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Abstract

The Ewens sampling formula is well-known as the distribution of a random
partition of the set of integers {1, 2, . . . , n}. For the number Kn of distinct com-
ponents of the formula, Kn has the asymptotic normality and its distribution is
approximated by the Poisson distribution (see, for example, Arratia et al. (2003)).
But, there is no research on the relation between Kn and the binomial distribution,
as far as the author knows. We give the approximations to the distribution of Kn

by using the shifted bimonial distribution and several examples by illustration.

Key Words and Phrases: Approximate distribution, Bernoulli random variable, Binomial dis-

tribution, Ewens sampling formula, Shifted distribution, Krawtchouk polynomal.

1. Introduction

Ewens (1972) discovered a distribution of a random partition of the set of inte-
gers {1, 2, . . . , n}, partially intuitively and the distribution is well-known as the Ewens
sampling formula. It was derived exactly by Antoniak (1974), using Ferguson’s Dirich-
let process (Ferguson (1974)). The formula appears in many statistical contexts. For
example, Bayesian statistics, pattern of communication and genetics. There are many
works on the Ewens sampling formula and the related formula. For the Ewens sam-
pling formula, the number Kn of components has the distribution whose probability
function given by P (Kn = k) =| s(n, k) | θk/θ[n] (k = 1, 2, . . . , n), where θ > 0,
θ[n] = θ(θ + 1) · · · (θ + n − 1) and | s(n, k) | is the signless Stirling number of the first
kind (see, for example, Johnson et al. (1997) and Arratia et al. (2003)).

It is well-known that Kn has the asymptotic normality (see, for example, Johnson
et al. (1997; Chapter 41) and Arratia et al. (2003; Section 5.2)). Since the mean and
variance of Kn is written using the digamma function and trigamma function and these
function are included in the programming language R, the appropriate approximation
to the distribution L(Kn) of Kn are obtained using R (Yamato et al. (2015)).

The Poisson approximation to the distribution of the number Kn of component are
studied by Arratia et al. (2000) in detail with respect to the logarithmic combinatorial
structure including Ewens sampling formula. Differently from Arratia et al. (2000),
Yamato (2017) approaches to the problem of Poisson approximation to L(Kn) by using
the sum of independent Bernoulli random variables.

Whereas, there is no research on the binomial approximation to L(Kn). There are
researches on the binomial approximations to the distribution of the sum of independent
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Bernoulli random variables. Using these results, we give the approximations to L(Kn)
by the shifted binomial distribution.

In Section 2, we quote the previous researches on the binomial approximations
to the distribution of the sum of independent but non-identically distributed Bernoulli
random variables. Using them, in Section 3 we give the approximations to L(Kn) by
the shifted binomial distribution, which are illustrated by several examples.

2. Sum of independent binomial random variables

Let X1, X2, . . . , Xn be independent Bernoulli random variables with P (Xj = 1) =
pj and P (Xj = 0) = 1− pj (n = 1, 2, . . . , n). We put

Sn =
n∑

j=1

Xj , λn =
n∑

j=1

pj , λk,n =
n∑

j=1

pkj (k = 2, 3), p̄n =
λn
n
. (1)

2.1. Approximation I

As the approximation to the distribution L(Sn) of Sn, Ehm (1991) gives the fol-
lowing binomial distribution with parameters n and p̄n:

BN (n, p̄n). (2)

The mean of the approximation BN (n, p̄n) is equal to the mean E(Sn).

