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Hitoshi Furusawa∗, Yasuo Kawahara† and Norihiro Tsumagari‡

Abstract

This paper relationally formulates the axiom of choice and Zorn’s lemma. Based
on the formalisation, well-known equivalence between the axiom of choice and
Zorn’s lemma is proved in a manner of relational calculus.
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1. Introduction

The axiom of choice in set theory was formulated by E. Zermelo [Zermelo (1904)].
Zorn’s lemma [Zorn (1935)] in order theory is known as one of the most important
equivalents [Rubin and Rubin (1963)] of the axiom of choice. This paper aims to give a
setting and proof for the equivalence between them in Cantor categories.

The calculus of (binary) relations was studied by G. Boole, A. De Morgan, C.S.
Peirce and Schröder in 19th century in order to develop a framework for calculational
reasoning about theory of relations. A. Tarski initiated the modern investigation of
theory of homogenous relations, as relation algebras [Tarski (1941)]. After that, J.
Olivier and D. Serrato, and P. Freyd and A. Scedrov developed Dedekind categories
[Olivier and Serrato (1980)] and allegories [Freyd and Scedrov (1990)], respectively, as
category theory [MacLane (1971)] of heterogenous relations. Since the 1970s these al-
gebraic structures have widely been applied as a conceptual and methodological base in
areas such as automata theory, graph theory, theory of fuzzy relations, data bases, and
semantics of programming languages. Examples and references can be found e. g., in an
excellent text book [Schmidt and Ströhlein (1993)] due to G. Schmidt and T. Ströhlein,
and the proceedings of the conference series Relational and Algebraic Methods in Com-
puter Science.

Calculational reasonings in the algebraic structure concerning relations are rather
formal and allow the use of interactive or automatic theorem provers [Kahl (2014),
Pous (2012), Struth and Weber (2014), Höfner and Struth (2008)]. Also manipulating
systems for concrete relations [Berghammer and Schmidt (1991), Killingbeck (2015)] are
available. Relational studies on well-known fundamental topics in mathematics like this
paper contributes for further development of such mechanised mathematical tools.

The paper organises as follows. In Section 2 we define Dedekind categories, which
serve naive framework for relational study, and basic notions in Dedekind categories, like
∗ Department of Mathematics and Computer Science, Kagoshima University
† Professor Emeritus, Kyushu University
‡ Center for Education and Innovation, Sojo University
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univalency and totality of relations, (total) functions and domain relations. With these
relational notions three variants (AC∗), (AC◦) and (AC-I) of the axiom of choice will
be easily introduced. Also, maximum and supremum relations defined by using residual
compositions, simply yield a few concepts needed to state Zorn’s lemma. However, our
equivalence proof of the paper needs more algebraic mechanisms. In Section 3 we give
a relational proof for fixpoint theorem [Dugundji (1996)] concerning towers under an
additional assumption that every relation in a Dedekind category has its complement.
In Section 4 we introduce a concept of Cantor categories, which generalise Dedekind
categories so that every relation has rational representation (tabulation), and every
object has a membership relation (or, equivalent to the existence of power objects). Also
we recall the fundamental propositions in Cantor categories needed in later sections. In
Section 5 Zorn’s lemma (ZL) will be derived from the axiom of choice (AC∗) by applying
the fixpoint theorem proved in Section 3. We will also prove the axiom of quasi-choice
(AC◦) from Zorn’s lemma (ZL). In Section 6, as an application of (ZL), a relational
proof of Kuratowski’s lemma for cliques of relations will be given.

2. Setup in Dedekind categories

In this section we reformulate the axiom of choice and Zorn’s Lemma with using
terminologies in Dedekind categories introduced in [Olivier and Serrato (1980)].

We begin with recalling the definition of Dedekind categories which is the most
fundamental structure for this work. Note that Dedekind categories are equivalent to
locally complete division allegories introduced in [Freyd and Scedrov (1990)].

A morphism α from an object X into an object Y in a Dedekind category (which
will be defined below) is denoted by a half arrow α : X ⇁ Y , and the composite of a
morphism α : X ⇁ Y followed by a morphism β : Y ⇁ Z will be written as αβ : X ⇁ Z.
Also we will denote the identity morphism on X as idX .

Definition 2.1. A Dedekind category D is a category [MacLane (1971)] satisfying
the following conditions.
DC1. [Complete Heyting Algebra] For all objects X and Y the hom-set D(X,Y ) con-
sisting of all morphisms of X into Y forms a complete Heyting algebra (equivalent to a
complete distributive lattice) with the least morphism 0XY and the greatest morphism
∇XY . Its algebraic structure will be denoted by

D(X,Y ) = (D(X,Y ),⊑,⊓,⊔,⇒, 0XY ,∇XY ).

DC2. [Converse] For all morphisms α : X ⇁ Y there is a morphism α♯ : Y ⇁ X,
called the converse of α, such that for all morphisms α, α′ : X ⇁ Y and β : Y ⇁ Z (a)
(αβ)♯ = β♯α♯, (b) (α♯)♯ = α, and (c) α ⊑ α′ implies α♯ ⊑ α′ ♯.
DC3. [Dedekind Formula] For all morphisms α : X ⇁ Y , β : Y ⇁ Z and δ : X ⇁ Z the
Dedekind formula (DF for short) αβ ⊓ δ ⊑ α(β ⊓ α♯δ) holds.
DC4. [Residual Composition] For all morphisms α : X ⇁ Y and β : Y ⇁ Z there
exists a morphism α ▷ β : X ⇁ Z, called the residual composite of α and β, such that
δ ⊑ α▷ β if and only if α♯δ ⊑ β for all morphisms δ : X ⇁ Z. □

The following example shows that the notion of Dedekind categories is a framework for
theory of relations.
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Example 2.2. The category Rel of sets and (binary) relations and the category Rel(L)
of sets and L-valued relations [Goguen (1967)] (where L denotes a complete Heyting
algebra) form Dedekind categories. More precisely, in Rel each hom-set is a complete
Heyting algebra ordered by inclusion and for relations α : X ⇁ Y and β : Y ⇁ Z

• (y, x) ∈ α♯ if and only if (x, y) ∈ α,

• (x, z) ∈ αβ if and only if there exists y ∈ Y such that (x, y) ∈ α and (y, z) ∈ β,

• (x, z) ∈ α▷ β if and only if (x, y) ∈ α implies (y, z) ∈ β for all y ∈ Y . □

In what follows, the word relation is a synonym for morphism of a Dedekind cat-
egory. A relation α : X ⇁ Y in a Dedekind category is univalent if α♯α ⊑ idY , and it
is total if idX ⊑ αα♯. A univalent and total relation is called a function (tfn, for short)
and may be introduced as f : X → Y . An injection i : X → Y is a function such that
ii♯ = idX . The domain relation ⌊α⌋ : X ⇁ X of a relation α : X ⇁ Y is defined as
⌊α⌋ = αα♯ ⊓ idX . A relation α is total iff ⌊α⌋ = idX .

The following proposition lists a part of the basic properties of Dedekind categories
without proof.

Proposition 2.3. Let α, α′ : X ⇁ Y , β, β′ : Y ⇁ Z, γ : Z ⇁ W , δ : U ⇁ Z,
ζ : X ⇁ Z and η : Y ⇁ W be relations in a Dedekind category. Then the following
holds.

(a) α 0Y Z = 0XZ and 0V Xα = 0V Y .

(b) If α ⊑ α′ and β ⊑ β′ then αβ ⊑ α′β′ and α′ ▷ β ⊑ α▷ β′,

(c) α(⊔λ∈Λβλ)γ = ⊔λ∈Λαβλγ and α(⊓λ∈Λβλ)γ ⊑ ⊓λ∈Λαβλγ.

(d) If α and δ are univalent then α(β ⊓ β′)δ♯ = αβδ♯ ⊓ αβ′δ♯,

(e) α = ⌊α⌋α,

(f) If α ⊑ α′, ⌊α⌋ = ⌊α′⌋ and α′ is univalent, then α = α′.

(g) ⌊α⌋ ⊑ ⌊ζ⌋ iff α∇Y X ⊑ ζ∇ZX .

