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HYBRID ESTIMATION FOR AN ERGODIC
DIFFUSION PROCESS BASED ON REDUCED

DATA

By

Yusuke Kaino∗, Masayuki Uchida† and Yuto Yoshida‡

Abstract

We consider efficient estimation of both drift and diffusion coefficient parame-
ters for an ergodic diffusion process from discrete observations. From the viewpoint
of numerical analysis, hybrid estimators based on the initial Bayes type estimators
from the reduced data are proposed and the asymptotic properties of the hybrid
estimators, including convergence of moments, are shown. Furthermore, we give
examples and simulation results in order to investigate the asymptotic performance
of the proposed estimators.

Key Words and Phrases: Adaptive maximum likelihood type estimator, Bayes type estimator,

convergence of moments, high frequency data, stochastic differential equation.

1. Introduction

We treat a d-dimensional ergodic diffusion process defined by the following stochas-
tic differential equation

dXt = b(Xt, β)dt+ a(Xt, α)dwt, t ≥ 0, X0 = x0, (1)

where θ = (α, β) is an unknown parameter, θ ∈ Θα ×Θβ = Θ, Θα and Θβ are compact
convex subsets of Rm1 and Rm2 , respectively. b : Rd × Θβ → Rd and a : Rd × Θα →
Rd ⊗ Rr are known functions except for parameters α and β. Furthermore, w is an
r-dimensional standard Wiener process, x0 is a deterministic initial condition. Let the
true value of θ be θ∗ = (α∗, β∗) and we assume that θ∗ ∈ Int(Θ) and the parameter
spaces have locally Lipschitz boundaries, see Adams and Fournier (2003). The data are
discrete observations Xn = (Xtni

)0≤i≤n, where tni = ihn. Let p be an integer and p ≥ 2.
It is assumed that hn → 0, nhn → ∞ and nhp

n → 0 as n → ∞.
The statistical inference for ergodic diffusion processes has been investigated by

many researchers. For statistically asymptotic theory for continuous path data, we can
refer the textbooks of Kutoyants (1984, 2004). For parametric estimation based on dis-
crete observations, see Prakasa Rao (1983, 1988), Florens-Zmirou (1989), Yoshida (1992),
Bibby and Sørensen (1995), Kessler (1995, 1997), Gobet (2002), Uchida and Yoshida
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(2001, 2011), Uchida (2010), Fujii and Uchida (2014), Kamatani and Uchida (2015),
Eguchi and Masuda (2016) and references therein. Yoshida (2011) proved the polyno-
mial type large deviation inequality for a statistical random field and he showed the
estimator has asymptotic normality and convergence of moments of both the maximum
likelihood type estimator and the Bayes type estimator for discretely observed diffusion
processes, see also Uchida and Yoshida (2012, 2014).

In order to explain our motivation for this paper, we consider the one-dimensional
diffusion process defined by

dXt = (β1 − β2Xt − 2 sin(β3Xt)) dt+

(
α2 +X2

t

1 + α1X2
t

)
dwt, t ≥ 0, X0 = 2, (2)

where α = (α1, α2) and β = (β1, β2, β3) are unknown parameters, and the true parameter
value is (α∗

1, α
∗
2, β

∗
1 , β

∗
2 , β

∗
3) = (0.3, 0.5, 3, 7, 5). The parameter space is assumed to be

Θ = [0.1, 50]5. The simulations were done for Tn = nhn = 250, hn = 1/390, which
means that n = 390 × 250 = 97500. We set p = 4 since nh4

n ≃ 0. Let ∆Xi =

Xtni
− Xtni−1

, bi−1(β) = β1 − β2Xti−1 − 2 sin(β3Xti−1) and Ai−1(α) =

(
α2+X2

ti−1

1+α1X2
ti−1

)2

.

For the case that nh4
n → 0, the quasi-log likelihood functions of Kessler (1995) and

Uchida and Yoshida (2012) are as follows.

U (1)
n (α) = −1

2

n∑
i=1

{
(∆Xi)

2

hnAi−1(α)
+ log(Ai−1(α))

}
,

U (2)
n (β | ᾱ) = −1

2

n∑
i=1

{
(∆Xi − hnbi−1(β))

2

hnAi−1(ᾱ)

}
,

U (3)
n (α | θ̄) = −1

2

n∑
i=1

{
(∆Xi)

2 − h2
nD̄

(2)
i−1(θ̄)

hnAi−1(α)
+ logAi−1(α)

}
,

U (4)
n (β | θ̄) = −1

2

n∑
i=1

(
∆Xi − hnbi−1(β)− h2

nr̄
(2)
i−1(θ̄)

)2
hnAi−1(ᾱ)

.

For the definition of D̄
(2)
i−1(θ̄) and r̄

(2)
i−1(θ̄), see Section 3 below. The adaptive maximum

likelihood (ML) type estimator (α̂
(3)
n , β̂

(4)
n ) is given by

α̂(1)
n = arg sup

α∈Θα

U (1)
n (α),

β̂(2)
n = arg sup

β∈Θβ

U (2)
n (β | α̂(1)

n ),

α̂(3)
n = arg sup

α∈Θα

U (3)
n (α | α̂(1)

n , β̂(2)
n ),

β̂(4)
n = arg sup

β∈Θβ

U (4)
n (β | α̂(3)

n , β̂(2)
n ).

It follows from Kessler (1995) and Uchida and Yoshida (2012) that under some regular-

ity conditions, the adaptive ML type estimator (α̂
(3)
n , β̂

(4)
n ) has asymptotic normality and

convergence of moments under nh4
n → 0. In order to compute the ML type estimator,
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we used optim() with the ”L-BFGS-B” method in the R Language. For the true model,
1000 independent sample paths are generated by the Euler-Maruyama scheme, and the
mean and the standard deviation (s.d.) for the estimators are computed. Table 1 is the

simulation results of the adaptive ML type estimator (α̂
(3)
n , β̂

(4)
n ) with the initial value

being the true value, where the upper row is the mean of the estimator, the lower row
is the s.d. of the estimator and the time means the computation time of the estimator
based on a one sample path. Table 2 is the simulation results of the adaptive ML type

estimator (α̂
(3)
n , β̂

(4)
n ) with the initial value being the uniform random number on Θ. As

we see from Tables 1 and 2, it is quite important to choose a suitable initial value for
optimization.

Table 1: adaptive ML type estimator with the initial value being the true value

β̂1(3) β̂2(7) β̂3(5) α̂1(0.3) α̂2(0.5) time(sec.)
3.006 7.036 5.005 0.301 0.500
(0.093) (0.366) (0.192) (0.021) (0.001) 20

Table 2: adaptive ML type estimator with the initial value being the uniform random
number on Θ

β̂1(3) β̂2(7) β̂3(5) α̂1(0.3) α̂2(0.5) time(sec.)
2.470 8.127 23.316 0.305 0.498
(0.508) (1.121) (17.988) (0.021) (0.002) 30

Next, we consider the Bayes type estimators for α and β. We assume that the
prior densities π1(α) and π2(β) are continuous and satisfy that 0 < infα∈Θα π1(α) ≤
supα∈Θα

π1(α) < ∞ and 0 < infβ∈Θβ
π2(β) ≤ supβ∈Θβ

π2(β) < ∞. In the same way as

Uchida and Yoshida (2014), the adaptive Bayes type estimator (α̃
(1)
n , β̃

(2)
n ) is defined as

α̃(1)
n =

∫
Θα

α exp
{

1

n1− 2
4
U

(1)
n (α)

}
π1(α)dα∫

Θα
exp

{
1

n1− 2
4
U

(1)
n (α)

}
π1(α)dα

,

β̃(2)
n =

∫
Θβ

β exp

{
1

(nhn)
1− 2

3
U

(2)
n (β | α̃(1)

n )

}
π2(β)dβ∫

Θβ
exp

{
1

(nhn)
1− 2

3
U

(2)
n (β | α̃(1)

n )

}
π2(β)dβ

.

The hybrid type estimator (α̌
(3)
n , β̌

(4)
n ) is given by

α̌(3)
n = arg sup

α∈Θα

U (3)
n (α | α̃(1)

n , β̃(2)
n ),

β̌(4)
n = arg sup

β∈Θβ

U (4)
n (β | α̌(3)

n , β̃(2)
n ).

It follows from Uchida and Yoshida (2012, 2014) that under some regularity conditions,

the hybrid type estimator (α̌
(3)
n , β̌

(4)
n ) has asymptotic normality and convergence of mo-
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ments under nh4
n → 0, see also Kamatani and Uchida (2015). Table 3 is the simulation

results of initial Bayes type estimator (α̃
(1)
n , β̃

(2)
n ) based on the full data with n = 97500.

Table 4 is the simulation results of hybrid estimator (α̌
(3)
n , β̌

(4)
n ) with the initial value

being the Bayes estimator based on the full data. The initial Bayes estimator of α1 has a
bias in Table 3, but the hybrid estimator in Table 4 has as good behavior as the adaptive
estimator with the initial value being the true value in Table 1. The Bayes estimators are
calculated with one of the MCMC methods, the mixed preconditioned Crank-Nicolson
(MpCN) method proposed by Kamatani (2014) for 106 Markov chains and 105 burn-in
iterations. The calculation of the Bayes estimator is essentially free from the choice of
the initial value. However, it takes much time to compute the Bayes estimator with a
large sample size n. Recently, Kutoyants (2017) proposed the multi-step ML type esti-
mator with the initial estimator for a continuously observed ergodic diffusion process on
[0, T ]. Using the initial estimator obtained from the reduced continuous path data on
[0, T0] for T0 ≤ T , he proved asymptotic efficiency of the multi-step ML type estimator
as T0 → ∞.

Table 3: initial Bayes type estimator based on the full data (n = 97500)

β̃1(3) β̃2(7) β̃3(5) α̃1(0.3) α̃2(0.5) time(h.)
2.949 6.853 4.916 0.506 0.505
(0.120) (0.451) (0.255) (0.049) (0.005) 3.9

Table 4: hybrid estimator with the initial value being the Bayes estimator based on the
full data (n = 97500)

β̌1(3) β̌2(7) β̌3(5) α̌1(0.3) α̌2(0.5) time(sec.)
3.007 7.053 4.998 0.301 0.500
(0.099) (0.398) (0.204) (0.021) (0.001) 30

In this paper, from the viewpoint of numerical analysis, we propose the initial
Bayes type estimator based on reduced data with the sample size n0 ≤ n, where n
is the sample size of full data. Although the estimator does not have optimal rate of
convergence, the computation time of the Bayes estimator based on reduced data is much
shorter than that of the Bayes estimator based on the full data with the sample size n.
Furthermore, by using both the multi-step estimator in Kamatani and Uchida (2015)
and the adaptive ML type estimator in Uchida and Yoshida (2012), it can be shown
that under some regularity conditions, the hybrid estimator has asymptotic normality
and convergence of moments. It is worth mentioning that the proposed hybrid estimator
is free from the choice of the initial value for optimization of the quasi-log likelihood
function since we use the Bayes type estimator as an initial value. Moreover, from the
viewpoint of computational statistics, the proposed initial Bayes estimators are obtained
by an MCMC method and the hybrid estimators with the initial Bayes estimators have
good behavior in numerical simulations.

