flow Feynman diagrams in Appendix D. Here, we
summarize the required flow Feynman rules.

The flow equations for the fields are defined by

∂tB
a
µ(t, x) = DνGνµ(t, x) + α0Dµ∂νBν(t, x), Bµ(t = 0, x) = Aµ(x), (B.1)

∂tχ
a(t, x) = (DµDµ − α0∂µBµ)abχb(t, x), χa(t = 0, x) = ψa(x), (B.2)

∂tχ̄
a(t, x) = χ̄b(t, x)(

←−
Dµ
←−
Dµ + α0∂µBµ)ba, χ̄a(t = 0, x) = ψ̄(x), (B.3)

∂tϕ
a(t, x) = (DµDµ − α0∂µBµ)abϕb(t, x), ϕa(t = 0, x) = φa(x), (B.4)

∂tϕ
a†(t, x) = ϕb†(t, x)(

←−
Dµ
←−
Dµ + α0∂µBµ)ba, ϕa†(t = 0, x) = φa†(x), (B.5)

(Dµ)
ab ≡ δab∂µ +Bc

µf
acb = δab∂µ + Babµ (B.6)

(
←−
Dµ)

ba ≡ δba
←−
∂ µ +Bc

µf
bac = δba

←−
∂ µ − Bcµf bca, (B.7)

where α0 is a constant that can be chosen arbitrarily as far as gauge-invariant observables are
concerned (see Chap. 2).

With the choice α0 = 1, the exact solutions to the flow equations are

Ba
µ(t, x) =

∫
dDy

[
Kt(x− y)Aa

µ(y) +

∫ t

0

dsKt−s(x− y)Ra
µ(s, y)

]
(B.8)

χa(t, x) =

∫
dDy

[
Kt(x− y)ψa(y) +

∫ t

0

dsKt−s(x− y)∆′ac(s, y)χc(s, y)

]
, (B.9)

χ̄a(t, x) =

∫
dDy

[
Kt(x− y)ψ̄a(y) +

∫ t

0

dsKt−s(x− y)χ̄c(s, y)∆̄′ca(s, y)

]
, (B.10)

ϕa(t, x) =

∫
dDy

[
Kt(x− y)φa(y) +

∫ t

0

dsKt−s(x− y)∆′ac(s, y)ϕc(s, y)

]
, (B.11)

ϕa†(t, x) =

∫
dDy

[
Kt(x− y)φa†(y) +

∫ t

0

dsKt−s(x− y)∆′ac(s, y)ϕc†(s, y)

]
, (B.12)
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where the heat kernel Kt(x) and the non-linear terms of the flow equations Ra
µ(t, x), ∆

′ac(t, x),

∆̄′ac(t, x) are defined by

Kt(x) =

∫
dDp

(2π)D
eipxe−tp2

, (B.13)

Ra
µ(t, x) ≡ 2fabcBb

ν(t, x)∂νB
c
µ(t, x)− fabcBb

ν(t, x)∂µB
c
ν(t, x),

+ (α0 − 1)fabcBb
µ(t, x)∂νB

c
ν(t, x) + fabcf cdeBb

ν(t, x)B
d
ν(t, x)B

e
µ(t, x) (B.14)

∆′ac(t, x) ≡ 2fabcBb
µ(t, x)∂µ + fabefedcBb

µ(t, x)B
d
µ(t, x), (B.15)

∆̄′ca(t, x) ≡ −2f cba
←−
∂µB

b
µ + f cdbf beaBd

µB
e
µ. (B.16)

The non-linear terms Ra
µ(t, x), ∆

′ab(t, x), ∆̄′ab(t, x), are represented by following flow vertices:

• BµBνχ three-point vertex∫
dDy

∫ t

0
dsKt−s(x− y)2fabcBb

µ(s, y)χ
c(s, y),

• BµBνBρχ four-point vertex∫
dDy

∫ t

0
dsKt−s(x− y)fabcfedcBb

µ(s, y)B
d
µ(s, y)χ

c(s, y)

