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INTRODUCTION

Sod production has increased in developed and 
developing countries as a profitable alternative to many 
traditional agricultural enterprises (Aldous et al., 2007; 
Yi, 2012).  The turfgrass–sod industry is growing rapidly 
due to strong demand as a result of its functional, recre-
ational, and aesthetic benefits in urban landscapes 
(Haydu et al., 2006; Monteiro, 2017).  The sod cultiva-
tion area in Korea has increased by 3,056 ha (17.8%) in 
2011 compared to sod production in 2006 (13.6%) (Choi 
and Yang, 2006; Korea Forest Service, 2012; Youn et al., 
2005; Youn et al., 2006).

Mowing is one of the key cultural practices for pro-
ducing a healthy, dense stand of turf as mowing too low 
or even too high could stress the turfgrass.  Fertilization 
is also an important issue for turf growth management 

and has a major influence on achieving a balance 
between shoot growth and root development of the 
transplanted sod (White et al., 1991) as excessive nitro-
gen rates retard root development of the transplanted 
sod (Duble, 2001).  Applying the right amount of nitro-
gen at different locations in the field is very important 
for healthy plant growth (Bean et al., 2012).  Otherwise 
growth would not be uniform, showing better growth in 
some parts and less growth in other parts of the field.

Variable rate fertilization (VRF) has been an impor-
tant issue in precision agriculture, and an emerging need 
for reducing the cost of production and environmental 
contamination (Ruicheng et al., 2013).  It allows the 
farmer to apply different rates of fertilizer at each loca-
tion across fields to satisfy site–specific management 
requirements (Koch et al., 2004; Farooque et al., 2012; 
Huang et al., 2013).  This VRF technique can improve 
fertilization efficiency and protect the environment, and 
can be achieved by adjusting the application rate based 
on an electronic map or real–time sensor–based meas-
urement of a continuous stream of information (Grisso et 
al., 2011).  Several studies have been reported on the 
application of VRF in precision agriculture (Murdock 
and Howe, 1997; Wells and Dollarhide, 1998; Chan et al., 
2002; Ying–zi et al., 2015; Reyes et al., 2015; Gourevitch 
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et al., 2018).  The implementation of VRF depends on 
the characterization of spatial variability within a field.  
Therefore, geostatistical analysis was performed to 
assess the spatial variation of grass growth of the sod 
production fields.   

For successful VRF, sensing of crop growth, under-
standing the variability, and application recommenda-
tions should be established.  Fricke et al. (2011) used an 
ultrasonic sensor to measure sward height and predicted 
forage mass with mean residuals ranged between 0.893 
and 1.672.  Pittman et al. (2015) examined a combina-
tion of sensors (laser, ultrasonic, and spectral) for the 
estimation of biomass yield and plant height in several 
forage species.  Image processing is a popular method to 
estimate crop growth in different fields of agricultural 
applications.  The texture of an image is a function of the 
spatial variation in pixel intensities (Tuceryan and Jain, 
1998) and is easily perceived by humans (Rosenfeld and 
Kak, 1982).  Some aspects of texture are readily 
extracted and expressed in numerical form (Chan and 
McCarty, 1990).  Philipp and Rath (2002) compared dif-
ferent transformations of RGB color spaces, and logarith-
mic discriminant analysis was found to be the most 
effective method for separating plants and background 
in color images taken by a digital photo camera.  
Research on weed/corps discrimination for automatic 
identification with real–time image processing has also 
increased recently.  Image processing for weed detection 
is mostly done in two steps, such as segmentation of veg-
etation against the background (soil and/or harvest resi-
dues) and detection of the vegetation pixels that repre-
sent weeds (Burgos–Artizzu et al., 2011).  In segmenta-
tion procedures of vegetation, all pixels belonging to 
vegetation can be easily extracted by some combination 
of the color planes on the RGB model (e.g., Woebbecke 
et al., 1995; Andreasen et al., 1997; Pérez et al., 2000; 
Aitkenhead et al., 2003; Yang et al., 2003; Ribeiro et al., 
2005; Van Evert et al., 2006).  The performance of 
potential sensors such as CCD cameras, ultrasonic mod-
ules, and optical reflectance sensors were compared for 
grass growth estimation under different turfgrowth lev-
els and sensor operation conditions by Kabir et al. 
(2016).  The CCD camera proved to have the feasibility 
of grass growth detection in different operating condi-
tions.   