This paper is organized as follows. In Section 2, four kinds of the initial Bayes
type estimators based on reduced data are proposed and the asymptotic properties of
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the estimators are stated. In Section 3, multi-step estimators with the initial Bayes
type estimator based on reduced data are described. Furthermore, four kinds of hybrid
type estimators are studied and their asymptotic properties, including convergence of
moments, are shown. Section 4 presents numerical examples and simulation studies.
We see from the simulation results that the hybrid estimator with the initial Bayes
estimator is best among the competing estimators. Section 5 gives concluding remarks
of this work. Section 6 is devoted to the proofs of the results presented in Sections 2
and 3.

2. Initial Bayes estimator

Let F↑(R
d) be the space of all measurable functions f satisfying that f(x) is an

R-valued function on Rd with polynomial growth in x. Let Ck,l
↑ (Rd × Θ;Rd) denote

the space of all functions f satisfying the following conditions:

(i) f(x, θ) is an Rd-valued function on Rd ×Θ,

(ii) f(x, θ) is continuously differentiable with respect to x up to order k for all θ, and
their derivatives up to order k are of polynomial growth in x uniformly in θ,

(iii) for |n| = 0, 1, . . . , k, ∂nf(x, θ) is continuously differentiable with respect to θ up to
order l for all x. Moreover, for |ν| = 1, . . . , l and |n| = 0, 1, . . . , k, δν∂nf(x, θ) is of
polynomial growth in x uniformly in θ. Here n = (n1, . . . , nd) and ν = (ν1, . . . , νm)
are multi-indices, m = dim(Θ), |n| = n1 + . . . + nd, |ν| = ν1 + . . . + νm, ∂n =
∂n1
1 · · · ∂nd

d , ∂i = ∂/∂xi, and δν = δν1

θ1
· · · δνm

θm
, δθi = ∂/∂θi.

Pθ denotes the law of the process defined by the equation (1). Set A(x, α) = aa⋆(x, α),
where ⋆ denotes the transpose. Let Lθ be the infinitesimal generator of the diffusion
(1): Lθ =

∑d
i=1 bi(x, β)∂i +

1
2

∑d
i,j=1 Aij(x, α)∂i∂j . Set ∆Xi = Xtni

−Xtni−1
, Ai−1(α) =

A(Xtni−1
, α) and bi−1(β) = b(Xtni−1

, β). Let
p→ and

d→ be the convergence in probability
and the convergence in distribution, respectively. For matrices A and B of the same
size, we define A⊗2 = AA⋆ and B[A] = tr(BA⋆). Moreover, for a matrix A, ||A|| =
tr(AA∗)1/2.

We make the following assumptions.

[A1] (i) There exists K > 0 such that for all x, y ∈ Rd,

sup
β∈Θβ

|b(x, β)− b(y, β)|+ sup
α∈Θα

||a(x, α)− a(y, α)|| ≤ K|x− y|.

(ii) infx,α det(A(x, α)) > 0.
(iii) There exists a unique invariant probability measure µθ∗ of Xt and for any f ∈
F↑(R

d) satisfying
∫
Rd |f(x)|µθ∗(dx) < ∞, as T → ∞,

1

T

∫ T

0

f(Xt)dt
p→
∫
Rd

f(x)µθ∗(dx).

(iv) supt E[|Xt|M ] < ∞ for all M > 0.
(v) For any g ∈ F↑(R

d) satisfying
∫
Rd g(x)µθ∗(dx) = 0, there exist G(x), ∂xiG(x) ∈
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F↑(R
d) (i = 1, . . . , d) such that for all x,

Lθ∗G(x) = −g(x).

[A2](k, l) b ∈ Ck,4
↑ (Rd ×Θβ ;R

d). a ∈ Cl,4
↑ (Rd ×Θα;R

d ⊗Rr).

Remark 2.1. For a sufficient condition of [A1]-(v), see Pardoux and Veretennikov (2001),
and Uchida and Yoshida (2012).

Let p ≥ 2. We assume that there exists γ ∈
(

1
p , 1
)
such that hn = O (n−γ). Set

G ∈ (γ, 1] and n0 = [nG]. Let Yn0 = (Xtni
)0≤i≤n0 with tni = ihn denote the reduced data

with the sample size n0. Moreover, we assume that there exists ϵ0 ∈
(
0, 1− γ

G

)
such that

nϵ0
0 ≤ n0hn for large n. Thus, we will consider the situation when hn → 0, n0hn → ∞

and nhp
n → 0 as n → ∞, which implies that nhn ≥ n0hn → ∞ and n0h

p
n ≤ nhp

n → 0 as
n → ∞.

Proposition 2.1. Let p ≥ 2, ϵ1 = ϵ0/(2(p − 1)) and f ∈ C1,1
↑ (Rd × Θ). Assume

[A1]. Then, for all M > 0, as nhp
n → 0,

sup
n∈N

Eθ∗

sup
θ∈Θ

(
nϵ1
0

∣∣∣∣∣ 1n0

n0∑
i=1

f(Xtni−1
, θ)−

∫
Rd

f(x, θ)µθ∗(dx)

∣∣∣∣∣
)M

 < ∞.

We consider four kinds of initial Bayes type estimators for α and β. Let

V (1)
n0

(α) = −1

2

n0∑
i=1

{
h−1
n A−1

i−1(α)[(∆Xi)
⊗2] + log det(Ai−1(α))

}
,

V (2)
n0

(β | α) = −1

2

n0∑
i=1

{
h−1
n A−1

i−1(α)[(∆Xi − hnbi−1(β))
⊗2]
}
,

W (1)
n0

(α) = − 1

2h2
n

n0∑
i=1

∣∣∣∣∣∣(∆Xi)
⊗2 − hnAi−1(α)

∣∣∣∣∣∣2 ,
W (2)

n0
(β) = − 1

2hn

n0∑
i=1

|∆Xi − hnbi−1(β)|2 .

The four kinds of quasi-log likelihood functions for α and β are as follows.

(U
(1)
1,n0

(α), U
(2)
1,n0

(β | α)) = (V (1)
n0

(α), V (2)
n0

(β | α)),

(U
(1)
2,n0

(α), U
(2)
2,n0

(β | α)) = (W (1)
n0

(α), V (2)
n0

(β | α)),

(U
(1)
3,n0

(α), U
(2)
3,n0

(β)) = (V (1)
n0

(α),W (2)
n0

(β)),

(U
(1)
4,n0

(α), U
(2)
4,n0

(β)) = (W (1)
n0

(α),W (2)
n0

(β)).

Let q = max {p, 2/G}. For j = 1, 2, the type j Bayes estimator (α̃
(1)
j,n0

, β̃
(2)
j,n0

) is
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defined as

α̃
(1)
j,n0

=

∫
Θα

α exp

{
1

n
1− 2

qG
0

U
(1)
j,n0

(α)

}
π1(α)dα

∫
Θα

exp

{
1

n
1− 2

qG
0

U
(1)
j,n0

(α)

}
π1(α)dα

,

β̃
(2)
j,n0

=

∫
Θβ

β exp

{
1

(n0hn)
1− 2

qG
U

(2)
j,n0

(β | α̃(1)
j,n0

)

}
π2(β)dβ∫

Θβ
exp

{
1

(n0hn)
1− 2

qG
U

(2)
j,n0

(β | α̃(1)
j,n0

)

}
π2(β)dβ

.

For j = 3, 4, the type j Bayes estimator (α̃
(1)
j,n0

, β̃
(2)
j,n0

) is given by

α̃
(1)
j,n0

=

∫
Θα

α exp

{
1

n
1− 2

qG
0

U
(1)
j,n0

(α)

}
π1(α)dα

∫
Θα

exp

{
1

n
1− 2

qG
0

U
(1)
j,n0

(α)

}
π1(α)dα

,

β̃
(2)
j,n0

=

∫
Θβ

β exp

{
1

(n0hn)
1− 2

qG
U

(2)
j,n0

(β)

}
π2(β)dβ∫

Θβ
exp

{
1

(n0hn)
1− 2

qG
U

(2)
j,n0

(β)

}
π2(β)dβ

.

The calculations of the above Bayes estimators are expected to be robust thanks

to their normalizing terms n
1− 2

qG

0 and (n0hn)
1− 2

qG . These normalizing terms are called
temperatures, see for example, p.163 of Robert and Casella (2004). For the perfor-
mance of Bayes estimator with temperature for diffusion type processes, we can refer
Kamatani and Uchida (2015), Kamatani et al. (2016) and Nomura and Uchida (2016).

Let

Y(1)(α) = −1

2

∫
Rd

{
tr
[
A(x, α)−1A(x, α∗)− Id

]
+ log

det(A(x, α))

det(A(x, α∗))

}
µθ∗(dx),

Y(2)(β) = −1

2

∫
Rd

A(x, α∗)−1[(b(x, β)− b(x, β∗))⊗2]µθ∗(dx),

W(1)(α) = −1

2

∫
Rd

||A(x, α)−A(x, α∗)||2 µθ∗(dx),

W(2)(β) = −1

2

∫
Rd

|b(x, β)− b(x, β∗)|2 µθ∗(dx).

Set

(U(1)
1 (α),U(2)

1 (β)) = (Y(1)(α),Y(2)(β)),

(U(1)
2 (α),U(2)

2 (β)) = (W(1)(α),Y(2)(β)),

(U(1)
3 (α),U(2)

3 (β)) = (Y(1)(α),W(2)(β)),

(U(1)
4 (α),U(2)

4 (β)) = (W(1)(α),W(2)(β)).



96 Y. Kaino, M. Uchida and Y. Yoshida

We make the following assumption. Let j = 1, 2, 3, 4.

[A3]-(j)

(i) There exists a positive constant χj such that U(1)
j (α) ≤ −χj |α − α∗|2 for all

α ∈ Θα.
(ii) There exists a positive constant χ̃j such that U(2)

j (β) ≤ −χ̃j |β − β∗|2 for all
β ∈ Θβ .

Theorem 2.2. Let p ≥ 2, γ ∈
(

1
p , 1
)
, G ∈ (γ, 1], n0 = [nG], q = max {p, 2/G} and

j = 1, 2, 3, 4. Assume [A1], [A2](2, 2) and [A3]-(j). Then, for all M > 0, as nhp
n → 0,

sup
n∈N

Eθ∗

[∣∣∣∣n 1
qG

0 (α̃
(1)
j,n0

− α∗)

∣∣∣∣M
]
< ∞,

sup
n∈N

Eθ∗

[∣∣∣(n0hn)
1

qG (β̃
(2)
j,n0

− β∗)
∣∣∣M] < ∞.

Remark 2.2. Theorem 2.2 yields that for all M > 0, as nhp
n → 0,

sup
n∈N

Eθ∗

[∣∣∣n 1
q (α̃

(1)
j,n0

− α∗)
∣∣∣M] < ∞,

sup
n∈N

Eθ∗

[∣∣∣(nhn)
ϵ0
q (β̃

(2)
j,n0

− β∗)
∣∣∣M] < ∞.