• BµBνϕ three-point vertex∫
dDy

∫ t

0
dsKt−s(x− y)2fabcBb

µ(s, y)ϕ
c(s, y),

• BµBνBρϕ four-point vertex∫
dDy

∫ t

0
dsKt−s(x− y)fabcfedcBb

µ(s, y)B
d
µ(s, y)ϕ

c(s, y)

• BµBνBρ three-point vertex∫
dDy

∫ t

0
dsKt−s(x− y)

(
2fabcBb

ν(s, y)∂νB
c
µ(s, y)− fabcBb

ν(s, y)∂µB
c
ν(s, y)

)
• BµBνBρBσ four-point vertex∫

dDy
∫ t

0
dsKt−s(x− y)fabcf cdeBb

ν(s, y)B
d
ν(s, y)B

e
µ(s, y)

These flow vertices are denoted by white blobs in figures in Appendix D.
For the flow lines (i.e., the heat kernels), we use doubled lines in figures in Appendix D; this

convention differs from that in Chap. 2. The flow propagators are denoted by single lines
Besides flow vertices, ordinary vertices come from the original N = 2 SYM action with the
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gauge fixing and the ghost terms

S = SN=2SYM + Sgf + Scc̄, (B.17)

SN=2SYM =

∫
dDx

[
1

4g20
F a
µν(x)F

a
µν(x) + ψ̄a(x) /D

ab
ψb(x)

+Dµφ
†a(x)Dµφ

a(x)− 1

2
g20f

abcfadeφ†b(x)φc(x)φ†d(x)φe(x)

+
√
2g0f

abcψ̄a(x)
(
P+φ

b(x)− P−φ
†b(x)

)
ψc(x)

]
, (B.18)

Sgf =
λ0
2g20

∫
dDx ∂µA

a
µ(x)∂νA

a
ν(x), (B.19)

Scc̄ = −
1

g20

∫
dDx c̄a(x)∂µDµc

a(x). (B.20)

Vertices that can be read off from this action are listed below.

• gauge field three-point vertex
− 1

g2
0

∫
dDx fabc∂αA

a
β(x)A

b
α(x)A

c
β(x)

• gauge field four-point vertex
− 1

4g2
0

∫
dDx fabcfadeAb

α(x)A
d
α(x)A

c
β(x)A

e
β(x)

• gauge-gaugino-gaugino three-point vertex
-
∫
dDx fabcψ̄a(x)Ab

α(x)γαψ
c(x)

• scalar-gaugino-gaugino three-point vertex (Yukawa interaction)
-
√
2g0

∫
dDx fabcψ̄a(x)(P+φ

b(x)− P−φ
b†(x))ψc(x)

• scalar-gauge-gauge three-point vertex
−
∫
dDx fabc∂αφ

a†(x)Ab
α(x)φ

c(x) + h.c.

• scalar-gauge-gauge-gauge four-point vertex
-
∫
dDx fabcfadeAb

α(x)A
d
α(x)φ

c†(x)φe(x)

• scalar field four-point vertex
+ 1

2g
2
0

∫
dDx fabcfadeφb†(x)φc(x)φd†(x)φe(x)

• gauge-ghost-ghost three-point vertex
+ 1

g2
0

∫
dDx fabcc̄a(x)∂α

(
Ab

α(x)c
c(x)

)
These vertices are denoted by black blobs in figures in Appendix D. Here, operators at the vertices
are multiplied by a minus sign, because we consider the functional integral with the weight e−S .

