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Abstract
We introduce weighted moving vectors to increase the accuracy of estimating a convergence point of population and evaluate
its efficiency. Key point is to weight moving vectors according to their reliability when a convergence point is calculated
instead of equal weighting of the original method. We propose two different methods to evaluate the reliability of moving
vectors. The first approach uses the fitness gradient information between starting points and terminal points of moving vectors
for their weights. When a fitness gradient is bigger, the direction of a moving vector may have more potential, and a higher
weight is given to it. The second one uses the fitness of parents, i.e., starting points of moving vectors, to give weights for
moving vectors. Because an individual with higher fitness may have a high probability of being close to the optimal area, it
should be given a higher weight, vice versa. If the estimated point is better than the worst individual in current population, it
is used as an elite individual and replace the worst one to accelerate the convergence of evolutionary algorithms. To evaluate
the performance of our proposal, we employ differential evolution and particle swarm optimization as baseline algorithms in
our evaluation experiments and run them on 28 benchmark functions from CEC 2013. The experimental results confirmed
that introducing weights can further improve the accuracy of an estimated convergence point, which helps to make EC search
faster. Finally, some open topics are given to discuss.
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Introduction

Evolutionary computation (EC) algorithms are a form of
population-based optimization techniques and repeatedly
simulate survival of the fittest and natural selection to
find the global optima. They have been widely researched
and successfully applied both in academia and industry
thanks to their many outstanding features, such as robust-
ness, intelligence, usability, parallelism, and others. As the
complexity, including nonlinearity, non-convexity, and non-
differentiability, of real-world problems has increased, the
demand for high-performance EC algorithms is also grow-
ing rapidly.

Many metaphor-based EC algorithms but with similar
optimization frameworks have been proposed, such as differ-
ential evolution (DE) [1], particle swarm optimization (PSO)
[2], and bat algorithm [3]. Besides, some practitioners try
to develop new efficient mechanisms to enhance the perfor-
mance of existing EC algorithms. In the case of DE, Yu et
al. introduced two competitive strategies to generate more
potential offspring individuals and accelerate the elimina-
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tion of poor individuals to accelerate its convergence [4].
As the literature [5] criticizes, they lack essential innovation
and even misguide the development of EC community. We
introduce a deterministic weight-based estimation method to
accelerate meta-heuristic-based EC algorithms from a new
perspective.

Evolutionary path contains lots of information, e.g., an
evolutionary direction and local fitness landscape informa-
tion, which can be fully used to guide evolution well. Murata
et al. first proposed that a mathematical method could be
used to calculate the global optimum using the information
of two subsequent generations [6]. In this paper, we call vec-
tors from parent individuals to their offspring in the next EC
search generation (or the vector pointing from worse fitness
individuals to higher fitness individuals) as moving vectors.
We extended this basic method for estimating a convergence
point to bipolar optimization tasks by applying a developed
separation method for moving vectors [7]. We combined our
proposed estimationmethod to bipolar taskswithDE, and the
experimental results confirmed that it could accelerate con-
vergence [8]. Besides, we introduced an individual pool to
increase the precision of an estimated convergence point by
using individual information from past generations [9]. We
also applied the basic estimation method to multi-objective
tasks to speed up the construction of Pareto optimality [10]
and investigated the feasibility of using an estimated con-
vergence point to accelerate interactive EC to reduce user
fatigue [11]. Our previous works showed that the estimated
convergence point is effective and potential to accelerate EC
search, but there is still a lot of room for further research on
the estimation method.

The main objective of this paper is to introduce reliable
weights to moving vectors and increase the accuracy of an
estimated convergence point, while the original estimation
method gives the same weights to moving vectors, i.e., no
weighting. The secondary objective is to propose two meth-
ods of weighting moving vectors. We show the effect of
weighting visually using a two-dimensional Gaussian func-
tion and its acceleration effect of DE with the proposed
method using 28 benchmark functions from CEC 2013 test
suite. Finally, we summarize our works and provide some
open topics for future discussions.

