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Abstract

Among various types of stepwise multiple comparison procedures for normal
means we focus on the closed testing procedure and the sequentially rejective step
down procedure and discuss the relation between them. First, we consider the
multiple comparison with a control. Specifically, we indicate that the power of the
sequentially rejective step down procedure is not higher than that of the closed test-
ing procedure and two procedures are equivalent when we use same critical values
for them. Next, we consider the all-pairwise multiple comparison. Ryan-Einot-
Gabriel-Welsch’s procedure using Tukey-Welsh’s allocation of the significance level
is the well known closed testing procedure. When we test an intersection of mu-
tually disjoint plural hypotheses by it, we should test each hypothesis allocating
an specified significance level to it. It is accompanied with computational com-
plications when the number of populations is large. Here, we propose a method
of testing the intersection of mutually disjoint plural hypotheses at a time in the
closed testing procedure. Next, among several types of sequentially rejective step
down procedures for the all-pairwise multiple comparison we focus on Holland-
Copenhaver’s procedure and indicate that the power of Holland-Copenhaver’s pro-
cedure is not higher than that of the proposed closed testing procedure specifying
the total number of populations. We give simulation results regarding the power
of the test intended to compare the procedures.

Key Words and Phrases: All-pairwise multiple comparison, Holland-Copenhaver’s procedure,

Multiple comparison with a control, Power of the test, Ryan-Einot-Gabriel-Welsch’s procedure.

1. Introduction

There are independent normal random variables X1, X2, . . ., XK . Assume Xk is
distributed according to normal N(µk, σ

2) for k = 1, 2, . . . ,K. Here, the common σ2

is unknown. We consider the multiple comparison for µ1, µ2, . . . , µK using a sample
Xk1, Xk2, . . . , Xknk

from N(µk, σ
2) for k = 1, 2, . . . ,K.

First, we consider the multiple comparison with a control intended to compare µ1

with µ2, µ3, . . . , µK simultaneously. Dunnett (1955) proposed the single step procedure.
Dunnett and Tamhane (1991) proposed the sequentially rejective step down procedure
intended to obtain higher power. On the other hand, it is possible to apply the closed
testing procedure (cf. Marcus et al. (1976)) to the multiple comparison with a control
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for normal means. We indicate that the power of the sequentially rejective step down
procedure is not higher than that of the closed testing procedure and two procedures
are equivalent when we use same critical values for them. We give simulation results
regarding the power of the test intended to compare two stepwise procedures.

Next, we consider the all-pairwise multiple comparison for µ1, µ2, . . . , µK . Tukey
(1953) proposed the single step procedure. Ryan-Einot-Gabriel-Welsch’s procedure (cf.
Ryan (1960), Einot and Gabriel (1975) and Welsch (1977)) is the closed testing proce-
dure using Tukey-Welsh’s allocation of the significance level for testing the intersection
of mutually disjoint plural hypotheses. Here, we construct another type of closed testing
procedure which enables us to test the intersection of mutually disjoint plural hypothe-
ses at a time. On the other hand, Holm (1979) proposed a simple sequentially rejective
step down procedure. Shaffer (1986) and Holland-Copenhaver (1987) modified Holm’s
procedure intended to obtain higher power. Here, focusing on Holland-Copenhaver’s
procedure, we indicate that the power of Holland-Copenhaver’s procedure is not higher
than that of our proposed closed testing procedure specifying the total number of popu-
lations. We give simulation results regarding the power of the test intended to compare
two types of closed testing procedures and Holland-Copenhaver’s procedure.

In Sections 2 we discuss the multiple comparison with a control. In Sections 3 we
discuss the all-pairwise multiple comparison. In Section 4 we give concluding remarks.

2. Multiple comparison with a control

2.1. Single step procedure

First, we discuss the single step procedure proposed by Dunnett (1955). Intended
to compare µ1 and µk (k > 1) we set up a null hypothesis and its alternative hypothesis
as

H1k : µ1 = µk vs. HA
1k : µ1 6= µk (1)

or
H1k : µ1 = µk vs. HA

1k : µ1 > µk. (2)

We consider the simultaneous test of H12, H13, . . . ,H1K based on the single step proce-
dure. We focus on (1), because the following discussion is similar for (2). We use the
statistic

S1k =

√
n1nk
n1 + nk

(X̄1 − X̄k)s−1

for testing H1k. Here

X̄k =
1

nk

nk∑
i=1

Xki (k = 1, 2, . . . ,K), s =

√√√√ 1

N −K

K∑
k=1

nk∑
i=1

(Xki − X̄k)2

where N =
∑K
k=1 nk. If |S1k| > c for a specified critical value c, H1k is rejected.

Otherwise, it is retained. We determine c so that

P (max
k>1
|S1k| > c) = α

for a specified significance level α when H12, H13, . . . ,H1K are true. Then

P (max
k>1
|S1k| > c)
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= 1− P (|S12| < c, |S13| < c, . . . , |S1K | < c)

= 1−
∫ ∞
0

[∫ ∞
−∞

K∏
k=2

{
Φ

(√
λ1kz + cs0√

1− λ1k

)
− Φ

(√
λ1kz − cs0√

1− λ1k

)}
φ(z)dz

]
g(s0)ds0. (3)

Here
λ1k =

nk
n1 + nk

(k = 2, 3, . . . ,K),

Φ(·) is the cumulative distribution function of N(0, 1), φ(·) is the probability density
function of N(0, 1) and g(s0) is the probability density function of s0 = s/σ given by

g(s0) =
ψψ/2

2(ψ−2)/2Γ[ψ/2]
sψ−10 exp

[
−ψs

2
0

2

]
where ψ = N −K.

2.2. Closed testing procedure

Let I = {2, 3, . . . ,K}. Let Iq be an arbitrary subset of I. ](Iq) denotes the number
of elements of Iq. Defining the hypothesis H1Iq as

H1Iq : µ1 = µi for all i ∈ Iq,

we obtain
H1Iq = ∩i∈IqH1i.