(h) If α and α′ are univalent and ⌊α⌋ ⊓ ⌊α′⌋ = 0XY , then α ⊔ α′ is also univalent,

(i) α▷ (β ▷ γ) = αβ ▷ γ and (α▷ β)γ ⊑ α▷ βγ,

(j) (α ⊔ α′)▷ β = (α▷ β) ⊓ (α′ ▷ β) and α▷ (β ⊓ β′) = (α▷ β) ⊓ (α▷ β′),

(k) (α▷ β)(β♯ ▷ η) ⊑ α▷ η,

(l) α ⊑ (α▷ β)▷ β♯,

(m) α▷ β = ((α▷ β)▷ β♯)▷ β,

(n) If α is a function then α▷ β = αβ and α(β ▷ γ) = αβ ▷ γ,

(o) If β is a function then αβ ▷ γ = α▷ βγ,
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(p) If δ is a function then (α▷ β)δ♯ = α▷ βδ♯. □

In a Dedekind category, for an injection i : S → Y , a function f : X → Y satisfying
ff ♯ ⊑ ii♯ bijectively corresponds to a function h : X → S: f = hi if and only if
h = fi♯. This bijective correspondence is called the injection adjunction and denoted
by the following notation.

f : X → Y { f ♯f ⊑ i♯i }
h : X → S

f = hi

h = fi♯
(injection adjunction)

In addition, an object I in a Dedekind category D is called unit if it satisfies 0II ̸= idI =
∇II and ∇XI∇IX = ∇XX for all objects X.

Example 2.4. Consider the Dedekind category Rel.

• A function f : X → Y corresponds to the function h : X → S which maps x ∈ X
to f(x) ∈ S by the injection adjunction for any sets S such that {f(x) : x ∈ X} ⊆
S ⊆ Y .

• A singleton set is the unit. □

In the rest of this section, we assume that a Dedekind category has a unit without
explicit mentioning if its existence is necessary.

Now define some auxiliary notions concerned with axiom of choice in Dedekind
categories. Let α : X ⇁ Y be a relation. A univalent relation γ : X ⇁ Y is called a
choice of α if γ ⊑ α and ⌊γ⌋ = ⌊α⌋. A choice of a total relation is a function. Also
we call a univalent relation γ : X ⇁ Y a quasi-choice of α if γ is maximal among all
univalent relations contained in α, that is, (i) γ ⊑ α, and (ii) γ ⊑ δ ⊑ α and δ♯δ ⊑ idY
imply γ = δ. A choice of α is a quasi-choice of α.

With these terminologies we may formulate the axiom of choice (AC∗), the axiom
of quasi-choice (AC◦) and the restricted axiom of choice (AC-I) in Dedekind categories
as follows.

Definition 2.5. (AC∗) Every relation α : X ⇁ Y has a choice.

(AC◦) Every relation α : X ⇁ Y has a quasi-choice.

(AC-I) Every relation ρ : I ⇁ X has a choice. □

Remark that (NE∗) ↔ (Tot∗) ∧ (AC-I), where (Tot∗) and (NE∗) are the axiom of
totality and the axiom of nonemptyness, namely,

(Tot∗) every nonzero relation ρ : I ⇁ X is total,

(NE∗) every nonzero relation ρ : I ⇁ X includes some function x : I → X

discussed in [Furusawa and Kawahara (2015)], respectively.

Example 2.6. • The axiom of choice (AC∗) in the Dedekind category Rel is a vari-
ant appeared as property AC4 in [Rubin and Rubin (1963)] of the axiom of choice
in set theory. The restricted axiom of choice (AC-I) on the unit I clearly argues
a trivial fact that we may choose an element of a nonempty set, and it is usually
omitted in set-theoretical argument.
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• In the Dedekind category Rel(L), equivalences (NE∗) ↔ (Tot∗) ↔ L = {0, 1}
hold. Also (AC-I) holds in Rel(L) if L is a finite linearly ordered set. Moreover
it is proved in [Furusawa and Kawahara (2015)] that If L is a complete Boolean
algebra, Rel(L) satisfies (AC∗). □

For a relation ξ : X ⇁ X the maximum relation max(ρ, ξ) : V ⇁ X and supremum
relation sup(ρ, ξ) : V ⇁ X of a relation ρ : V ⇁ X (with respect to ξ) are defined as
follows.

max(ρ, ξ) = ρ ⊓ (ρ▷ ξ) and sup(ρ, ξ) = (ρ▷ ξ) ⊓ ((ρ▷ ξ)▷ ξ♯).

The following proposition lists some of the basic properties of maximum relations and
supremum relations.

Proposition 2.7. Let ρ : V ⇁ X and ξ : X ⇁ X be relations in a Dedekind
category. Then the following holds.

(a) sup(ρ, ξ♯) = sup(ρ▷ ξ♯, ξ),

(b) sup(ρ, ξ) ⊑ ρ▷ ξ ⊑ sup(ρ, ξ)▷ ξ,

(c) If ξξ ⊑ ξ and sup(ρ, ξ) is total then sup(ρ, ξ)ξ = ρ▷ ξ,

(d) If f :W → V is a function then f sup(ρ, ξ) = sup(fρ, ξ),

(e) If ξ ⊓ ξ♯ ⊑ idX then max(ρ, ξ) and sup(ρ, ξ) are univalent.

(f) If σ : V ⇁ C is a relation and i : C → X is a function then sup(σi, ξ)i♯ ⊑
sup(σ, iξi♯). □

To state Zorn’s lemma in Dedekind categories we need some basic notions related
to orders.

Definition 2.8. Let ξ : X ⇁ X be a relation and V an object.

(a) A relation ρ : V ⇁ X is a ξ-chain if ρ♯ρ ⊑ ξ ⊔ ξ♯.

(b) ξ is complete on V if sup(ρ, ξ) is total for all relations ρ : V ⇁ X.

(c) ξ is chain complete on V if sup(ρ, ξ) is total for all ξ-chains ρ : V ⇁ X.

(d) ξ is inductive on V if ρ▷ ξ is total for all ξ-chains ρ : V ⇁ X.

(e) A function x : V → X is ξ-maximal if xξ ⊑ x. □

Obviously a complete relation is chain complete and a chain complete relation is induc-
tive. A relation ξ : X ⇁ X in a Dedekind category is called a (partial) order if it is
reflexive (idX ⊑ ξ), transitive (ξξ ⊑ ξ) and antisymmetric (ξ ⊓ ξ♯ ⊑ idX). Note that
ξ♯ ▷ ξ = ξ iff idX ⊑ ξ and ξξ ⊑ ξ. For a reflexive relation ξ : X ⇁ X, a function
x : V → X is ξ-maximal iff xξ = x.
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Example 2.9. Consider the Dedekind category Rel. Since the unit I in Rel is a sin-
gleton set, a relation and a function from I to X may be identified with a subset and
an element of X, respectively. An order ξ : X ⇁ X in Rel is a partial order on the set
X of course. Thus the residual composite ρ ▷ ξ of a relation ρ : I ⇁ X and an order
ξ : X ⇁ X may be identified with the set of upper bounds of ρ with respect to the order
ξ. Moreover, for a relation ρ : I ⇁ X and an order ξ : X ⇁ X,

• max(ρ, ξ) and sup(ρ, ξ) respectively correspond to maximum and supremum ele-
ments of ρ with respect to ξ if they exist,

• ξ-chain ρ is a totally ordered subset of X with respect to ξ,

• totality of sup(ρ, ξ) and ρ ▷ ξ respectively represents existence of supremum and
upper bounds of ρ with respect to ξ, and

• ξ-maximal function x : I → X corresponds to a maximal element ofX with respect
to ξ. □

With these terminologies Zorn’s lemma (ZL) in Dedekind categories is stated as follows.

Definition 2.10. (ZL) For all inductive orders ξ : X ⇁ X on V there exists a
ξ-maximal function x : V → X. □

As our equivalence proof of axiom of choice and Zorn’s lemma requires more alge-
braic mechanisms, three additional conditions will be imposed on Dedekind categories
in Section 3 and 4.

3. Fixpoint Theorem

In this section we will show a fixpoint theorem which is helpful for the proof that
(AC) implies (ZL). Our proof of (ZL) from (AC) follows a proof in [Dugundji (1996)]
using a notion of towers and a fixpoint theorem related to them.

The following notion plays a part of key rôles in the fixpoint theorem.

Definition 3.1. For a relation ξ : X ⇁ X a function g : X → X is called a
ξ-section if g ⊑ ξ and ξ ⊓ gξ♯ ⊑ idX ⊔ g. □

The next example provides a set theoretical intuition of ξ-sections.

Example 3.2. In the Dedekind category Rel, for an order ξ on a set X a ξ-section maps
x ∈ X either to x itself or to a cover of x with respect to ξ. More precisely, we intend
the notion of a ξ-section to be the endomap on the power set of a partially ordered set
which assigns the set S ∪ {s0} to a set S, where s0 is the supremum of S. □

We show a basic property of ξ-sections needed later.