The remaining paper is organized as follows: we roughly
summarize the basic estimation method in Sect. 4. The
weight-based estimation method and two different meth-
ods of weighting are presented in detail in Sects. 3.1 and
3.2, respectively. We experimentally evaluate the effect
of the proposed methods using DE and PSO in Sect. 4.
Finally, we analyze the results and discuss the effects
of our proposal in Sect. 5 and conclude our works in
Sect. 6.

Fig. 1 Moving vector bi (= ci − ai ) is calculated from a parent indi-
vidual ai and its offspring ci in the d-dimensional searching space. The
� mark is the convergence point for these moving vectors

Mathematical estimation of a convergence
point

MostECalgorithms converge to the global optimal area grad-
ually by updating their population. The excellent point of the
basic estimationmethod [6] is that it can calculate the conver-
gence point using moving information of population before
the population converges.

Suppose all individuals evolve toward the optimal point
correctly, the nearest point to the extensions of all theirmove-
ment directions should locate near the global optimal point.
Actually, the estimated point is not exactly on the global opti-
mum due to incorrect directions or inaccurate directions of
population movements. However, it is highly expected that
the estimation point is close to the global optimum at least
for unimodal functions.

Let us begin by defining symbols used for the original
estimationmethod. ai and ci (ai , ci ∈ R

d ) in Fig. 1 are the i th
parent individual and its offspring individual, respectively.
The i th moving vector is defined as a direction vector, bi =
ci − ai . The unit direction vector of the bi is given as b0i =
bi/||bi ||, i.e., bT0i b0i = 1.

Let x ∈ R
d be the nearest point to the n extended direc-

tional line segments, ai + ti bi (ti ∈ R); the nearestmean that
the total distances from x to the n extended directional line
segments, J(x, {ti }) in Eq. (1), becomes the minimum.

As the minimum line segment from the convergence point
x to the extended directional line segments is the orthogonal
projection from x, we may insert an orthogonal condition,
Eq. (2), into Eq. (1) and thus remove ti .

min {J (x, {ti })} =
n∑

i=1

‖ai + ti bi − x‖2 (1)

bTi (ai + ti bi − x) = 0 (orthogonal condition) (2)

Finally, the estimated convergence point can be calculated
using Eq. (3). See detail expansion of equations in the refer-
ences [6].
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x̂ =
{

n∑

i=1

(
Id − b0i bT0i

)}−1 {
n∑

i=1

(
Id − b0i bT0i

)
ai

}
(3)

Convergence point estimation with
weightedmoving vectors

Estimationmethod of a convergence point

Basic estimation method treats moving vectors equally to
calculate a convergence point. However, their contribution
to estimate a convergence point is different because of vari-
ous factors; for example, somemoving vectors go toward the
optimal area directly, while others do not; some are closer
to the optimal area, while others are far from there. Each
moving vector must have a different reliability in estimat-
ing a convergence point according to its reliability. It means
that higher importance should be placed on moving vectors
having higher reliability, such as having a better direction
to the global optimum or near the global optimum. Here,
we introduce weights into the basic estimation method of a
convergence point and propose two methods for calculating
weights for moving vectors.

Suppose a proper weight wi is given to the i th moving
vector, bi . All notations used in the following calculation are
the same with those defined in Sect. 2. Next, we show our
stepwise calculation of the weight-based estimation method.

Wewant to find a x̂w making the total distance, Jw(x, {ti })
in Eq. (4), minimal. Note that, the weight is acting on the
distance between the point x̂w and moving vectors (red line
segments in Fig. 1).

Jw(x, {ti }) =
n∑

i=1

wi‖ai + ti bi − x‖2 (4)

From Eq. (2), Eq. (5) is obtained.

ti = bTi (x − ai )

‖bi‖2
(5)

Let us put Eq. (5) into Eq. (4) to delete ti and obtain Eq. (6).