Let F be the family consisting of all H1Iqs. F is closed. Specifically, for two hypotheses
chosen from F arbitrarily, their intersection is also included in F .

We construct the stepwise multiple comparison procedure for F applying the closed
testing procedure. For testing each H1Iq in F we use the statistic

S1Iq = max
i∈Iq
|S1i|.

Assuming H1Iq is true, we determine cIq so that P (S1Iq > cIq ) = α. Then

P (S1Iq > cIq ) = 1−
∫ ∞
0

∫ ∞
−∞

∏
i∈Iq

{
Φ

(√
λ1iz + cIqs0√

1− λ1i

)
− Φ

(√
λ1iz − cIqs0√

1− λ1i

)}
φ(z)dz

 g(s0)ds0.

We test the hypotheses in F hierarchically as follows.
Step 1.
Case 1. If S1I ≤ cI , we retain all hypotheses in F and stop the test.
Case 2. If S1I > cI , we reject H1I and go to the next step.
Step 2.
We test all H1Iqs satisfying ](Iq) = K − 2.
Case 1. If S1Iq ≤ cIq , we retain H1Iq and all hypotheses induced by H1Iq .
Case 2. If S1Iq > cIq , we reject H1Iq .
Step 3.
If all H1Iqs satisfying ](Iq) = K − 3 are retained at Step 2, we stop the test. Otherwise,
we test all H1Iqs satisfying ](Iq) = K − 3 which are not retained at Step 2.
Case 1. If S1Iq ≤ cIq , we retain H1Iq and all hypotheses induced by H1Iq .
Case 2. If S1Iq > cIq , we reject H1Iq .

We repeat similar judgments till up to Step K − 1.
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2.3. Sequentially rejective step down procedure

The sequentially rejective step down procedure consists of K − 1 steps of tests.
Assuming all H12, H13, . . . ,H1K are true, we determine cm (m = 1, 2, . . . ,K − 1) as the
minimum c satisfying

P ( max
k=l1,l2,...,lm

|S1k| > c) ≤ α

for l1, l2, . . . , lm chosen from 2, 3, . . . ,K arbitrarily. Here

P ( max
k=l1,l2,...,lm

|S1k| > c)

= 1−
∫ ∞
0

∫ ∞
−∞

m∏
j=1

{
Φ

(√
λ1ljz + cs0√

1− λ1lj

)
− Φ

(√
λ1ljz − cs0√

1− λ1lj

)}
φ(z)dz

 g(s0)ds0.

If n2 = n3 = · · · = nK , P (maxk=l1,l2,...,lm |S1k| > c) does not depend on the choice of
l1, l2, . . . , lm from 2, 3, . . . ,K. In this case cm is determined by

P ( max
k=2,3,...,m+1

|S1k| > cm) = α.

Arranging |S12|, |S13|, . . . , |S1K | in order of a size of value, assume

|S(1)| ≤ |S(2)| ≤ · · · ≤ |S(K−1)|.

H(1), H(2), . . . ,H(K−1) denote hypotheses corresponding to S(1), S(2), . . . , S(K−1). Then,
we test H(1), H(2), . . . ,H(K−1) sequentially as follows.
Step 1.
Case 1. If |S(K−1)| ≤ cK−1, we retain H(1), H(2), . . . ,H(K−1) and stop the test.
Case 2. If |S(K−1)| > cK−1, we reject H(K−1) and go to the next step.
Step 2.
Case 1. If |S(K−2)| ≤ cK−2, we retain H(1), H(2), . . . ,H(K−2) and stop the test.
Case 2. If |S(K−2)| > cK−2, we reject H(K−2) and go to the next step.

We repeat similar judgments till up to Step K − 1.

For the critical values of the sequentially rejective step down procedure and those
of the closed testing procedure, it is clear that

cK−1 = cI , ck = max
](Iq)=k

cIq for k = 1, 2, . . . ,K − 2.

If n2 = n3 = · · · = nK and ](Iq) = k, cIq = ck which implies the critical values of two
stepwise procedures are same. Although we may use c](Iq) instead of cIq for unbalanced
sample sizes in the closed testing procedure, the procedure is more conservative. In
the next Subsection we indicate that two procedures are equivalent when we use same
critical values c1, c2, . . . , cK−1.
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2.4. Relation between two stepwise procedures

In this Subsection we indicate that the power of the sequentially rejective step
down procedure is not higher than that of the closed testing procedure. Furthermore,
we indicate that two procedures are equivalent when we use same critical values.

First, we indicate that the power of the sequentially rejective step down procedure
is not higher than that of the closed testing procedure. It is sufficient to indicate that
H1k rejected by the sequentially rejective step down procedure is also rejected by the
closed testing procedure. If |S1k| > cK−1 and k ∈ Iq, S1Iq > cK−1 = cI ≥ cIq . This
implies H1k is rejected by the closed testing procedure. Next, assume cl+1 ≥ |S1k| > cl
for some l (1 ≤ l ≤ K − 2). Then, S1Iq > cl ≥ cIq for each Iq satisfying k ∈ Iq and
](Iq) ≤ l. We indicate that S1Iq > cIq for each Iq satisfying k ∈ Iq and ](Iq) > l. Since
H1k is rejected by the sequentially rejective step down procedure, j(l′) (2 ≤ j(l′) ≤ K)
exists satisfying |S1j(l′)| > cl′ for each l < l′ ≤ K − 1. Then |S1I | > cI . Assume
](Iq) = K − 2. If j(K − 1) ∈ Iq, S1Iq > cK−1 > cIq . If j(K − 1) /∈ Iq, j(K − 2) ∈ Iq
and S1Iq > cK−2 ≥ cIq . Assume ](Iq) = K − 3. If j(K − 1) ∈ Iq or j(K − 2) ∈ Iq,
S1Iq > cK−2 > cIq . If j(K − 1), j(K − 2) /∈ Iq, j(K − 3) ∈ Iq and S1Iq > cK−3 ≥ cIq .
Continuing similar steps, we can confirm that S1Iq > cIq for each Iq satisfying k ∈ Iq
and ](Iq) > l. Therefore, since S1Iq > cIq for each Iq satisfying k ∈ Iq, H1k is rejected
by the closed testing procedure.