Variability analysis and mapping of grass growth 
could be used to reflect the need for fertilization in a tur-
fgrass growing area.  Research has been conducted to 
develop spatial variable fertilization systems for different 
crops (Raun et al., 2005; Basso et al., 2011; Basso et al., 
2016; Farooque et al., 2012; Xu et al., 2015; Ha et al., 
2015).  Xu et al. (2014a, 2014b) developed a Nutrient 
Expert (NE) for Hybrid Maize fertilizer recommenda-
tion system, a promising nutrient decision support tool, 
that not only increased grain yield, nutrient use effi-
ciency and profit, but also reduced nutrient loss and 
environmental pollution.  Liu et al. (2017) proposed a 
method for formulating recommended fertilizer rates for 
rice using agronomic efficiencies and a sustainable yield 
index (SYI), and recommended mean N, P2O5, and K2O 

fertilization rates of 186, 60, and 96 kg/ha, respectively, 
in the study region.  Carey et al. (2012) documented 
turfgrass fertilization practices such as the proper com-
bination of fertilizer rate, timing, and placement that 
maximized nutrient utilization efficiency and their 
impacts on urban water quality.  Efficient grass growth 
mapping can be useful for the implementation of timely 
and site–specific fertilizer management for high–quality 
turfgrass growth.  Based on the maps, a grass field can 
be divided into different zones to allow growers to use 
different techniques according to the conditions in each 
area of the grass field.  The fertilizer application maps 
are useful to indicate the amount of fertilizer required in 
each zone, and variable rate fertilization could be used to 
apply the average rate of fertilizer in each zone of the 
field.  

The objective of this study was to recommend varia-
ble rate fertilization for sod production fields with grass 
coverage density of about 90%, 70%, and 50%, based on 
site–specific grass growth levels estimated by CCD cam-
era images.  

MATERIALS AND METHODS

Concept of the variable rate fertilizer recommen-
dation  

The concept of variable rate fertilizer recommenda-
tion using image sensor–based turfgrass growth mapping 
is shown in Fig. 1.  This map–based variable rate fertili-
zation consists of three parts: sensing of turfgrass 
growth information, interpolation and mapping, and vari-
able rate fertilizer recommendation.  In the first step, the 
turfgrass growth status of three different turfgrass fields 
covering 90%, 70%, and 50% turfgrass were sensed 
using an image sensor (CCD camera).  Then the images 
were processed to identify the turfgrass growth status of 
the field and calibration was done to recommend ferti-
lizer for different turfgrass growth levels.  The turfgrass 
growth maps for each field were derived from image sen-
sor data and the position of the field acquired by a global 
positioning system (GPS).  Finally, variable rate fertilizer 
was recommended based on the turfgrass growth levels 
for each of the sod production fields.

  
Field sites and image acquisition

Grass image sets were obtained for sod production 
fields in the southern part of South Korea in three differ-
ent field conditions with grass coverage density of about 
90% (720 m2; 35º15’ N, 126º61’ E), 70% (900 m2; 35º16’ 
N, 126º63’ E), and 50% (800 m2; 35º17’ N, 126º63’ E) 
reported by a skilled farmer (owner of the farm) who 
had experience of growing grass for over 10 years.  The 
shapes of the sod production fields, together with travel 
trajectories in satellite images and the sample images 
captured by the camera are shown in Fig. 2.  The grass 
variety was Zoysia Japonica Steud (Korean lawngrass).  
In this region of Korea, Zoysia grass is usually planted 
from April to May and harvested from September to 
October about 15 months after planting.  During the 
Zoysia grass growing season in 2013, the average range 
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of monthly temperature and rainfall was 11.4~28.4ºC and 
30.8~349.1 mm, respectively.  The experiments were 
performed in the middle of September 2013, and the 
average monthly temperature was 24.5ºC.  

In our previous research, a CCD camera was 
mounted on the top front of a mower tractor at a height 
of 1.6 m and pointed downward to the ground (Fig. 3).  

