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Abstract

We discuss the asymptotic properties with respect to nonparametric regression
for circular data. We reveal theoretical properties for circular nonparametric regres-
sion by applying von Mises (VM) and wrapped Cauchy (WC) kernels. We derive
the asymptotic normalities and the convergence rate of the weighted conditional
mean integrated squared errors regarding VM and WC kernels. The numerical
experiment shows that WC kernel outperforms VM kernel in the small samples,
and the theoretical properties are supported in the large samples.

Key Words and Phrases: Nonparametric regression, Circular data, Von Mises distribution,

Wrapped Cauchy distribution.

1. Introduction

We aim to model the relation between a linear response variable Yi for yi ∈ R and an
circular explanatory variable Θi for θi ∈ [−π, π). Let the data set {(Y1,Θ1), . . . , (Yn,Θn)}
be i.i.d.. Then, we consider that

Yi = m(Θi) + v1/2(Θi)εi,

where v(θ) =: VarY [Y |Θ = θ] is the conditional variance, εi is a random variable on the
real line with zero mean and unit variance, and a regression function m(θ) := EY [Y |Θ =
θ] is periodic such as m(θ) = m(θ + 2π).

We consider a regression being able to estimate m(θ) under less rigid assumptions.
One of the estimator is a nonparametric regression. In nonparametric regressions for
circular data analysis, a sine local linear regression (S-LLR) m̂(θ;κ) is proposed by

Di Marzio et al. (2009). S-LLR m̂(θ;κ) is defined as β̂0 in (β̂0, β̂1)
T such that minimizes

n∑
i=1

{Yi − β0 − β1 sin(Θi − θ)}2Kκ(Θi − θ). (1)

where Kκ(θi − θ) is a symmetric kernel function, and κ is a concentration parameter
that is a smoothing parameter corresponding to the inverse of the squared bandwidth:
κ = h−2.
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Di Marzio et al. (2009) derived the conditional mean squared error (MSE) of S-
LLR by employing von Mises (VM) kernel, and calculated the optimal parameter of
this and the convergence rate of this MSE. However, few study explored the theoretical
properties for S-LLR employing another kernel functions such as wrapped Cauchy (WC)
kernel, and no study shown the global properties of S-LLR such as the conditional
weighted mean integrated squared error (MISE) as far as we know. Accordingly, we
elucidate the MISEs of VM and WC kernels.

In section 2 we show the definitions of S-LLR and a class of kernels, and explain
the MSE of S-LLR by Di Marzio et al. (2009). In addition we prove the asymptotic
normality for S-LLR. This result can provide the confidence interval for S-LLR.

In section 3 we derive the MISE and the asymptotic normality of VM kernel. We
show that the convergence rate of this MISE is Op(n

−4/5).
In section 4 we provide the MISE and the asymptotic normality of WC kernel. We

show that the rate of this MISE is Op(n
−2/3). In the study of kernel density estimations

for circular data, Tsuruta and Sagae (2017) derived that the rate of the MISE of VM
kernel is O(n−4/5), and that of WC kernel is O(n−2/3).

In section 5 we conduct the numerical experiment to compare the both perfor-
mances under finite samples. This experiment demonstrates that WC kernel exhibit
better properties than VM kernel when the sample is small, and VM kernel well per-
forms than WC kernel when the sample is large enough.

2. Sine local linear regression (S-LLR)

S-LLR m̂(θ;κ) provided by minimizing (1) is given by

m̂(θ;κ) := eT1 (S
T
θ WθSθ)

−1ST
θ WθY , (2)

where e1 is the 2× 1 vector having 1 in the first and zero elsewhere, Y = (Y1, . . . , Yn)
T

is the vector of the responses,

Sθ :=

1 sin(Θ1 − θ)
...

...
1 sin(Θn − θ)


is an n × 2 design matrix, and Wθ := diag{Kκ(Θ1 − θ), . . . ,Kκ(Θn − θ)} is an n × n
diagonal matrix. Additionally, we assume that the inverse (ST

θ WθSθ)
−1 exists.

We employ a class of kernels Kκ(θ) satisfying the following definition proposed by
Di Marzio et al. (2009) and Di Marzio et al. (2011).

Definition 1 The kernel Kκ(θ) is a non-negative function satisfying the two following
conditions:

(a) It admits a convergent Fourier series representation:

Kκ(θ) = 1/(2π){1 + 2

∞∑
j=1

γj(κ) cos(jθ)},

where γj(κ) := EK [cos(jθ)] and γj(κ) are monotonic functions of κ.