H1k rejected by the closed testing procedure is occasionally retained by the se-
quentially rejective step down procedure. The example is given in the next section.
However, when we use same critical values c1, c2, . . . , cK−1 for two procedures, it is pos-
sible to indicate that H1k rejected by the closed testing procedure is also rejected by
the sequentially rejective step down procedure. If |S1k| > cK−1, H1k is rejected by the
sequentially rejective step down procedure. Next, assume cl+1 ≥ |S1k| > cl for some
l (1 ≤ l ≤ K − 2). Since S1I > cK−1, j(K − 1) (2 ≤ j(K − 1) ≤ K) exists satisfying
|S1j(K−1)| > cK−1. Assume k ∈ Iq, j(K−1) /∈ Iq and ](Iq) = K−2. Since S1Iq > cK−2,
j(K − 2) (2 ≤ j(K − 2) ≤ K) exists satisfying |S1j(K−2)| > cK−2. Continuing similar
steps, we obtain j(l′) (l′ = l + 1, l + 2, . . . ,K − 1) satisfying |S1j(l′)| > cl′ . Therefore,
H1k is rejected by the sequentially rejective step down procedure. Specifically, the se-
quentially rejective step down procedure and the closed testing procedure are equivalent
when we use same critical values for two procedures.

2.5. Simulation results

In Subsection 2.4 we indicated that the power of the sequentially rejective step down
procedure is not higher than that of the closed testing procedure and two procedures
are equivalent when we use same critical values for them. In this Subsection we compare
two stepwise procedures in terms of simulation results regarding the power of the test
for unbalanced sample sizes.

Let K = 5. We set up four types of (n1, n2, n3, n4, n5)s as follows.

Sam.1. (10, 20, 10, 20, 10)

Sam.2. (20, 10, 20, 10, 20)

Sam.3. (10, 30, 10, 30, 10)

Sam.4. (30, 10, 30, 10, 30)

Let α = 0.05. Table 1 gives critical values of the closed testing procedure. Table 2
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gives those of the sequentially rejective step down procedure.
We give an example that a hypothesis rejected by the closed testing procedure is

retained by the sequentially rejective step down procedure. For example, assume

|S12| = 2.000, |S13| = 2.255, |S14| = 2.400, |S15| = 2.500

in Sam.1. By the closed testing procedure H12, H13, H14, H15 are rejected. By the se-
quentially rejective step down procedure H14, H15 are rejected and H12, H13 are retained.

Table 1 : Critical values of the closed testing procedure

Sam.1 Sam.2 Sam.3 Sam.4

c{2,3,4,5} 2.480 2.516 2.452 2.507

c{2,3,4} 2.382 2.416 2.350 2.409
c{2,3,5} 2.395 2.408 2.375 2.399
c{2,4,5} 2.382 2.416 2.350 2.409
c{3,4,5} 2.395 2.408 2.375 2.399

c{2,3} 2.252 2.264 2.233 2.257
c{2,4} 2.235 2.270 2.203 2.263
c{2,5} 2.252 2.264 2.233 2.257
c{3,4} 2.252 2.264 2.233 2.257
c{3,5} 2.260 2.254 2.250 2.245
c{4,5} 2.252 2.264 2.233 2.257

c{2} 1.998 1.993 1.989 1.986
c{3} 1.998 1.993 1.989 1.986
c{4} 1.998 1.993 1.989 1.986
c{5} 1.998 1.993 1.989 1.986

Table 2 : Critical values of the sequentially rejective step down procedure

Sam.1 Sam.2 Sam.3 Sam.4

c4 2.480 2.516 2.452 2.507
c3 2.395 2.416 2.375 2.409
c2 2.260 2.270 2.250 2.263
c1 1.998 1.993 1.989 1.986

Next, we consider the power of the test. Here, we focus on the all-pairs power
defined by Ramsey (1978). We set up four types of (µ1, µ2, µ3, µ4, µ5) as follows.

Case 1. (0, δ, δ, δ, δ), Case 2. (0, δ, δ, δ, 0), Case 3. (0, δ, δ, 0, 0), Case 4. (0, δ, 0, 0, 0).

Here δ = 1.0, 1.5. Since the power depends on the unknown σ2, let σ2 = 1.
The power of the sequentially rejective step down procedure can be obtained by the

formulation derived by Dunnett et al. (2001). Since it is difficult to formulate the power
of the close testing procedure, the power is calculated by Monte Carlo simulation with
1,000,000 times of experiments. Table 3 gives the power for two procedures. Here CT and
SD mean the closed testing procedure and the sequentially rejective step down procedure,
respectively. Table shows that the difference of the power between two procedures is
fairly small in each case.
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Table 3 : Power comparison

Sam.1 Sam.2 Sam.3 Sam.4

Case 1. δ = 1.0 CT 0.354 0.488 0.384 0.596
SD 0.351 0.487 0.382 0.596

δ = 1.5 CT 0.821 0.935 0.838 0.965
SD 0.820 0.935 0.837 0.965

Case 2. δ = 1.0 CT 0.354 0.407 0.403 0.491
SD 0.351 0.404 0.398 0.489

δ = 1.5 CT 0.818 0.895 0.846 0.938
SD 0.816 0.894 0.842 0.937

Case 3. δ = 1.0 CT 0.355 0.491 0.393 0.605
SD 0.350 0.491 0.383 0.605

δ = 1.5 CT 0.801 0.919 0.827 0.954
SD 0.799 0.918 0.820 0.954

Case 4. δ = 1.0 CT 0.544 0.530 0.614 0.594
SD 0.544 0.529 0.614 0.594

δ = 1.5 CT 0.916 0.910 0.950 0.944
SD 0.916 0.910 0.950 0.944

3. All-pairwise comparison

3.1. Single step procedure

First, we discuss the single step procedure proposed by Tukey (1953). Intended to
compare µi and µj (i < j) we set up a null hypothesis and its alternative hypothesis as

Hij : µi = µj vs. HA
ij : µi 6= µj .