The detection area of the CCD camera was 100 × 50 cm2 
and the images were taken from three fields while driv-
ing the tractor at 1–m straight line intervals without 
stopping.  Images were taken at 20 points in each field 
and calibration was done between sensor measurements 
and growth levels quantified by a skilled expert (Kabir et 
al., 2016).   

Fig. 1.   Schematic diagram showing concept of variable fertilizer (VRF) recommendation based 
on grass growth maps.

Fig. 2.   Grass growth conditions and travel trajectories with starting point (SP) and end point (EP) of 
growth measurements in three different field conditions: (a) Field 1, 90% growth; (b) Field 2, 70% 
growth; (c) Field 3, 50% growth.
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Therefore, in this research, a CCD camera (model: 
DFK 31BF03, Sony Co., Japan) with 1280 × 960 resolu-
tion was used for taking pictures in turfgrass fields with-
out extra illumination, flash or covering.  The camera 
had a 1/3–inch CCD chip and 4.65 µm × 4.65 µm pixel 
images were possible as three–channel images in the 
RGB color space.  The specifications of the CCD camera 
are shown in Table 1.  Images were captured from each 
turfgrass field riding on the mower tractor at a speed of 
0.5 m/s together with the position information gathered 
by a GPS receiver.  The camera was connected to a lap-
top and the LabVIEW program (ver. 2012; National 
Instruments; Austin, Texas, USA) was used to acquire 
the images.  Position coordinates of the Zoysia grass 
measuring points were obtained using RTK–GPS (model: 
A220, Hemisphere GPS Co., USA).  All of the data were 
stored in the computer in real time.  The data were then 
merged by software using the Matlab program (version 

R2011a, Math Works, USA).  

Variable fertilizer recommendation procedure 
In our previous research (Kabir et al., 2016), grass 

images were acquired from turfgrass fields with 90%, 
70%, and 50% growth coverage during static, vibration, 
and travelling conditions to reflect the grass coverages.  
The grass images collected from those three fields were 
processed through the color image segmentation (CIS) 
process, which was based on the gray level image seg-
mentation approach (histogram thresholding) in the 
RGB color space.  The excess green index (ExG) defined 
by Woebbecke et al. (1995) was employed for the RGB 
images and binarized by a thresholding method (Gée et 
al., 2008) to the smoothed ExG images considering the 
white pixels.  Fig. 4 shows the total color image segmen-
tation process such as an original image in the RGB color 
space of a grass field, excess green index (ExG), and 
finally thresholded binary image.  The percentages of 
grassless area expressed as CIS values (%) were calcu-
lated from the images by taking all white pixel values for 
determining the grass growth levels.  From the image 
analysis results, the Zoysia grass growth levels of the 
three different sod production fields were divided into 
10 levels from 1 (grassless) to 10 (well grown).  

Calibration between the image processed results 
(i.e., CIS (%)) and grass growth levels was done for 
measuring the grass growths of the experimental sod 
production fields with 90%, 70%, and 50% grass growth 
coverage.  Based on the calibration between CIS and 
grass growth levels of three different turfgrass fields, 
turfgrass growth levels were divided into levels from 0 
(0%) to 10 (100%) and inverse relationships were 
obtained between the growth levels and fertilization rec-
ommendations to calculate every point's fertilization lev-
els.  Similar to the turfgrass growth levels of the sod pro-

Fig. 3.  Grass growth mapping system on the mower tractor.

Table 1.  Specifications of the CCD camera used for taking images

Sensors Specifications

CCD camera

Model DFK 31BF03, Sony Co. (Japan)

Size (mm) 50.6 × 50.6 × 130 (H×W×L)

Resolution (mm) 1280 × 960

CCD 1/3” Sony CCD ICX204AK sensor

Camera speed (images/s) Up to 30 

Interface IEEE–1394/GigE

Fig. 4.   Steps in image processing for color image segmentation (CIS) calculation: (a) Original image; (b) excess 
green index; (c) thresholded binary image.
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duction fields, fertilizer levels of 10 (100%) to 0 (0%) 
were accordingly recommended.  The inverse linear rela-
tionship between fertilizer recommendation (FR) and 
Zoysia grass growth (GG) was derived by the equation 
below, where values “a” and “c” could be selected based 
on the grass growth status:

FR = a × GG + c 

The turfgrass growth and fertilizer recommendation 
maps were created based on the GPS coordinates to 
reflect the required amount of fertilizer for the target 
area.  Recommended fertilization levels and growth lev-
els of the linear inverse relationship were confirmed by 
the same variogram results.  Those models and coordi-
nates were used and input in GS+ software version 7.0 
(Gamma Design Software, Plainwell, Michigan) to create 
the three fields’ growth and fertilization level maps.  