Properties for circular nonparametric regressions by von Miese and wrapped Cauchy kernels 3

(b) For all 0 < δ < π, limκ→∞
∫
δ≤|θ|≤π

|Kκ(θ)|dθ = 0.

We now define a jth sine-type moment as

ηj(Kκ) :=

∫ π

−π

sin(θ)jKκ(θ)dθ

The jth sine-type moment ηj(Kκ) plays a similar role as a jth moment of a symmetric
kernel on the real line. Especially, the second sine-type moment is given by

η2(Kκ) = (1− γ2(κ))/2. (3)

Put Θn := {Θ1, . . . ,Θn} and R(g) :=
∫ π

−π
g(θ)2dθ. Then, let the conditional bias

be BiasY [m̂(θ;κ)|Θn] =: EY [m̂(θ;κ)|Θn]−m(θ) and the conditional variance of S-LLR
be VarY [m̂(θ;κ)|Θn]. Di Marzio et al. (2009) derived the following theorem regarding
the bias and the variance.

Theorem 1 Assume that the following four conditions hold:

i) limn→∞ n−1R(Kκ) = 0.

ii) limn→∞ γj(κ) = 1.

iii) The marginal density f(θ) is continuously differentiable, where f(θ) > 0 for any
θ.

iv) The second derivative m′′(θ) and the conditional variance v(θ) are continuous,
respectively.

Then, the bias is approximately given by

BiasY [m̂(θ;κ)|Θn] ≃ η2(Kκ)
m′′(θ)

2!
, (4)

and the variance is approximately given by

VarY [m̂(θ;κ)|Θn] ≃ R(Kκ)
v(θ)

nf(θ)
. (5)

We derive the following asymptotic normality of S-LLR from combining Theorem
1 and Lindeberg’s central limit theorem (CLT).

Theorem 2 Assume that the all conditions of Theorem 1 hold. Then, it follows that√
n/R(Kκ)[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]

d−→ N(0, v(θ)/f(θ)) n → ∞.

The proof is presented in Appendix A.
We find out that the bias depends on η2(Kκ), and the variance depends on R(Kκ)

in Theorem 1. For providing the convergence rate of the MSE in Theorem 1, it is needed
to divide this two terms into κ and any constant part C(K), but it is difficult to obtain
general kernel’s conditions enabling this dividing. Therefore, we choose the two well-
used VM and WC kernels in circular data, and derive the asymptotic properties for
S-LLR applying the two kernels.
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3. Theoretical properties for von Mises kernel

VM kernel Kκ(θ) is defined as

Kκ(θ) :=
1

2πI0(κ)
exp{κ cos θ} 0 < κ < ∞,

where Ip(κ) denotes the modified Bessel function of the first kind and order p. The
coefficients of VM kernel are given by

γj(κ) = Ij(κ)/I0(κ).

(6)

VM kernel (density) is called as the circular normal density for having the properties
being similar to the normal density. For example, VM kernel has good properties such
that this belongs to exponential family, and the maximum likelihood estimators (MLEs)
of this have the explicit solutions. However, VM kernel does not satisfy the reproductive
property.

The second sine-type moment η2(Kκ) and the term R(Kκ) of VM kernel are pre-
sented in the following Lemma.

Lemma 1 From combining (3) and (3.5.37) in Mardia and Jupp (1999), the second
sine-type moment for VM kernel is given by

η2(Kκ) =
I1(κ)

κI0(κ)
. (7)

If κ is large enough, then from combining (7) and (3.5.34) in Mardia and Jupp (1999),
the second sine-type moment η2(Kκ) is equal to

η2(Kκ) =
1

κ
{1 + op(1)}.

From (3.5.27) in Mardia and Jupp (1999), the term R(Kκ) is given by

R(Kκ) =
I0(2κ)

2πI0(κ)2
. (8)

If κ is large enough, then from combining (8) and (3.5.33) in Mardia and Jupp (1999),
the term R(Kκ) can approximate to

R(Kκ) ≃ κ1/2/(2π1/2).

We define MISE as MISEY [m̂(θ;κ)|Θn] := EY [
∫ π

−π
{m̂(θ;κ) − m(θ)}2f(θ)dθ|Θn].

Then, we obtain the following theorem with respect to VM kernel from combining The-
orem 1 and Lemma 1.