Here we note that hn → 0 and nhp
n → 0 as n → ∞, and there exists ϵ0 ∈

(
0, 1− γ

G

)
such that nϵ0

0 ≤ n0hn for large n.

3. Hybrid estimator

Let

Jn(α) :=

{
1

n
∂2
αV

(1)
n (α) is invertible

}
,

Γn(α) :=
1

n
∂2
αV

(1)
n (α)1Jn(α) + Em11Jc

n(α)
,

Kn(β | α) :=

{
1

nhn
∂2
βV

(2)
n (β | α) is invertible

}
,

Ξn(β | α) :=
1

nhn
∂2
βV

(2)
n (β | α)1Kn(β | α) + Em21Kc

n(β | α),

where Em is the m × m identity matrix, and 1K(ω) = 1 if ω ∈ K and 1K(ω) = 0 if
ω ∈ Kc.

Let j = 1, 2, 3, 4. Set (α̌
(0)
j,n, β̌

(0)
j,n) = (α̃

(1)
j,n0

, β̃
(2)
j,n0

) in Theorem 2.2. Let q1 = max{p−
1, 2}. Let k1 ≥ log2(q/p) and k2 ≥ log2(q/(ϵ0q1)). The multi-step estimators α̌

(k1)
j,n and

β̌
(k2)
j,n of Kamatani and Uchida (2015) are defined as for k = 1, . . . , k1,

α̌
(k)
j,n = α̌

(k−1)
j,n − Γ−1

n (α̌
(k−1)
j,n )

1

n
∂αV

(1)
n (α̌

(k−1)
j,n )
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and for k = 1, . . . , k2,

β̌
(k)
j,n = β̌

(k−1)
j,n − Ξ−1

n (β̌
(k−1)
j,n | α̌(k1)

j,n )
1

nhn
∂βV

(2)
n (β̌

(k−1)
j,n | α̌(k1)

j,n ),

We assume the regularity conditions in Theorem 2.2. In an analogous way to the
proofs of Kamatani and Uchida (2015), we have that for all M > 0, as nhp

n → 0,

sup
n∈N

Eθ∗

[∣∣∣n 1
p (α̌

(k1)
j,n − α∗)

∣∣∣M] < ∞, (3)

sup
n∈N

Eθ∗

[∣∣∣(nhn)
1
q1 (β̌

(k2)
j,n − β∗)

∣∣∣M] < ∞. (4)

Remark 3.1. (i) Let (α̂
(1)
n,ML, β̂

(2)
n,ML) be the ML type estimator defined as

V (1)
n (α̂

(1)
n,ML) = sup

α
V (1)
n (α),

V (2)
n (β̂

(2)
n,ML | α̂(1)

n,ML) = sup
β

V (2)
n (β | α̂(1)

n,ML).

Let j = 1, 2, 3, 4. Assume the conditions in Theorem 2.2. Then, it follows from
Kamatani and Uchida (2015) that as nhp

n → 0, for all M > 0,

sup
n∈N

Eθ∗

[∣∣∣(n1/p(α̂
(1)
n,ML − α̌

(k1)
j,n ), (nhn)

1/q1(β̂
(2)
n,ML − β̌

(k2)
j,n ))

∣∣∣M] < ∞.

(ii) We set p = 4, γ = 1
3 , hn = 1

n1/3 , G = 1
2 , ϵ0 = 1

4 . Then, one has that k1 = 0, k2 = 3
and q1 = 3, and it follows from (3) and (4) that for j = 1, 2, 3, 4, as nh4

n → 0,

sup
n∈N

Eθ∗

[∣∣∣n 1
4 (α̌

(0)
j,n − α∗)

∣∣∣M] < ∞,

sup
n∈N

Eθ∗

[∣∣∣(nhn)
1
3 (β̌

(3)
j,n − β∗)

∣∣∣M] < ∞

for all M > 0.

In a similar way to Kessler (1995) and Uchida and Yoshida (2012), we use the
following quasi-log likelihood functions. Let θ̄ = (ᾱ, β̄), k0 = [p/2] and for k = 1, . . . , k0,

V (2k+1)
n (α | θ̄) = −1

2

n∑
i=1

h−1
n A−1

i−1(α)

(Xtni
−Xtni−1

)⊗2 −
k+1∑
j=2

hj
nD̄

(j)
i−1(θ̄)

+ log detAi−1(α)

 ,

V (2k+2)
n (β | θ̄) = −1

2

n∑
i=1

h−1
n A−1

i−1(ᾱ)


Xtni

−Xtni−1
− hnbi−1(β)−

k+1∑
j=2

hj
nr̄

(j)
i−1(θ̄)

⊗2
 ,

where for l,m = 1, . . . , d, fl(x) = xl, hlm(x) = (x−Xtni−1
)l(x−Xtni−1

)m,

D̄
(j)
i−1(θ̄)lm =

1

j!
Lj

θ̄
hlm(Xtni−1

), r̄
(j)
i−1(θ̄)l =

1

j!
Lj

θ̄
fl(Xtni−1

).
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When p = 2, the hybrid estimators α̂
(1)
j,n and β̂

(2)
j,n are defined as

α̂
(1)
j,n = α̌

(k1)
j,n − Γ−1

n (α̌
(k1)
j,n )

1

n
∂αV

(1)
n (α̌

(k1)
j,n ),

β̂
(2)
j,n = β̌

(k2)
j,n − Ξ−1

n (β̌
(k2)
j,n | α̂(1)

j,n)
1

nhn
∂βV

(2)
n (β̌

(k2)
j,n | α̂(1)

j,n).

When p = 3, the hybrid estimators α̂
(3)
j,n and β̂

(2)
j,n are defined as

β̂
(2)
j,n = β̌

(k2)
j,n − Ξ−1

n (β̌
(k2)
j,n | α̌(k1)

j,n )
1

nhn
∂βV

(2)
n (β̌

(k2)
j,n | α̌(k1)

j,n ),

α̂
(3)
j,n = arg sup

α∈Θα

V (3)
n (α | α̌(k1)

j,n , β̂
(2)
j,n).

Let p ≥ 4. Set (α̂
(1)
j,n, β̂

(2)
j,n) = (α̌

(k1)
j,n , β̌

(k2)
j,n ) for j = 1, 2, 3, 4, and k0 = [p/2]. The hybrid

estimators, α̂
(2k0−1)
j,n , β̂

(2k0)
j,n and α̂

(2k0+1)
j,n are defined as for k = 1, 2, . . . , k0,

V (2k+1)
n (α̂

(2k+1)
j,n | α̂(2k−1)

j,n , β̂
(2k)
j,n ) = sup

α∈Θα

V (2k+1)
n (α | α̂(2k−1)

j,n , β̂
(2k)
j,n ),

V (2k+2)
n (β̂

(2k+2)
j,n | α̂(2k+1)

j,n , β̂
(2k)
j,n ) = sup

β∈Θβ

V (2k+2)
n (β | α̂(2k+1)

j,n , β̂
(2k)
j,n ).

Let

Γ(θ∗) =

(
(Γ1(α

∗)ij)i,j=1,...,m1 0
0 (Γ2(θ

∗)kl)k,l=1,...,m2

)
,

Γ1(α
∗)ij =

1

2

∫
Rd

tr{A−1(∂αiA)A
−1(∂αjA)(x, α

∗)}µθ∗(dx),

Γ2(θ
∗)kl =

∫
Rd

(∂βk
b(x, β∗))⋆A(x, α∗)−1∂βk

b(x, β∗)µθ∗(dx).

We make the assumption as follows.

[A4] Γ(θ∗) is invertible.

Theorem 3.1. Let p ≥ 2, k0 = [p/2], l0 = [(p − 1)/2] and j = 1, 2, 3, 4. Assume
[A1], [A2](2k0, 2k0 + 1), [A3]-(j) and [A4]. Then, as nhp

n → 0,

(
√
n(α̂

(2l0+1)
j,n − α∗),

√
nhn(β̂

(2k0)
j,n − β∗))

d→ (ζ1, ζ2) ∼ Nm1+m2(0,Γ(θ
∗)−1)

and
Eθ∗ [f(

√
n(α̂

(2l0+1)
j,n − α∗),

√
nhn(β̂

(2k0)
j,n − β∗))] → E[f(ζ1, ζ2)]

for all continuous functions f of at most polynomial growth.

Remark 3.2. We set p = 4, γ = 1
3 , hn = 1

n1/3 , G = 1
2 , ϵ0 = 1

4 . Let j = 1, 2, 3, 4.

The initial Bayes type estimator (α̃
(1)
j,n0

, β̃
(2)
j,n0

) with the sample size n0 = [
√
n] has that

for all M > 0, as nh4
n → 0,

sup
n∈N

Eθ∗

[∣∣∣n 1
4 (α̃

(1)
j,n0

− α∗)
∣∣∣M] < ∞,

sup
n∈N

Eθ∗

[∣∣∣(nhn)
1
16 (β̃

(2)
j,n0

− β∗)
∣∣∣M] < ∞.
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Next, we obtain the multi-step estimator (α̌
(0)
j,n, β̌

(3)
j,n) based on initial Bayes estimator

(α̌
(0)
j,n, β̌

(0)
j,n) := (α̃

(1)
j,n0

, β̃
(2)
j,n0

). By setting that (α̂
(1)
j,n, β̂

(2)
j,n) = (α̌

(0)
j,n, β̌

(3)
j,n), it follows from

(3) and (4) that for all M > 0, as nh4
n → 0,

sup
n∈N

Eθ∗

[∣∣∣n 1
4 (α̂

(1)
j,n − α∗)

∣∣∣M] < ∞,

sup
n∈N

Eθ∗

[∣∣∣(nhn)
1
3 (β̂

(2)
j,n − β∗)

∣∣∣M] < ∞.

Moreover, the hybrid estimator (α̂
(3)
j,n, β̂

(4)
j,n) is given by

α̂
(3)
j,n = arg sup

α∈Θα

U (3)
n (α | α̂(1)

j,n, β̂
(2)
j,n),

β̂
(4)
j,n = arg sup

β∈Θβ

U (4)
n (β | α̂(3)

j,n, β̂
(2)
j,n),

and it follows from Theorem 3.1 with l0=1 and k0 = 2 that as nh4
n → 0,

(
√
n(α̂

(3)
j,n − α∗),

√
nhn(β̂

(4)
j,n − β∗))

d→ (ζ1, ζ2) ∼ Nm1+m2(0,Γ(θ
∗)−1)

and
Eθ∗ [f(

√
n(α̂

(3)
j,n − α∗),

√
nhn(β̂

(4)
j,n − β∗))] → E[f(ζ1, ζ2)]

for all continuous functions f of at most polynomial growth.

4. Examples and simulation results

Consider the following three-dimensional diffusion process defined by

dXt = b(Xt, β)dt+ a(Xt, α)dwt, t ≥ 0, X0 = (1, 1, 1)
⋆
,

where

b(Xt, β) =

 1− 3Xt,1 − 10 sin(β1X
2
t,2)

2− 3Xt,2 − 10 sin(β2X
2
t,3)

3− 3Xt,3 − 10 sin(β3X
2
t,1 + β4Xt,1)

 ,

a(Xt, α) =


√
2 + cos(α1X2

t,3) 0.01 0

0.01
√

2 + cos(α2X2
t,1) 0

0 0
√

2 + cos(α3X2
t,2 + α4Xt,2)

 .