The tree-level propagators that connects the above vertices and external fields are (in the Feyn-
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man gauge, λ0 = 1),

⟨
Ba

µ(t, x)B
b
ν(s, y)

⟩
0
= δabδµν

∫
dDp

(2π)

e−(t+s)p2

p2
eip(x−y), (B.21)

⟨
χa(t, x)χ̄b(s, y)

⟩
0
= δab

∫
dDp

(2π)

e−(t+s)p2

i/p
eip(x−y), (B.22)

⟨
ϕa(t, x)ϕb†(s, y)

⟩
0
= δab

∫
dDp

(2π)

e−(t+s)p2

p2
eip(x−y). (B.23)

In Chap. 4, we calculate flow Feynman diagrams in Appendix D by employing the above Feyn-
man rules. For this, we need the integration formulas in Appendix E.



Appendix C

The ringed flow fields

Unlike the gauge field, the fermion and the scalar fields require the wave function renormalization
even after the flow [15]. The required renormalization factors are regularization-dependent and not
quite convenient for our purpose of a universal representation of composite operators. To avoid
this, we introduce the following “ringed fields”. For the flowed fermion fields, the ringed fields are
defined by [19],

χ̊(t, x) ≡

√√√√ −2 dim(G)

(4π)2t2
⟨
χ̄a(t, x)

←→
/Dχa(t, x)

⟩ χ(t, x), (C.1)

˚̄χ(t, x) ≡

√√√√ −2 dim(G)

(4π)2t2
⟨
χ̄a(t, x)

←→
/Dχa(t, x)

⟩ χ̄(t, x), (C.2)

where
←→
D µ ≡ Dµ−

←−
Dµ. The factor

⟨
χ̄a(t, x)

←→
/Dχa(t, x)

⟩
in the denominator cancels the wave func-

tion renormalization factor of χ and χ̄ and makes χ̊, ˚̄χUV finite. The correlator
⟨
χ̄a(t, x)

←→
/Dχa(t, x)

⟩
in dimensional regularization D = 4− 2ϵ in one-loop level is calculated as [19]⟨

χ̄a(t, x)
←→
/Dχa(t, x)

⟩
=
−2 dim(G)

(4π)2t2

{
(8πt)ϵ +

g20
(4π)2

C2(G)

[
−4

ϵ
− 8 ln(8πt)− 3

2
+ ln(432)

]}
. (C.3)

Similarly, for the flowed scalar field, the ringed variable is defined by [20]

ϕ̊(t, x) ≡

√
dim(G)

2(4π)2t ⟨ϕ†a(t, x)ϕa(t, x)⟩
ϕ(t, x), (C.4)

ϕ̊†(t, x) ≡

√
dim(G)

2(4π)2t ⟨ϕ†a(t, x)ϕa(t, x)⟩
ϕ†(t, x). (C.5)

The denominator
⟨
ϕ†a(t, x)ϕa(t, x)

⟩
in dimensional regularization in one-loop level is obtained from

calculation of diagrams E01–E07 in Appendix D. The results are summarized in Table C.1. These
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Table C.1: Contribution of E01–E07 to
⟨
ϕ†a(t, x)ϕa(t, x)

⟩
in units of dim(G)

2(4π)2t
g2
0

(4π)2C2(G).

Diagram

E01 1
C2(G)

E02
2

ϵ
+ 4 ln(8πt) + 6

E03
2

ϵ
+ 4 ln(8πt) + 6

E04 −2− 4 ln 2 + 6 ln 3

E05 12 ln 2− 6 ln 3

E06 −4

ϵ
− 8 ln(8πt)− 6

E07 −2

ϵ
− 4 ln(8πt)− 7

yield ⟨
ϕ†a(t, x)ϕa(t, x)

⟩
=

dim(G)

2(4π)2t

{
1

1− ϵ
(8πt)ϵ +

g20
(4π)2

C2(G)

[
−2

ϵ
− 4 ln(8πt)− 3 + 8 ln 2

]}
.. (C.6)

In the calculation of the two loop diagrams in E01–E07 in the D-dimensional spacetime, we
sometimes encounter the Feynman parameter integrals that cannot be calculated analytically; we
need some trick. For example, in the calculation of the diagram E03, we have following integrations:

