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Abstract

The Ewens sampling formula is well-known as the distribution of a random
partition of the positive integer n into components. For the number Kn of distinct
components of the formula, Yamato (2017a) gives the approximations to the dis-
tribution of Kn by using the shifted Binomial distributions and recommends the
approximations II and IV.1 among them. We examine these two approximations
furthermore, and compare them with the shifted Poisson approximation (Yamato
(2017b)) and the Normal approximation (Yamato et al. (2015)). As applications
of the approximation II, we give the two examples.
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formula, Normal distribution, Poisson distribution, Shifted distribution.

1. Introduction

Ewens (1972) discovered a distribution of a random partition of the positive integer
n into components, partially intuitively and the distribution is well-known as the Ewens
sampling formula. It was derived exactly by Antoniak (1974), using Ferguson’s Dirichlet
process (Ferguson (1973)). The formula appears in many statistical contexts (see, for
example, Johnson et al. (1997; Chap. 41) and Crane (2016)). For the Ewens sampling
formula, the number Kn of distinct components has the distribution whose probability
function is given by P (Kn = k) =| s(n, k) | θk/θ[n] (k = 1, 2, . . . , n), where θ > 0,
θ[n] = θ(θ + 1) · · · (θ + n − 1) and | s(n, k) | is the signless Stirling number of the first
kind. It is well-known that Kn has the asymptotic normality (see, for example, Johnson
et al. (1997; Chapter 41) and Arratia et al. (2003; Section 5.2)). Since the mean
and variance of Kn is written using the digamma and trigamma functions and these
functions are included in the programming language R, the Normal approximation to
the distribution L(Kn) of Kn are obtained using R (Yamato et al. (2015)).

The Poisson approximation to the distribution of the number Kn of distinct com-
ponents is studied by Arratia et al. (2000) in detail with respect to the logarithmic
combinatorial structure including the Ewens sampling formula. Differently from Arratia
et al. (2000), Yamato (2017b) approaches to the problem of Poisson approximation to
L(Kn) by using the sum of independent Bernoulli random variables.

Whereas, there is no research on the binomial approximation to L(Kn). There are
researches on the Binomial approximations to the distribution of the sum of independent
Bernoulli random variables (for example, Barbour et al. (1992; p. 190) and Roos (2006)).
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Using these results, Yamato (2017a) gives the approximations to L(Kn) by the shifted
Binomial distributions. Among them, the author considered that the approximations II
and IV.1 (following the notations of Yamato (2017a)) are preferable. Our purpose is to
investigate these two approximations furthermore, and compare them with the Poisson
and the Normal approximations. In Section 2, we quote the approximations II and IV.1
from Yamato (2017a) and examine them by the total variation distance. In Section 3,
we compare the approximations II, IV.1, the shifted Poisson approximation, and the
Normal approximation by illustration, using R. In Section 4, we give the two examples
as applications of the approximations II.

2. Shifted Binomial approximations to the distribution of Kn

We consider the shifted Binomial approximations to the distribution L(Kn) of the
number Kn of distinct components of the Ewens sampling formula. We use the same
notations as Yamato (2017a). Let the random variables ξ1, ξ2, · · · be independent and
P (ξj = 1) = pj , P (ξj = 0) = 1− pj (j = 1, 2, . . .), where

pj =
θ

θ + j − 1
, (j = 1, 2, . . . ; θ > 0).

Then the number Kn can be expressed as Kn = ξ1 + ξ2 + · · ·+ ξn (n = 1, 2, . . .). Since
ξ1 = 1 a.s., Kn can be expressed as

Kn = 1 + Ln a.s., (1)

where Ln = ξ2 + · · ·+ ξn (n = 2, 3, . . .). We let

λn−1 =
n∑

i=2

θ

θ + i− 1
= θ[ψ(θ + n)− ψ(θ + 1)],

and

λ2,n−1 =
n∑

i=2

( θ

θ + i− 1

)2

= θ2[ψ′(θ + 1)− ψ′(θ + n)].

where ψ and ψ′ are the digamma and trigamma functions, respectively.
We note that

E(Ln) = λn−1, V ar(Ln) = λn−1

(
1− λ2,n−1

λn−1

)
. (2)

If λ2,n−1/λn−1 is small, then V ar(Ln) is close to E(Ln) and therefore the Poisson
distribution is appropriate for the approximation to L(Ln). In general, because of
E(Ln) > V ar(Ln), the Binomial distribution may be appropriate for the approxima-
tion to L(Ln). By applying the Binomial approximations to L(Ln), we get the shifted
Binomial approximations to L(Kn). We quote the two approximations II and V.1 from
Yamato (2017a).