Proposition 3.3. Let ξ : X ⇁ X be a reflexive relation. If g : X → X is a
ξ-section, then the inclusion (ξ ⊔ ξ♯) ⊓ (gξ ⊔ ξ♯g) ⊑ gξ ⊔ ξ♯ holds.
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Proof. It is direct from

(ξ ⊔ ξ♯) ⊓ (ξ♯g ⊔ gξ) ⊑ (ξ ⊓ ξ♯g) ⊔ gξ ⊔ ξ♯
⊑ (ξg♯ ⊓ ξ♯)g ⊔ gξ ⊔ ξ♯ { DF }
⊑ (idX ⊔ g♯)g ⊔ gξ ⊔ ξ♯ { ξ ⊓ gξ♯ ⊑ idX ⊔ g }
⊑ g ⊔ idX ⊔ gξ ⊔ ξ♯ { g♯g ⊑ idX }
= gξ ⊔ ξ♯. { idX ⊑ ξ }

□

Let α : X ⇁ Y be a relation in a Dedekind category. We call a relation α− : X ⇁ Y
satisfying α ⊔ α− = ∇XY and α ⊓ α− = 0XY a complement of α. The complement α−

is unique if it exists, and the identity α− = α⇒ 0XY holds.
The axiom of complements (Ba) for a Dedekind category is the following condition.

(Ba) Every relation α : X ⇁ Y has a complement.

This means that the internal structure of Dedekind categories satisfying (Ba) obeys the
classical logic in a sense that each hom-set forms a complete boolean algebra. Note that
Dedekind categories satisfying (Ba) are equivalent to Schröder categories introduced in
[Olivier and Serrato (1980)].

Now we review some basic properties of residual compositions in Schröder cate-
gories.

Lemma 3.4. Let α : X ⇁ Y , β, β′ : Y ⇁ Z, γ : X ⇁ Z and δ : W ⇁ Z be
relations in a Dedekind category satisfying (Ba). Then the following holds.

(a) αβ ⊑ γ ↔ α♯γ− ⊑ β− ↔ γ−β♯ ⊑ α−, (Schröder equivalence)

(b) γ ⊑ α▷ β ↔ α ⊑ γ ▷ β♯, (Galois connection)

(c) α▷ β = (αβ−)−,

(d) (α▷ β)♯ = β− ♯ ▷ α− ♯,

(e) If α and δ are functions then (αβδ♯)− = αβ−δ♯,

(f) α▷ (β ⊔ β′) ⊑ αβ ⊔ (α▷ β′).

Proof. (a) First we will prove the implication αβ ⊑ γ → α♯γ− ⊑ β−. Assume
αβ ⊑ γ, which is equivalent to αβ ⊓ γ− = 0XZ . Then

α♯γ− ⊓ β ⊑ α♯(γ− ⊓ αβ) { DF }
= α♯0XZ { αβ ⊓ γ− = 0XZ }
= 0Y Z , { zero law }

which implies α♯γ− ⊑ β−. The converse implication α♯γ− ⊑ β− → αβ ⊑ γ is a variant
of the first implication. The proof of another equivalence αβ ⊑ γ ↔ γ−β♯ ⊑ α− is
analogous.
(b) The Galois connection is clear from

γ ⊑ α▷ β ↔ α♯γ ⊑ β { residual equiv. }
↔ γ♯α ⊑ β♯ { converse }
↔ α ⊑ γ ▷ β♯. { residual equiv. }



18 H. Furusawa, Y. Kawahara and N. Tsumagari

(c) α▷ β = (αβ−)− follows from

γ ⊑ α▷ β ↔ α♯γ ⊑ β { residual equiv. }
↔ αβ− ⊑ γ− { (a) Schröder }
↔ γ ⊑ (αβ−)−. { complement }

(d) (α▷ β)♯ = β− ♯ ▷ α− ♯ holds by

(α▷ β)♯ = (αβ−)− ♯ { (c) }
= (β− ♯α♯)− { β− ♯ = β♯− }
= (β− ♯α− ♯−)− { α−− = α }
= β− ♯ ▷ α− ♯. { (c) }

(e) If α and δ are functions, then

∇XW ⊑ αα♯∇XW δδ♯ { α, δ : total }
⊑ α∇Y Zδ

♯ { α♯∇XW δ ⊑ ∇Y Z }
= α(β ⊔ β−)δ♯ { β ⊔ β− = ∇Y Z }
= αβδ♯ ⊔ αβ−δ♯

and
αβδ♯ ⊓ αβ−δ♯ ⊑ α(β ⊓ α♯αβ−δ♯δ)δ♯ { DF }

⊑ α(β ⊓ β−)δ♯ { α, β : univalent }
= 0XW { β ⊓ β− = 0Y Z }

hold. Hence αβ−δ♯ = (αβδ♯)− by the uniqueness of complements.
(f) α▷ (β ⊔ β′) ⊑ αβ ⊔ (α▷ β′) is equivalent to (α▷ (β ⊔ β′)) ⊓ (αβ)− ⊑ α▷ β′ by the
Horn rule and the latter follows from

(α▷ (β ⊔ β′)) ⊓ (αβ)−

= (α▷ (β ⊔ β′)) ⊓ (α▷ β−) { (c) }
= α▷ ((β ⊔ β′) ⊓ β−) { 2.3 (j) }
⊑ α▷ β′. { (β ⊔ β′) ⊓ β− ⊑ β′ }

□

In a Schröder category, letting ξ◦ = ξ ⊓ id−X , a function g : X → X is a ξ-section if
and only if g ⊓ ξ◦ξ◦ = 0XX by

ξ ⊓ gξ♯ ⊑ idX ⊔ g ↔ gξ♯ ⊓ g− ⊑ ξ− ⊔ idX { Horn rule }
↔ g(ξ♯ ⊓ id−X) ⊑ (ξ ⊓ id−X)− { g− = g id−X }
↔ gξ♯◦ ⊑ ξ−◦ { ξ◦ = ξ ⊓ id−X }
↔ ξ◦ξ◦ ⊑ g− { Schröder equiv. }
↔ g ⊓ ξ◦ξ◦ = 0XX . { complement }

In addition, the following two properties hold in any Schröder categories.

Proposition 3.5. Let ξ : X ⇁ X be an order, g : X → X a function, and
σ, µ : V ⇁ X relations. If σ ⊑ µ▷ (gξ ⊔ ξ♯), then sup(σ, ξ) ⊑ µ▷ (gξ ⊔ ξ♯).
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Proof. (1) σ ▷ ξ ⊑ σξ♯g♯ ▷ gξ and (2) µ ⊑ σξ♯g♯ ⊔ (σ ▷ ξ) hold by

σ ▷ ξ = σξ♯ ▷ ξ { ξ = ξ♯ ▷ ξ }
⊑ σξ♯g♯g ▷ ξ { g♯g ⊑ idX }
= σξ♯g♯ ▷ gξ. { g : function }

and
µ ⊑ σ ▷ (ξ♯g♯ ⊔ ξ) { σ ⊑ µ▷ (gξ ⊔ ξ♯) }

⊑ σξ♯g♯ ⊔ (σ ▷ ξ). { 3.4 (f) }
Thus we have

sup(σ, ξ) = (σ ▷ ξ) ⊓ ((σ ▷ ξ)▷ ξ♯)
⊑ (σξ♯g♯ ▷ gξ) ⊓ ((σ ▷ ξ)▷ ξ♯) { (1) }
⊑ (σξ♯g♯ ▷ (gξ ⊔ ξ♯)) ⊓ ((σ ▷ ξ)▷ (gξ ⊔ ξ♯))
= (σξ♯g♯ ⊔ (σ ▷ ξ))▷ (gξ ⊔ ξ♯)
⊑ µ▷ (gξ ⊔ ξ♯). { (2) }

□

Proposition 3.6. Let γ : C ⇁ X be a univalent relation and ξ : C ⇁ C an order
such that ξ = ε ▷ ε♯ for a relation ε : C ⇁ X. If a function g : C → C satisfies
gε = ε ⊔ γ, then g is a ξ-section.