4C2(G)dim(G)g20 ×
2

(4π)D(D − 2)

×
∫ t

0

ds

∫ ∞

0

du
[(2t− s)(s+ u) + (s+ u)s+ s(2t− s)]1−D/2

2s+ u
(C.7)

and

2C2(G)dim(G)g20 ×
2

(4π)D(D − 2)

×
∫ t

0

ds

∫ ∞

0

du
[(2t− s)(s+ u) + (s+ u)s+ s(2t− s)]1−D/2

2t+ u
. (C.8)

First, we re-scale the integration variables so that the structure of possible divergences becomes
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manifest: Equation (C.7) becomes

4C2(G)dim(G)g20 ×
2

(4π)D(D − 2)

×
∫ 1

0

ds

∫ ∞

0

du t3−Ds1−D/2 [(2− s)(1 + u) + (1 + u)s+ (2− s)]1−D/2

2 + u
(C.9)

and while Eq. (C.8) becomes

2C2(G)dim(G)g20 ×
2

(4π)D(D − 2)

×
∫ 1

0

ds

∫ ∞

0

du t3−Ds2−D/2 [(2− s)(1 + u) + (1 + u)s+ (2− s)]1−D/2

2 + su
. (C.10)

For the first integral, we see that it diverges as D → 4 at s = 0. Since the integral for any D
cannot be computed analytically, we proceed as follows: First, we “model” the singularity in the
integrand f(s, u) by a simpler function g(s, u) such that whose integral can be computed exactly
for and D while the integral of the difference f(s, u)− g(s, u) is finite for D → 4. We can choose

g(s, u) = t3−Ds1−D/2 [2(1 + u) + 2]1−D/2

2 + u
. (C.11)

Then, the integral of g(s, u) for D = 4− 2ϵ is

1

(4π)4
1

4t

[
1

ϵ
+ 2 + 2 ln(8πt)

]
, (C.12)

while the finite integration of the difference f(s, u)− g(s, u) in D = 4 can be computed as∫ 1

0

ds

∫ ∞

0

du t3−Ds1−D/2 [(2− s)(1 + u) + (1 + u)s+ (2− s)]1−D/2

2 + u

−
∫ 1

0

ds

∫ ∞

0

du t3−Ds1−D/2 [2(1 + u) + 2]1−D/2

2 + u

if D=4
=

1

(4π)4
1

4t
(1− 6 ln 2 + 3 ln 3). (C.13)

In this way, Eq. (C.7) is evaluated as

4C2(G)dim(G)g20 ×
2

(4π)D(D − 2)

×
∫ 1

0

ds

∫ ∞

0

du t3−Ds1−D/2 [(2− s)(1 + u) + (1 + u)s+ (2− s)]1−D/2

2 + u

= 4C2(G)dim(G)g20

[
1

(4π)4
1

4t
(1− 6 ln 2 + 3 ln 3) +

1

(4π)4
1

4t

[
1

ϵ
+ 2 + 2 ln(8πt)

]]
= C2(G)dim(G)g20

1

(4π)4
1

t

[
1

ϵ
+ 2 ln(8πt) + 3− 6 ln 2 + 3 ln 3

]
. (C.14)
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On the other hand, Eq. (C.8) does not diverge at s = 0 for D → 4 and we can set D = 4 to
yield ∫ 1

0

ds

∫ ∞

0

du t3−Ds2−D/2 [(2− s)(1 + u) + (1 + u)s+ (2− s)]1−D/2

2 + su

if D=4
=

1

2t
(6 ln 2− 3 ln 3). (C.15)

Therefore, Eq. (C.8) is

2C2(G)dim(G)g20 ×
2

(4π)D(D − 2)

×
∫ 1

0

ds

∫ ∞

0

du t3−Ds2−D/2 [(2− s)(1 + u) + (1 + u)s+ (2− s)]1−D/2

2 + su

if D=4
= C2(G)dim(G)g20

1

(4π)4
1

t
(6 ln 2− 3 ln 3) +O(ϵ). (C.16)