Theorem 3 Assume that as n → ∞, κ → ∞, and n−1κ1/2 → 0. Then, the bias is
approximately given by

BiasY [m̂(θ;κ)|Θn] ≃
1

2κ
m′′(θ), (9)
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and the variance is approximately given by

VarY [m̂(θ;κ)|Θn] ≃
κ1/2v(θ)

2π1/2nf(θ)
. (10)

From combining (9) and (10), we obtain the following asymptotic MISE that is

AMISEY [m̂(θ;κ)|Θn] =
1

4κ2

∫ π

−π

m′′(θ)2f(θ)dθ +
κ1/2

∫ π

−π
v(θ)dθ

2π1/2n
. (11)

The minimizer κ∗ of (11) is given by

κ∗ =

[
2π1/2

∫ π

−π
m′′(θ)2f(θ)dθ∫ π

−π
v(θ)dθ

]2/5

n2/5. (12)

Therefore, the optimal AMISEY [m̂(θ;κ∗)|Θn] is Op(n
−4/5).

We obtain the following asymptotic normal distribution of VM kernel from Theorems 2
and 3, and Lemma 1.

Theorem 4 Put κ = cnα, where c and α are any constants. Then, if α > 2/5 and
n → ∞, then it holds that

n1/2κ−1/4[m̂(θ;κ)−m(θ)]
d−→ N(0, v(θ)/{2π1/2f(θ)}),

The proof is presented in Appendix B.

4. Theoretical properties wrapped Cauchy kernel

WC kernel is defined as

Kρ(θ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ)
0 < ρ < 1,

where ρ is the concentration parameter. The coefficients of WC kernel are given by

γj(ρ) = ρj .

The coefficients γj(ρ) are very simpler forms than that of VM kernel. Note that WC
kernel satisfies the reproductive property. This two points are advantages for WC kernel.
However, the MLEs of WC kernel generally does not have the explicit solutions.

The second sine-type moment η2(Kρ) and the term R(Kρ) of WC kernel are pre-
sented in the following Lemma.

Lemma 2 The second sine-type moment of WC kernel is given by

η2(Kρ) = (1− ρ2)/2.

Using Parseval’s formula: R(Kρ) = (2π)−1{1 + 2
∑∞

j=1 γj(ρ)
2}，the term R(Kρ) is

approximately equal to

R(Kρ) =
1

π(1− ρ2)
− 1

2π

=
1

π(1− ρ2)
{1 + op(1)}.
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We now put h = 1 − ρ2 0 < h < 1. Then, we derive the bias, the variance and
the MISE of WC kernel from combining Theorem 1 and Lemma 2.

Theorem 5 Assume that as n → ∞, h → 0 and nh → ∞. Then, the bias is approxi-
mately given by

BiasY [m̂(θ;h)|Θn] ≃ h
m′′(θ)

4
, (13)

and the variance is approximately given by

VarY [m̂(θ;h)|Θn] ≃ (nh)−1 v(θ)

πf(θ)
. (14)

From combining (13) and (14), we obtain the asymptotic MISE that is

AMISEY [m̂(θ;h)|Θn] =
h2

∫ π

−π
m′′(θ)2f(θ)dθ

16
+

∫ π

−π
v(θ)dθ

πnh
. (15)

The minimizer h∗ of (15) is given by

h∗ =

{
8
∫ π

−π
v(θ)dθ

π
∫ π

−π
m′′(θ)2f(θ)dθ

}1/3

n−1/3.

Hence, the optimal AMISEY [m̂(θ;h∗)|Θn] is Op(n
−2/3).

Comparing Theorems 3 and 5, these results indicate that S-LLR’s convergence
rates for AMISE are different speeds depending on an employed kernel. This is different
from the property that the standard LLR on the real line always has the same rate of
Op(n

−4/5) under non-negative kernels.
We obtain the following asymptotic distribution for WC kernel from combining

Theorems 2 and 5, and Lemma 2.

Theorem 6 Put h = cnα, where c and α are any constants. Then, if α < −1/3 and
n → ∞, then it holds that

(nh)1/2[m̂(θ;h)−m(θ)]
d−→ N(0, v(θ)/{πf(θ)}),

5. Numerical experiment

We discussed the theoretical aspects for VM and WC kernels in the above sections.
From practical view point we want to investigate the performances in small samples for
the both kernel through a numerical experiment.

We consider

Yi = m(Θi) + v1/2(Θi)εi εi
i.i.d.∼ N(0, 1), and v(Θi) = t2,
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where we employ the two following regression functions:

• Function 1 m1(θ) := 2 + 3 cos(θ) + 2 sin(3θ).