2.2. Approximation II

Barbour et al. (1992; p.190) and Soon (1996) give the approximations BN (n′, p′)
whose mean is equal to the mean E(Sn) and variance is approximately equal to the
variance V (Sn). Barbour et a. (1992) takes n′ = ⌊λ2n/λ2,n⌋ and p′ = λn/n

′, where ⌊x⌋
represents the integral part of x. Being a little different from them, Soon (1996) takes
n′ = ⌊λ2n/λ2,n + 0.5⌋ and p′ = λn/n

′ in the case where λ2,n/λn is bounded away from
1. While, the model of the next section does not satisfy this condition. Therefore, as
Approximation II, following Barbour et al. (1992; p.190) we take

BN (n′, p′) (n′ = ⌊λ2n/λ2,n⌋ and p′ = λn/n
′). (3)

2.3. Approximation III

C̆ekanavic̆ius et al. (2009) give the approximation whose first three moments are
approximately equal to them of Sn, respectively. Let the random variable Y have the
shifted distribution given by the Binomial distribution BN (n, p) with the shift s, that is
Y ∼ s+BN (n, p). As the approximation to Sn, the parameters of Y are determined as
follows. By approximately equaling the first three moments of Sn and Y (∼ s+BN (n, p)),
the following p∗, n∗ and s∗ are obtained as the solutions of p, n and s, respectively.

p∗ =
λ2,n − λ3,n
λn − λ2,n

, n∗ =
λn − λ2,n
p∗(1− p∗)

, s∗ = λn − n∗p∗.

The parameters for the approximation are taken as

n′′ = ⌊n∗⌋, s′′ = ⌊s∗⌋, p′′ =
n∗p∗ + {s∗}

n′′
,
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where {s∗} is the decimal part of s∗. Thus, the approximation to L(Sn) is given by

s′′ +BN (n′′, p′′). (4)

The next approximations are obtained by using Krawtchhouk expansion of Sn.

2.4. Approximation IV

Let g(x, n, p) be the p.f. (probability function) of the binomial distributionBN (n, p).
The Krawtchouk polynomial Ln

j (x, n, p) of degree j is defined by

Ln
j (x, n, p) =

dj

dpj
g(x, n, p)

/
g(x, n, p).

Let ∆ be the difference operator such that ∆jg(x, n, p) = ∆j−1g(x−1, n, p)−∆j−1g(x, n, p)
(j = 1, 2, · · · ) and ∆0g(x, n, p) = g(x, n, p). Using the operator ∆, the Krawtchouk poly-
nomial Ln

j (x, n, p) of degree j is written as

Ln
j (x, n, p) = n(j)∆jg(x, n− j, p)

/
g(x, n, p).

The factorial moment generating function of Sn is F (t) = E
[
(1+ t)Sn

]
=

∏n
j=1(1+ pjt)

and its coefficient of tm is equal to the factorial moment E[S
(m)
n ] of Sn, where x

(m) =
x(x− 1) · · · (x−m+ 1). Thus, we have

µ(m) = E[S(m)
n ] =

∑
1≤j1 ̸=···̸=jm≤n

pj1 · · · pjm (m = 1, 2, . . . , n),

where the summation of the right-hand side is taken over all integers j1, . . . , jm satisfying
1 ≤ j1 ̸= · · · ≠ jm ≤ n. Let pn(k) = µ(k)/n

(k), p = pn(1) = p̄n and

qn(0) = 1, qn(j) =

j∑
i=0

(−1)i
(
j

i

)
pipn(j − i) (j = 1, 2, . . .). (5)

For example, qn(1) = 0, qn(2) = pn(2) − p2, qn(3) = pn(3) − 3ppn(2) + 2p3. Then, It
holds that

P (Sn = x) = g(x, n, p)

{
1 +

n∑
j=2

qn(j)

j!
Ln
j (x, n, p)

}
.

These results are derived without the assumption of independence of X1, X2, . . . , Xn

(Takeuchi and Takemura (1987)). Using the difference operator, P (Sn = x) is also
expressed as

P (Sn = x) = g(x, n, p) +

n∑
j=2

(
n

j

)
qn(j)∆

jg(x, n− j, p). (6)

Under the independence of X1, X2, . . . , Xn assumed in this paper, Roos (2006) gives the
following expression, which is called the Krawtchouk expression by him:

P (Sn = x) =
n∑

j=0

aj(p)∆
jg(x, n− j, p), (7)
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where a0(p) = 1 and

aj(p) =
∑

1≤k1<···<kj≤n

j∏
r=1

(pkr − p) (j = 1, . . . , n).