Furthermore, α = (α1, α2, α3, α4) and β = (β1, β2, β3, β4) are unknown parameters, and
the true parameter values are (β∗

1 , β
∗
2 , β

∗
3 , β

∗
4 , α

∗
1, α

∗
2, α

∗
3, α

∗
4) = (3, 6, 9, 12, 15, 18, 21, 24).

The parameter space is assumed to be Θ = [0.1, 50]8. We note that the computation
time of the initial Bayes estimator strongly depends on the parameter space Θ.

The simulations were done for T = 250, h = 1/390, which means that n = 97500.
In this example, it is assumed that the data with h = 1/390 and T = 250 are trading
data observed at every minute for one year in Japanese financial market.
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LetN0 ≥ n0 = [nG]. We set p = q = 4, (N0, G) = (9000, 79
100 ), (10000,

80
100 ), (15000,

84
100 ),

(20000, 86
100 ) and ϵ0 = 1

10 . It follows from Remark 2.2 that

sup
n∈N

Eθ∗

[∣∣∣n 1
4 (α̃

(1)
j,N0

− α∗)
∣∣∣M] < ∞,

sup
n∈N

Eθ∗

[∣∣∣(nhn)
1
40 (β̃

(2)
j,N0

− β∗)
∣∣∣M] < ∞.

Let q1 = max{p − 1, 2} = 3. Let k1 = log2(q/p) = 0 and k2 = 4 ≥ log2(q/(ϵ0q1)).
It follows from the same method as Section 3 that for j = 1, 2, 3, 4, we obtain the

multi-step estimator (α̌
(0)
j,n, β̌

(4)
j,n) based on initial Bayes estimator (α̃

(1)
j,N0

, β̃
(2)
j,N0

). Set

(α̂
(1)
j,n, β̂

(2)
j,n) = (α̌

(0)
j,n, β̌

(4)
j,n). Moreover, the hybrid estimator (α̂

(3)
j,n, β̂

(4)
j,n) is given by

α̂
(3)
j,n = arg sup

α∈Θα

V (3)
n (α | α̂(1)

j,n, β̂
(2)
j,n),

β̂
(4)
j,n = arg sup

β∈Θβ

V (4)
n (β | α̂(3)

j,n, β̂
(2)
j,n),

where

V (3)
n (α | θ̄) = −1

2

n∑
i=1

{
h−1
n A−1

i−1(α)
[
(Xtni

−Xtni−1
)⊗2 − h2

nD̄
(2)
i−1(θ̄)

]
+ log detAi−1(α)

}
,

V (4)
n (β | θ̄) = −1

2

n∑
i=1

h−1
n A−1

i−1(α)

[(
Xtni

−Xtni−1
− hnbi−1(β)− h2

nr̄
(2)
i−1(θ̄)

)⊗2
]
.

For the definition of D̄
(2)
i−1(θ̄) and r̄

(2)
i−1(θ̄), see Section 3.

In order to compute the maximum likelihood type estimator, we used optim() with
the ”L-BFGS-B” method in the R Language. The Bayes estimators are calculated with
MpCN method proposed by Kamatani (2014) for 106 Markov chains and 105 burn-in
iterations. For MpCN algorithm, see Kamatani (2014) and Kaino et al. (2017).

For the true model, 100 independent sample paths are generated by the Euler-
Maruyama scheme, and the mean and the standard deviation (s.d.) for the estimators
in Theorems 1 and 2 are computed and shown in Tables 5-13 below. For simulations,
we used the personal computer with Intel i7-5930K (3.5GHz base clock). In each table,
the time means the computation time of estimator for one sample path.

Table 5 shows the simulation results of the adaptive ML type estimator (α̂
(3)
A,n, β̂

(4)
A,n)

defined as

α̂
(1)
A,n = arg sup

α∈Θα

V (1)
n (α),

β̂
(2)
A,n = arg sup

β∈Θβ

V (2)
n (β | α̂(1)

A,n),

α̂
(3)
A,n = arg sup

α∈Θα

V (3)
n (α | α̂(1)

A,n, β̂
(2)
A,n),

β̂
(4)
A,n = arg sup

β∈Θβ

V (4)
n (β | α̂(3)

A,n, β̂
(2)
A,n),
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where

V (1)
n (α) = −1

2

n∑
i=1

{
h−1
n A−1

i−1(α)[(∆Xi)
⊗2] + log det(Ai−1(α))

}
,

V (2)
n (β | α) = −1

2

n∑
i=1

{
h−1
n A−1

i−1(α)[(∆Xi − hnbi−1(β))
⊗2]
}
.

The adaptive ML type estimator (α̂
(3)
A,n, β̂

(4)
A,n) is computed by using optim() with the

initial value being the true value. We see from Table 5 that all estimators have good be-

havior. Table 6 is the simulation results of the adaptive ML type estimator (α̂
(3)
A,n, β̂

(4)
A,n)

with the initial value being the uniform random number on Θ. All estimators have
considerable biases, which means that the optimization fails since the initial value may
be far from the true value. As we know very well, it is quite important to choose the
initial value for optimization.

Table 7 shows the simulation results of four kinds of initial Bayes type estimators
when the sample size of the reduced data N0 = 9000. The calculation time of type 4
Bayes estimator is shortest and that of type 1 Bayes estimator is longest. For both the
Bayes estimators of type 1 and type 3, α̂3 and α̂4 have large standard deviations. For
the Bayes estimators of type 2, 3 and 4, β̂3 and β̂4 have large standard deviations. Table
8 shows the simulation results of the hybrid estimators with four initial Bayes estimators
when the sample size of the reduced data N0 = 9000. It does not seem that the hybrid
estimators improve performance of the Bayes estimators in Table 7, which means that
the initial estimator plays an important role in this example.

Table 9 shows the simulation results of four initial Bayes type estimators with
N0 = 10000. The calculation time of the Bayes estimator in Table 9 is longer than the
one in Table 7. The standard deviations of α̂3 and α̂4 of the Bayes estimators of type
1 and type 3 are large. The standard deviations of β̂3 and β̂4 of the Bayes estimators
of type 2 and 4 are also large. Table 10 shows the simulation results of the hybrid
estimators with four initial Bayes estimators with N0 = 10000. Similarly to the hybrid
estimator in Table 8, the hybrid estimators do not improve the Bayes estimators in Table
9.

Tables 11 shows the simulation results of four initial Bayes type estimators with
N0 = 15000. The type 1, 3 and 4 Bayes estimators of β4 have large standard deviations.
The Bayes estimator of type 2 has good behavior. Table 12 shows the simulation results
of the hybrid estimators with four initial Bayes estimators with N0 = 15000. The
hybrid estimators with the initial Bayes estimators of type 1, 3 and 4 do not improve
the Bayes estimators in Table 11. On the other hand, the hybrid estimator with the
initial Bayes estimator of type 2 is better than the initial Bayes estimator in Table 11.
The performance of the hybrid estimator with the initial Bayes estimator of type 2 is
similar to that of the estimator in Table 6.

Table 13 shows the simulation results of four initial Bayes type estimators with
N0 = 20000. The standard deviations of the type 3 and 4 Bayes estimators of β3 and β4

and the type 1 Bayes estimators of α3 and α4 are large. The Bayes estimator of type 2
has good behavior. Table 14 shows the simulation results of the hybrid estimators with
four initial Bayes estimators with N0 = 20000. The hybrid estimators with the initial
Bayes estimators of type 1, 3 and 4 do not improve the Bayes estimators in Table 13.
The hybrid estimator with the initial Bayes estimator of type 2 is better than the initial
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Bayes estimators in Table 13. It is worth mentioning that the performance of hybrid
estimator with the initial Bayes estimators of type 2 is as good as the estimator in Table
6.

In this example, we see from the simulation results that the Bayes type estimator of
type 2 have good performance when the sample size of the reduced data is N0 ≥ 15000.

Table 5: adaptive ML type estimator with the initial value being the true value

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(sec.)
3.002 5.997 8.984 11.981 14.988 17.981 20.972 24.008

true (0.014) (0.012) (0.033) (0.046) (0.045) (0.053) (0.089) (0.083) 70

Table 6: adaptive ML type estimator with the initial value being the uniform random
number on Θ

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(sec.)
22.040 23.512 27.838 18.982 25.201 23.444 23.588 26.823

unif (16.074) (16.379) (14.004) (13.446) (16.654) (16.702) (17.871) (16.628) 80

Table 7: initial Bayes type estimator (N0 = 9000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(h.)
2.989 5.985 8.937 11.927 14.899 17.595 19.884 22.050

type1 (0.047) (0.041) (0.123) (0.153) (0.311) (0.808) (2.946) (3.202) 5.2
2.991 5.984 9.406 12.680 14.988 17.956 20.873 23.903

type2 (0.049) (0.041) (2.868) (4.261) (0.130) (0.203) (0.423) (0.352) 1.6
2.993 5.982 9.125 12.177 14.899 17.595 19.884 22.050

type3 (0.051) (0.047) (1.881) (2.464) (0.311) (0.808) (2.946) (3.202) 4.9
2.993 5.982 9.125 12.177 14.988 17.956 20.873 23.903

type 4 (0.051) (0.047) (1.881) (2.464) (0.130) (0.203) (0.423) (0.352) 1.0

Table 8: hybrid type estimator with the initial value being the Bayes type estimator
(N0 = 9000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(sec.)
3.002 5.997 8.983 11.981 14.969 17.888 20.060 23.017

type1 (0.014) (0.012) (0.033) (0.044) (0.202) (0.671) (2.633) (3.396) 70
3.002 5.998 9.444 12.721 14.989 17.981 20.961 23.998

type2 (0.014) (0.012) (2.815) (4.223) (0.045) (0.053) (0.131) (0.118) 70
3.002 5.998 9.167 12.226 14.969 17.888 20.060 23.017

type3 (0.014) (0.012) (1.837) (2.450) (0.202) (0.671) (2.633) (3.396) 70
3.002 5.997 9.167 12.227 14.988 17.981 20.961 23.998

type4 (0.014) (0.012) (1.837) (2.450) (0.045) (0.053) (0.131) (0.118) 70
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Table 9: initial Bayes type estimator (N0 = 10000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(h.)
2.995 5.981 8.946 11.943 14.866 17.664 20.071 22.327

type1 (0.045) (0.039) (0.110) (0.136) (0.373) (0.533) (2.309) (2.614) 5.8
2.990 5.983 9.133 12.520 14.989 17.972 20.864 23.894

type2 (0.062) (0.041) (1.311) (4.088) (0.109) (0.177) (0.439) (0.351) 1.8
2.993 5.982 9.022 12.181 14.866 17.664 20.071 22.327

type3 (0.046) (0.044) (0.784) (2.450) (0.373) (0.533) (2.309) (2.614) 5.4
2.993 5.982 9.022 12.181 14.989 17.972 20.864 23.894