We consider the simultaneous test of all Hijs based on the single step procedure. We
use the statistic

Sij =

√
ninj
ni + nj

(X̄i − X̄j)s
−1

for testing Hij . If |Sij | > c for a specified critical value c, Hij is rejected. Otherwise, it
is retained. We want to determine c so that

P (max
i<j
|Sij | > c) = α

for a specified significance level α when all Hijs are true. If it is difficult, we want to
determine c so that

P (max
i<j
|Sij | > c) ≤ α.

If n1 = n2 = · · · = nK ,

P ( max
1≤i<j≤K

|Sij | > c) = 1−K
∫ ∞
0

[∫ ∞
−∞
{Φ(z)− Φ(z −

√
2cs0)}K−1φ(z)dz

]
g(s0)ds0.

(4)
If sample sizes are unbalanced,

P ( max
1≤i<j≤K

|Sij | > c) ≤ 1−K
∫ ∞
0

[∫ ∞
−∞
{Φ(z)− Φ(z −

√
2cs0)}K−1φ(z)dz

]
g(s0)ds0.

(5)
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Although (5) had been called Tukey-Cramer’s conjecture, it was proved by Hayter
(1984). We determine c so that

K

∫ ∞
0

[∫ ∞
−∞
{Φ(z)− Φ(z −

√
2cs0)}K−1φ(z)dz

]
g(s0)ds0 = 1− α. (6)

If n1 = n2 = · · · = nK , c satisfies the significance level α exactly. Otherwise, c is a
conservative critical value for α. In both cases, assuming X∗1 , X

∗
2 , . . . , X

∗
K are mutually

independent and each of them is distributed according to N(0,Kσ2/N) independently
of s, let

S∗ij =

√
N

2K
(X∗i −X∗j )s−1

for 1 ≤ i < j ≤ K. Note

P ( max
1≤i<j≤K

|S∗ij | > c) = 1−K
∫ ∞
0

[∫ ∞
−∞
{Φ(z)− Φ(z −

√
2cs0)}K−1φ(z)dz

]
g(s0)ds0.

(7)
On the other hand, we can obtain a conservative critical value using Bonferroni’s in-
equality

P (max
i<j
|Sij | > c) <

∑
i<j

P (|Sij | > c). (8)

Each Sij is distributed according to tψ under Hij where tψ is the t-distribution with ψ

degrees of freedom. If we determine c
(1)
K(K−1)/2 so that

P (|tψ| > c
(1)
K(K−1)/2) =

2α

K(K − 1)
,

we obtain
P (max

i<j
|Sij | > c

(1)
K(K−1)/2) < α

by (8). On the other hand, using Sidak’s inequality and the inequality given by Hsu (see
page 227, Corollary A.1.1, 1996). we obtain the inequality

P (max
i<j
|Sij | > c) ≤ 1−

∏
i<j

P (|Sij | ≤ c). (9)

If we determine c
(2)
K(K−1)/2 so that

P (|tψ| > c
(2)
K(K−1)/2) = 1− (1− α)

2
K(K−1) ,

we obtain
P (max

i<j
|Sij | > c

(2)
K(K−1)/2) ≤ α

by (9). Since

1− (1− α)
2

K(K−1) >
2α

K(K − 1)
,

we obtain
c
(1)
K(K−1)/2 > c

(2)
K(K−1)/2,
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which means c
(2)
K(K−1)/2 is less conservative compared to c

(1)
K(K−1)/2. On the other hand,

for c determined by (6) we obtain c
(2)
K(K−1)/2 ≥ c by (7) and

P (max
i<j
|S∗ij | > c

(2)
K(K−1)/2) ≤ α.

For c > 0 and arbitrary positive integer m we use the inequality

m

∫ ∞
0

[∫ ∞
−∞
{Φ(z)− Φ(z −

√
2cs0)}m−1φ(z)dz

]
g(s0)ds0 ≥ P (|tψ| ≤ c)

m(m−1)
2 (10)

in hereafter discussions. Furthermore, we define c
(1)
m and c

(2)
m so that

P (|tψ| > c(1)m ) =
α

m
, P (|tψ| > c(2)m ) = 1− (1− α)

1
m .

Then
c
(i)
1 < c

(i)
2 < c

(i)
3 < · · · · · · for i = 1, 2.

3.2. Ryan-Einot-Gabriel-Welsch’s procedure

Next, we discuss the closed testing procedure called Ryan-Einot-Gabriel-Welsch’s
procedure. For arbitrary subset I∗ = {i1, i2, . . . , ik} (1 ≤ i1 < i2 < · · · < ik ≤ K) of
I = {1, 2, . . . ,K} we define

HI∗ : µi1 = µi2 = · · · = µik .

Letting F be the family consisting of all Hijs and all kinds of intersections of plural
Hijs, F is closed. Each hypothesis in F is equal to single HI∗ or HI1 ∩HI2 ∩ · · · ∩HIq

where I1, I2, . . . , Iq are disjoint. We discuss Ryan-Einot-Gabriel-Welsch’s procedure for
F . When we test HI∗ where I∗ = {i1, i2, . . . , ik}, we use the statistic

SI∗ = max
i,j∈I∗ (i<j)

|Sij |.

The critical value c for testing HI∗ is determined so that

](I∗)

∫ ∞
0

[∫ ∞
−∞
{Φ(z)− Φ(z −

√
2cs0)}](I

∗)−1φ(z)dz

]
g(s0)ds0 = 1− α.