Approximation II:

The approximation II to L(Kn) is the shifted Binomial distribution given by

II : 1 +BN ((n− 1)′, p′) ((n− 1)′ = ⌊λ2n−1/λ2,n−1⌋ and p′ = λn−1/(n− 1)′), (3)
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where ⌊x⌋ is an integer close to x. For BN ((n − 1)′, p′), see Barbour et al. (1992; p.
190).

Approximation IV.1:

We put p̄n−1 = λn−1/(n− 1) and γ2(p̄n−1) = λ2,n−1 − (n− 1)p̄2n−1.
Let gB(x;n, p) be the probability function of the Binomial distribution BN (n, p).

Let ∆ be the difference operator such that ∆jgB(x;n, p) = ∆j−1gB(x − 1;n, p) −
∆j−1gB(x;n, p) (j = 1, 2, · · · ) and ∆0gB(x;n, p) = gB(x;n, p). Let B2 be the finite
signed measure such that

B2(n− 1, p̄n−1)({x}) = gB(x;n− 1, p̄n−1)−
γ2(p̄n−1)

2
∆2gB(x;n− 3, p̄n−1),

where

∆2gB(x;n−3, p) =
gB(x;n, p)

(n− 1)(n− 2)p2(1− p)2

{
x2−

[
1+2(n−2)p

]
x+(n−1)(n−2)p2

}
.

The approximation IV.1 to L(Kn) is the shifted finite signed measure given by

IV.1 : 1 + B2(n− 1, p̄n−1)({x}). (4)

For B2(n− 1, p̄n−1), see Takeuchi (1975) and Roos (2006).

The mean of the approximation II is equal to E(Kn) and its variance is approxi-
mately equal to V ar(Kn). The mean and variance of the Approximation IV.1 are equal
to E(Kn) and V ar(Kn), respectively. Since the Binomial distribution is determined by
the mean and variance uniquely, it is inferred that the two approximations have the
similar behavior. This fact is shown by the illustration (Yamato (2017a)). We show the
difference between them by the total variation distance. We define the total variation
distance dTV between the signed measures Q1 and Q2 over {0, 1, 2, · · · } as follows;

dTV (Q1, Q2) =
1

2

∞∑
j=0

| Q1(j)−Q2(j) | .

Here, we note that
∑n

i=2 1/(θ + i − 1) ∼ log n and
∑n

i=2 1/(θ + i − 1)2 < π2/6. Then,
by Barbour et al. (1992; p.190, (2.4)) we have

dTV

(
L(Kn), 1 +BN ((n− 1)′, p′)

)
= O

(
(log n)−1

)
. (5)

By Roos (2006; (20)), we have

dTV

(
L(Kn), 1 + B2(n− 1, p̄n−1)

)
= O

(
(log n)−3/2

)
. (6)

By (5) and (6), as the approximation to L(Ln), the approximation IV.1 is better than
the approximation II. But, the approximation IV.1 has the drawback such that it may
have the negative tail, because it is obtained by using the first two terms of the expan-
sion of L(Kn) based on the Krawtchouk polynomial. We show the negative tail of the
approximation IV.1, by the examples. The figures 1,2,3,4 show the left tails for θ = 10
and θ = 20 and the right tails for θ = 0.5 and θ = 1, for n = 50. The approxima-
tion IV.1 is preferable to approximating the neighborhood of the center of L(Ln). As
the approximation to L(Ln), we consider that the approximation II is better that the
approximation IV.1.
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Fig. 1: θ = 10, L
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Fig. 2: θ = 20, L
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Fig. 3: θ = 0.5, R
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Fig. 4: θ = 1, R

3. Shifted Binomial, Shifted Poisson, and Normal Approximations

Let gP (k;µ) be the probability function of the Poisson distribution Po(µ). The
shifted Poisson approximation to L(Kn) given by Yamato (2017b) is

sPo : 1 + gP (k;λn−1)
(
1− λ2,n−1

2
C2(k, λn−1)

)
, (7)

where

C2(x, λ) =
x2 − (2λ+ 1)x+ λ2

λ2
.

As the Normal approximation to L(Kn), we consider

N : N (E(Kn), V ar(Kn )) (8)

(Yamato et al. (2015)), where E(Kn) = θ[ψ(θ+n)−ψ(θ)] and V ar(Kn) = θ[ψ(θ+n)−
ψ(θ)] + θ2[ψ′(θ + n)− ψ′(θ)].