Proof. g ⊑ ξ follows from

g ⊑ ε▷ ε♯g { ε♯g ⊑ ε♯g }
⊑ ε▷ (gε)♯g { ε ⊑ ε ⊔ γ = gε }
⊑ ε▷ ε♯ { g♯g ⊑ idC }
= ξ. { ε▷ ε♯ = ξ }

Next (1) ξ ⊓ γε♯ ⊑ gξ, (2) ξg♯ ⊑ εγ♯ ⊔ ξ and (3) ξ ⊓ gξ♯ ⊑ gξ ⊔ idC hold by

ξ ⊓ γε♯ ⊑ ξ ⊓ (γ ▷ ε♯) { γ♯γ ⊑ idX }
= (ε ⊔ γ)▷ ε♯ { ξ = ε▷ ε♯ }
= gε▷ ε♯ { ε ⊔ γ = gε }
= gξ, { g : tfn, ε▷ ε♯ = ξ }

ξg♯ = ε▷ ε♯g♯ { ξ = ε▷ ε♯, g : tfn }
= ε▷ (ε♯ ⊔ γ♯) { gε = ε ⊔ γ }
⊑ εγ♯ ⊔ (ε▷ ε♯) { 3.4 (f) }
= εγ♯ ⊔ ξ, { ε▷ ε♯ = ξ }

and
ξ ⊓ gξ♯ ⊑ ξ ⊓ (γε♯ ⊔ ξ♯) { (2) }

= (ξ ⊓ γε♯) ⊔ (ξ ⊓ ξ♯)
⊑ gξ ⊔ idC . { (1), ξ : antisymmetric }

Therefore we have

ξ ⊓ gξ♯ ⊑ (gξ ⊔ idC) ⊓ gξ♯ { (3) }
⊑ (gξ ⊓ gξ♯) ⊔ idC
= g(ξ ⊓ ξ♯) ⊔ idC { g : function }
⊑ g ⊔ idC . { ξ : antisymmetric }

□
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A relational version of the concept of towers [Dugundji (1996)] will be defined in a
Dedekind category as follows.

Definition 3.7. Let ξ : X ⇁ X be a relation and g : X → X a function. A
relation τ : V ⇁ X is called a (ξ, g)-tower if it satisfies the following conditions.

(T1) sup(σ, ξ) ⊑ τ for all ξ-chains σ : V ⇁ X such that σ ⊑ τ ,

(T2) τg ⊑ τ . □

The next example provides a set theoretical intuition of (ξ, g)-towers.

Example 3.8. In the Dedekind category Rel, if V is a singleton set and ξ is an order
on a set X, a (ξ, g)-tower τ

• contains the supremum of every ξ-chain ρ included by τ and

• includes image of τ under g,

with identifying τ with a subset of X. Moreover, let X be the power set of a set, ξ the
inclusion and g|τ the restriction of g to τ . Then, if τ is a (ξ, g)-tower and contains the
empty subset of X, τ is a g|τ -tower in the sense of [Dugundji (1996)]. □

The universal relation ∇V X is a (ξ, g)-tower and so (ξ, g)-towers do exist. It is trivial
that the meet of all (ξ, g)-towers τ : V ⇁ X is also a (ξ, g)-tower and is the minimum
(ξ, g)-tower. Hence for each object V the minimum (ξ, g)-tower τ0 : V ⇁ X exists. The
minimum tower will play an important rôle to prove a fixpoint theorem below. Although
it is possible to define towers and the minimum tower exists in any Dedekind categories,
the next theorem is satisfied by a Schröder category.

Theorem 3.9. Let ξ : X ⇁ X be an order, g : X → X a ξ-section and τ0 : V ⇁ X
the minimum (ξ, g)-tower. Set µ = τ0 ▷ (ξ♯ ⊔ ξ) and µ′ = τ0 ⊓ (µ▷ (gξ ⊔ ξ♯)). Then the
following holds.

(a) µ′ is a (ξ, g)-tower,

(b) µ is a (ξ, g)-tower,

(c) τ0 is a ξ-chain,

(d) sup(τ0, ξ)g ⊑ max(τ0, ξ),

(e) If ξ is chain complete on V , then sup(τ0, ξ)g = sup(τ0, ξ).

Proof. (a) (T1) Let σ : V ⇁ X be a ξ-chain such that σ ⊑ µ′. Then it is clear
that σ ⊑ µ′ ⊑ τ0 and sup(σ, ξ) ⊑ τ0 by the condition (T1) for τ0. On the other hand,
since σ ⊑ µ′ ⊑ µ ▷ (gξ ⊔ ξ♯), we have sup(σ, ξ) ⊑ µ ▷ (gξ ⊔ ξ♯) by Proposition 3.5 and
so sup(σ, ξ) ⊑ µ′.
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(T2) We will see µ′g ⊑ µ′. By the definition of µ and Galois connection τ0 ⊑ µ▷ (ξ⊔ ξ♯)
holds. Hence we have

µ′g = (τ0 ⊓ (µ▷ (gξ ⊔ ξ♯)))g
⊑ τ0g ⊓ (µ▷ (gξg ⊔ ξ♯g)) { 2.3 (i) }
⊑ τ0 ⊓ (µ▷ (gξ ⊔ ξ♯g)) { τ0g ⊑ τ0, g ⊑ ξ }
= τ0 ⊓ (µ▷ (ξ ⊔ ξ♯)) ⊓ (µ▷ (gξ ⊔ ξ♯g))) { τ0 ⊑ µ▷ (ξ ⊔ ξ♯) }
= τ0 ⊓ (µ▷ ((ξ ⊔ ξ♯) ⊓ (gξ ⊔ ξ♯g))) { 2.3 (j) }
⊑ τ0 ⊓ (µ▷ (gξ ⊔ ξ♯)) { 3.3 }
= µ′.

(b) (T1) Let σ : V ⇁ X be a ξ-chain with σ ⊑ µ = τ0 ▷ (ξ♯ ⊔ ξ). Then by Proposition
3.5 (note g = idX) we have sup(σ, ξ) ⊑ µ.
(T2) We will see µg ⊑ µ. As µ′ is a (ξ, g)-tower by (a) and τ0 is the minimum (ξ, g)-
tower, it holds that τ0 ⊑ µ′ ⊑ µ ▷ (gξ ⊔ ξ♯) and so µ ⊑ τ0 ▷ (ξ♯g♯ ⊔ ξ) by the Galois
connection. Hence we have

µg ⊑ (τ0 ▷ (ξ♯g♯ ⊔ ξ))g
⊑ τ0 ▷ (ξ♯g♯g ⊔ ξg) { 2.3 (i) }
⊑ τ0 ▷ (ξ♯ ⊔ ξ) { g♯g ⊑ idX , g ⊑ ξ }
= µ.

(c) Since µ is a (ξ, g)-tower from (b), the inclusion τ0 ⊑ µ holds by the minimality of τ0,
which means that τ0 is a ξ-chain.
(d) As the minimum (ξ, g)-tower τ0 is a ξ-chain by (c) we have sup(τ0, ξ)g ⊑ τ0g ⊑ τ0
by the conditions (T1) and (T2), and so

sup(τ0, ξ)g ⊑ τ0 ⊓ sup(τ0, ξ)ξ { sup(τ0, ξ)g ⊑ τ0, g ⊑ ξ }
⊑ τ0 ⊓ (τ0 ▷ ξ) { sup(τ0, ξ) ⊑ τ0 ▷ ξ }
= max(τ0, ξ).

(e) By the result of (d) we have sup(τ0, ξ)g ⊑ max(τ0, ξ) ⊑ sup(τ0, ξ). Because of the
chain completeness of ξ, the supremum sup(τ0, ξ) is a function and so the desired equality
holds by Proposition 2.3 (f). □

4. Cantor categories

Roughly speaking, a Cantor category is a Dedekind category possessing rational
representations and membership relations. A rational representation (or tabulation) of
α is a pair of functions f : R→ X and g : R→ Y such that α = f ♯g and ff ♯⊓gg♯ = idR.
If a universal relation ∇XY in a Dedekind category has a rational representation, we call
the pair projections and the domain of the projections is denoted by X×Y analogously.
An object ℘(Y ) and a relation ∋Y : ℘(Y )⇁ Y satisfying

(M1) (∋Y ▷ ∋♯
Y ) ⊓ (∋Y ▷ ∋♯

Y )
♯ ⊑ id℘(Y ),

(M2) idX ⊑ (α▷ ∋♯
Y )(∋Y ▷ α♯) for all relations α : X ⇁ Y

are called a power object of an object Y and a membership relation for an object Y ,
respectively.
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Definition 4.1. A Dedekind category is called a Cantor category if it satisfies the
following two conditions.

(Rat) Every relation α : X ⇁ Y has a rational representation,

(Pow) Every object Y has a membership relation ∋Y : ℘(Y )⇁ Y . □

The above conditions (Rat) and (Pow) are called the axiom of rationality and the axiom
of power objects, respectively. Note that a Cantor category has units without any
assumptions.

Example 4.2. The Dedekind category Rel is a Cantor category since

• each relation α ∈ Rel(X,Y ) has a rational representation ip : α→ X and iq : α→
Y , where i : α → X × Y is the inclusion and p : X × Y → X and q : X × Y → Y
are the projections, and

• the power set ℘(Y ) and the membership relation ∋Y = {(S, y) ∈ ℘(Y )×Y | y ∈ S}
satisfy (M1) and (M2) in Rel. □

For all relations α : X ⇁ Y in a Cantor category define a relation α@ : X ⇁ ℘(Y )
by

α@ = (α▷ ∋♯
Y ) ⊓ (∋Y ▷ α♯)♯.