Since c depends on ](I∗), let c](I∗) denote c determined by the above equation. If
SI∗ > c](I∗), HI∗ is rejected. Otherwise, it is retained. Next, we discuss how to test
HI1 ∩HI2 ∩ · · · ∩HIq . Letting M1 = ](I1) + ](I2) + · · ·+ ](Iq), allocate

1− (1− α)](Ii)/M1

to HIi for (i = 1, 2, . . . , q). This is called Tukey-Welsh’s allocation of α. For i =
1, 2, . . . , q we determine c](Ii),M1

so that

](Ii)

∫ ∞
0

[∫ ∞
−∞
{Φ(z)− Φ(z −

√
2c](Ii),M1

s0)}](Ii)−1φ(z)dz

]
g(s0)ds0 = 1−(1−α)](Ii)/M1 .
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Specifically, intended to test HI1 ∩HI2 ∩· · ·∩HIq we set up the critical value c](Ii),M1
for

testing HIi for i = 1, 2, . . . , q. If SIi > c](Ii),M1
for at least one i, HI1 ∩HI2 ∩ · · · ∩HIq

is rejected. Otherwise, it is retained. It is indicated that the probability that HI1 ∩
HI2 ∩ · · · ∩HIq is rejected when it is true is not greater than α. We specified the way
to test each hypothesis in F satisfying the specified significance level α. We test the
hypotheses in F hierarchically. Specifically, if a hypothesis and all hypotheses deriving
it are rejected, we reject the hypothesis. Otherwise we retain it.

3.3. Another approach for closed testing procedure

We discuss another approach for closed testing procedure. When we test HI1∩HI2∩
· · · ∩HIq where I1, I2, . . . , Iq are disjoint by Ryan-Einot-Gabriel-Welsch’s procedure, we
test each of HI1 , HI2 , . . . ,HIq . Here, we discuss the closed testing procedure testing
HI1 ∩ HI2 ∩ · · · ∩ HIq at a time using the statistic max{SI1 , SI2 , . . . , SIq}. When the
value of s0 is given, SI1 , SI2 , . . . , SIq are independent and

P (max{SI1 , SI2 , . . . , SIq} > c) = 1−
∫ ∞
0

q∏
i=1

P (SIi ≤ c|s0)g(s0)ds0 (11)

for c > 0. Since∫ ∞
0

q∏
i=1

P (SIi ≤ c|s0)g(s0)ds0 ≥
q∏
i=1

∫ ∞
0

P (SIi ≤ c|s0)g(s0)ds0 =

q∏
i=1

P (SIi ≤ c)

by the inequality given by Hsu (1996), we obtain

P (max{SI1 , SI2 , . . . , SIq} > c) ≤ 1−
q∏
i=1

P (SIi ≤ c)

by (11). Letting

P](Ii)(c) = ](I1)

∫ ∞
0

[∫ ∞
−∞
{Φ(z)− Φ(z −

√
2cs0)}](Ii)−1φ(z)dz

]
g(s0)ds0

for i = 1, 2, . . . , q, we obtain

P (max{SI1 , SI2 , . . . , SIq} > c) ≤ 1−
q∏
i=1

P](Ii)(c). (12)

If we determine c](I1),](I2),...,](Iq) so that

q∏
i=1

P](Ii)(c](I1),](I2),...,](Iq)) = 1− α, (13)

we obtain
P (max{SI1 , SI2 , . . . , SIq} > c](I1),](I2),...,](Iq)) ≤ α

by (12). Letting

M2 =
](I1)(](I1)− 1)

2
+
](I2)(](I2)− 1)

2
+ · · ·+ ](Iq)(](Iq)− 1)

2
,
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we obtain
q∏
i=1

P](Ii)(c) ≥ P (|tψ| ≤ c)M2

by (10). Therefore
q∏
i=1

P](Ii)(c
(2)
M2

) ≥ 1− α

which means
c](I1),](I2),...,](Iq) ≤ c

(2)
M2

by (13).

3.4. Holm’s procedure

We discuss Holm’s procedure which is the sequentially rejective step down proce-
dure for all-pairwise comparison. It consists of K(K − 1)/2 steps of tests. Arranging
|Sij |s in order of a size of value, assume

|S(1)| ≤ |S(2)| ≤ · · · ≤ |S(K(K−1)/2)|.

H(1), H(2), . . . ,H(K(K−1)/2) denote hypotheses corresponding to S(1), S(2), . . . , S(K(K−1)/2).
Then, we test H(1), H(2), . . . ,H(K(K−1)/2) sequentially as follows.
Step 1.

Case 1. If |S(K(K−1)/2)| ≤ c
(1)
K(K−1)/2, we retain H(1), H(2), . . . ,H(K(K−1)/2) and stop

the test.
Case 2. If |S(K(K−1)/2)| > c

(1)
K(K−1)/2, we reject H(K(K−1)/2) and go to the next step.

Step 2.

Case 1. If |S(K(K−1)/2−1)| ≤ c
(1)
K(K−1)/2−1, we retain H(1), H(2), . . . ,H(K(K−1)/2−1) and

stop the test.

Case 2. If |S(K(K−1)/2−1)| > c
(1)
K(K−1)/2−1, we reject H(K(K−1)/2−1) and go to the next

step.

We repeat similar judgments till up to Step K(K − 1)/2.

3.5. Shaffer’s procedure and Holland and Copenhaver’s procedure

We discuss Shaffer’s procedure and Holland and Copenhaver’s procedure improv-
ing Holm’s procedure. First, we discuss Shaffer’s procedure. We test H(1), H(2), . . .,
H(K(K−1)/2) sequentially as follows.

Step 1.

Case 1. If |S(K(K−1)/2)| ≤ c
(1)
K(K−1)/2, we retain H(1), H(2), . . . ,H(K(K−1)/2) and stop

the test.
Case 2. If |S(K(K−1)/2)| > c

(1)
K(K−1)/2, we reject H(K(K−1)/2) and go to the next step.