• Function 2 m2(θ) := 2 + 0.7 cos(θ) + 0.72 cos(2θ) + 0.73 cos(3θ).

Figure 1 shows that Function 1 is asymmetric and has some waves, and Function 2
is symmetric and has a sharp mountain. Additionally, we employ a circular uniform
distribution and VM distribution for the distribution of Θi. In other words, we now
consider four models in Table 1.

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

x

m
1(

x)

(a) Function 1

−3 −2 −1 0 1 2 3

1.
5

2.
0

2.
5

3.
0

3.
5

x

m
2(

x)

(b) Function 2

Figure 1: The true regression functions 1 and 2.

Table 1: Models 1–4 of the numerical experiment.

Model Function Distribution of Θi

1 1 Circular uniform
2 1 Von Mises (µ = 0, κ = 0.3)
3 2 Circular uniform
4 2 Von Mises (µ = 0, κ = 0.3)

We apply the least squares cross validation (LSCV) to estimate the optimal con-
centration parameter. LSCV estimator employing VM kernel is given by

κ̂ := arg min
κ>0

[
1

n

n∑
i=1

{Yi − m̂−i(Θi;κ)}2
]
, (16)

where m̂−i(θ;κ) is S-LLR given by removing i-th observation (Yi,Θi). In additions, We
provide LSCV estimator employing WC kernel ρ̂ given by replacing κ by ρ in (16). We
conduct the numerical experiment according to the following procedure:

Execute the following six steps for each model:

1. Generate a random sample {Θ1, . . . ,Θn} following the distribution in Table 1.
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2. Generate a random sample {ε1, . . . , εn} following in the normal distribution N(0, t2).

3. Generate a random sample {Y1, . . . , Yn} from (a)–(b).

4. Give VM kernel m̂(θ; κ̂CV) and WC kernel m̂(θ; ρ̂CV) with each LSCV estimator.

5. Calculate the numerical integral ISE =
∫ π

−π
{m̂(θ; ·) −m(θ)}f(θ)dθ for the above

two estimators, where f(θ) is the density of the distribution in (a).

6. Repeat 1000 times from (a)–(e), and calculate the means and standard divisions
of ISE of the two estimators in (d).

Tables 2–5 show that WC kernel outperforms VM kernel when n is small (n ≤ 20 or
n ≤ 30) for all models. Additionally, WC kernel is more stable when n ≤ 50. In models
3–4, WC kernel always shows the better performances when n ≤ 50. Even when n = 100,
it outperforms VM kernel in t = 2 in model 3. The result indicates that WC kernel has
a advantage in small samples if a regression function has a sharp mountain. VM kernel
better performs when n = 100 for all models except in the case where t = 2 in models
3–4. We recommend to apply WC kernel if n is small. However, we should employ VM
kernel if n is large.

Table 2: Result of model 1. VM and WC represents VM and WC kernels employing in
S-LLR with each LSCV estimator. The values are the means and standard divisions of
the numerical ISE of each S-LLR, based on 1000 simulated samples of size n =10, 20,
30, 40, 50, and 100 and standard divisions of the normal error t = 1 (above the double
rules) and t = 2 (below the double rules).

n
VM WC

MISE sd(ISE) MISE sd(ISE)
10 16.32 305.69 2.77 1.62
20 3.24 44.22 1.37 0.77
30 0.66 0.73 0.88 0.43
40 0.44 0.30 0.68 0.31
50 0.34 0.18 0.55 0.23
100 0.16 0.06 0.30 0.09

10 11.86 103.37 4.34 2.26
20 3.38 15.84 2.48 1.19
30 1.62 0.91 1.76 0.77
40 1.23 0.73 1.41 0.61
50 0.99 0.51 1.20 0.51
100 0.50 0.22 0.70 0.24
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Table 3: Result of model 2.VM and WC represents VM and WC kernels employing in
S-LLR with each LSCV estimator. The values are the means and standard divisions of
the numerical ISE of each S-LLR, based on 1000 simulated samples of size n =10, 20,
30, 40, 50, and 100 and standard divisions of the normal error t = 1 (above the double
rules) and t = 2 (below the double rules).

n
VM WC

MISE sd(ISE) MISE sd(ISE)
10 18.98 258.3 2.82 1.59
20 1.44 2.24 1.34 0.69
30 0.78 1.65 0.91 0.46
40 0.66 5.19 0.68 0.29
50 0.37 0.50 0.55 0.21
100 0.17 0.07 0.31 0.10