Then α@ is a function, that is, it is univalent by (M1) and total by (M2). Moreover α@

is a unique function such that α@∋Y = α, and this leads the power adjunction in a sense
that a relation α : X ⇁ Y bijectively corresponds to a function f : X → ℘(Y ): α = f∋Y

if and only if f = α@. This correspondence is denoted by the following notation.

α : X ⇁ Y

f : X → ℘(Y )

α = f∋Y

f = α@
(power adjunction)

For a relation α : X ⇁ Y define a function ℘(α) : ℘(X) → ℘(Y ) by ℘(α) = (∋X α)@.
By the power adjunction ℘(α) is a unique function such that the following diagram
commutes.

℘(X)
℘(α) //

∋X

�

℘(Y )

∋Y

�
X

α
/ Y

For an object X, ℘(idX)∋X = ∋X idX = id℘(X)∋X holds. Thus ℘ preserves identities
by the uniqueness. Also, for relations α : X ⇁ Y and β : Y ⇁ X, ℘(αβ)∋Z = ∋Xαβ =
℘(α)∋Y β = ℘(α)℘(β)∋Z holds. Therefore, again by the uniqueness, ℘ preserves com-
position. The power order ΞX : ℘(X)⇁ ℘(X) is defined by

ΞX = ∋X ▷ ∋♯
X .

Obviously the power order ΞX is in fact an order, since it is reflexive and transitive by
the definition, and antisymmetric by (M1).

Example 4.3. Consider the Dedekind category Rel. Then,



Axiom of Choice and Zorn’s Lemma in Cantor Categories 23

• a relation α : X ⇁ Y corresponds to the relation α@ : X ⇁ ℘(Y ) defined by
(x, S) ∈ α@ if and only if S = {y ∈ Y | (x, y) ∈ α} by the power adjunction,

• ℘(α) : ℘(X) → ℘(Y ) maps A to {b ∈ Y | ∃a ∈ A. (a, b) ∈ α}, and

• ΞX = {(S, S′) ∈ ℘(X)× ℘(X) | S ⊆ S′} is the power order. □

The power order satisfies the following properties in any Cantor categories.

Proposition 4.4. In Cantor categories the following statements hold.

(a) ∋℘(X) ▷ ΞX = ℘(∋X)ΞX .

(b) sup(∋℘(X),ΞX) = ℘(∋X).

(c) sup(ρ,ΞX) = (ρ∋X)@ for all relations ρ : V ⇁ ℘(X).

(d) ΞX is complete on all objects V .

Proof. (a) ∋℘(X) ▷ ΞX = ℘(∋X)ΞX follows from

∋℘(X) ▷ ΞX = ∋℘(X) ▷ (∋X ▷ ∋♯
X)

= ∋℘(X)∋X ▷ ∋♯
X { 2.3 (i) }

= ℘(∋X)∋X ▷ ∋♯
X

= ℘(∋X)(∋X ▷ ∋♯
X) { 2.3 (n) }

= ℘(∋X)ΞX .

(b) sup(∋℘(X),ΞX) = ℘(∋X) follows from

sup(∋℘(X),ΞX) = ℘(∋X)ΞX ⊓ (℘(∋X)ΞX ▷ Ξ♯
X) { (a) }

= ℘(∋X)ΞX ⊓ ℘(∋X)(ΞX ▷ Ξ♯
X) { 2.3 (n) }

= ℘(∋X)ΞX ⊓ ℘(∋X)Ξ♯
X { ΞX : order }

= ℘(∋X)(ΞX ⊓ Ξ♯
X) { 2.3 (d) }

= ℘(∋X). { ΞX : order }

(c) sup(ρ,ΞX) = (ρ∋X)@ follows from

sup(ρ,ΞX) = sup(ρ@∋℘(X),ΞX) { ρ = ρ@∋℘(X) }
= ρ@ sup(∋℘(X),ΞX) { 2.7 (d) }
= ρ@℘(∋X) { (b) }
= (ρ∋X)@.

(d) It is a corollary of (c). □

For relations α : X ⇁ Y , β : Y ⇁ Z and γ : Z ⇁ W in a Dedekind category two
sided residual composite α▷ β ◁ γ : X ⇁ W is defined by α▷ β ◁ γ = α▷ (γ♯ ▷ β♯)♯.
The two sided residual composite is characterised by an equivalence

δ ⊑ α▷ β ◁ γ ↔ α♯δγ♯ ⊑ β

for all relations δ : X ⇁ W . Remark that the identity α ▷ β ◁ γ = (αβ−γ)− holds in
Schröder categories.



24 H. Furusawa, Y. Kawahara and N. Tsumagari

The next lemma gives a construction of chain complete orders from the power order.
The construction extends a well-known fact that the set of all chains in an ordered set
forms a chain complete ordered set. Note that the relation iΞX i

♯ : C ⇁ C is an order
on C for the power order ΞX and an injection i : C → ℘(X).

Lemma 4.5. Let δ : X ⇁ X be a relation. If i : C → ℘(X) is an injection such

that i♯i = id℘(X) ⊓ (∋X ▷ δ◁∋♯
X), then the induced order Ξi = iΞX i

♯ is chain complete
on all objects V .

Proof. Let σ : V ⇁ C be a Ξi-chain.

V
σ / C

Ξi

�

i // ℘(X)

ΞX

�
C

i
// ℘(X)

By 4.4 (c) s = sup(σi,ΞX) is a function such that s∋X = σi∋X . The totality of si♯

follows (1) and (2) below.
(1) s♯s ⊑ i♯i:

∋♯
Xs

♯s∋X = ∋♯
X i

♯σ♯σi∋X { s∋X = σi∋X }
⊑ ∋♯

X i
♯ΞiΞ

♯
ii∋X { σ♯σ ⊑ Ξi ⊔ Ξ♯

i ⊑ ΞiΞ
♯
i }

⊑ ∋♯
X i

♯i∋X { Ξ♯
ii∋X ⊑ i∋X }

⊑ δ. { i♯i ⊑ ∋X ▷ δ ◁ ∋♯
X }

(2) si♯ is total:

idV ⊑ ss♯ss♯ { s : function }
= si♯is♯. { (1) s♯s ⊑ i♯i }

Hence sup(σ,Ξi) is total, since si
♯ ⊑ sup(σ,Ξi) holds by 2.7 (f). □

The following proposition gives a relational construction of the set of all chains in an
ordered set.

Proposition 4.6. Let ξ : X ⇁ X be a reflexive relation and i : C → ℘(X) an

injection such that i♯i = id℘(X) ⊓ (∋X ▷ (ξ ⊔ ξ♯)◁ ∋♯
X). Then

(a) For all univalent relations s : V ⇁ C the composite si∋X is a ξ-chain.

(b) For all univalent relations f : C ⇁ X satisfying f ⊑ i∋X▷ξ there exists a function
g : C → C such that gi∋X = i∋X ⊔ f .

Proof. (a) Let s : V ⇁ C be a univalent relation. Then

(si∋X)♯(si∋X) = ∋♯
X i

♯s♯si∋X

⊑ ∋♯
X i

♯i∋X { s♯s ⊑ idC }
⊑ ξ ⊔ ξ♯, { i♯i ⊑ ∋X ▷ (ξ ⊔ ξ♯)◁ ∋♯

X }



Axiom of Choice and Zorn’s Lemma in Cantor Categories 25

which shows that si∋X is a ξ-chain.
(b) Set h = (i∋X ⊔ f)@ : C → ℘(X). Then h♯h ⊑ i♯i follows from

∋♯
Xh

♯h∋X = (i∋X ⊔ f)♯(i∋X ⊔ f) { h∋X = i∋X ⊔ f }
= (i∋X)♯i∋X ⊔ (i∋X)♯f ⊔ f ♯i∋X ⊔ f ♯f
⊑ ξ ⊔ ξ♯ ⊔ (i∋X)♯f ⊔ f ♯i∋X ⊔ f ♯f { (i∋X)♯i∋X ⊑ ξ ⊔ ξ♯ }
⊑ ξ ⊔ ξ♯ ⊔ idX { f ⊑ i∋X ▷ ξ }
= ξ ⊔ ξ♯. { idX ⊑ ξ }

Hence by the injection adjunction there is a unique function g such that gi = h. This
completes the proof. □

In the rest of this paper, we abbreviate Cantor categories satisfying the axiom of
complements (Ba) (or equivalently Schröder categories satisfying the axiom of rationality
(Rat) and the axiom of power objects (Pow)) just as Cantor categories.