Summing these two results, the contribution of the diagram E03 is given by

C2(G)dim(G)g20
1

(4π)4
1

t

[
1

ϵ
+ 2 ln(8πt) + 3

]
. (C.17)

Other entries in the table C.1 can be obtained in a similar way,



Appendix D

(Flow) Feynman diagrams with
scalar fields

In this Appendix, we present the Feynman diagrams which are necessary in the computations
in Chap. 4. The Feynman rules for drawing and calculating these diagrams are summarized in Ap-
pendix B. The ordinary vertices are denoted by black blobs and the flow vertices are denoted by
white blobs. The wavy lines and the straight arrowed lines indicate the flow propagators for the
gauge field and the fermion field, respectively. The broken lines represent the flow propagator for
the scalar field. The doubled wavy lines, the doubled straight arrowed lines, and the doubled broken
lines indicate the heat kernels for the gauge, the fermion, and the scalar fields, respectively. The
x-marks represent composite operators under consideration.

(a) A01 (b) A02

Figure D.1

60
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(a) A03 (b) A04 (c) A05 (d) A06

Figure D.2

(a) B01 (b) B02 (c) B03 (d) B04

(e) B05 (f) B06 (g) B07 (h) B08

(i) B09 (j) B10 (k) B11 (l) B12

(m) B13 (n) B14 (o) B15

Figure D.3
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(a) B16 (b) B17 (c) B18 (d) B19

(e) B20

Figure D.4

(a) C01 (b) C02 (c) C03 (d) C04

(e) C05

Figure D.5
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(a) C06 (b) C07

Figure D.6

(a) D01 (b) D02 (c) D03

Figure D.7

(a) D04 (b) D05 (c) D06 (d) D07

(e) D08 (f) D09 (g) D10 (h) D11

Figure D.8



APPENDIX D. (FLOW) FEYNMAN DIAGRAMS WITH SCALAR FIELDS 64

(a) E01 (b) E02 (c) E03 (d) E04

(e) E05

(f) E06

(g) E07

Figure D.9



Appendix E

Integration formulas

In this Appendix, we list some integration formulas that are used in the calculations of the flowed

Feynman diagrams. Note our abbreviation,
∫
p
≡
∫

dDp
(2π)D

for the momentum integration.

∫
l

e−sl2 =
1

s2
1

(4π)2
(4πs)2−D/2, (E.1)∫

l

e−sl2 1

l2
=

1

s

1

(4π)2
2

D − 2
(4πs)2−D/2, (E.2)∫

l

e−sl2 1

(l2)2
=

1

(4π)2
4

(D − 2)(D − 4)
(4πs)2−D/2, (E.3)∫

l

e−sl2 lµlν =
1

2
sδµν

1

(4π)2
(4πs)−D/2−2, (E.4)∫

l

e−sl2 lµlν lρlσ =
1

4
(δµνδρσ + δµρδνσ + δµσδνρ)

1

(4π)2
(4πs)−D/2−2. (E.5)

The first one is just the D dimensional Gaussian integration. The following two are obtained by
integrating Eq. (E.1) by s. For the last two follow from∫

l

f(l2)lµlν =
1

D

∫
l

f(l2)l2δµν , (E.6)∫
l

f(l2)lµlν lρlσ =
1

D(D + 2)

∫
l

f(l2)l2(δµνδρσ + δµρδνσ + δµσδνρ). (E.7)

We have also used the following double integration formula in the calculation of the two-loop
diagrams in Appendix C∫

k

∫
l

e−sk2−ul2−v(k+l)2

k2
=

1

(4π)D(D/2− 1)(u+ v)
(su+ uv + vs)1−D/2. (E.8)
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[14] M. Lüscher and P. Weisz, JHEP 1102, 051 (2011) doi:10.1007/JHEP02(2011)051
[arXiv:1101.0963 [hep-th]].
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