Step 2.
When H(K(K−1)/2) is not true, let m(K(K − 1)/2 − 1) be the maximum number of
hypotheses which can be simultaneously true among H(1), H(2), . . . ,H(K(K−1)/2−1).



46 T. Imada

Case 1. If |S(K(K−1)/2−1)| ≤ c
(1)
m(K(K−1)/2−1), we retain H(1), H(2), . . . ,H(K(K−1)/2−1)

and stop the test.

Case 2. If |S(K(K−1)/2−1)| > c
(1)
m(K(K−1)/2−1), we reject H(K(K−1)/2−1) and go to the

next step.
Step 3.
When H(K(K−1)/2) and H(K(K−1)/2−1) are not true, let m(K(K−1)/2−2) be the max-
imum number of hypotheses which can be simultaneously true among H(1), H(2), . . .,
H(K(K−1)/2−2).

Case 1. If |S(K(K−1)/2−2)| ≤ c
(1)
m(K(K−1)/2−2), we retain H(1), H(2), . . . ,H(K(K−1)/2−2)

and stop the test.

Case 2. If |S(K(K−1)/2−2)| > c
(1)
m(K(K−1)/2−2), we reject H(K(K−1)/2−2) and go to the

next step.

We repeat similar judgments till up to Step K(K − 1)/2.

c
(1)
l for l = m(K(K − 1)/2 − 1),m(K(K − 1)/2 − 2), . . . ,m(1) is determined de-

pending on the process of the test. However, Holland and Copenhaver (1987) set up
the critical values conservatively in advance of the test considering all sorts of cases

and tabulated them for 3 ≤ K ≤ 10 using c
(2)
m instead of c

(1)
m . Shaffer’s procedure and

Holland and Copenhaver’s procedure are more powerful compared to Holm’s procedure.

3.6. Relation between two stepwise procedures

In this Subsection we discuss the relation between the closed testing procedure and
the sequentially rejective step down procedure. Here, we focus on Holland and Copen-
haver’s procedure among three types of sequentially rejective step down procedures.
Since it is difficult to clarify the theoretical relation regarding power of the test between
Ryan-Einot-Gabriel-Welsch’s procedure and Holland and Copenhaver’s procedure, we
focus on the closed testing procedure discussed in Subsection 3.3. Although we expect
that the power of Holland and Copenhaver’s procedure is not higher than that of the
proposed closed testing procedure, it is difficult to indicate it in general situation. Here,
we indicate it specifying K. We give the indications only for K = 3, 4, 5, because the
indications need many pages for K ≥ 6.

We define abbreviated notations. HC and CT mean Holland and Copenhaver’s
procedure and the closed testing procedure discussed in Subsection 3.3, respectively.

I. K = 3
The critical values of HC are c

(2)
3 , c

(2)
1 , c

(2)
1 . The critical values of CT are c3, c2. Assume

Hij is rejected by HC.

Case 1. If |Sij | > c
(2)
3 , Hij is rejected by CT, because c

(2)
3 ≥ c3.

Case 2. If c
(2)
3 ≥ |Sij | > c

(2)
1 , {i′, j′} exists satisfying |Si′j′ | > c

(2)
3 . Therefore, Hij is

rejected by CT, because S{1,2,3} ≥ c
(2)
3 ≥ c3 and |Sij | > c

(2)
1 = c2.

II. K = 4
The critical values of HC are c

(2)
6 , c

(2)
3 , c

(2)
3 , c

(2)
3 , c

(2)
2 , c

(2)
1 . The critical values of CT are

c4, c3, c2,2, c2. Assume Hij is rejected by HC.
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Case 1. If |Sij | > c
(2)
6 , Hij is rejected by CT, because c

(2)
6 ≥ c4.

Case 2. If c
(2)
6 ≥ |Sij | > c

(2)
3 , {i′, j′} exists satisfying |Si′j′ | > c

(2)
6 . Therefore, Hij is

also rejected by CT, because S{1,2,3,4} ≥ c
(2)
6 ≥ c4 and |Sij | > c

(2)
3 ≥ c3.

Case 3. If c
(2)
3 ≥ |Sij | > c

(2)
2 , {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4} satisfying

|Si1j1 | > c
(2)
6 , |Si2j2 | > c

(2)
3 , |Si3j3 | > c

(2)
3 , |Si4j4 | > c

(2)
3

exist. Then S{1,2,3,4} > c
(2)
6 ≥ c4. When {s1, s2, s3} includes {i, j}, {s1, s2, s3} includes

at least one of {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}. This means S{s1,s2,s3} > c
(2)
3 ≥ c3.

Therefore, Hij is rejected by CT, because |Sij | > c
(2)
2 = c2,2.

Case 4. If c
(2)
2 ≥ |Sij | > c

(2)
1 , {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5} satisfying

|Si1j1 | > c
(2)
6 , |Si2j2 | > c

(2)
3 , |Si3j3 | > c

(2)
3 , |Si4j4 | > c

(2)
3 , |Si5j5 | > c

(2)
2

exist. Then S{1,2,3,4} > c
(2)
6 ≥ c4. When {s1, s2, s3} includes {i, j}, H{s1,s2,s3} rejected

similarly as Case 3. Assuming that i′, j′ are obtained by excluding i, j from 1,2,3,4,
{i′, j′} is equal to one of {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}. Therefore |Si′j′ | >
c
(2)
2 = c2,2. This means Hij ∩Hi′j′ is rejected. Therefore, Hij is rejected by CT, because

|Sij | > c
(2)
1 = c2.

III. K = 5
The critical values of HC are c

(2)
10 , c

(2)
6 , c

(2)
6 , c

(2)
6 , c

(2)
6 , c

(2)
4 , c

(2)
4 , c

(2)
3 , c

(2)
2 , c

(2)
1 . The

critical values of CT are c5, c4, c3,2, c3, c2,2, c2. Assume Hij is rejected by HC.

Case 1. If |Sij | > c
(2)
10 , Hij is also rejected by CT, because c

(2)
10 ≥ c5.