Jw(x) =
n∑

i=1

wi

∣∣∣∣∣

∣∣∣∣∣ai + bTi (x − ai )

‖bi‖2
bi − x

∣∣∣∣∣

∣∣∣∣∣

2

=
n∑

i=1

wi

{
(x − ai )T(Id − b0i bT0i )

T

(Id − b0i bT0i )(x − ai )
}

(6)

Next, x̂w is obtained by partially differentiating each element
of x and setting them equal 0. Finally, we can obtain the
weight-based estimated convergence point x̂w using Eq. (7).

x̂w =
{

n∑

i=1

wi

(
Id − b0i bT0i

)}−1

{
n∑

i=1

wi

(
Id − b0i bT0i

)
ai

} (7)

Twomethods for calculating weights

Weights have been imported into the basic estimationmethod
successfully in Sect. 3.1. The next key problem is how to
calculate weights values. Here, we propose two different per-
spectives to determineweights.Of course, theremust be other
ways of calculating the weights.

Fitness gradient of moving vectors

Moving vectors themselves contain a lot of information,
e.g., evolutionary direction, length of moving vectors, fitness
changes, and others. As the first attempt, we use a fitness
gradient between the starting point and the terminal point
of a moving vector to evaluate the reliability of the mov-
ing vector. Bigger fitness gradient of a moving vector means
that the direction has a higher probability of approaching the
global optimal area. Thus, higher weights should be given to
favorable moving vectors. Conversely, lower weights should
be given to moving vectors with less fitness gradients. Sup-
pose the fitness change of the i th moving vector, �i , can be
calculated as �i = f (ci ) − f (ai ). Then, the fitness gra-
dient information of the i th individual can be calculated as
Gi = �i||ci−ai || , and Eq. (8) can be used to give a weight to
each moving vector.

wi = Gi∑n
i=1 Gi

, (8)

where n represents the total number of moving vectors.

Fitness of parents

Generally, individuals with higher fitness may be closer to
the global optimal area, while poorer individuals stay away
from the area and need more iterations to converge. Poorer
individuals are interfered more. For example, the directions
of moving vectors in valleys among local minima are influ-
enced by multiple hills and valleys in a fitness landscape
and do not always go toward the same local minimum. It is
easy to imagine that estimation errors of a convergence point
become bigger. Based on this assumption, we roughly think
that the closer individuals are to the optimal area, the higher
given reliability, i.e., higher weight, should be. Thus, we use
Eq. (9) to give a different weight to each moving vector for
minimum optimization tasks.
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Algorithm 1 Weight-based estimated convergence point to
accelerate EC. G: generation.
1: Generate an initial population.
2: Evaluate the fitness of each individual.
3: for G = 1 to MaxGeneration do
4: Obtain the next generation using an EC algorithm.
5: Calculate moving vectors
6: Calculate weights for all moving vectors.
7: Obtain the estimated point using weighted moving vectors.
8: Evaluate the fitness of the estimated convergence point.
9: if its fitness is better than that of the worst individual in current

population then
10: use the estimated point as an elite individual, and replace the

worst individual.
11: end if
12: end for
13: return the optimum

wi = MaxF − f (ai )∑n
i=1 MaxF − f (ai )

(9)

where MaxF is the worst fitness in the current generation
and f () returns the fitness of an incoming individual.

We introduce weights successfully and explain how to
determine weights in detail. The next work is to combine
our proposed weight-based estimationmethod with EC algo-
rithms to accelerate their convergence. Here, Algorithm 1
shows generic flowchart of the EC algorithms combinedwith
our proposal.

Experimental evaluations

Here, we define shortened names of three methods for com-
parison:

(a) Basic method: original estimation method of a conver-
gence point using moving vectors without weighting [6].

(b) Method 1: proposedmethod for estimating a convergence
point using moving vectors weighted by fitness gradient
(see Sect. 3.2.1).

(c) Method 2: proposedmethod for estimating a convergence
point usingmoving vectorsweighted by fitness of parents
(see Sect. 3.2.2).

We combine each of three methods with DE and compare
them:

Experiment 1: visual evaluation of estimated
convergence points

The first experiment is to visually show the effect of methods
1 and 2 by employing a two-dimensional Gaussian function
as a test function. Detailed experimental settings are as fol-
lows.