type4 (0.046) (0.044) (0.784) (2.450) (0.109) (0.177) (0.439) (0.351) 1.0

Table 10: hybrid type estimator with the initial value being the Bayes type estimator
(N0 = 10000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(sec.)
3.002 5.997 8.984 11.982 14.988 17.981 20.260 23.321

type1 (0.014) (0.012) (0.033) (0.044) (0.045) (0.053) (2.139) (2.530) 70
3.002 5.997 9.161 12.546 14.988 17.981 20.948 23.985

type2 (0.014) (0.012) (1.284) (4.048) (0.045) (0.053) (0.194) (0.178) 70
3.002 5.997 9.056 12.218 14.988 17.981 20.260 23.321

type3 (0.014) (0.012) (0.718) (2.359) (0.045) (0.053) (2.139) (2.530) 70
3.002 5.997 9.055 12.217 14.988 17.981 20.948 23.985

type4 (0.014) (0.012) (0.718) (2.359) (0.045) (0.053) (0.194) (0.178) 70

Table 11: initial Bayes type estimator (N0 = 15000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(h.)
2.988 5.982 9.207 12.753 14.891 17.489 20.388 22.568

type1 (0.036) (0.034) (1.490) (4.688) (0.236) (0.752) (1.496) (1.490) 8.7
2.987 5.983 8.950 11.945 14.988 17.977 20.926 23.929

type2 (0.042) (0.033) (0.081) (0.105) (0.095) (0.136) (0.274) (0.252) 2.8
2.991 5.984 9.133 12.514 14.891 17.489 20.388 22.568

type 3 (0.035) (0.032) (1.308) (4.076) (0.236) (0.752) (1.496) (1.490) 8.1
2.991 5.984 9.133 12.514 14.988 17.977 20.926 23.929

type4 (0.035) (0.032) (1.308) (4.076) (0.095) (0.136) (0.274) (0.252) 1.6

Table 12: hybrid type estimator with the initial value being the Bayes type estimator
(N0 = 15000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(sec.)
3.002 5.997 9.238 12.788 14.988 17.937 20.647 23.817

type1 (0.014) (0.012) (1.487) (4.690) (0.045) (0.452) (1.211) (0.682) 70
3.002 5.997 8.984 11.981 14.988 17.981 20.962 23.999

type2 (0.014) (0.012) (0.033) (0.046) (0.045) (0.053) (0.130) (0.117) 70
3.002 5.997 9.165 12.552 14.988 17.937 20.647 23.817

type3 (0.014) (0.012) (1.296) (4.070) (0.045) (0.452) (1.211) (0.682) 70
3.002 5.997 9.165 12.552 14.988 17.981 20.962 23.999

type4 (0.014) (0.012) (1.296) (4.070) (0.045) (0.053) (0.130) (0.117) 70
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Table 13: initial Bayes type estimator (N0 = 20000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(h.)
2.990 5.985 8.962 11.958 14.915 17.626 20.172 22.619

type1 (0.030) (0.031) (0.068) (0.083) (0.155) (0.570) (1.420) (1.572) 11.6
2.989 5.987 8.963 11.959 14.985 17.985 20.959 23.959

type2 (0.030) (0.033) (0.066) (0.086) (0.083) (0.109) (0.239) (0.205) 3.7
2.994 5.988 9.122 12.192 14.915 17.626 20.172 22.619

type3 (0.037) (0.033) (1.553) (2.257) (0.155) (0.570) (1.420) (1.572) 10.9
2.994 5.988 9.122 12.192 14.985 17.985 20.959 23.959

type4 (0.037) (0.033) (1.553) (2.257) (0.083) (0.109) (0.239) (0.205) 2.1

Table 14: hybrid type estimator with the initial value being the Bayes type estimator
(N0 = 20000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) α̂1(15) α̂2(18) α̂3(21) α̂4(24) time(sec.)
3.002 5.997 8.983 11.981 14.988 17.933 20.464 23.649

type1 (0.014) (0.012) (0.033) (0.046) (0.045) (0.345) (1.473) (0.952) 70
3.002 5.997 8.984 11.981 14.988 17.981 20.973 24.008

type2 (0.014) (0.012) (0.033) (0.046) (0.045) (0.053) (0.093) (0.086) 70
3.002 5.997 9.138 12.204 14.988 17.933 20.464 23.649

type3 (0.014) (0.012) (1.547) (2.228) (0.045) (0.345) (1.473) (0.952) 70
3.002 5.997 9.139 12.204 14.988 17.981 20.973 24.008

type4 (0.014) (0.012) (1.546) (2.228) (0.045) (0.053) (0.093) (0.086) 70

As another example, we treat the three-dimensional diffusion process as follows.

dXt = b(Xt, β)dt+ a(Xt, α)dwt, t ≥ 0, X0 = (1, 1, 1)
⋆
,

where

b(Xt, β) =

 β1 − β2Xt,1 − 10 sin(β3X
2
t,2)

β4 − β5Xt,2 − β6 sin(X
2
t,3)

β7 − β8Xt,3 − 10 sin(β9X
2
t,1)

 ,

a(Xt, α) =


√
α1(2 + cos(X2

t,3)) 0.01 0

0.01
√
α2(2 + cos(X2

t,1)) 0

0 0
√
α3(2 + cos(X2

t,2))

 .

Furthermore, α = (α1, α2, α3) and β = (β1, β2, β3, β4, β5, β6, β7, β8, β9) are unknown
parameters, and the true parameter values are (β∗

1 , β
∗
2 , β

∗
3 , β

∗
4 , β

∗
5 , β

∗
6 , β

∗
7 , β

∗
8 , β

∗
9) =

(3, 6, 9, 12, 15, 18, 21, 24, 27) and (α∗
1, α

∗
2, α

∗
3) = (1, 2, 3). The parameter space Θ is as-

sumed to be [0.01, 50]12. Let p = q = 4, (N0, G) = (20000, 86
100 ) and ϵ0 = 1

10 . The
simulations were done in the same setting as the previous example, which means that
T = 250, h = 1/390 and n = 97500. In this example, we will investigate the initial Bayes
type estimator of type 4 when the sample size of the reduced data N0 = 20000 since
the computation time is shortest among the four kinds of initial Bayes type estimators.
The Bayes type estimators of α and β are calculated with MpCN method proposed
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by Kamatani (2014) for 5 × 105 and 107 Markov chains and 5 × 104 and 106 burn-in
iterations, respectively.

Tables 15 and 16 show the simulation results of the adaptive ML type estimator

(α̂
(3)
A,n, β̂

(4)
A,n) with the initial value being the true value. We can see that all estimators

have good performance. Tables 17 and 18 show the simulation results of the adaptive ML

type estimator (α̂
(3)
A,n, β̂

(4)
A,n) with the initial value being the uniform random number on

Θ. Similarly to the previous example, the optimization fails because of the inappropriate
initial value, and several estimators of β have considerable biases.

Tables 19 and 20 show the simulation results of type 4 of initial Bayes type estima-
tors when the sample size of the reduced data N0 = 20000. The type 4 Bayes estimators
of β4 and β6 have biases. On the other hand, the Bayes estimators of α have good
performance. Tables 21 and 22 show the simulation results of the hybrid estimators for
the initial Bayes estimators of type 4 with N0 = 20000. The hybrid estimators improve
the initial Bayes estimators of type 4 in Tables 19 and 20. We can see from Tables 21
and 22 that the performance of hybrid estimator with the initial Bayes estimators of
type 4 is as good as the estimator in Tables 15 and 16.

Table 15: adaptive ML type estimator of β with the initial value being the true value

β̂1(3) β̂2(6) β̂3(9) β̂4(12) β̂5(15) β̂6(18) β̂7(21) β̂8(24) β̂9(27)
2.996 5.973 8.883 11.992 14.970 17.975 20.940 23.913 26.723

true (0.099) (0.199) (0.079) (0.300) (0.344) (0.474) (0.402) (0.453) (0.472)

Table 16: adaptive ML type estimator of α with the initial value being the true value
α̂1(1) α̂2(2) α̂3(3) time(sec.)
0.992 2.003 2.983

true (0.005) (0.010) (0.015) 70

Table 17: adaptive ML type estimator of β with the initial value being the uniform
random number on Θ

β̂1(3) β̂2(6) β̂3(9) β̂4(12) β̂5(15) β̂6(18) β̂7(21) β̂8(24) β̂9(27)
1.848 5.713 9.784 11.993 14.975 17.978 20.424 23.751 23.676

unif (1.318) (0.371) (12.505) (0.302) (0.349) (0.476) (0.983) (0.477) (14.302)

Table 18: adaptive ML type estimator of α with the initial value being the uniform
random number on Θ

α̂1(1) α̂2(2) α̂3(3) time(sec.)
1.001 2.002 2.988

unif (0.016) (0.010) (0.020) 80

Table 19: initial Bayes type estimator of β (N0 = 20000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) β̂5(15) β̂6(18) β̂7(21) β̂8(24) β̂9(27) time(h.)
3.061 6.192 8.824 11.365 14.674 16.868 20.576 23.604 26.575

type4 (0.551) (0.943) (0.292) (1.107) (1.193) (1.717) (1.353) (1.514) (1.256) 16
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Table 20: initial Bayes type estimator of α (N0 = 20000)
α̂1(1) α̂2(2) α̂3(3) time(h.)
1.012 1.985 2.923

type4 (0.010) (0.021) (0.030) 1.5

Table 21: hybrid type estimator of β with the initial value being the Bayes type estimator
(N0 = 20000)

β̂1(3) β̂2(6) β̂3(9) β̂4(12) β̂5(15) β̂6(18) β̂7(21) β̂8(24) β̂9(27)
2.996 5.973 8.883 11.992 14.971 17.975 20.940 23.911 26.663

type4 (0.099) (0.199) (0.079) (0.300) (0.343) (0.473) (0.406) (0.456) (0.539)

Table 22: hybrid type estimator of α with the initial value being the Bayes type estimator
(N0 = 20000)

α̂1(1) α̂2(2) α̂3(3) time(sec.)
0.992 2.003 2.983

type4 (0.005) (0.010) (0.015) 70

Next, in order to compare to the hybrid type estimator (α̂
(3)
4,n, β̂

(4)
4,n) with the initial

Bayes type estimator of type 4 based on reduced data, we consider the following two

kinds of initial estimators (α̂
(1)
I , β̂

(2)
I ) and (α̂

(1)
II , β̂

(2)
II ). Let N0 = 20000.

Method I. Using 273 uniform random numbers α0,m (m = 1, . . . , 273) on [0.01, 50]3,
we compute

α̂(1)
m = arg sup

α
U

(1)
4,N0

(α)

by means of optim() with each initial value α0,m. The initial estimator α̂
(1)
I,N0

is defined
as

U
(1)
4,N0

(α̂
(1)
I,N0

) = max
{
U

(1)
4,N0

(α̂
(1)
1 ), U

(1)
4,N0

(α̂
(1)
2 ), . . . , U

(1)
4,N0

(α̂
(1)
273)

}
.