10 52.09 1032.93 4.38 2.11
20 2.88 4.84 2.45 1.08
30 1.88 4.84 1.77 0.77
40 1.28 0.94 1.40 0.56
50 1.02 1.29 1.18 0.47
100 0.51 0.23 0.70 0.25

Table 4: Result of model 3. VM and WC represents VM and WC kernels employing in
S-LLR with each LSCV estimator. The values are the means and standard divisions of
the numerical ISE of each S-LLR, based on 1000 simulated samples of size n =10, 20,
30, 40, 50, and 100 and standard divisions of the normal error t = 1 (above the double
rules) and t = 2 (below the double rules).

n
VM WC

MISE sd(ISE) MISE sd(ISE)
10 1.42 12.99 0.52 0.30
20 0.45 1.57 0.34 0.17
30 0.27 0.17 0.26 0.14
40 0.21 0.15 0.21 0.11
50 0.17 0.11 0.18 0.10
100 0.09 0.05 0.10 0.05

10 2.34 6.39 1.25 1.11
20 1.13 4.57 0.80 0.56
30 0.66 0.51 0.61 0.44
40 0.56 0.56 0.51 0.31
50 0.47 0.34 0.46 0.32
100 0.28 0.17 0.27 0.15
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Table 5: Result of model 4. VM and WC represents VM and WC kernels employing in
S-LLR with each LSCV estimator. The values are the means and standard divisions of
the numerical ISE of each S-LLR, based on 1000 simulated samples of size n =10, 20,
30, 40, 50, and 100 and standard divisions of the normal error t = 1 (above the double
rules) and t = 2 (below the double rules).

n
VM WC

MISE sd(ISE) MISE sd(ISE)
10 2.18 27.7 0.52 0.31
20 0.40 0.38 0.34 0.18
30 0.31 1.15 0.26 0.14
40 0.33 3.59 0.20 0.11
50 0.17 0.11 0.18 0.10
100 0.09 0.05 0.10 0.05

10 6.85 94.68 1.23 1.08
20 0.95 1.15 0.81 0.58
30 0.87 4.60 0.65 0.49
40 0.57 0.44 0.52 0.34
50 0.49 0.36 0.47 0.32
100 0.28 0.19 0.28 0.18
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Appendix A

We prove Theorem 2.

Proof. We use the Lindeberg’s CLT; For example, see Feller (1966) for the de-
tails.
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Lemma 3 Suppose {X1, . . . Xn} is a sequence of independent random variables, each
with the finite mean µi and the finite variance σ2

i . Put S2
n =

∑n
i=1 σ

2
i . Put S2

n :=∑n
i=1 σ

2
i , and let IA denote indicator function. If, for any ε > 0, the Lindeberg’s condi-

tion:

lim
n→∞

1

S2
n

n∑
i=1

E[(Xi − µi)
2I{|Xi−µi|>εSn}] = 0 (17)

is satisfied then, it holds that

1

Sn

∑
i

(Xi − µi)
d−→ N(0, 1),

as n → ∞.

From (2), we rewrite S-LLR as

m̂(θ;κ) = n−1eT1 (n
−1ST

θ WθS
T
θ )

−1ST
θ WθY . (18)

Put the vector eT1 (n
−1ST

θ WθSθ)
−1ST

θ Wθ = (c1, . . . , cn), where ci are any constants.
Then, from (18) S-LLR is given by the average of ciYi. That is,

m̂(θ;κ) = n−1
n∑

i=1

ciYi. (19)

From combining (5) and (19), we obtain the sum of variances of ciYi/
√
R(Kκ) is ap-

proximately equal to

S2
n =

n∑
i=1

VarY [ciYi/
√
R(Kκ)|Θn]

= n2R(Kκ)
−1VarY [m̂(θ;κ)|Θn]

≃ n2R(Kκ)
−1R(Kκ)

v(θ)

nf(θ)

= nv(θ)/f(θ). (20)

It follows from (20) that as n → ∞, S2
n → ∞. If n is large enough, then EY [(Yi −

EY [Yi])
2I{(Yi−EY [Yi|Θn])>εSn}|Θn] is equal to

lim
n→∞

EY [(Yi − EY [Yi|Θn])
2I{Yi−EY [Yi|Θn]>εSn}|Θn]

= VarY [Yi|Θn]

− lim
n→∞

EY [(Yi − EY [Yi|Θn])
2I{Yi−EY [Yi|Θn]≤εSn}|Θn]