Table 1 Parameters of Eq. (10)

Dimensions 2-D

Population size 20

Search ranges [−6, 6] of all 2 variables

a 3.1

σ 1 and σ 2 (2.0, 2.0)

μ1 and μ2 (0.0, 0.0)

Fig. 2 The average convergence curve of fitness error between the esti-
mated point and the global optimum. See the definition of three method
names at the top of Sect. 4

The used Gaussian function is represented by Eq. (10). Its
experimental parameters are shown in Table 1.

f (x) = −
{
a exp

(
−

2∑

i=1

(xi − μi )
2

2σ 2
i

)}
(10)

The objective of this Experiment 1 is to evaluate the accu-
racy of our proposal using exactly the same moving vectors.
To do it, we generate a searching point randomly around each
individual within a tiny area, compare fitness of the individ-
ual and the generated point, and make the poorer and better
ones be the starting point and the terminal point of a moving
vector, respectively. The number of moving vectors used for
estimating a convergence point is the same as the population
size. Then, all moving vectors aim the direction of climb-
ing down to the local optimum or the global optimum. This
method generating moving vectors without using calculated
individuals but generating them in tiny areas increases the
number of fitness calculations. However, it is not influenced
by local hills thanks to moving vectors in tiny areas [7] and
is better for exact evaluation for the Experiment 1.

These evaluations run 30 times over 10 generations. Fig-
ure 2 shows the average convergence curve of fitness error
between the estimated convergence point and the global opti-
mum. Figure 3 shows convergence points estimated by three
methods and exactly the same moving vectors used for three
methods.
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(a) First generation at first trial run
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(b) Third generation at first trial run

(c) Fifth generation at first trial run

Fig. 3 Black dot, purple dot, and blue dot represent the estimated con-
vergence point that without use any weight method, use method 1 for
handling weight, and use method 2 for handling weight, respectively

Table 2 Statistical test results of the Friedman test and the Holm mul-
tiple comparison test for average fitness values of 30 trial runs of three
methods

Generation Basic method vs. method 1 and 2

1 Basic method ≈ method 2 ≈ method 1

2 Basic method < method 2 < method 1

3 Basic method < method 1 ≈ method 2

4 Basic method ≈ method 2 ≈ method 1

5 Basic method < method 1 ≈ method 2

6 Basic method ≈ method 1 ≈ method 2

7 Basic method ≈ method 1 ≈ method 2

8 Method 1 ≈ basic method ≈ method 2

9 Basic method ≈ method 1 < method 2

10 Method 1 ≈ basic method ≈ method 2

A < Bmeans that B is significantly better than Awith significance level
5%, and A ≈ B means that there is no significant difference between
A and B

We apply the Friedman test and the Holm multiple com-
parison test at each generation to check significant difference
among three methods. The results are shown in Table 2.

Experiment 2: evaluation of EC acceleration with an
estimated convergence point

The second experiment is designed to analyze the accelera-
tion effect of proposedweightingmethods for EC algorithms,
where an estimated convergence point is used as an elite indi-
vidual, and replace the worst individual when its fitness is
better than the worst one. We use 28 benchmark functions
from the CEC2013 test suite [12] in this evaluation exper-
iment. Table 3 shows their types, characteristics, variable
ranges, and optimum fitness values.

We select DE and PSO as our test baseline algorithms and
combine them with our proposals with the parameter setting
as described in Tables 4 and 5.

Unlike the Experiment 1, moving vectors are made using
existing individuals not to increase fitness calculation cost.
Since each target vector in DE generates a trial vector, we
set the better one and the poor one as the terminal point and
the starting point of a moving vector, respectively; a similar
approach is used for PSO. It ensures that each individual can
make one moving vector, i.e., the total number of moving
vectors is set to the population size. These moving vectors
are weighted and used to estimate a convergence point.

For fair evaluations, we evaluate convergence against the
number of fitness calls rather than generations. We test each
benchmark functionwith 51 trial runs in four different dimen-
sional spaces. We apply the Friedman test and the Holm
multiple comparison test on the fitness values at the stop
condition, i.e., the maximum number of fitness calculations,
to check whether there is a significant difference among all
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Table 3 Benchmark functions:
Uni = unimodal, Multi =
multimodal, Comp. =
Composition