By using R, we illustrate the comparison of the four approximations to L(Kn),
which are the approximations II and IV.1 of the section 2, the shifted Poisson approxi-
mation (7), sPo and the Normal approximation (8), N. The probability function of Kn

is simulated with R and drawn by the bar graph. In the following figures 5, 6, 7, 11,
12, 13, 17, 18, and 19, the Normal approximations are plotted by dashed lines and the
approximation IV.1’s are by dotted lines. In the figures 8, 9, 10, 14, 15, 16 , 20, 21, and
22, the shifted Poisson approximations are plotted by dashed lines and the approxima-
tion II’s are by dotted lines. These figures show that the approximations II and IV.1
are good as the approximation to L(Kn).

Here, we note the Poisson distribution and the Normal distribution as the approx-
imations to L(Ln) and L(Kn), respectively. Since

λn−1 =

n∑
i=2

θ

θ + i− 1
> θ[log(θ + n)− log(θ + 1)], λ2,n−1 =

n∑
i=2

( θ

θ + i− 1

)2

< θ2 · π
2

6
,

we have

0 <
λ2,n−1

λn−1
<

θπ2

6[log(θ + n)− log(θ + 1)]
.

Therefore, if λ2,n−1/λn−1 is small with a small θ or a large n (log n), then the Poisson
distribution is appropriate for the approximation to L(Ln) by (2). This is shown by the
figures 8, 9 and 10 for θ = 0.125, 0.25 and 0.5 and n = 25. For θ = 2, the figures 14,
15 and 16 show that the shifted Poisson approximation gets better as n increases. But,
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the figures 20, 21 and 22 show that a large n is necessary in order to obtain the good
shifted Poisson approximation for a large θ.

On the other hand, we have

P (Kn = 1) =
(n− 1)!

(θ + 1)[n−1]
↑ 1 as θ ↓ 0.

Thus, if θ(> 0) is close to zero, then P (Kn = 1) is close to 1 and the Normal distribution
is not appropriate as the approximation to L(Kn). These facts are shown by the figures
5, 6, 7. For θ such as P (Kn = 1) close to zero, the Normal approximation gets better
as θ increases, which is shown by the figures 11, 12 and 13. If θ and n are large, then
the Normal approximation is good, which is shown by the figures 17, 18 and 19.

4. Concluding Remarks

In conclusion, we recommend the approximation II as the approximation to L(Kn)
among the four approximations II, VI.1, sPo, N. As the applications of the approximation
II, we give the two examples (i) and (ii) as follows.

(i) The approximation to the probability function of MLE θ̂ of θ:

Given the observation Kn = k, the MLE θ̂ of the parameter θ is the solution of the
equation

k =

n∑
j=1

θ

θ + j − 1
(9)

(Ewens (1972)). Using the digamma function ψ, (9) is written as

k = µn(θ), µn(θ) = θ[ψ(θ + n)− ψ(θ)].

Since µn(θ) is the strictly increasing function of θ, for each k = 1, 2, . . . , n, there exists
an unique µ−1

n (k). Thus, we have

P (θ̂ = µ−1
n (k)) = P (Kn = k) (k = 1, 2, . . . , n)

or
P (θ̂ = x) = P (Kn = µn(x)) (x = µ−1

n (k), k = 1, 2, . . . , n).

Using the approximation II, the approximation to the probability function of MLE θ̂ is
given by

P (θ̂ = x) ≒ gB(k − 1; (n− 1)′, p′) (µn(x) = k, k = 1, 2, . . . , n).

(ii) The estimation of the probability function ofKn in case the parameter θ is unknown:
The necessary values for the approximation II are

λn−1 =
n∑

i=2

θ

θ + i− 1
, λ2,n−1 =

n∑
i=2

( θ

θ + i− 1

)2

= θ2[ψ′(θ + 1)− ψ′(θ + n)].

Since we consider the case the parameter θ is unknown, we take MLE θ̂ as the estimator
θ. Then, by (9) and the above relations, we have

λn−1 = k − 1, λ∗∗2,n−1 := λ2,n−1 = θ̂2[ψ′(θ̂ + 1)− ψ′(θ̂ + n)].

Putting
(n− 1)∗∗ = ⌊(k − 1)2/λ∗∗2,n−1⌋, p∗∗ = (k − 1)/(n− 1)∗∗,

we obtain the estimator of probability function of Kn given by

gB(x− 1; (n− 1)∗∗, p∗∗) (x = 1, 2, . . . , (n− 1)∗∗ + 1).
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sPo(dash) and II(dot)

n=25, !=1, Prob ft of Kn (bar) , Nr(dash), BN2(dot)

x

p
f

2 4 6 8 10 12

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

Fig. 11: n = 25, θ = 1
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Fig. 13: n = 25, θ = 5
N(dash) and IV.1(dot)
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Arratia, R., Barbour, A.D. and Tavaré, S. (2000). The number of components in loga-
rithmic combinatorial structure. Annals of Applied Probability, 10, 331–361.
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