= VarY [Yi|Θn]−VarY [Yi|Θn]

= 0. (21)
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From combining (20) and (21), it follows that

lim
n→∞

1

S2
n

n∑
i=1

EY [(ciYi/
√
R(Kκ)− EY [ciYi/

√
R(Kκ)|Θn])

2I{Yi−EY [Yi|Θn]>εSn}|Θn]

= lim
n→∞

1

S2
n

n∑
i=1

c2iR(Kκ)
−1EY [(Yi − EY [Yi|Θn])

2I{Yi−EY [Yi|Θn]>εSn}|Θn]

= 0. (22)

From (22), we show that ciYi/
√
R(Kκ) satisfies Lindeberg condition for any ε > 0.

Therefore, from considering Lemma 3, (19), and (20), we obtain the following asymptotic
distribution:

n√
nR(Kκ)v(θ)/f(θ)

[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]

=
n√

nv(θ)/f(θ)
[n−1

n∑
i=1

{ciYi/
√

R(Kκ)− EY [ciYi/
√

R(Kκ)|Θn]}]

=
1

Sn

n∑
i=1

{ciYi/
√
R(Kκ)− EY [ciYi/

√
R(Kκ)|Θn]}

d−→ N(0, 1), (23)

as n → ∞. Theorem 2 completes the proof from (23). ⊓⊔

Appendix B

We prove Theorem 4.

Proof. From Theorem 2 and Lemma 1, we obtain the following asymptotically
normal distribution:√

n

κ1/2/(2π1/2)
[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]

d−→ N(0, v(θ)/f(θ)). (24)

Equation (24) is reduced to

n1/2κ−1/4[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]
d−→ N(0, v(θ)/{2π1/2f(θ)}). (25)

We obtain that n1/2κ−1/4[m̂(θ;κ)−m(θ)] is equal to

n1/2κ−1/4[m̂(θ;κ)−m(θ)] = n1/2κ−1/4[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]

+ n1/2κ−1/4BiasY [m̂(θ;κ)|Θn]. (26)

We put κ = cnα. Then, recalling that the equation (9) gives that BiasY [m̂(θ;κ)|Θn] =
O(κ−1), it follows that

n1/2κ−1/4BiasY [m̂(θ;κ)|Θn] ∝ n1/2κ−5/4

= Op(n
(2−5α)/4). (27)
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From (27), we show that α such as n(2−5α)/4 = op(1) is α > 2/5. Hence, if α > 2/5
and n → ∞, then the second term of the right side in (26) is vanished. Therefore, from
combining (25), and (26), it holds that

n1/2κ−1/4[m̂(θ;κ)−m(θ)] ≃ n1/2κ−1/4[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]

d−→ N(0, v(θ)/{2π1/2f(θ)}), n → ∞. (28)

Theorem 4 completes the proof from (28). ⊓⊔

Appendix C

We prove Theorem 6

Proof. From Theorem 2 and Lemma 2, we obtain the following asymptotically
normal distribution:

(nh)1/2[m̂(θ;h)− EY [m̂(θ;h)|Θn]]
d−→ N(0, v(θ)/{πf(θ)}). (29)

We show that (nh)1/2[m̂(θ;h)−m(θ)] is equal to

(nh)1/2[m̂(θ;h)−m(θ)] = (nh)1/2[m̂(θ;h)− EY [m̂(θ;h)|Θn] + BiasY [m̂(θ;h)|Θn]]

= (nh)1/2[m̂(θ;h)− EY [m̂(θ;h)|Θn] + (nh)1/2BiasY [m̂(θ;h)|Θn].
(30)

We put h = cnα. Then, recalling that equation (13) gives that BiasY [m̂(θ;κ)|Θn] =
O(h), it follows that

(nh)1/2BiasY [m̂(θ;h)|Θn] ∝ n1/2h3/2

= Op(n
(1+3α)/2). (31)

From (31), we show that α such as n(1+3α)/2 = op(1) is α < −1/3. Hence, if α < −1/3
and n → ∞, then the second term of the right side in (30) is vanished. Therefore, from
combining (29), and (30), it holds that

(nh)1/2[m̂(θ;h)−m(θ)] ≃ (nh)1/2[m̂(θ;h)− EY [m̂(θ;h)|Θn]]

d−→ N(0, v(θ)/{πf(θ)}), n → ∞. (32)

Theorem 6 completes the proof from (32). ⊓⊔
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