No. Types Characteristics Optimum fitness

F1 Uni Sphere function − 1400

F2 Rotated high conditioned elliptic function − 1300

F3 Rotated Bent Cigar function − 1200

F4 Rotated discus function − 1100

F5 Different powers function − 1000

F6 Multi Rotated Rosenbrock’s function − 900

F7 Rotated Schaffers function − 800

F8 Rotated Ackley’s function − 700

F9 Rotated Weierstrass function − 600

F10 Rotated Griewank’s function − 500

F11 Rastrigin’s function − 400

F12 Rotated Rastrigin’s function − 300

F13 Non-continuous rotated Rastrigin’s function − 200

F14 Schwefel’s function − 100

F15 Rotated Schwefel’s function 100

F16 Rotated Katsuura function 200

F17 Lunacek bi-Rastrigin function 300

F18 Rotated Lunacek bi-Rastrigin function 400

F19 Expanded Griewank’s plus Rosenbrock’s function 500

F20 Expanded Schaffer’s F6 function 600

F21 Comp. Composition function 1 (n = 5, rotated) 700

F22 Composition function 2 (n = 3, unrotated) 800

F23 Composition function 3 (n = 3, rotated) 900

F24 Composition function 4 (n = 3, rotated) 1000

F25 Composition function 5 (n = 3, rotated) 1100

F26 Composition function 6 (n = 5, rotated) 1200

F27 Composition function 7 (n = 5, rotated) 1300

F28 Composition function 8 (n = 5, rotated) 1400

Table 4 DE algorithm
parameter settings Population size for 2-D, 10-D, and 30-D search 80

Scale factor F 0.9

Crossover rate 0.9

DE operations DE/rand/1/bin

# of trials 51

Stop condition; max. # of fitness evaluations, 1000 × D

MAXNFC , for 2-D, 10-D, and 30-D search

Table 5 PSO algorithm
parameter settings Population size for 2-D, 10-D, and 30-D search 80

Inertia factor w 1

Constant c1 and c2 1.4962 and 1.4962

Max. and min. speed Vmax and Vmin 1 and −1

# of trials 51

Stop condition; max. # of fitness evaluations, 1000 × D

MAXNFC, for 2-D, 10-D, and 30-D search
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Table 6 Statistical test result of the Friedman test and the Holm multiple comparison test for average fitness values of 51 trial runs of four methods