Next, using 35000 uniform random numbers β0,m (m = 1, . . . , 35000) on [0.01, 50]9, we
compute

β̂(2)
m = arg sup

β
U

(2)
4,N0

(β)

by means of optim() with each initial value β0,m. The initial estimator β̂
(2)
I,N0

is defined
as

U
(2)
4,N0

(β̂
(2)
I,N0

) = max
{
U

(2)
4,N0

(β̂
(2)
1 ), U

(2)
4,N0

(β̂
(2)
2 ), . . . , U

(2)
4,N0

(β̂
(2)
35000)

}
.

Method II. For 1003 points ᾱ0,m (m = 1, . . . , 1003) with 100 equally spaced points

on each axis on [0.01, 50]3, the initial estimator α̂
(1)
II,N0

is defined as

U
(1)
4,N0

(α̂
(1)
II,N0

) = max
{
U

(1)
4,N0

(ᾱ0,1), U
(1)
4,N0

(ᾱ0,2), . . . , U
(1)
4,N0

(ᾱ0,1003)
}
.
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Next, for 79 points β̄0,m (m = 1, . . . , 79) on [0.01, 50]9 with 7 equally spaced points on

each axis on [0.01, 50]9, the initial estimator β̂
(2)
II,N0

is defined as

U
(2)
4,N0

(β̂
(2)
II,N0

) = max
{
U

(2)
4,N0

(β0,1), U
(2)
4,N0

(β0,2), . . . , U
(2)
4,N0

(β0,79)
}
.

Let k = I, II. By the same method as Section 3, we obtain the multi-step estimator

(α̌
(0)
k,n, β̌

(4)
k,n) based on the initial estimator (α̂

(1)
k,N0

, β̂
(2)
k,N0

). Set (ᾱ
(1)
k,n, β̄

(2)
k,n) = (α̌

(0)
k,n, β̌

(4)
k,n).

Moreover, the hybrid estimator (ᾱ
(3)
k,n, β̄

(4)
k,n) is given by

ᾱ
(3)
k,n = arg sup

α∈Θα

V (3)
n (α | ᾱ(1)

k,n, β̄
(2)
k,n),

β̄
(4)
k,n = arg sup

β∈Θβ

V (4)
n (β | ᾱ(3)

k,n, β̄
(2)
k,n).

Let θ̂B = (α̂B , β̂B) := (α̂
(3)
4,n, β̂

(4)
4,n), θ̂I = (α̂I , β̂I) := (ᾱ

(3)
I,n, β̄

(4)
I,n) and θ̂II = (α̂II , β̂II) :=

(ᾱ
(3)
II,n, β̄

(4)
II,n). Tables 23 and 24 show the simulation results of the hybrid estimators θ̂B ,

θ̂I and θ̂II for the initial estimator based on reduced data with N0 = 20000. As seen
from Tables 21 and 22, the hybrid estimator θ̂B with the initial Bayes estimator has good
performance. The hybrid estimators of the method I for β7 and β9 have considerable
biases. The hybrid estimators of the method II have bad behavior. As we know very
well, it takes much time to compute θ̂I and θ̂II when the dimension of parameter space
is large. Taking account into both accuracy and computation time of the estimator, it
seems that the hybrid estimator with the initial Bayes estimator of type 4 is much better
than both θ̂I and θ̂II in this example.

Table 23: β̂B (hybrid), β̂I (35000 random numbers) and β̂II (79 lattice points) withN0 = 20000

β̂1(3) β̂2(6) β̂3(9) β̂4(12) β̂5(15) β̂6(18) β̂7(21) β̂8(24) β̂9(27) time(h.)
2.996 5.973 8.883 11.992 14.971 17.975 20.940 23.911 26.663

β̂B (0.099) (0.199) (0.079) (0.300) (0.343) (0.473) (0.406) (0.456) (0.539) 16
2.996 5.972 8.883 11.997 14.977 17.984 19.762 23.628 12.555

β̂I (0.099) (0.198) (0.079) (0.300) (0.343) (0.476) (1.191) (0.512) (13.394) 16
0.138 5.350 0.010 11.999 14.999 17.981 19.219 23.493 6.169

β̂II (0.090) (0.1861) (0.000) (0.300) (0.343) (0.473) (1.002) (0.476) (11.329) 32

Table 24: α̂B (hybrid), α̂I (27
3 random numbers) and α̂II (100

3 lattice points) withN0 = 20000

α̂1(1) α̂2(2) α̂3(3) time(h.)
0.992 2.003 2.983

α̂B (0.005) (0.010) (0.015) 1.5
0.992 2.002 2.999

α̂I (0.005) (0.010) (0.021) 1.5
1.022 2.002 3.006

α̂II (0.005) (0.010) (0.019) 1.5
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5. Conclusion

In this paper, we have studied the ML type estimators of both drift and volatility
parameters for discretely observed ergodic diffusion processes from the viewpoint of
numerical analysis. In general, it is important to select a suitable initial value for
optimization of the quasi likelihood function by using optim() in R language. On the
other hand, the computation of the Bayes type estimator does not strongly depend on
the initial value. Therefore, using the reduced data obtained from the full data, we have
derived the initial Bayes type estimators of both drift and volatility parameters. Note
that there is no need to use the first n0 data as the reduced data.

Although a disadvantage of the initial Bayes type estimators with the reduced data
is that they do not have optimal rates, they also have an great advantage that the
computation time of them is much shorter than that of the Bayes type estimators with
the full data. Furthermore, we see from the results of Kamatani and Uchida (2015)
and Kutoyants (2017) that the bad convergence rates of the initial estimators do not
matter at the first step for derivation of the efficient estimators. In fact, it is shown that
the hybrid estimator with the initial Bayes type estimator, which means the adaptive
ML type estimator with the initial Bayes type estimator, has asymptotic efficiency and
convergence of moments.

We see from Tables 10 and 14 that the hybrid estimators of α2 based on the type 1
initial Bayes estimators with N0 = 10, 000 and 20, 000 are unstable. Compared with the
type 1, 3 and 4 initial Bayes estimators and the hybrid estimators, the type 2 initial Bayes
estimator and the hybrid estimator based on the reduced data with N0 = 15, 000 and
20, 000 have good performance. We recommend that all the initial Bayes estimators and
the hybrid estimators should be computed. The best estimator is selected by comparing
the quasi likelihoods.

It follows from the numerical results in Tables 23 and 24 of Section 4 that the
proposed hybrid estimators with the initial Bayes estimators are as good as the results
of Tables 15 and 16 and the hybrid estimator with the initial Bayes type estimator is
best among the competing estimators in the sense of both accuracy and computation
time of the estimator.

6. Proofs

Proof of Proposition 2.1. In the similar way to the proof of (9) in Uchida (2010),
we can show the result. For details, see Kaino et al. (2017).

Proof of Theorem 2.2. First, we will prove the case of the type 1 Bayes estimator α̃
(1)
1,n0

.
Set

H(1)
1,n0

(α) =
1

n
1− 2

qG

0

U
(1)
1,n0

(α),
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Y(1)
1,n0

(α) =
1

n
2

qG

0

{H(1)
1,n0

(α)−H(1)
1,n0

(α∗)} =
1

n0

{
U

(1)
1,n0

(α)− U
(1)
1,n0

(α∗)
}
,

∆
(1)
1,n0

(α∗)[u1] =
1

n
1

qG

0

∂αH(1)
1,n0

(α∗)[u1] =
1

n
1− 1

qG

0

∂αU
(1)
1,n0

(α∗)[u1],

Γ
(1)
1,n0

(α∗)[u1, u1] = − 1

n
2

qG

0

∂2
αH

(1)
1,n0

(α∗)[u1, u1] = − 1

n0
∂2
αU

(1)
1,n0

(α∗)[u1, u1],

Γ1(α
∗)[u1, u1] =

1

2

∫
Rd

tr{A−1(∂αA)A−1(∂αA)(x, α
∗)[u⊗2

1 ]}µθ∗(dx)

for u1 ∈ Rm1 . Let U(1)
n0 =

{
u1 ∈ Rm1 | α∗ + u1

n
1

qG
0

∈ Θα

}
and V(1)

n0 (r) = {u1 ∈ U(1)
n0 | r ≤

|u1|}. For u1 ∈ U(1)
n0 , set Z

(1)
1,n0

(u1;α
∗) = exp

{
H(1)

1,n0

(
α∗ + u1

n0

1
qG

)
−H(1)

1,n0
(α∗)

}
.

Note that ϵ1 = ϵ0/(2(p− 1)). It is shown that for all M > 0,

sup
n∈N

Eθ∗ [|∆(1)
1,n0

(α∗)|M ] < ∞, (5)

sup
n∈N

Eθ∗

[(
sup
α∈Θ1

nϵ1
0 |Y(1)

1,n0
(α)− Y(1)(α)|

)M
]
< ∞, (6)

sup
n∈N

Eθ∗ [(nϵ1
0 |Γ(1)

1,n0
(α∗)− Γ1(α

∗)|)M ] < ∞. (7)

Proof of (5). One has a decomposition ∂αU
(1)
1,n0

(α)[u1] = M
(1)
1,n0

(α)[u1]+R
(1)
1,n0

(α)[u1],
where

M
(1)
1,n0

(α)[u1] = −1

2

n0∑
i=1

[
h−1
n

{
∂αA

−1
i−1(α)[u1]

}
[(∆Xi)

⊗2 − Eθ∗ [(∆Xi)
⊗2|Gn

i−1]]
]
,

R
(1)
1,n0

(α)[u1] = −1

2

n0∑
i=1

[
h−1
n

{
∂αA

−1
i−1(α)[u1]

}
[Eθ∗ [(∆Xi)

⊗2|Gn
i−1]− hnAi−1(α)]

]
.

It follows from the standard estimates together with the Burkholder inequality that for
all M > 1,

Eθ∗

[
| 1
√
n0

M
(1)
1,n0

(α∗)|M
]

≤ 1

n
M/2
0

Eθ∗

[
n0∑
i=1

(
h−1
n

{
∂αA

−1
i−1(α)[u1]

}
[(∆Xi)

⊗2 − Eθ∗ [(∆Xi)
⊗2|Gn

i−1]]
)2]M/2

≤ 1

n0
Eθ∗

[
n0∑
i=1

(
h−1
n

{
∂αA

−1
i−1(α)[u1]

}
[(∆Xi)

⊗2 − Eθ∗ [(∆Xi)
⊗2|Gn

i−1]]
)M]

≤ C,

Eθ∗

[
| 1
√
n0

R
(1)
1,n0

(α∗)|M
]

≤ C(
√
n0hn)

M .

Noting that 1− 1/(qG) ≥ 1/2 and

n0hn

n
1− 1

qG

0

= n
1

qG

0 hn ≤ n
1
q hn = (nhq

n)
1
q ≤ (nhp

n)
1
q ,
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one has that as nhp
n → 0, supn∈N Eθ∗

∣∣∣∣∣ 1

n
1− 1

qG
0

∂αU
(1)
1,n0

(α∗)

∣∣∣∣∣
M
 < ∞, which completes

the proof of (5).