5. The equivalence

With the fixpoint theorem stated in Section 3 we are ready to prove (ZL) from
(AC∗) in Cantor categories.

The next lemma shows a fundamental idea how to construct ξ-maximal function
for an order ξ.

Lemma 5.1. Let ξ : X ⇁ X be an order and σ : V ⇁ X a relation. If σ▷ ξ is total
and σ ▷ ξ ⊑ σ holds, then σ ▷ ξ is a ξ-maximal function.

Proof. Assume that σ▷ ξ is total and σ▷ ξ ⊑ σ. Then the equation max(σ, ξ) =
σ ⊓ (σ ▷ ξ) = σ ▷ ξ holds. Since ξ is antisymmetric, max(σ, ξ) is univalent by 2.7 (e).
Hence σ▷ ξ is a function. Moreover, it follows from 2.3 (i) and the transitivity of ξ that
(σ ▷ ξ)ξ ⊑ σ ▷ ξξ ⊑ σ ▷ ξ, which proves that σ ▷ ξ is ξ-maximal. □

Theorem 5.2. In Cantor categories (AC∗) implies (ZL).

Proof. Assume that an order ξ : X ⇁ X is inductive on V . By the axiom
of rationality (Rat) and id℘(X) ⊓ (∋X ▷ (ξ ⊔ ξ♯) ◁ ∋♯

X) ⊑ id℘(X) there is an injection
i : C → ℘(X) such that

i♯i = id℘(X) ⊓ (∋X ▷ (ξ ⊔ ξ♯)◁ ∋♯
X).

The induced order Ξi = iΞX i
♯ : C ⇁ C is chain complete by Lemma 4.5. Define a

relation α : C ⇁ X by
α = (i∋X ▷ ξ) ⊓ (i∋X)−.

Then by (AC∗) there is a univalent relation γ : C ⇁ X such that γ ⊑ α and ⌊γ⌋ = ⌊α⌋.

℘(X)

∋X

"D
DD

DD
DD

D

V
s

// C
α /
γ

/

i

OO

X
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As γ ⊑ i∋X ▷ ξ, by Proposition 4.6 (b) there exists a function g : C → C such that
gi∋X = i∋X ⊔ γ. Moreover, g is a Ξi-section by Proposition 3.6. Hence by the fixpoint
theorem 3.9 (e) there exists a function s : V → C such that sg = s. The identity
sα = 0V X follows from

sα = s ⌊α⌋α { α = ⌊α⌋α }
⊑ sγγ♯α { ⌊α⌋ = ⌊γ⌋ ⊑ γγ♯ }
⊑ (sgi∋X ⊓ s(i∋X)−)γ♯α { γ ⊑ gi∋X , γ ⊑ α ⊑ (i∋X)− }
= (si∋X ⊓ (si∋X)−)γ♯α { sg = s, s : function }
= 0V X . { sγ = 0V X }

On the other hand we have

sα = s((i∋X ▷ ξ) ⊓ (i∋X)−) { Def. of α }
= (si∋X ▷ ξ) ⊓ (si∋X)−, { s : function }

which shows si∋X ▷ ξ ⊑ si∋X . Also si∋X is a ξ-chain by Proposition 4.6 (a) and
si∋X ▷ ξ is total since ξ is inductive on V . Hence by the virtue of Lemma 5.1 si∋X ▷ ξ
is a ξ-maximal function. This completes the proof. □

Next we will show that Zorn’s lemma conversely implies the axiom of choice in
Cantor categories. The relational proof exposes a construction of an object representing
the set of all graphs of univalent relations, and the restricted axiom of choice (AC-I)
guaranteeing to pick up a point of a nonempty set.

In the rest of this section we assume that α : X ⇁ Y is a relation in a Cantor
category and a pair of functions p : R → X and q : R → Y is a rational representation
of α, which exists by the axiom of rationality (Rat): α = p♯q and pp♯ ⊓ qq♯ = idR. Also
for relations γ : X ⇁ Y such that γ ⊑ α and ν : I ⇁ R relations ϕ(γ) : I ⇁ R and
ψ(ν) : X ⇁ Y are respectively defined by ϕ(γ) = ∇IX(p♯⊓γq♯) and ψ(ν) = (∇XIν⊓p♯)q.

Proposition 5.3. The following statements hold.

(a) A relation γ : X ⇁ Y such that γ ⊑ α bijectively corresponds to a relation ν : I ⇁
R: γ = ψ(ν) if and only if ν = ϕ(γ).

γ : X ⇁ Y { γ ⊑ α }
ν : I ⇁ R

γ = ψ(ν)

ν = ϕ(γ)

(b) ϕ and ψ are isomorphisms of Boolean algebras, that is, ϕ(0XY ) = 0IR, ϕ(α) =
∇IR, ϕ(γ ⊔ γ′) = ϕ(γ) ⊔ ϕ(γ′) and ϕ(γ ⊓ γ′) = ϕ(γ) ⊓ ϕ(γ′).

(c) A univalent relation γ : X ⇁ Y such that γ ⊑ α bijectively corresponds to a
relation ν : I ⇁ R such that ν♯ν ⊑ pp♯ ⇒ idR: γ = ψ(ν) if and only if ν = ϕ(γ).

γ : X ⇁ Y { γ ⊑ α, γ♯γ ⊑ idY }
ν : I ⇁ R { ν♯ν ⊑ pp♯ ⇒ idR }

γ = ψ(ν)

ν = ϕ(γ)

Proof. Let γ : X ⇁ Y , δ : X ⇁ R and ν : I ⇁ R be relations and let γ ⊑ α
and δ ⊑ p♯. Defining ϕ0(γ) = p♯ ⊓ γq♯ and ϕ1(δ) = ∇IXδ, we have ϕ(γ) = ϕ1(ϕ0(γ)).
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Similarly, defining ψ0(δ) = δq and ψ1(ν) = ∇XIν ⊓ p♯ we have ψ0(δ) = δq ⊑ p♯q = α
and ψ(ν) = ψ0(ψ1(ν)). Using these decompositions, we show (a), (b) and (c).
(a) It is sufficient to show that the following bijective correspondences

γ : X ⇁ Y { γ ⊑ α }
δ : X ⇁ R { δ ⊑ p♯ }

γ = ψ0(δ)

δ = ϕ0(γ)

and
δ : X ⇁ R { δ ⊑ p♯ }

ν : I ⇁ R

δ = ψ1(ν)

ν = ϕ1(δ)

hold. ψ0(ϕ0(γ)) = (γq♯ ⊓ p♯)q = γ follows from

γ = γ ⊓ p♯q { γ ⊑ α = p♯q }
⊑ (γq♯ ⊓ p♯)q { DF }
⊑ γq♯q
⊑ γ. { q♯q ⊑ idY }

On the other hand ϕ0(ψ0(δ)) = δqq♯ ⊓ p♯ = δ follows from

δ = δ ⊓ p♯ { δ ⊑ p♯ }
⊑ δqq♯ ⊓ p♯ { idY ⊑ qq♯ }
⊑ δ(qq♯ ⊓ δ♯p♯) { DF }
⊑ δ(qq♯ ⊓ pp♯) { δ ⊑ p♯ }
= δ. { pp♯ ⊓ qq♯ = idR }

So, the first bijective correspondence holds. For the second ψ1(ϕ1(δ)) = ∇XI∇IXδ⊓p♯ =
δ follows from

δ = δ ⊓ p♯ { δ ⊑ p♯ }
⊑ ∇XXδ ⊓ p♯ { idX ⊑ ∇XX = ∇XI∇IX }
⊑ (∇XX ⊓ p♯δ♯)δ { DF }
⊑ p♯pδ { δ ⊑ p♯ }
⊑ δ { p : function }

and ϕ1(ψ1(ν)) = ∇IX(∇XIν ⊓ p♯) = ν follows from

ν = ν ⊓∇IXp
♯ { ∇IR = ∇IXp

♯ }
⊑ ∇IX(∇XIν ⊓ p♯) { DF }
⊑ ∇IX∇XIν
⊑ ∇IIν { ∇IX∇XI ⊑ ∇II }
= ν.