2D 10D 30D 50D

F1 DE2 ≈ DE1 > DE ≈ DE0 DE1 > DE2 > DE0 ≈ DE DE1 > DE2 > DE0 > DE DE1 > DE2 > DE0 > DE

F2 DE1 ≈ DE2 ≈ DE0 ≈ DE DE1 ≈ DE2 > DE ≈ DE0 DE1 ≈ DE2 > DE0 ≈ DE DE1 > DE2 > DE0 ≈ DE

F3 DE2 ≈ DE1 ≈ DE0 ≈ DE DE2 ≈ DE1 > DE ≈ DE0 DE2 ≈ DE1 > DE ≈ DE0 DE1 ≈ DE2 > DE ≈ DE0

F4 DE1 ≈ DE2 ≈ DE0 ≈ DE DE2 ≈ DE1 > DE ≈ DE0 DE1 ≈ DE2 > DE0 > DE DE1 ≈ DE2 > DE ≈ DE0

F5 DE2 ≈ DE1 > DE ≈ DE0 DE1 > DE2 > DE ≈ DE0 DE1 > DE2 > DE ≈ DE0 DE1 ≈ DE2 > DE0 ≈ DE

F6 DE2 ≈ DE ≈ DE0 ≈ DE1 DE2 ≈ DE1 > DE0 ≈ DE DE1 > DE2 > DE0 ≈ DE DE2 ≈ DE1 > DE0 > DE

F7 DE2 ≈ DE1 ≈ DE ≈ DE0 DE2 ≈ DE1 > DE0 ≈ DE DE2 ≈ DE1 > DE ≈ DE0 DE2 > DE1 > DE ≈ DE0

F8 DE1 ≈ DE2 ≈ DE ≈ DE0 DE2 ≈ DE ≈ DE0 ≈ DE1 DE ≈ DE0 ≈ DE2 ≈ DE1 DE1 ≈ DE2 ≈ DE0 ≈ DE

F9 DE0 ≈ DE1 ≈ DE2 ≈ DE DE ≈ DE1 ≈ DE0 ≈ DE2 DE ≈ DE2 ≈ DE1 ≈ DE0 DE2 ≈ DE1 ≈ DE0 ≈ DE

F10 DE1 ≈ DE2 > DE0 ≈ DE DE1 > DE2 > DE ≈ DE0 DE1 ≈ DE2 > DE0 ≈ DE DE1 ≈ DE2 > DE0 > DE

F11 DE1 ≈ DE2 > DE0 ≈ DE DE2 ≈ DE1 > DE0 ≈ DE DE1 ≈ DE2 > DE0 ≈ DE DE1 ≈ DE2 > DE0 > DE

F12 DE1 ≈ DE2 ≈ DE0 ≈ DE DE2 ≈ DE1 > DE0 ≈ DE DE1 ≈ DE2 > DE0 ≈ DE DE1 ≈ DE2 > DE0 ≈ DE

F13 DE2 ≈ DE1 > DE0 ≈ DE DE2 ≈ DE1 > DE ≈ DE0 DE2 ≈ DE1 > DE ≈ DE0 DE1 ≈ DE2 > DE0 ≈ DE

F14 DE2 ≈ DE ≈ DE1 ≈ DE0 DE ≈ DE0 ≈ DE1 ≈ DE2 DE ≈ DE0 ≈ DE1 ≈ DE2 DE1 ≈ DE2 ≈ DE ≈ DE0

F15 DE2 ≈ DE1 ≈ DE ≈ DE0 DE2 ≈ DE1 ≈ DE0 ≈ DE DE2 ≈ DE1 ≈ DE ≈ DE0 DE1 ≈ DE2 ≈ DE ≈ DE0

F16 DE1 ≈ DE2 ≈ DE0 ≈ DE DE1 ≈ DE2 ≈ DE0 ≈ DE DE0 ≈ DE1 ≈ DE ≈ DE2 DE ≈ DE2 ≈ DE0 ≈ DE1

F17 DE ≈ DE2 ≈ DE0 ≈ DE1 DE2 ≈ DE1 > DE0 > DE DE1 ≈ DE2 > DE0 > DE DE2 ≈ DE1 > DE ≈ DE0

F18 DE1 ≈ DE ≈ DE2 ≈ DE0 DE2 ≈ DE1 > DE0 > DE DE2 ≈ DE1 > DE0 > DE DE1 ≈ DE2 > DE0 ≈ DE

F19 DE2 ≈ DE ≈ DE1 ≈ DE0 DE2 ≈ DE1 > DE0 ≈ DE DE1 ≈ DE2 > DE0 > DE DE1 > DE2 > DE0 > DE

F20 DE1 ≈ DE0 ≈ DE2 ≈ DE DE1 ≈ DE2 ≈ DE ≈ DE0 DE1 ≈ DE2 > DE ≈ DE0 DE2 ≈ DE1 > DE ≈ DE0

F21 DE2 ≈ DE1 ≈ DE0 ≈ DE DE2 ≈ DE1 > DE0 > DE DE1 > DE2 > DE0 > DE DE1 > DE2 ≈ DE > DE0

F22 DE1 ≈ DE0 ≈ DE ≈ DE2 DE1 ≈ DE2 ≈ DE0 ≈ DE DE1 ≈ DE2 ≈ DE0 ≈ DE DE1 ≈ DE0 ≈ DE ≈ DE2

F23 DE2 ≈ DE1 ≈ DE ≈ DE0 DE1 ≈ DE2 ≈ DE0 ≈ DE DE1 ≈ DE2 ≈ DE0 > DE DE2 ≈ DE ≈ DE0 ≈ DE1

F24 DE1 ≈ DE ≈ DE0 ≈ DE2 DE2 > DE1 > DE ≈ DE0 DE1 ≈ DE2 > DE > DE0 DE1 ≈ DE2 > DE ≈ DE0

F25 DE2 ≈ DE ≈ DE1 ≈ DE0 DE2 ≈ DE1 > DE ≈ DE0 DE2 ≈ DE1 ≈ DE ≈ DE0 DE2 ≈ DE ≈ DE0 ≈ DE1

F26 DE1 ≈ DE2 ≈ DE0 ≈ DE DE1 ≈ DE2 > DE0 ≈ DE DE2 ≈ DE1 > DE0 ≈ DE DE1 ≈ DE2 > DE ≈ DE0

F27 DE1 ≈ DE2 ≈ DE ≈ DE0 DE1 ≈ DE2 > DE ≈ DE0 DE1 ≈ DE2 > DE ≈ DE0 DE1 ≈ DE2 > DE0 ≈ DE

F28 DE1 ≈ DE2 ≈ DE ≈ DE0 DE1 ≈ DE2 > DE0 ≈ DE DE1 > DE2 > DE0 > DE DE1 > DE0 ≈ DE > DE2

A > B means that A is significantly better than B with significant a level of 5%. A ≈ B means that there is no significant difference between A
and B. DE0, DE1, and DE2 mean (DE + basic method), (DE + method 1), and (DE + method 2), respectively
DE conventional DE without any estimated convergence point

algorithms. Tables 6 and 7 show their results of the statisti-
cal tests. Besides, we select the average convergence curves
of several functions in Fig. 4 to demonstrate convergence
characteristics of our proposal.

Discussions

Analysis of proposed estimationmethod using
weightedmoving vectors

The first discussion is the superiority of our proposed meth-
ods for estimating a convergence point. Basic estimation
method gives the same weight to moving vectors. Actu-
ally, the reliability of moving vectors is different because
of various factors, e.g., evolutionary direction error, and their

contribution to the estimated convergence point is also differ-
ent. Thus, we use weights to enhance or weaken the influence
