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Abstract

A problem that seems to be tough in a field sometimes becomes easy to solve
by looking at it from a different field. In this note, a problem in combinatorics is
framed as a problem in algebra, where it becomes easier to solve. The concept of
algebraic proofs of non algebraic results is not mere mathematical curiosity but in
some cases the proofs become remarkably easy.
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1. Introduction

This paper gives a simple proof of the fact that the total number of possible solu-
tions to

x1 + x2 + · · ·+ xn ≡ k (mod p) (1)

is pn−1 for all k ∈ {0, 1, . . . , p− 1}, where xi ∈ {0, 1, . . . , p− 1} (i = 1, . . . , n).
For example, we consider the case of p = 3, and n = 3.
Elements of (x1, x2, x3) that satisfy x1 + x2 + x3 ≡ 0 (mod 3) are (x1, x2, x3) =

(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (2, 2, 2).
Elements of (x1, x2, x3) that satisfy x1 + x2 + x3 ≡ 1 (mod 3) are (x1, x2, x3) =

(0, 0, 1), (0, 1, 0), (0, 2, 2), (1, 0, 0), (1, 1, 2), (1, 2, 1), (2, 0, 2), (2, 1, 1), (2, 2, 0).
Elements of (x1, x2, x3) that satisfy x1 + x2 + x3 ≡ 2 (mod 3) are (x1, x2, x3) =

(0, 0, 2), (0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0), (1, 2, 2), (2, 0, 0), (2, 1, 2), (2, 2, 1).
The number of solutions is 33−1 = 9 in each case. It seems to be complex to write

down all the cases for general p, k and n.
Equation (1) is the same as

x1 + x2 + · · ·+ xn = k + jp (0 ≤ j < n). (2)

This may be applied to allocation problems with additional bonus under the restriction
to each xi.

In combinatorics, Equation (2) is regarded as an extension problem of the funda-
mental counting problem such that the total number of solutions in non-negative integers
to

x1 + x2 + · · ·+ xn = k (3)
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is
(
n+k−1

k

)
. The number of solutions for Equation (3) is easily derived by allocating k−1

wedges into (n+ k − 1) places, i.e.,
(
n+k−1

k

)
. However, we cannot use such an ordinary

method because xi is restricted such that xi ∈ {0, 1, . . . , p − 1} (i = 1, . . . , n). A more
general problem could be useful to find the total number of solutions in non-negative
integers to x1 + x2 + · · · + xn = k, where, 0 ≤ ai ≤ xi ≤ bi (i = 1, . . . , n). This
is equivalent to the problem of finding the total number of solutions in non-negative
integers to y1 + y2 + · · ·+ yn = k − s, where, 0 ≤ yi ≤ bi − ai, s =

∑n
i=1 ai.

To obtain the solution for Equation (3), we often use the inclusion-exclusion prin-
ciple, and the following formula is useful.

|A1 ∪ · · · ∪An| =
∑

∅̸=I⊆{1,...,n}

(−1)|I|+1| ∩i∈I Ai|, (4)

where | · | denotes the number of elements in a set. The method using the inclusion-
exclusion principle seems to be complex and awkward. The raised problem seems to be
tough via the combinatorics methods.

However, the solution is easily solved if the problem is interpreted as a problem in
algebra.

2. Algebraic Problem

Theorem 2.1 Algebra. Let n and p be integers with n ≥ 1 and p ≥ 2. Define
X = {x = (x1, x2, . . . , xn) | 0 ≤ xi ≤ p− 1, xi ∈ Z, 1 ≤ i ≤ n}. For x, y ∈ X, we define
x ∼ y ⇔

∑n
i=1 xi ≡

∑n
i=1 yi (mod p), Then, “∼” constitutes an equivalence relation.

We set X/∼ = {C0, C1, . . . , Cp−1}, where Cj = {x ∈ X |
∑n

i=1 xi ≡ j (mod p)}. Then,
the number of elements in C0 is the same as that in Cj, i.e., |C0| = |Cj | = pn−1 (1 ≤
j ≤ p− 1).

Proof. For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ X, we define an addition
⊕ on X by x ⊕ y = ((x1 + y1) mod p, (x2 + y2) mod p, . . . , (xn + yn) mod p), where
(xi+yi) mod p is the remainder obtained by dividing xi+yi by p for each i with 1 ≤ i ≤ n.
Let j be an integer with 0 ≤ j ≤ p − 1, and let a = (j, 0, 0, . . . , 0) ∈ Cj . For x ∈ C0,
we can define f : C0 → Cj by f(x) = x ⊕ a. Then f is a bijection, and hence we have
|C0| = |Cj |. Since j is arbitrary, we obtain pn = |X| = |C0|+ |C1|+ · · ·+ |Cp−1| = p|C0|,
and therefore |C0| = |C1| = |C2| = · · · = |Cp−1| = pn−1.

From this, we can easily derive the next theorem.

3. Combinatoric Problem

To interpret the algebraic problem to the combinatoric problem, we only regard
xi ∈ {0, 1, . . . , p − 1}, (i = 1, . . . , n) in equation (1) . This delivers the answer to the
combinatoric problem.

Theorem 3.1 Combinatorics. The solution to the number of cases that x =
(x1, x2, . . . , xn) satisfies Equation (1) is pn−1 for all the cases k = 0, 1, . . . , p− 1.

Proof. Direct interpretation to Theorem 1 (Algebra).
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