Case 2. If c
(2)
10 ≥ |Sij | > c

(2)
6 , {i′, j′} exists satisfying |Si′j′ | > c

(2)
10 . Then S{1,2,3,4,5} ≥

c
(2)
10 ≥ c5. Therefore, Hij is rejected by CT, because |Sij | > c

(2)
6 ≥ c4.

Case 3. If c
(2)
6 ≥ |Sij | > c

(2)
4 , {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5} satisfying

|Si1j1 | > c
(2)
10 , |Si2j2 | > c

(2)
6 , |Si3j3 | > c

(2)
6 , |Si4j4 | > c

(2)
6 , |Si5j5 | > c

(2)
6

exist. Then S{1,2,3,4,5} ≥ c
(2)
10 ≥ c5. If {s1, s2, s3, s4} includes {i, j}, {s1, s2, s3, s4} in-

cludes at least one of {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}. This means S{s1,s2,s3,s4}

> c
(2)
6 ≥ c4. Therefore, Hij is also rejected by CT, because |Sij | > c

(2)
4 ≥ c3,2.

Case 4. If c
(2)
4 ≥ |Sij | > c

(2)
3 , {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}, |i6, j6}, {i7, j7}

satisfying

|Si1j1 | > c
(2)
10 , |Si2j2 | > c

(2)
6 , |Si3j3 | > c

(2)
6 , |Si4j4 | > c

(2)
6 , |Si5j5 | > c

(2)
6 ,

|Si6j6 | > c
(2)
4 , |Si7j7 | > c

(2)
4

exist. Then S{1,2,3,4,5} ≥ c
(2)
10 ≥ c5. If {s1, s2, s3, s4} includes {i, j}, we obtain S{s1,s2,s3,s4}

> c
(2)
6 ≥ c4 similarly as Case 3. Assume {s1, s2, s3} includes {i, j} and {s4, s5} is ob-

tained by excluding s1, s2, s3 from 1,2,3,4,5. If {s1, s2, s3} includes at least one of {i1, j1},
{i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}, |i6, j6}, {i7, j7}, S{s1,s2,s3} > c

(2)
4 ≥ c3,2. Otherwise

{s4, s5} is equal to one of {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}, |i6, j6}, {i7, j7}. Then
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Ss4s5 > c
(2)
4 ≥ c3,2. These mean H{s1,s2,s3} ∩Hs4s5 is rejected. Assuming {s1, s2, s3} is

obtained by excluding {i, j} from 1,2,3,4,5, {s1, s2, s3} includes at least one of {i1, j1},
{i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}, |i6, j6}, {i7, j7}. Then S{s1,s2,s3} > c

(2)
4 ≥ c3,2. These

mean H{s1,s2,s3} ∩ Hij is rejected. Therefore, Hij is also rejected by CT, because

|Sij | > c
(2)
3 ≥ c3.

Case 5. If c
(2)
3 ≥ |Sij | > c

(2)
2 , {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}, |i6, j6}, {i7, j7},

{i8, j8} satisfying

|Si1j1 | > c
(2)
10 , |Si2j2 | > c

(2)
6 , |Si3j3 | > c

(2)
6 , |Si4j4 | > c

(2)
6 , |Si5j5 | > c

(2)
6 ,

|Si6j6 | > c
(2)
4 , |Si7j7 | > c

(2)
4 , |Si8j8 | > c

(2)
3

exist. Then S{1,2,3,4,5} ≥ c
(2)
10 ≥ c5. If {s1, s2, s3, s4} includes {i, j}, we obtain S{s1,s2,s3,s4}

> c
(2)
6 ≥ c4 similarly as Case 3. Assuming {s1, s2, s3} includes {i, j} and {s4, s5}

is obtained by excluding s1, s2, s3 from 1,2,3,4,5, H{s1,s2,s3} ∩ Hs4s5 is rejected simi-
larly as Case 4. Assuming {s1, s2, s3} is obtained by excluding {i, j} from 1,2,3,4,5,
H{s1,s2,s3} ∩Hij is rejected similarly as Case 4. If {s1, s2, s3} includes {i, j}, {s1, s2, s3}
includes at least one of {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}, |i6, j6}, {i7, j7},
{i8, j8}. Then S{s1,s2,s3} > c

(2)
3 ≥ c3. Therefore, Hij is also rejected by CT, because

|Sij | > c
(2)
2 = c2,2.

Case 6. If c
(2)
2 ≥ |Sij | > c

(2)
1 , {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}, |i6, j6}, {i7, j7},

{i8, j8}, {i9, j9} satisfying

|Si1j1 | > c
(2)
10 , |Si2j2 | > c

(2)
6 , |Si3j3 | > c

(2)
6 , |Si4j4 | > c

(2)
6 , |Si5j5 | > c

(2)
6 ,

|Si6j6 | > c
(2)
4 , |Si7j7 | > c

(2)
4 , |Si8j8 | > c

(2)
3 , |Si9j9 | > c

(2)
2

exist. Then S{1,2,3,4,5} ≥ c
(2)
10 ≥ c5. If {s1, s2, s3, s4} includes {i, j}, we obtain S{s1,s2,s3,s4}

> c
(2)
6 ≥ c4 similarly as Case 3. Assuming {s1, s2, s3} includes {i, j} and {s4, s5}

is obtained by excluding s1, s2, s3 from 1,2,3,4,5, H{s1,s2,s3} ∩ Hs4s5 is rejected simi-
larly as Case 4. Assuming {s1, s2, s3} is obtained by excluding {i, j} from 1,2,3,4,5,
H{s1,s2,s3} ∩ Hij is rejected similarly as Case 4. Assuming {s1, s2, s3} includes {i, j},
H{s1,s2,s3} is rejected similarly as Case 5. Assuming {i, j} and {i′, j′} are disjoint, {i′, j′}
is the one of {i1, j1}, {i2, j2}, {i3, j3}, |i4, j4}, {i5, j5}, |i6, j6}, {i7, j7}, {i8, j8}, {i9, j9}.
Hij ∩ Hi′j′ is rejected, because |Si′j′ | > c

(2)
2 = c2,2. Therefore, Hij is also rejected by

CT, because |Sij | > c
(2)
1 = c2.