of moving vectors to improve the accuracy of the estimated
convergence point; higher weights are given to more reli-
able moving vectors. Note that, the proposed method adjusts
weights adaptively based on the current searching situation
without introducing anynewcontrol parameters or increasing
fitness calculation cost. Increasing the estimation precision
of a convergence point may accelerate to find the optimal
solution. At least, it is better than the replaced worst individ-
ual. From the cost–performance point of view, we can say
that our proposed method is a low-risk strategy and easy to
use.

The second discussion is on the calculation of weights for
moving vectors which affect the performance of our proposal
directly. Since incorrect weights reduce the accuracy of an
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Fig. 4 The average convergence curves of 50-D F1, F12 and F26 benchmark functions. The symbols used in this figure have same mean with Tables
6 and 7

estimated convergence point, how to give the right weight is a
key issue. We proposed two methods in Sect. 3.2 to calculate
weights for moving vectors from different perspectives in
this paper. The method 1 considers the fitness gradient infor-
mation of a moving vector, and the method 2 uses the fitness
of parent generation. Both of them increase the weights of

potential moving vectors to improve the precision of an esti-
mated convergence point.

Actually, since optimization problems have many com-
plex features, no method is all-powerful for any problems,
even for different search periods of the same problem. For
example, fitness gradients on some flat places do not work
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well to measure the reliability of the directions of moving
vectors. Besides, when individuals converge to the optimal
area, they become similar and the directions of moving vec-
tors may be even more important. Adaptive choice of the
best method among multiple methods may be the best way
to calculate weights.

Finally, we discuss on the use of the estimated conver-
gence point to accelerate EC algorithms. Generally, this is
an approach of a low risk and a high return. In this paper,
we used it to replace the worst individual in the current pop-
ulation. Since only one individual is replaced, it does not
change the diversity of the population drastically. Because
different EC algorithms have their own characteristics, the
impact of our proposal depends on EC algorithms. For DE,
an estimated convergence point replaces only the worst indi-
vidual in the current population and has less impact on other
individuals. However, when the estimated convergence point
becomes the best individual, it affects all other particles in
PSO. Figure 4 supports our hypothesis. Thus, it is accompa-
nied by certain risks, and it may hinder convergence when its
accuracy is low. From the experimental results, we observed
that our proposal had a fast convergence speed in the early
period, but it is easier to fall into local areas in multimodal
cases when it is applied to PSO. It may be a good choice
to use an estimated convergence point every several gener-
ations for PSO to reduce its impact on other individuals to
avoid premature. Actually, there are many other ways to use
an estimated convergence point to balance convergence and
diversity. Thus, how to use the estimated convergence point
reasonably and efficiently is one of our future works.