Interpolation and mapping
Geostatistical analysis was performed to character-

ize the spatial variation of the Zoysia grass growth using 
GS+ software.  A semivariogram was produced for each 
of the Zoysia grass field to ascertain the degree of spa-
tial variability between neighboring observations.  
Isotropic models for semivariograms were fitted as no 
anisotropy evident in directional semivariograms for 
grass growth.  For fitting the semivariogram models, 
model parameters such as C0 (nugget effect), C0+C 
(sill), A0 (range), R2 (coefficient of determination), and 
RSS (residual sum of square errors) were adjusted.  R2 
and RSS were used to select the best models and model 
parameters were determined.  

In the 90% turfgrass growth field, for the semivari-
ance calculation minimum and maximum lag distances 
were 0.67 m and 20.0 m, respectively.  The lag interval 
was 1.0 m with a minimum number of pairs of 4269.  For 
the 70% turfgrass growth field, the maximum lag dis-
tance was 25.0 m with a lag interval of 1.0 m and led to at 
least 1480 pairs of data points.  Whereas, for the 50% 
turfgrass growth field, the maximum lag distance was 
45.0 m with a lag interval of 1.4 m, leading to at least 
4099 pairs of data points.

The Kriging interpolation method, which uses semi-
variograms to express spatial continuity, was used to 
estimate the values of the selected grass growth proper-
ties at unsampled locations and to generate the esti-
mated grass growth and fertilizer recommendation maps 
from the scattered set of image acquisition points.  In 
this interpolation method, the estimates were based on 
values at neighboring locations with the spatial relation-
ships.  Block Kriging interpolation using 16 neighbor val-
ues was done for each of the fields as this value was usu-
ally sufficient.  The radius values were 49.3, 55.5, and 
93.2 for 90%, 70%, and 50% turfgrass growth fields, 
respectively.  The interpolated Zoysia grass growth and 
fertilizer recommendation data were mapped for three 
different fields from the Kriging analysis.  The maps 
were created with equal intervals of 0.15 m, 0.14 m, and 
0.29 m for 90%, 70%, and 50% turfgrass growth fields, 
respectively.       

RESULTS AND DISCUSSION

Grass growth calibration 
In our previous research (Kabir et al., 2016), the CIS 

values and grass growth levels of three different turf-
grass field showed linear relationships.  During the static 
condition, the CIS values and grass growth levels showed 
a linear relationship with R2 value of 0.143, while R2 value 
of 0.256 was found for the moving condition.  The signifi-
cance of the slopes of the regression lines was also 
tested by t–test and no significance differences were 
found at a 5% significance level.  

Based on our previous findings, calibrations between 
the CIS values (%) and grass growth levels were done 
for each of the experimental sod production fields with 
90%, 70%, and 50% grass growth coverage to quantify 
the turfgrass growth levels.  The turfgrass growth levels 
of the sod production fields were divided into 10 levels 
to allow the operator to use an average amount of ferti-
lizer based on the turfgrass growth conditions in each 
area of the fields.  The CIS values were found in a range 
of 0.32 to 8.8% for the 90% grass growth coverage field 
with more growth coverage in the range of 5.0 to 
10.0 growth levels.  A range of 3.5 to 14.0% CIS values 
was found for the 70% grass growth coverage field with 
more growth coverage in the range of 4.0 (40%) to 9.0 
(90%) growth levels.  Whereas, the CIS values were 
found in a range of 7.5 to 17.5% for the 50% grass 
growth coverage field with more growth coverage in the 
range of 1.0 (10%) to 5.0 (50%) growth levels (Fig. 5). 