It is possible to indicate that the power of Holland and Copenhaver’s procedure is
not higher than that of Ryan-Einot-Gabriel-Welsch’s procedure for K = 3, 4. However,
it is difficult for K ≥ 5.

3.7. Simulation results

We discussed Ryan-Einot-Gabriel-Welsch’s procedure, another type of closed test-
ing procedure and three types of sequentially rejective step down procedures. Focusing
on Holland-Copenhaver’s procedure among three types of sequentially rejective step
down procedures, we indicated that the power of Holland-Copenhaver’s procedure is not
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higher than that of the proposed closed testing procedure specifying the total number
of means. In this Subsection we give simulation results regarding the critical values and
the power of the test intended to compare two types of closed testing procedures and
Holland-Copenhaver’s procedure. CT1 and CT2 denote the closed testing procedures
discussed in Subsections 3.2 and 3.3, respectively. HC denotes Holland and Copen-
haver’s procedure. Let K = 5 and α = 0.05. Since critical values are determined by
N = n1 + n2 + n3 + n4 + n5, let N = 75. Tables 4 to 6 give critical values of CT1, CT2
and HC, respectively.

Table 4 : Critical values of CT1

c5 c4 c3,5 c2,5 c3 c2,4 c2
2.800 2.632 2.599 2.375 2.395 2.286 1.995

Table 5 : Critical values of CT2

c5 c4 c3,2 c3 c2,2 c2
2.800 2.632 2.523 2.395 2.286 1.995

Table 6 : Critical values of HC

c
(2)
10 c

(2)
6 c

(2)
4 c

(2)
3 c

(2)
2 c

(2)
1

2.891 2.708 2.557 2.447 2.286 1.995

Next, we consider the power of the test. Since the power depends on unknown σ2,
we specify σ2 = 1. We set up four types of (µ1, µ2, µ3, µ4, µ5) as follows.

Case 1 : (0, δ, 2δ, 3δ, 4δ), Case 2 : (0, δ, 2δ, 3δ, 3δ),
Case 3 : (0, δ, 2δ, 2δ, 2δ), Case 4 : (0, δ, δ, δ, δ).

Here δ = 1.0, 1.5. We set up two types of arrangements of (n1, n2, n3, n4, n5) satisfying
n1 + n2 + n3 + n4 + n5 = 75 as

Sam.1 : (15, 15, 15, 15, 15), Sam.2 : (10, 20, 15, 20, 10).

Table 7 gives the power of three procedures. The power is calculated by Monte Carlo
simulation with 1,000,000 times of experiments in each case. CT1 and CT2 are uniformly
more powerful compared to HC. Although the differences of the power between CT1 and
CT2 are uniformly small in Cases 1,2, the power of CT1 is higher than that of CT2 in
Cases 3,4. The differences of the power among CT1, CT2 and HC are larger as the
number of the pairs consisting of different means is smaller.

Table 7 : Power comparison

Case 1 Case 2 Case 3 Case 4
Sam.1 Sam.2 Sam.1 Sam.2 Sam.1 Sam.2 Sam.1 Sam.2

δ = 1.0 CT1 0.266 0.288 0.202 0.203 0.202 0.213 0.329 0.249
CT2 0.266 0.287 0.201 0.203 0.170 0.181 0.275 0.204
HC 0.248 0.273 0.150 0.152 0.116 0.127 0.221 0.162

δ = 1.5 CT1 0.927 0.919 0.894 0.870 0.868 0.855 0.867 0.739
CT2 0.927 0.919 0.893 0.870 0.850 0.828 0.826 0.684
HC 0.927 0.920 0.868 0.834 0.794 0.779 0.779 0.624
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4. Conclusions

In this study we discussed the closed testing procedures and the sequentially rejec-
tive step down procedures for the multiple comparison with a control and the all-pairwise
multiple comparison. For the multiple comparison with a control we indicate that the
power of the sequentially rejective step down procedure is not higher than that of the
closed testing procedure and two procedures are equivalent when we use same critical
values for them. We gave simulation results regarding the power of the test intended
to compare two stepwise procedures for unbalanced sample sizes. From the simulation
results we confirmed that the difference of the power between two procedures is fairly
small. The closed testing procedure is accompanied with computational complications
compared to the sequentially rejective step down procedure when the number of pop-
ulations is large. Since the difference of the power between two procedures is small, it
seems more appropriate to use the sequentially rejective step down procedure in such
cases.

For the all-pairwise multiple comparison we constructed another type of closed
testing procedure which enables us to test the intersection of plural mutually disjoint
hypotheses at a time and indicated that the power of Holland-Copenhaver’s procedure is
not higher than that of the proposed closed testing procedure specifying the total num-
ber of populations. We gave simulation results regarding the power of the test intended
to compare the procedures. Two types of closed testing procedures are uniformly more
powerful compared to Holland-Copenhaver’s procedure. The power of the proposed
closed testing procedure is not higher than that of Ryan-Einot-Gabriel-Welsch’s pro-
cedure. Although it was difficult to indicate that the power of Holland-Copenhaver’s
procedure is not higher than that of Ryan-Einot-Gabriel-Welsch’s procedure, it was most
powerful among three procedures. However, the proposed closed testing procedure is
simpler for practical use when the number of populations is large.

There exist other types of stepwise procedures. Dunnett and Tamhane (1992)
proposed the step up procedure for the multiple comparison with a control. Dunnett
et al. (2001) compared the step up procedure and the sequentially rejective step down
procedure in terms of the power of the test through simulation. We should clarify
theoretical relations regarding power of the test between the step up procedure and the
closed testing procedure in the future.
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