Analysis of experimental evaluations

The Experiment 1 is designed to visually evaluate the per-
formance of our proposal. From Fig. 3, we can see that
introducingweights can increase the accuracyof an estimated
convergence point obviously, which implies that appropriate
weights can reduce the impact of various errors. Statistical
test results show that using proposed weighting method can
obtainmore accurate estimated convergence point in the early
stage but becomes less effective in the later stage. Anyway,
using weights does not reduce the accuracy of the estimated
convergence point.

There was also no significant difference between the
method 1 and the method 2. Maybe individuals become
similar according to the convergence, and their difference
becomes less significant.Wehavenot been able to completely
analyze what fitness landscape situation and environment
make our proposed methods less effective. Detail analysis
is one of our future works, which may lead to a more appro-
priate approach to designing weights.

The Experiment 2 is designed to evaluate the acceleration
effect of the convergence point estimated by our proposed

method. We designed a set of control experiments to eval-
uate EC vs. (EC + basic method) vs. (EC + method 1) vs.
(EC + method 2). In this paper, we used the estimated con-
vergence point as an elite individual and replace the worst
one to accelerate EC convergence. The experimental results
confirmed that EC < (EC + basic method) < (EC + method
1 or 2); a convergence point estimated by weighted moving
vectors can further improve acceleration performance. As the
dimension increases, the acceleration effect of our proposal
becomes more significant; an estimated convergence point
plays a more important role for more complex problems.

As we mentioned at the end of the previous subsection,
the effectiveness of our proposedmethod for PSO is different
from that for DE. One of our next works is how to combine
ourmethodwith the characteristics ofECalgorithms to accel-
erate them effectively taking advantage of its applicability to
any EC algorithms.

Clustering methods are needed to divide population into
multiple subgroups according to each local optimum area of
multimodal tasks automatically to further improve perfor-
mance of our proposal. After that, we apply our proposal to
each clustered subgroup, obtain the global or local optimum,
and use multiple estimated convergence points to accelerate
EC convergence. It will be also one of our future works.

Potential and future topics

Through these above analyses, we have known that our pro-
posal has achieved satisfactory effects and has great potential.
As a new optimization approach, estimating a convergence
point, there are still many aspects of improvements. Here, we
list a few open topics.

How to construct moving vectors

It is crucial to determine the acceleration performance of the
estimated point. In our paper, we use parent–child relation-
ships to make moving vectors, where one parent generates
one offspring individual, and a moving vector starts from
a poorer individual to the better one. However, some EC
algorithms do not have a one-to-one relationship but a one-to-
many or many-to-many relationship. For example, firework
algorithm has a one-to-many relation, and genetic algorithm
has a many-to-many relationship. Thus, how to construct
moving vectors for these EC algorithm is a new topic.

We can use a distance measure to find the nearest individ-
ual regardless a parent–offspring relation to make the best
moving vectors between two generations. Other methods for
making moving vectors are also one of the worth topics to
study.
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How to set parameters reasonably

Webelieve that the number of moving vectors affects the per-
formance of our proposal. Too many or too few may reduce
the accuracy of the estimated point. Thus, one of the next
research directions is to investigate the relationship among
the number of moving vectors, population size, and dimen-
sions.

How to improve the accuracy of the estimated point

It is themain topic of this paper. As described above, combin-
ing with a cluster algorithm may be a feasible approach for
further improvement. Besides, there must be other potential
methods to achieve this objective, e.g., other methods to cal-
culate weights and different approaches to use an estimated
point. We hope that these open topics may give some inspi-
rations to other researchers and attract them to tackle these
topics.

Conclusion

We introduced weights into moving vectors based on their
reliability to improve the accuracy of estimating a con-
vergence point. The experimental results confirmed that
weighting moving vectors can enhance the accuracy of the
estimated convergence point and can further accelerate con-
vergence of EC algorithms.

In our future works, we focus on improving the cost–
performance of our proposal, investigating the relations
between the accuracy of estimated convergence point and
a population size or dimensions. We also try to use the
estimated convergence point in various ways to accelerate
convergence and develop other methods for weighting mov-
ing vectors.
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