Since we put p = pn(1) = p̄n, we have a1(p) = 0. From (5), we have(
n

j

)
qn(j) =

j∑
i=0

(
n− i

j − i

)
1

i!
(−p)j−1µ(i),

which is equal to aj(p), by Roos (2000; p.4,(11)). Therefore, the expression (6) is
identical to (7). We note that Krawtchouk polynomial Kn

j (x, n, p) defined by Roos

(2000; p.3, (8)) is equal to pj(1− p)jLn
j (x, n, p).

For s = 0, 1, . . . , n, let Bs(x, n, p) be the finite signed measure such that

Bs(x, n, p) =

s∑
j=0

aj(p)∆
jg(x, n− j, p) (x = 0, 1, . . . , n). (8)

Then for s = 0, 1, . . . , n and j = 0, 1, . . . , s,

n∑
x=j

x(j)Bs(x, n, p) = µ(j),

which means that the first s moments of Bs are equal to that of Sn (Roos(2000)). This
relation is also proved by the methods similar to the fourth and third lines from the
bottom of Takeuchi and Takemura (1987, p.90).

Based on (8), we consider the three approximations to L(Sn). The first one is
B0(x, n, p̄n) = B1(x, n, p̄n) = g(x, n, p̄n) which is equal to the approximation I. The
second is B2(x, n, p̄n) which is given by Takeuchi (1975; p.84). The third is B3(x, n, p̄n).
Let γk(p) =

∑n
j=1(pj − p)k (k = 1, 2, 3). Since p = p̄n, we have a1(p) = γ1(p) = 0,

a2(p̄n) = −γ2(p̄n)/2 and a3(p̄n) = γ3(p̄n)/3. Then, the second and third approximations
are written as follows:

B2(x, n, p̄n) = g(x, n, p̄n)−
γ2(p̄n)

2
∆2g(x, n− 2, p̄n), (9)

and

B3(x, n, p̄n) = g(x, n, p̄n)−
γ2(p̄n)

2
∆2g(x, n− 2, p̄n) +

γ3(p̄n)

3
∆3g(x, n− 3, p̄n), (10)

where

∆2g(x, n− 2, p) =
g(x, n, p)

n(n− 1)p2(1− p)2

{
x2 −

[
1 + 2(n− 1)p

]
x+ n(n− 1)p2

}
,

∆3g(x, n− 3, p) =
g(x, n, p)

n(3)p3(1− p)3

{
x3 − 3

[
(n− 2)p+ 1

]
x2

+
[
3(n− 1)(n− 2)p2 + 3(n− 2)p+ 2

]
x− n(n− 1)(n− 2)p3

}
.

B2(x, n, p̄n) has the first two moments as same as Sn and B3(x, n, p̄n) has the first three
moments as same as Sn.
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3. Ewens sampling formula

In this section, we consider the approximations to the distribution L(Kn) of the
number Kn of distict components, for the Ewens sampling formula. Let the random
variables ξ1, ξ2, · · · be independent and P (ξj = 1) = pj , P (ξj = 0) = 1−pj (j = 1, 2, . . .),
where

pj =
θ

θ + j − 1
, (j = 1, 2, . . . ; θ > 0).

Then the number Kn can be expressed as Kn = ξ1 + ξ2 + · · ·+ ξn (n = 1, 2, . . .). Since
ξ1 = 1 a.s. (almost surely), Kn can be expressed as

Kn = 1 + Ln a.s., (11)

where Ln = ξ2+ · · ·+ ξn (n = 2, 3, . . .). We derive the binomial approximation to L(Ln)
using the results of Section 2 with n− 1. Since pj = θ/(θ + j − 1), we have

λn−1 =
n∑

i=2

θ

θ + i− 1
= θ[ψ(θ + n)− ψ(θ + 1)],

λ2,n−1 =
n∑

i=2

( θ

θ + i− 1

)2

= θ2[ψ′(θ + 1)− ψ′(θ + n)],

and

λ3,n−1 =
n∑

i=2

( θ

θ + i− 1

)3

= θ3[ψ′′(θ + n)− ψ′′(θ + 1)],

where ψ, ψ′ and ψ′′ are the digamma, trigamma and tetragamma functions, respectively.
From λn−1, λ2,n−1 and λ3,n−1, we can calculate

p̄n−1 =
λn−1

n− 1
, γ2(p̄n−1) = λ2,n−1 − (n− 1)p̄2n−1,

and
γ3(p̄n−1) = λ3,n−1 − 3λ2,n−1p̄n−1 + 2(n− 1)p̄3n−1.