Proof of (6). A decomposition is given by U
(1)
1,n0

(α) − U
(1)
1,n0

(α∗) = M(1)
1,n0

(α) +

R(1)
1,n0

(α) + Ȳ(1)
1,n0

(α), where

M(1)
1,n0

(α) = −1

2

n0∑
i=1

[
h−1
n

{
(A−1

i−1(α)−A−1
i−1(α

∗))
}
[(∆Xi)

⊗2 − Eθ∗ [(∆Xi)
⊗2|Gn

i−1]]
]
,

R(1)
1,n0

(α) = −1

2

n0∑
i=1

[
h−1
n

{
(A−1

i−1(α)−A−1
i−1(α

∗))
}
[Eθ∗ [(∆Xi)

⊗2|Gn
i−1]− hnAi−1(α)]

]
,

Ȳ(1)
1,n0

(α) = −1

2

n0∑
i=1

[{
A−1

i−1(α)−A−1
i−1(α

∗)
}
[Ai−1(α)] + log

detAi−1(α)

detAi−1(α∗)

]
.

The standard estimates yield that for ϵ1 = ϵ0/(2(p− 1)) ∈ (0, 1/(2p)),

sup
α

Eθ∗

[(
n0

ϵ1 | 1
n0

M(1)
1,n0

(α)|
)M

]
≤ C(n0

ϵ1
1

√
n0

)M , sup
α

Eθ∗

[(
n0

ϵ1 | 1
n0

R(1)
1,n0

(α)|
)M

]
≤ C(n0

ϵ1hn)
M .

In the same way,

sup
n∈N

sup
α

Eθ∗

[(
n0

ϵ1 | 1
n0

∂αM(1)
1,n0

(α)|
)M

]
< ∞, sup

n∈N
sup
α

Eθ∗

[(
n0

ϵ1 | 1
n0

∂αR(1)
1,n0

(α)|
)M

]
< ∞.

The Sobolev inequality (Lemma 4.65 of Adams and Fournier (2003)) implies that for
M > m1,

Eθ∗

[(
n0

ϵ1 sup
α

| 1
n0

M(1)
1,n0

(α)|
)M

]

≤ Eθ∗

[
C

∫
Θα

{(
n0

ϵ1 | 1
n0

M(1)
1,n0

(α)|
)M

+

(
n0

ϵ1 | 1
n0

∂αM(1)
1,n0

(α)|
)M

}
dα

]

≤ CΘα

{
sup
α

Eθ∗

[(
n0

ϵ1 | 1
n0

M(1)
1,n0

(α)|
)M

]
+ sup

α
Eθ∗

[(
n0

ϵ1 | 1
n0

∂αM(1)
1,n0

(α)|
)M

]}
.

Therefore, for all M > 0, supn∈N Eθ∗

[(
n0

ϵ1 supα | 1
n0

M(1)
1,n0

(α)|
)M]

< ∞, and in a sim-

ilar way, for all M > 0, supn∈N Eθ∗

[(
n0

ϵ1 supα | 1
n0

R(1)
1,n0

(α)|
)M]

< ∞. It follows from

Proposition 2.1 that for allM > 0, supn∈N Eθ∗

[(
n0

ϵ1 supα | 1
n0

Ȳ(1)
1,n0

(α)− Y(1)(α)|
)M]

<

∞, which completes the proof of (6).

Proof of (7). We obtain a decomposition ∂2
αU

(1)
1,n0

(α)[u1, u1] = M
(1)
1,n0

(α)[u1, u1] +
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R
(1)
1,n0

(α)[u1, u1]− Γ̄
(1)
1,n0

(α)[u1, u1], where

M
(1)
1,n0

(α)[u1, u1] = −1

2

n0∑
i=1

[
h−1
n

{
∂2
αA

−1
i−1(α)[u1, u1]

}
[(∆Xi)

⊗2 − Eθ∗ [(∆Xi)
⊗2|Gn

i−1]]
]
,

R
(1)
1,n0

(α)[u1, u1] = −1

2

n0∑
i=1

[
h−1
n

{
∂2
αA

−1
i−1(α)[u1, u1]

}
[Eθ∗ [(∆Xi)

⊗2|Gn
i−1]− hnAi−1(α)]

]
,

Γ̄
(1)
1,n0

(α)[u1, u1] =
1

2

n0∑
i=1

[{
∂2
αA

−1
i−1(α)[u1, u1]

}
[Ai−1(α)] + ∂2

α log detAi−1(α)[u1, u1]
]
.

Similarly to the proof of (6), one has that for all M > 0,

supn∈N Eθ∗

[(
n0

ϵ1 | 1
n0

Γ̄
(1)
1,n0

(α∗)− Γ1(α
∗)|
)M]

< ∞,

Eθ∗

[(
n0

ϵ1 | 1
n0

M
(1)
1,n0

(α∗)|
)M

]
≤ C

(
n0

ϵ1

√
n0

)M

, Eθ∗

[(
n0

ϵ1 | 1
n0

R
(1)
1,n0

(α∗)|
)M

]
≤ C(n0

ϵ1hn)
M ,

which completes the proof of (7).
Moreover, we obtain that for all M > 0,

sup
n∈N

Eθ∗

[(
n−1
0 sup

α∈Θα

|∂3
αU

(1)
1,n0

(α)|
)M

]
< ∞. (8)

Theorem 3 of Yoshida (2011) together with (5)-(8) implies that for any L > 0, there
exists CL > 0 such that for all n ∈ N and r > 0,

Pθ∗

 sup
u1∈V(1)

n0
(r)

Z(1)
1,n0

(u1;α
∗) ≥ e−r

 ≤ CL

rL
. (9)

Note that

n
1

qG

0 (α̃
(1)
1,n0

− α∗) =

∫
U(1)

n0

u1Z(1)
1,n0

(u1;α
∗)π1

(
α∗ + u1

n
1

qG
0

)
du1

∫
U(1)

n0

Z(1)
1,n0

(u1;α∗)π1

(
α∗ + u1

n
1

qG
0

)
du1

.

We can show that

sup
n∈N

Eθ∗

(∫
U(1)

n0

Z(1)
1,n0

(u1;α
∗)du1

)−1
 < ∞. (10)

In an analogous way to the proof of Theorem 8 of Yoshida (2011), it follows from
(9) and (10) that for all M > 0, as nhp

n → 0,

sup
n∈N

Eθ∗

[∣∣∣∣n 1
qG

0 (α̃
(1)
1,n0

− α∗)

∣∣∣∣M
]
< ∞. (11)
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Next, we will prove the case of the type 1 Bayes estimator β̃
(2)
1,n0

. Set U
(2)
1,n0

(α, β) =

U
(2)
1,n0

(β | α) and

H(2)
1,n0

(α, β) =
1

(n0hn)
1− 2

qG

U
(2)
1,n0

(α, β),

Y(2)
1,n0

(β) =
1

(n0hn)
2

qG

{
H(2)

1,n0
(α̃

(1)
1,n0

, β)−H(2)
1,n0

(α̃
(1)
1,n0

, β∗)
}

=
1

n0hn

{
U

(2)
1,n0

(α̃
(1)
1,n0

, β)− U
(2)
1,n0

(α̃
(1)
1,n0

, β∗)
}
,

∆
(2)
1,n0

(β∗)[u2] =
1

(n0hn)
1

qG

∂βH(2)
1,n0

(α̃
(1)
1,n0

, β∗)[u2] =
1

(n0hn)
1− 1

qG

∂βU
(2)
1,n0

(α̃
(1)
1,n0

, β∗)[u2],

Γ
(2)
1,n0

(β∗)[u2, u2] = − 1

(n0hn)
2

qG

∂2
βH

(2)
1,n0

(α̃
(1)
1,n0

, β∗)[u2, u2] = − 1

n0hn
∂2
βU

(2)
1,n0

(α̃
(1)
1,n0

, β∗)[u2, u2],

Γ
(2)
1 (θ∗)[u2, u2] =

∫
Rd

A(x, α∗)−1[∂βb(x, β
∗)[u2], ∂βb(x, β

∗)[u2]]µθ∗(dx)

for u2 ∈ Rm2 . Let U(2)
n0 =

{
u2 ∈ Rm2 | β∗ + u2

(n0hn)
1

qG
∈ Θβ

}
and V(2)

n0 (r) = {u2 ∈

U(2)
n0 | r ≤ |u2|}.

For u2 ∈ U(2)
n0 , set Z

(2)
1,n0

(u2;β
∗) = exp

{
H(2)

1,n0

(
α̃
(1)
1,n0

, β∗ + u2

(n0hn)
1

qG

)
−H(2)

1,n0
(α̃

(1)
1,n0

, β∗)

}
.

It follows that for all M > 0,

sup
n∈N

Eθ∗

[
|∆(2)

1,n0
(β∗)|M

]
< ∞, (12)

sup
n∈N

Eθ∗

( sup
β∈Θ2

(n0hn)
ϵ1 |Y(2)

1,n0
(β)− Y(2)(β)|

)M
 < ∞, (13)

sup
n∈N

Eθ∗

[(
(n0hn)

ϵ1 |Γ(2)
1,n0

(β∗)− Γ
(2)
1 (α∗, β∗)|

)M]
< ∞. (14)

Proof of (12). We have that

∆
(2)
1,n0

(β∗)[u2] =
1

(n0hn)
1− 1

qG

∂βU
(2)
1,n0

(α∗, β∗)[u2]

+
1

(n0hn)
1− 1

qG

1

n
1

qG

0

∫ 1

0

∂α∂βU
(2)
1,n0

(α∗ + t(α̃
(1)
1,n0

− α∗), β∗)dt[u2, n
1

qG

0 (α̃
(1)
1,n0

− α∗)].

One has a decomposition ∂βU
(2)
1,n0

(α, β)[u2] = M
(2)
1,n0

(θ)[u2] +R
(2)
1,n0

(θ)[u2], where

M
(2)
1,n0

(θ)[u2] =

n0∑
i=1

A−1
i−1(α)[∂βbi−1(β)[u2], Xtni

− Eθ∗ [Xtni
|Gn

i−1]],

R
(2)
1,n0

(θ)[u2] =

n0∑
i=1

A−1
i−1(α)[∂βbi−1(β)[u2], Eθ∗ [Xtni

|Gn
i−1]−Xi−1 − hnbi−1(β)].
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By the Burkholder inequality, one has that for all M > 1,

Eθ∗

[
| 1√

n0hn

M
(2)
1,n0

(θ∗)|M
]

≤ C. (15)

Moreover, one has that for all M > 1,

Eθ∗

[
| 1√

n0hn

R
(2)
1,n0

(θ∗)|M
]

≤ C
(
n0h

3
n

)M/2
. (16)

Hence, as nhp
n → 0, for all M > 0,

sup
n∈N

Eθ∗

[
| 1

(n0hn)
1− 1

qG

∂βU
(2)
1,n0

(α∗, β∗)|M
]
< ∞. (17)

Since 1 − 1/(qG) ≥ 1/2, we obtain that supn∈N Eθ∗

[
| 1

(n0hn)
1− 1

qG
∂βU

(2)
1,n0

(α∗, β∗)|M
]
<

∞. Moreover, for all M > 0, supn∈N supα Eθ∗

[
| 1
n0hn

∂α∂βU
(2)
1,n0

(α, β∗)|M
]
< ∞,

supn∈N supα Eθ∗

[
| 1
n0hn

∂2
α∂βU

(2)
1,n0

(α, β∗)|M
]
< ∞. The Sobolev inequality implies that

sup
n∈N

Eθ∗

[(
sup
α

| 1

n0hn
∂α∂βU

(2)
1,n0

(α, β∗)|
)M

]
< ∞. (18)

Noting that 1

(n0hn)
1− 1

qG n
1

qG
0

= h
1

qG
n

n0hn
, sup
n∈N

Eθ∗


sup

α
| 1

(n0hn)
1− 1

qGn
1

qG

0

∂α∂βU
(2)
1,n0

(α, β∗)|

M
 < ∞

as nhp
n → 0, which completes the proof of (12).