    
Relationships among grass growth and fertilizer 
level 

Relationships between the image analysis results 
expressed in CIS (%) and zoysia grass growth level were 
identified for each zoysia grass field.  In the 90% grass 
growth coverage field, the CIS values and the zoysia 
grass growth levels exhibited a linear relationship with 
85.3% variance.  The R2 value (0.916) was found highest 
for the 70% grass growth coverage field.  Lower accu-
racy was achieved for the 50% grass growth coverage 
field with an R2 value of 0.673.  The scatter plots 
between the CIS value and grass growth (GG) level of 
the three different fields are shown in Fig. 5 (left), and 
their relationships could be expressed by the following 
equations: 

GG1 = 0.96 × CIS1 + 1.4    (Field 1: 90% coverage)
GG2 = 0.71 × CIS2 – 0.21 (Field 2: 70% coverage) 

GG3 = 0.52 × CIS3 – 0.74 (Field 3: 50% coverage) 

Where, CIS1, CIS2, and CIS3 are the image processed 
values and GG1, GG2, and GG3 are the grass growth levels 
for the 90%, 70% and 50% grass growth coverage fields, 
respectively.  

In addition, inverse linear relationships between 
grass growth (GG) level and fertilizer recommendation 
(FR) were also found for each field.  The Zoysia grass 
status was different in the same sod production field; 
therefore, different levels of fertilization were required.  
The relationship between grass growth level and ferti-
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lizer recommendation exhibited a linear relationship 
with 96% variance in the 90% grass growth coverage 
field.  Higher accuracy was achieved (R2=0.971) between 
grass growth levels and fertilizer recommendation for 
the 70% grass growth coverage field.  Lower accuracy 
was found for the 50% grass growth coverage field with 
an R2 value of 0.944.  The scatter plots between the GG 
level and FR for three different fields are shown in Fig. 5 
(right), and their relationships could be expressed by 
the following equations:

FR1 = –1.1 × GG1 + 11 (Field 1: 90% coverage)
FR2 = –1.2 × GG2 + 12 (Field 2: 70% coverage)
FR3 = –1.3 × GG3 + 12 (Field 3: 50% coverage)

Where, FR1, FR2, and FR3 are the fertilizer recom-
mendations for the 90%, 70% and 50% grass growth cov-
erage fields, respectively.  The fertilizer application maps 

were prepared according to the grass growth zone maps 
indicating the variable fertilization required for each 
zone.

Variability analysis and mapping
The fitted semivariogram models for three experi-

mental fields are shown in Fig. 6.  In the 90% turfgrass 
growth field, the nugget value optimized by different 
models varied by 0.35% (exponential model) to 0.72% 
(linear model).  The value of sill varied from 0.92% (lin-
ear to sill model) to 1.03% (linear model).  The opti-
mized range values varied widely, from 1.90 m (exponen-
tial model) to 19.50 m (linear model).  For the 70% turf-
grass growth field, the nugget values were optimized by 
different models varying from 0.64% (exponential 
model) to 0.96% (linear model).  The value of sill varied 
from 1.41% (linear to sill model) to 1.56% (linear 

Fig. 5.   Relationships between CIS (%) vs. growth levels (left) and grass growth levels vs. 
fertilization levels (right) for different grass growth coverages.



151Variable Fertilizer Recommendation by Image–based Grass Growth Status

model).  The optimized range values varied widely, from 
5.74 m (exponential model) to 24.49 m (linear model).  
Similarly, a wide range of optimized parameter values 
were found in different semivariogram models for the 
50% turfgrass growth field.  The optimized nugget values 
varied in different models from 0.65% (linear to sill 
model) to 1.32% (linear model).  A wide range of sill val-
ues from 1.42% (linear to sill model) to 1.50% (linear 
model) and range values from 1.20% (Gaussian model) 
to 43.30% (linear model) were found for the 50% turf-
grass growth field.   