(b) It trivial that ϕ0(0XY ) = 0XR, ϕ0(γ⊔γ′) = ϕ0(γ)⊔ϕ0(γ′), ϕ0(γ⊓γ′) = ϕ0(γ)⊓ϕ0(γ′),
ϕ1(0XR) = 0IR, and ϕ1(δ ⊔ δ′) = ϕ1(δ) ⊔ ϕ1(γ′). Also ϕ1(p

♯) = ∇IR follows from

∇IR ⊑ ∇IRpp
♯ { idR ⊑ pp♯ }

⊑ ∇IXp
♯

= ϕ1(p
♯),
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and ϕ1(δ ⊓ δ′) = ϕ1(δ) ⊓ ϕ1(γ′) follows from

∇IXδ ⊓∇IXδ
′ ⊑ ∇IX(δ ⊓∇XI∇IXδ

′) { DF }
= ∇IX(δ ⊓∇XXδ

′) { ∇XI∇IX = ∇XX }
= ∇IX(δ ⊓ p♯ ⊓∇XXδ

′) { δ ⊑ p♯ }
⊑ ∇IX(δ ⊓ (p♯δ′ ♯ ⊓∇XX)δ′) { DF }
⊑ ∇IX(δ ⊓ p♯pδ′) { δ′ ⊑ p♯ }
⊑ ∇IX(δ ⊓ δ′). { p♯p ⊑ idX }

(c) Let ϕ(γ) = ν. Then it is sufficient to show the following equivalence.

γ ⊑ α ∧ γ♯γ ⊑ idY ↔ ν♯ν ⊑ pp♯ ⇒ idR

To see it we need to prove γ♯γ = q♯(ν♯ν ⊓ pp♯)q. This equation follows from

γ♯γ = ψ0(ϕ0(γ))
♯ψ0(ϕ0(γ)) = (ϕ0(γ)q)

♯ϕ0(γ)q = q♯ϕ0(γ)
♯ϕ0(γ)q

and
ϕ0(γ)

♯ϕ0(γ)
= ϕ0(γ)

♯ϕ0(γ) ⊓ pp♯ { ϕ0(γ) ⊑ p♯ }
⊑ ϕ0(γ)

♯∇XI∇IXϕ0(γ) ⊓ pp♯ { ∇XX = ∇XI∇IX }
= ψ0(ϕ0(γ))

♯ψ0(ϕ0(γ)) ⊓ pp♯ { Def. of ψ0 }
= ϕ0(γ)

♯∇XXϕ0(γ) ⊓ pp♯ { ∇XX = ∇XI∇IX }
⊑ ϕ0(γ)

♯(∇XX ⊓ ϕ0(γ)pp♯ϕ0(γ)♯)ϕ0(γ) { DF }
⊑ ϕ0(γ)

♯p♯pp♯pϕ0(γ) { ϕ0(γ) ⊑ p♯ }
⊑ ϕ0(γ)

♯ϕ0(γ). { p♯p ⊑ idX }

□

If γ ⊑ α, there exists a unique relation ν : I ⇁ R such that γ = ψ(ν) by the last
proposition and ⌊γ⌋ = ∇XIνp ⊓ idX holds by

⌊γ⌋ = ⌊ψ(ν)⌋
= ⌊(∇XIν ⊓ p♯)q⌋
= ⌊∇XIν ⊓ p♯⌋ { q : function }
= ∇XIνp ⊓ idX .

Next, applying Lemma 4.5, we construct an object in a Cantor category, which
generalises the set of univalent relations included by a given relation (cf. Corollary 5.5).

In what follows let j : G→ ℘(R) be an injection such that

j♯j = id℘(R) ⊓ (∋R ▷ (pp♯ ⇒ idR)◁ ∋R
♯).

Recall that the pair of the injection j and itself is a rational representation of the relation
id℘(R) ⊓ (∋R ▷ (pp♯ ⇒ idR)◁ ∋R

♯).

Proposition 5.4. In Cantor categories the following statements hold.

(a) The induced order Ξj = j ΞRj
♯ : G ⇁ G is inductive on all objects V ,
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(b) A relation ν : I ⇁ R such that ν♯ν ⊑ pp♯ ⇒ idR bijectively corresponds to a
function x : I → G: ν = xj∋R if and only if x = ν@j♯.

ν : I ⇁ R { ν♯ν ⊑ pp♯ ⇒ idR }
x : I → G

ν = xj∋R

x = ν@j♯

Proof. (a) Ξj is chain complete by Lemma 4.5 and so inductive by Proposition
2.7 (c).
(b) The desired correspondence is given by the composition of bijective correspondences

ν : I ⇁ R

t : I → ℘(R)

ν = t∋R

t = ν@
(power adjunction)

and
t : I → ℘(R) { t♯t ⊑ j♯j }

x : I → G

t = xj

x = tj♯
. (injection adjunction)

Also, if ν = t∋R, we have the equivalence ν♯ν ⊑ pp♯ ⇒ idR ↔ t♯t ⊑ j♯j by

ν♯ν ⊑ pp♯ ⇒ idR ↔ ∋♯
Rt

♯t∋R ⊑ pp♯ ⇒ idR { ν = t∋R }
↔ t♯t ⊑ ∋R ▷ (pp♯ ⇒ idR)◁ ∋♯

R

↔ t♯t ⊑ j♯j. { t♯t ⊑ id℘(R) }

This completes the proof. □

Corollary 5.5. A univalent relation γ : X ⇁ Y such that γ ⊑ α bijectively
corresponds to a function x : I → G: γ = ψ(xj∋R) if and only if x = (ϕ(γ))@j♯.

γ : X ⇁ Y { γ ⊑ α, γ♯γ ⊑ idY }
x : I → G

γ = ψ(xj∋R)

x = (ϕ(γ))@j♯

Proof. It is a just a combination of Proposition 5.3 (c) and 5.4 (b). □

Now we are ready to deduce (ZL) from (AC◦).

Proposition 5.6. If a function x : I → G is Ξj-maximal, then γ = ψ(xj∋R) :
X ⇁ Y is a quasi-choice of α.

Proof. By Corollary 5.5 γ = ψ(xj∋R) is a univalent relation such that γ ⊑ α.
We will show that γ is a quasi-choice of α. Assume that γ′ : X ⇁ Y is a univalent
relation such that γ ⊑ γ′ ⊑ α. Again by Corollary 5.5 there exists a function y : I → G
such that γ′ = ψ(yj∋R). Then it holds that

xj∋R = ϕ(ψ(xj∋R)) = ϕ(γ) ⊑ ϕ(γ′) = ϕ(ψ(yj∋R)) = yj∋R

and
y ⊑ xj∋R ▷ ∋♯

Rj
♯ { xj∋R ⊑ yj∋R }

= xΞj { x : tfn, j∋R ▷ ∋♯
Rj

♯ = Ξj }
⊑ x, { x : Ξj-maximal }

which implies x = y. Therefore one concludes

γ = ψ(xj∋R) = ψ(yj∋R) = γ′,

which proves that γ is a quasi-choice of α. □
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The next proposition shows that a quasi-choice and a choice are equivalent under
(AC-I).

Proposition 5.7. Suppose the restricted axiom of choice (AC-I). Every quasi-
choice of a relation α : X ⇁ Y is a choice of α.

Proof. Let γ : X ⇁ Y be a quasi-choice of α. We will prove ⌊γ⌋ = ⌊α⌋, which
is equivalent to α ⊓ (γ∇Y Y )

− = 0XY . Set γ′ = α ⊓ (γ∇Y Y )
−. As γ′ is included in

α, we obtain ϕ(γ′) : I ⇁ R which bijectively corresponds to γ′ by Proposition 5.3 (a).
Also, by (AC-I), there exists a univalent relation ν : I ⇁ R such that ν ⊑ ϕ(γ′) and
⌊ν⌋ = ⌊ϕ(γ′)⌋. The univalency ν♯ν ⊑ idR implies the condition ν♯ν ⊑ pp♯ ⇒ idR, and
so ψ(ν) is a univalent relation such that ψ(ν) ⊑ α by Proposition 5.3 (c). Since

γ ⊓ ψ(ν) ⊑ γ ⊓ (γ∇Y Y )
− { ψ(ν) ⊑ ψ(ϕ(γ′)) = γ′ }

⊑ α∇Y Y ⊓ (α∇Y Y )
− { idY ⊑ ∇Y Y }

= 0XY ,

γ ⊔ ψ(ν) is a univalent relation contained in α. Hence by the maximality of γ, we have
γ ⊔ ψ(ν) = γ. Finally one can deduce γ′ = 0XY as follows:

→ γ = γ ⊔ ψ(ν)
→ ψ(ν) = γ ⊓ ψ(ν) = 0XY

→ ν = 0IR { ψ : bijection }
→ ⌊ϕ(γ′)⌋ = ⌊ν⌋ = 0II
→ ϕ(γ′) = 0IR
→ γ′ = 0XY . { ϕ : bijection }

This completes the proof. □

Finally we summarise the main results in the paper.

Corollary 5.8. The following three statements are equivalent.

(a) (AC∗),

(b) (ZL) ∧ (AC-I),

(c) (AC◦) ∧ (AC-I).