Proof of (13). A decomposition is given by U
(2)
1,n0

(α, β)−U
(2)
1,n0

(α, β∗) = M(2)
1,n0

(α, β)+

R(2)
1,n0

(α, β) + Ȳ(2)
1,n0

(α, β), where

M(2)
1,n0

(α, β) =

n0∑
i=1

A−1
i−1(α)[bi−1(β)− bi−1(β

∗), (Xtni
− Eθ∗ [Xtni

|Gn
i−1])],

R(2)
1,n0

(α, β) =

n0∑
i=1

A−1
i−1(α)[bi−1(β)− bi−1(β

∗), Eθ∗ [Xtni
|Gn

i−1]−Xtni−1
− hnbi−1(β

∗))],

Ȳ(2)
1,n0

(α, β) = −hn

2

n0∑
i=1

A−1
i−1(α)[(bi−1(β)− bi−1(β

∗))⊗2].

It follows that for ϵ1 ∈ (0, 1/(2p)), supθ Eθ∗

[(
(n0hn)

ϵ1 | 1
(n0hn)

M(2)
1,n0

(α, β)|
)M]

≤

C
(
(n0hn)

ϵ1 1√
n0hn

)M
and supθ Eθ∗

[(
(n0hn)

ϵ1 | 1
(n0hn)

R(2)
1,n0

(α, β)|
)M]

≤ C((n0hn)
ϵ1hn)

M

for all M > 1. In an analogous argument, we obtain that for all M > 1,

supn∈N supθ Eθ∗

[(
(n0hn)

ϵ1 | 1
(n0hn)

∂θM(2)
1,n0

(α, β)|
)M]

< ∞ and
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supn∈N supθ Eθ∗

[(
(n0hn)

ϵ1 | 1
(n0hn)

∂θR(2)
1,n0

(α, β)|
)M]

< ∞. Hence, using the Sobolev

inequality, we have that for allM > m1 +m2, sup
n∈N

Eθ∗

[(
(n0hn)

ϵ1 sup
θ

| 1

(n0hn)
M(2)

1,n0
(θ1, β)|

)M
]
< ∞

and supn∈N Eθ∗

[(
(n0hn)

ϵ1 supθ | 1
(n0hn)

R(2)
1,n0

(α, β)|
)M]

< ∞. Noting that

1

n0hn
Ȳ(2)

1,n0
(α̃

(1)
1,n0

, β)− Y(2)(β)

=
1

n
1/qG
0

1

n0hn

∫ 1

0

∂αȲ(2)
1,n0

(α∗ + t(α̃
(1)
1,n0

− α∗), β)dt[n
1/(qG)
0 (α̃

(1)
1,n0

− α∗)] +
1

n0hn
Ȳ(2)

1,n0
(α∗, β)− Y(2)(β),

we have that for all M > 0,

sup
n∈N

Eθ∗

((n0hn)
ϵ1 sup

β
| 1

n0hn
Ȳ(2)

1,n0
(α∗, β)− Y(2)(β)|

)M
 < ∞,

sup
n∈N

Eθ∗

((n0hn)
ϵ1 sup

θ

1

n
1/(qG)
0

| 1

n0hn
∂αȲ(2)

1,n0
(α, β)|

)M
 < ∞,

where the last estimate is derived from the fact that ϵ1 = ϵ0/(2(p − 1)) < 1/(2p) <

1/(qG). Therefore, supn∈N Eθ∗

[(
(n0hn)

ϵ1 supβ | 1
n0hn

Ȳ(2)
1,n0

(α̃
(1)
1,n0

, β)− Y(2)(β)|
)M]

<

∞ for all M > 0, which completes the proof of (13).

For the proof of (14), we obtain a decomposition

∂2
βU

(2)
1,n0

(α, β)[u2, u2] = M
(2)
1,n0

(α, β)[u2, u2] +R
(2)
1,n0

(α, β)[u2, u2]− Γ̄
(2)
1,n0

(α, β)[u2, u2],

where M
(2)
1,n0

(α, β)[u2, u2] = ∂2
βM

(2)
1,n0

(α, β)[u2, u2], R
(2)
1,n0

(α, β)[u2, u2] = ∂2
βR

(2)
1,n0

(α, β)[u2, u2],

Γ̄
(2)
1,n0

(α, β)[u2, u2] = hn

n0∑
i=1

A−1
i−1(α)[∂βbi−1(β)[u2], ∂βbi−1(β)[u2]].

Since supα Eθ∗

[(
(n0hn)

ϵ1 | 1
n0hn

M
(2)
1,n0

(α, β∗)|
)M

+
(
(n0hn)

ϵ1 | 1
n0hn

∂αM
(2)
1,n0

(α, β∗)|
)M]

≤

C
(

(n0hn)
ϵ1

√
n0hn

)M
and sup

α
Eθ∗

[(
(n0hn)

ϵ1 | 1

n0hn
R

(2)
1,n0

(α, β∗)|
)M

+

(
(n0hn)

ϵ1 | 1

n0hn
∂αR

(2)
1,n0

(α, β∗)|
)M

]
≤

C((n0hn)
ϵ1hn)

M , it follows from Sobolev’s inequality that

sup
n∈N

Eθ∗

[(
(n0hn)

ϵ1 sup
α

| 1

n0hn
M

(2)
1,n0

(α, β∗)|
)M

]
< ∞, sup

n∈N
Eθ∗

[(
(n0hn)

ϵ1 sup
α

| 1

n0hn
R

(2)
1,n0

(α, β∗)|
)M

]
< ∞.
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One has that

1

n0hn
Γ̄(2)
n0

(α̃
(1)
1,n0

, β∗)− Γ2(α
∗, β∗)

=
1

n
1/(qG)
0

1

n0hn

∫ 1

0

∂αΓ̄
(2)
n0

(α∗ + t(α̃
(1)
1,n0

− α∗), β∗)dt[n
1/(qG)
0 (α̃

(1)
1,n0

− α∗)]

+
1

n0hn
Γ̄(2)
n0

(α∗, β∗)− Γ2(α
∗, β∗),

and it is shown that for all M > 0,

sup
n∈N

Eθ∗

((n0hn)
ϵ1 sup

α

1

n
1/qG
0

| 1

n0hn
∂αΓ̄

(2)
n0

(α, β∗)|

)M

+

(
(n0hn)

ϵ1 | 1

n0hn
Γ̄(2)
n0

(α∗, β∗)− Γ2(α
∗, β∗)|

)M
 < ∞.

By (9) and the above estimates, sup
n∈N

Eθ∗

[(
(n0hn)

ϵ1 | 1

n0hn
Γ̄(2)
n0

(α̃
(1)
1,n0

, β∗)− Γ2(α
∗, β∗)|

)M
]
<

∞, which completes the proof of (14).

Furthermore, one can show that for all M > 0,

sup
n∈N

Eθ∗

[(
1

n0hn
sup
θ∈Θ

|∂3
βU

(2)
1,n0

(α, β)|
)M

]
< ∞. (19)

By (12)-(14), (19) and Theorem 3 of Yoshida (2011), one has that for any L > 0, there
exists CL > 0 such that for all n ∈ N and r > 0,

Pθ∗

 sup
u2∈V(2)

n0
(r)

Z(2)
1,n0

(u2;β
∗) ≥ e−r

 ≤ CL

rL
. (20)

Note that

(n0hn)
1

qG (β̃
(2)
1,n0

− β∗) =

∫
U(2)

n0

u2Z(2)
1,n0

(u2;β
∗)π2

(
β∗ + u2

(n0hn)
1

qG

)
du2∫

U(2)
n0

Z(2)
1,n0

(u2;β∗)π2

(
β∗ + u2

(n0hn)
1

qG

)
du2

.

Furthermore,

K
(2)
1,n0

(u2) = logZ(2)
1,n0

(u2;β
∗)

=
1

(n0hn)
1− 2

qG

{
∂βU

(2)
1,n0

(α̃
(1)
1,n0

, β∗)[u2]
1

(n0hn)
1

qG

+
1

2
∂2
βU

(2)
1,n0

(α̃
(1)
1,n0

, β∗)[u⊗2
2 ]

1

(n0hn)
2

qG

+
1

2

∫ 1

0

(1− t)2∂3
βU

(2)
1,n0

(α̃
(1)
1,n0

, β∗ +
tu2

(n0hn)
1

qG

)dt[u⊗3
2 ]

1

(n0hn)
3

qG

}
.
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By (12), (18) and the estimate in the proof of (14), for all M > 0,

sup
n∈N

Eθ∗

∣∣∣∣∣ 1

(n0hn)
1− 1

qG

∂βU
(2)
1,n0

(α̃
(1)
1,n0

, β∗)

∣∣∣∣∣
M
 < ∞,

sup
n∈N

Eθ∗

[∣∣∣∣ 1

n0hn
∂2
βU

(2)
1,n0

(α̃
(1)
1,n0

, β∗)

∣∣∣∣M
]
< ∞,

sup
n∈N

Eθ∗

[
sup
θ∈Θ

∣∣∣∣ 1

n0hn
∂3
βU

(2)
1,n0

(θ)

∣∣∣∣M
]
< ∞.

Hence, for some M > m2, δ > 0 and C0 > 0,

sup
n∈N

Eθ∗ [|K(2)
1,n0

(u2)|M ] ≤ C0|u2|M

for all u2 ∈ U(2)
n0 (δ) := {u2 ∈ U(2)

n0 | |u2| ≤ δ}. By Lemma 2 of Yoshida (2011),

sup
n∈N

Eθ∗

(∫
U(2)

n0

Z(2)
1,n0

(u2;β
∗)du2

)−1
 < ∞. (21)

In the same manner as the proof of (11), it follows from (20) and (21) that for all M > 0,
as nhp

n → 0,

sup
n∈N

Eθ∗

[∣∣∣(n0hn)
1

qG (β̃
(2)
1,n0

− β∗)
∣∣∣M] < ∞.

This completes the proof of the case of the type 1 Bayes estimator.
In a similar way to the proof of the type 1 Bayes estimators, we can show the mo-

ment estimates of the type 2, type 3 and type 4 Bayes estimators, see Kaino et al. (2017).
This completes the proof.

Proof of Theorem 3.1. In the analogous way to the proofs of Theorem 1 of Kamatani and
Uchida (2015) and Theorem 3 of Uchida and Yoshida (2012), we can prove the result.
For details, see Kaino et al. (2017).
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