In this study, isotropic exponential and spherical 

models were fitted to the experimental semivariograms.  
The optimized semivariogram parameter (nugget, sill, 
and range) values of the fitted semivariogram models are 
presented in Table 2.  The exponential model was found 
to best fit data for turfgrass the field with 90% growth 
coverage.  The R2 values ranged from 0.696 (linear 
model) to 0.843 (exponential model) and the RSS values 
ranged from 0.039 (exponential model) to 0.679 (linear 
model).  The spherical (SPHR) and linear to sill (LTIS) 
models were very close, indicating a close performance 
of the models for the turfgrass field with 70% growth.  
The performance of the linear to sill (LTIS) model is also 

Table 2.  Growth level and fertilization level isotropic variogram parameters of three fields

Model* Field Nugget (C0) Sill (C0+C) Range (A0) Q (C/C0+C) R2 RSS

EXPN

90% 0.346 0.933 1.900 0.629 0.843 0.039

70% 0.644 1.451 5.740 0.556 0.949 0.053

50% 0.711 1.435 1.560 0.505 0.780 0.040

SPHR

90% 0.407 0.920 4.390 0.558 0.804 0.048

70% 0.703 1.407 13.17 0.500 0.968 0.036

50% 0.714 1.429 3.250 0.500 0.666 0.061

LITS

90% 0.413 0.917 3.080 0.550 0.793 0.051

70% 0.704 1.409 9.940 0.500 0.965 0.037

50% 0.654 1.424 1.710 0.541 0.568 0.075

GAUS

90% 0.460 0.921 2.060 0.501 0.805 0.049

70% 0.710 1.421 6.050 0.500 0.958 0.066

50% 0.703 1.426 1.200 0.507 0.600 0.071

LINR

90% 0.718 1.034 19.49 0.305 0.696 0.679

70% 0.965 1.561 24.49 0.381 0.735 2.860

50% 1.321 1.503 43.30 0.121 0.505 0.086

* EXPN–exponential model, LITS–linear to sill, SPHR–spherical, GAUS–Gaussian, LINR–linear model

Fig. 6.  Semivariograms of three Zoysia grass fields with their best fitted curves and parameters.
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acceptable as the R2 and RSS values were very similar for 
the 70% growth field with R2 values ranging from 0.735 
(linear model) to 0.968 (spherical model) and RSS val-
ues ranging from 0.036 (spherical model) to 2.86 (linear 
model).  

The Kriging interpolated maps of turfgrass growth 
and fertilizer recommendation showed gradual and non–
random spatial variability across the grass field.  Fig. 7 
shows the grass growth and fertilizer application maps 
for 90%, 70%, and 50% sod production fields.  Five lev-
els of Zoysia grass growth status and fertilizer were rec-
ommended based on the Zoysia grass growth coverage 
of the experimental fields.  These maps illustrate the 
Zoysia grass growth and recommended fertilizer varia-
tions within the field.  In the field with 90% growth cov-
erage, higher growth was found in the middle area of the 
field in the range of 8.0 (80%) to 9.0 (90%) growth lev-
els, and some edges of the experimental field showed 
less growth in the range of 5.0 (50%) to 6.0 (60%) lev-
els.  Therefore, lower fertilizer levels in the range of 0.5 

(5%) to 1.0 (10%) in the middle area and higher ferti-
lizer level in the range of 3.5 (35%) to 4.7 (47%) in the 
edges of the field were recommended.  

Moderate grass growth variations were found in the 
70% growth coverage field; some areas in the middle of 
the field were found to have higher and moderate grass 
growth coverage in the range of 8.0 (80%) to 9.0 (90%) 
levels.  Some edges of the field were found to have a 
grass growth level of less than 5.0 (50%).  Hence, a 
lower fertilizer level in the range of 0.5 (5%) to 1.5 
(15%) in the middle area and higher fertilizer level in the 
range of 3.0 (30%) to 4.0 (40%) in the edges of the field 
was recommended.  

Whereas, high grass growth variations were found in 
the 50% grass growth coverage field, showing less grass 
growth in most of the middle area of the field in the 
range of 4.0 (40%) to 5.0 (50%) and some edges of the 
field with high growth coverage in the range of 6.0 
(60%) to 7.0 (70%) levels.  Therefore, fertilizer recom-
mendations also varied over the field, showing a higher 

Fig. 7.   Grass growth (left) and fertilizer application (right) maps for the fields with grass growth coverage levels of 90%, 70%, 
and 50%.
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fertilizer rate in the range of 2.0 (20%) to 4.0 (40%) lev-
els in the middle part of the field and a fertilizer level of 
2.0 (20%) to 3.0 (30%) was recommended in some 
edges of the field.  