Proof. It is direct from the last propositions: (a) implies (b) by Theorem 5.2,
(b) implies (c) by Proposition 5.6, and (c) implies (a) by Proposition 5.7. □

6. Kuratowski’s lemma

As an application of (ZL) we will give a relational proof of Kuratowski’s lemma in
Cantor categories satisfying the axiom of totality (Tot∗).

For a relation δ : X ⇁ X, a relation ρ : V ⇁ X is a δ-clique if ρ♯ρ ⊑ δ. Note that
(ξ ⊔ ξ♯)-cliques are ξ-chains and idX -cliques are univalent relations.



Axiom of Choice and Zorn’s Lemma in Cantor Categories 31

Proposition 6.1. Let j : D → ℘(X) be an injection such that

j♯j = id℘(X) ⊓ (∋X ▷ δ ◁ ∋♯
X) ⊓∇℘(X)Iσ

@
0 ΞX ,

where δ : X ⇁ X is a relation and σ0 : I ⇁ X is a δ-clique.

(a) For all relations σ : I ⇁ X the following equivalences hold:

⟨σ♯σ ⊑ δ ⟩ ∧ ⟨σ0 ⊑ σ ⟩ ↔ ⟨σ@ ♯σ@ ⊑ j♯j ⟩ ↔ ⟨σ@j♯ : tfn ⟩.

(b) Suppose the axiom of totality (Tot∗). The induced order Ξj = j ΞXj
♯ : D ⇁ D is

chain complete on I.

Proof. (a) The first equivalence follows from (1) and (2) below:

(1) σ♯σ ⊑ δ ↔ σ@ ♯σ@ ⊑ ∋X ▷ δ ◁ ∋♯
X :

σ♯σ ⊑ δ ↔ ∋♯
Xσ

@ ♯σ@∋X ⊑ δ { σ@∋X = σ }
↔ σ@ ♯σ@ ⊑ ∋X ▷ δ ◁ ∋♯

X .

(2) σ0 ⊑ σ ↔ σ@ ♯σ@ ⊑ ∇℘(X)Iσ
@
0 ΞX :

σ0 ⊑ σ ↔ σ0 ⊑ σ@∋X { σ = σ@∋X }
↔ σ0 ⊑ σ@ ▷ ∋X { σ@ : function }
↔ σ@ ⊑ σ0 ▷ ∋♯

X { Galois conn. }
↔ σ@ ⊑ σ@

0 ΞX { σ@
0 : function }

↔ σ@ ♯σ@ ⊑ ∇℘(X)Iσ
@
0 ΞX . { I : unit }

The second equivalence follows from (3) and (4) below:
(3) σ@ ♯σ@ ⊑ j♯j → σ@j♯ : function :
Assume σ@ ♯σ@ ⊑ j♯j. Then

jσ@ ♯σ@j♯ ⊑ jj♯jj♯ { σ@ ♯σ@ ⊑ j♯j }
= idD. { jj♯ = idD }

idI ⊑ σ@σ@ ♯σ@σ@ ♯ { σ@ : tfn }
⊑ σ@j♯jσ@ ♯. { σ@ ♯σ@ ⊑ j♯j }

Hence σ@j♯ is a function.
(4) σ@j♯ : tfn → σ@ ♯σ@ ⊑ j♯j :

σ@j♯ : tfn → σ@j♯j = σ@ { σ@j♯j ⊑ σ@ }
→ σ@ ♯σ@ = σ@ ♯σ@j♯j
→ σ@ ♯σ@ ⊑ j♯j. { σ@ : function }

(b) We will show that for all Ξj-chains λ : I ⇁ D the supremum sup(λ,Ξj) is total. Let’s

begin with the case that λ = 0ID. Note that sup(0ID,Ξj) = ∇ID ▷ Ξ♯
j by 0ID ▷ Ξj =

∇ID, and σ@
0 j

♯ ⊑ ∇ID ▷ Ξ♯
j = sup(0ID,Ξj) follows from

∇ID = ∇IDjj
♯jj♯ { jj♯ = idD }

⊑ ∇IDj∇℘(X)Iσ
@
0 ΞXj

♯ { j♯j ⊑ ∇℘(X)Iσ
@
0 ΞX }

⊑ σ@
0 ΞXj

♯ { ∇IDj∇℘(X)I ⊑ idI }
= σ@

0 ▷ ΞXj
♯ { σ@

0 : tfn }
⊑ σ@

0 j
♯j ▷ ΞXj

♯ { j♯j ⊑ id℘(X) }
= σ@

0 j
♯ ▷ Ξj . { j : function }
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Hence sup(0ID,Ξj) is total, since σ
@
0 j

♯ is a function by (a). Next the case that λ ̸= 0ID
will be shown. Note that λ is total by the assumption (Tot∗). Then λj∋X is a δ-clique
such that σ0 ⊑ λj∋X by

(λj∋X)♯λj∋X ⊑ ∋♯
Xj

♯ΞjΞ
♯
jj∋X { λ♯λ ⊑ Ξj ⊔ Ξ♯

j ⊑ ΞjΞ
♯
j }

⊑ ∋♯
Xj

♯j∋X { Ξ♯
jj∋X ⊑ j∋X }

⊑ δ { ∋♯
Xj

♯j∋X ⊑ δ }

and

σ0 ⊑ (σ0 ▷ ∋♯
X)▷ ∋X

⊑ (λj∇℘(X)I(σ0 ▷ ∋♯
X))▷ ∋X { λj∇℘(X)I ⊑ idI }

⊑ λjj♯j ▷ ∋X { j♯j ⊑ ∇℘(X)I(σ0 ▷ ∋♯
X) }

= λj ▷ ∋X { jj♯ = idD }
⊑ λj∋X . { λ, j : total }

Hence, by (a), (λj∋X)@j♯ is a function. Moreover, by

(λj∋X)@j♯ = sup(λj,ΞX)j♯ { 4.4 (c) (λj∋X)@ = sup(λj,ΞX) }
⊑ sup(λ,Ξj). { 2.7 (f) }

sup(λ,Ξj) is total. □

Kuratowski’s lemma in Cantor categories with (Tot∗) is stated as follows.

Corollary 6.2. For all relations δ : X ⇁ X every δ-clique σ0 : I ⇁ X is con-
tained in a maximal δ-clique.

Proof. By the axiom of rationality (Rat) there exists an injection j : D → ℘(X)

such that j♯j = id℘(X) ⊓ (∋X ▷ δ ◁ ∋♯
X) ⊓∇℘(X)Iσ

@
0 ΞX . The induced order Ξj is chain

complete on I by Proposition 6.1 (b), and so it is inductive. Hence by Zorn’s lemma
there exists a Ξj-maximal function x : I → D. It follows from (1) and (2) below that
xj∋X is a maximal δ-clique such that σ0 ⊑ xj∋X .
(1) xj∋X : I ⇁ X is a δ-clique such that σ0 ⊑ xj∋X .
First recall (xj∋X)@ = xj and (xj∋X)@j♯ = xjj♯ = x is a function. By Proposition 6.1
(a) xj∋X is a δ-clique such that σ0 ⊑ xj∋X .
(2) If σ : I ⇁ X is a δ-clique such that xj∋X ⊑ σ, then σ = xj∋X .
By (1) σ is a δ-clique such that σ0 ⊑ σ, and σ@j♯ is a function by Proposition 6.1 (a).
Hence

σ = σ@∋X

= σ@j♯j∋X { σ@j♯ : tfn }
⊑ (σ ▷ ∋♯

X)j♯j∋X { σ@ ⊑ σ ▷ ∋♯
X }

⊑ (xj∋X ▷ ∋♯
X)j♯j∋X { xj∋X ⊑ σ }

= xj ΞXj
♯j∋X { xj : tfn }

= xΞjj∋X { j ΞXj
♯ = Ξj }

⊑ xj∋X , { x : Ξj-maximal }

which proves that σ = xj∋X . □
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7. Conclusion

We gave a relational proof in Cantor categories satisfying (Ba) to the known equiva-
lence of axiom of choice and Zorn’s lemma, based on a classical proof [Dugundji (1996)].
The result is illustrated as follows.

(AC∗)

5.2

&&NN
NNN

NNN
NNN

(AC◦) ∧ (AC-I)

5.7

77ooooooooooo
(ZL) ∧ (AC-I)

5.6
oo

A relational proof of Kuratowski’s lemma in Cantor categories satisfying (Ba) and (Tot∗)
was also given as an application of (ZL). In set theory the equivalence of (AC) and (ZL)
is recently deduced by using theory of ordinal numbers, and so the relational study of
ordinal numbers in Dedekind categories may be an interesting future work.
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