Using these values, we can get Approximations I, II, III and IV to L(Ln). Shifting these
approximations to the right by 1, we can obtain the approximations to L(Kn). For
Approximations I, II, III and IV of Section 2, we replace n and λn, λ2,n, λ3,n by n− 1
and the above λn−1, λ2,n−1, λ3,n−1, respectively. Then, we can write the approximations
to L(Kn) as follows:

Approx. I : 1 +BN (n− 1, p̄n−1), Approx. II : 1 +BN ((n− 1)′, p′),

Approx. III : 1 + s′′ +BN ((n− 1)′′, p′′),

and
Approx. IV.1 : 1 + B2(x, n− 1, p̄n−1), IV.2 : 1 + B3(x, n− 1, p̄n−1).

For n = 25, 50 and θ = 0.5, 10, we illustrate Approximations I, II, III, IV.1 and
IV.2 to L(Kn). The p.f. of Kn are drawn by the simulation using R, as bar graph.

Figures 1 and 3 are for n = 25 and θ = 0.5, 10. Approximations I, II and III are
drawn by the dashed, solid and dotted lines, respectively. Figures 2 and 4 are for n = 25
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and θ = 0.5, 10. Approximations I, IV.1 and IV.2 are drawn by the dashed, solid and
dotted lines, respectively.

Figures 5 and 7 are for n = 50 and θ = 0.5, 10. Approximations I, II and III are
drawn by the dashed, solid and dotted lines, respectively. Figures 6 and 8 are for n = 50
and θ = 0.5, 10. Approximations I, IV.1 and IV.2 are drawn by the dashed, solid and
dotted lines, respectively.

For the small θ, for example θ = 0.5, Figures 1, 2, 5 and 6 show that there are little
difference among Approximations I, II, III, IV.1 and IV.2. Figures 1, 3, 5 and 7 show
that there are little difference between Approximations II and III. From Figures 2, 4, 6
and 8, it is seen that there are little difference between Approximations IV.1 and IV.2.
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Fig. 1: I (dash), II (solid), III (dot)
(n = 25, θ = 0.5)
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Fig. 2: I (dash), IV.1 (sol), IV.2 (dot)
(n = 25, θ = 0.5)
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Fig. 3: I (dash), II (solid), III (dot)
(n = 25, θ = 10)
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Fig. 4: I (dash), IV.1 (sol), IV.2 (dot)
(n = 25, θ = 10)
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Fig. 5: I (dash), II (solid), III (dot)
(n = 50, θ = 0.5)
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Fig. 6: I (dash), IV.1 (sol), IV.2 (dot)
(n = 50, θ = 0.5)
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Fig. 7: I (dash), II (solid), III (dot)
(n = 50, θ = 10)
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Fig. 8: I (dash), IV.1 (sol), IV.2 (dot)
(n = 50, θ = 10)

From all figures, it is seen that there are little difference between Approximations II
and IV.1. While these two have the (almost same) first two moments, they are obtained
by the distinct methods. We consider, as the approximation to the distribution of Kn,
Approximations II and IV.1 are preferable. From the attached figures, we can not see
the detailed differences among these approximations. If the reader wants the original
pdf figures, please contact the author (yamato march@hiz.bbiq.jp).

4. Discussion

Based on the approximate distribution to the sum of independent Bernoulli random
variables, we give the shifted binomial approximations to L(Kn) for the Ewens sampling
formula and illustrate them. It is a future problem to investigate the properties of these
shifted binomial approximations, especially Approximations II and IV.1.
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