Economic benefits of VRF
A uniform fertilizer application rate of 10 (100%) 

level would require roughly 260 kg N/ha, 280 kg N/ha, 
and 275 kg N/ha for the 90%, 70%, and 50% grass growth 
coverage fields.  Comparing uniform fertilization to these 
fields, if the recommended fertilizers were variably 
applied it could save roughly 23.5%, 16.5%, and 18.5% 
per hectare for the 90%, 70%, and 50% coverage fields.  
Although nutritional input varies depending on climate 
zone, soil type, or species, the general yearly require-
ments for Zoysia grass are recommended at 10 g N/m2, 
19.5 to 29 g N/m2, and ~34.2 g N/m2 for lower (i.e., home 
lawn), medium (i.e., golf course fairway, athletic field), 
and higher maintenance areas (i.e., higher leaching soil, 
sod production field), respectively (Carroll et al., 1996; 
Patton et al., 2017).  According to the reported nutri-
tional recommendation and field map images, nitrogen 
fertilizer in the Zoysia grass sod production field can be 
applied at a minimum rate of 23 g N/m2 per year for 
medium to high growth level areas (i.e., growth levels 6 
to 9 for 70% or 90% covered field), while up to 30 
~34.2 g N/m2 per year for <4 growth level areas such as 
the 50% covered field.  

If this system is applied to a golf course fairway 
established with Korean lawngrass (Z. japonica), where 
the recommendation rate ranges from 20 to 30 N/m2 per 
year, the highest growth level area (>9) with medium 
soil P and K contents will have a 4:1:2 ratio of 
N:P2O5:K2O, which equals to 19.5 g N, 4.8 g P2O5, and 
9.6 g K2O per square meter per year with the application 
of about 115 g of a compound fertilizer (16:4:8) (www.
aesl.ces.uga.edu).  A higher rate will be required for the 
lower growth level segments <4 or if clippings are 
removed, where the compound fertilizer will be 
increased up to 172 g per square meter per year (divided 
by about 43 g in spring, June, July, and September).  

Variable rate fertilization is promising and could 
save a big amount of fertilizer.  But uniform fertilization 
with an average amount of fertilizer could enhance ferti-
lizer use efficiency.  Farmers could take some images 
from well–grown to less grown areas of a grass field and 
based on the growth calibration shown in this study, the 
recommended fertilizer could be set for the entire field 
for real–time fertilizer application. 

CONCLUSIONS

Aiming at variable fertilizer recommendations for 
sod production fields, an image–based variable rate ferti-
lization system was developed in this study.  A CCD 
camera was mounted on the top front of a mower tractor 
and Zoysia grass images were acquired from three dif-
ferent sod production fields with coverage density of 
about 90%, 70%, and 50%.  Based on the calibration 
between image processed results (i.e., CIS values) and 

grass growth levels in our previous research (Kabir et 
al., 2016), Zoysia grass growth levels for the three dif-
ferent sod production fields were quantified with posi-
tion information gathered by GPS.

Linear relationships among the CIS values and zoy-
sia grass growth levels were identified and inverse rela-
tionships were derived for variable fertilizer recommen-
dations.  The relationships between grass growth levels 
and fertilizer recommendations exhibited linear relation-
ships for the three different fields.  Variations in the 
growth levels of the Zoysia grass were found for the 
same field; therefore, different levels of fertilization were 
recommended.

Semi–variance analyses were carried out to charac-
terize the spatial Zoysia grass growth distribution.  The 
best semivariogram model was selected comparing the 
R2 and RSS values for different lag sizes and lag intervals.  
The exponential models fit well for the 90% and 50% 
grass growth coverage field, whereas a spherical model 
was found to be the best fit for the 50% grass growth 
coverage field.  The Kriging interpolated Zoysia grass 
growth and fertilizer recommendation data were mapped 
to show gradual and non–random spatial variability for 
three experimental sod production fields.  This variable 
fertilizer recommendation system with average amounts 
of fertilizer could enhance fertilizer use efficiency, 
reflecting grass growth status effectively for sod produc-
tion and could help operators to achieve efficient varia-
ble fertilization. 
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